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Abstract: In this paper, we consider the problem of selecting the most ap-
propriate model, amongst a given collection of mixture models, to describe
datasets likely drawn from mixture of distributions. The proposed method
consists of finding the quasi-maximum likelihood estimators (QMLEs) of
the various models in competition, using the Expectation-Maximization
(EM) type algorithms, and subsequently estimating, for every model, a sta-
tistical distance to the true model based on the empirical cumulative distri-
bution function (cdf) of the original dataset and the QMLE-fitted cdf. To
evaluate the goodness of fit, a new metric, the Integrated Cumulative Error
(ICE) is proposed and compared with other existing metrics for accuracy
of detecting the appropriate model. We state, under mild conditions, that
our estimator of the ICE distance converges at the rate

√
n in probability

along with the consistency of our model selection procedure (ability to de-
tect asymptotically the right model). The ICE criterion shows, over a set
of benchmark examples, numerically improved performance from the ex-
isting distance-based criteria in identifying the correct model. The method
is applied in a material fatigue life context to model the distribution of
indicators of the fatigue crack formation potency, obtained from numerical
experiments.
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1. Introduction

Statistical practitioners are frequently interested in fitting mixture models to
univariate datasets for which nonparametric density estimates show several clear
departures from a description assumed to be accurate using one single standard
probability density function (pdf). Assuming the existence of a mixture model
accurately describing the dataset, a difficult proposition nevertheless arises of
defining a criterion for the best model among all the plausible scenarios, i.e.
possible numbers of components and collection of mixed parametric density
families. If the mixed densities are supposed to belong to the same parametric
density family, the above problem turns into estimating the number of compo-
nents that best describes the mixture model. This order determination prob-
lem has been studied in several ways, see for instance Henna [1], Izenman and
Sommer [2], Roedner [3], for various nonparametric techniques or Lindsay [4],
Dacunha-Castelle and Gassiat [5], for moment-based methods, Keribin [6] for
a penalized maximum likelihood selection method, or Berkhof et al. [7] for a
Bayesian approach. To our knowledge, when the mixed densities possibly arise
from different parametric families, inducing the exploration of a possibly high
number of combinatorial models, there is no existing specific methodology. We
nevertheless mention the work of Vuong [8], who proposed asymptotic likelihood
tests to select the closest model to fit the given dataset from among a set of
competing models based on the Kullback-Leibler (KL) information. However,
it is important to note that the methodology developed in that paper fails in
providing a total order on the set of competing models, the KL information
being a statistical divergence, but not a true probability-distance (lack of sym-
metry).
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The aim of this paper is to develop a finite-sample oriented methodology
that can order the models in competition, based on their ability to resample
the dataset of interest. For this purpose, we suppose that for each model in
competition, we can identify its quasi-maximum likelihood estimator (QMLE),
the true model being possibly part of the competing models. The basic idea
is then to estimate a true distance between the models in competition and
the distribution of the observations, based, for each model, on the comparison
between the QMLE-fitted cdf and the empirical cdf of the dataset of interest. In
this paper, the main motivation for developing such a mixture modeling method
arises from observations of fatigue life distributions of metals.

Typically fatigue damage in material science is defined as the degradation
of material properties due to the repeated application of stresses and strains
leading to material failure [9]. In metallic materials and alloys, fatigue damage
in the high cycle and very high cycle fatigue regimes (fatigue life of few to hun-
dreds of millions of loading cycles) is initiated at the level of structural units
called grains, whose size ranges from a few to a few hundred microns (1 micron =
10−6 metres). Each of these grains has a specific crystalline structure i.e. atomic
arrangement. In the high cycle fatigue regime, damage in materials accumulates
due to irreversible motion of defects along specific crystallographic directions.
The rate of damage accumulation and consequently crack formation and fa-
tigue life, is due to a combination of variables such as microstructural features
(grain size, crystalline structure etc.) and applied loading. The probability of
crack formation in a given volume of material is governed by the extreme value
probability of a favorable combination of microstructural features [12]. Thus,
the high cycle fatigue life of a material manifests as a distribution rather than
a unique value for multiple experimental realizations and is described well by
extreme value distributions.

The variation in distribution of fatigue life in metals is observed to a greater
extent in the high cycle and very high cycle fatigue regimes than for low cycle
fatigue life (thousands to tens of thousands of fatigue cycles) [10, 11], observed
experimentally for a wide variety of metal alloys [13, 14, 15, 16, 17]. The distri-
bution of the fatigue life also varies with the mechanism of crack initiation in
the material [14, 17]. For a more detailed discussion on crack initiation mecha-
nisms in materials, the reader is referred to Suresh [9]. In the high and very high
cycle fatigue regime, the fatigue life scatter is described by extreme value dis-
tributions. Przybyla and McDowell [12] used a Gumbel distribution to quantify
the variation of fatigue indicator parameters obtained from numerical exper-
iments. Other extreme value distributions such as 2 or 3 parameter Weibull
distributions have also been used to model the scatter in the observed fatigue
life [16, 17, 18, 19]. Mixtures of extreme value distributions have been used to
model fatigue life distributions when multiple mechanisms for crack formation
have been observed [17, 19] with each extreme value distribution describing the
scatter associated with a different crack formation mechanism. It is to be noted
that an approach to describing the fatigue life scatter using a mixture of distri-
butions for a single crack formation mechanism has not been considered in any
of the above studies.
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In the present work, we confine ourselves to quantifying the distribution of
the extreme values of stresses that act as driving forces for the motion of defects
along specific crystallographic directions within a grain and cause damage accu-
mulation. This stress is referred to as resolved shear stress and can be a potent
indicator of the crack formation life and thus, the fatigue life of the material.
The extreme value of the resolved shear stress can be influenced by factors such
as neighboring grains which could lead to the possibility of a corrupted/mixture
of extreme value distributions to describe the distribution of the resolved shear
stress. Thus, the approach taken here is to develop a generalized framework of
identifying the “best” mixture model, not all of which might be extreme value
distributions.

The paper is organized as follows. Section 2 is devoted to a detailed descrip-
tion of the model choice problem which is to be addressed and the methodology
proposed in answer, while Section 3 is dedicated to the statement of the asymp-
totic properties of our method (convergence rate and consistency). The finite-
sample performance of the proposed model selection method is studied in com-
parison with two other model selection procedures, based on the Kolmogorov-
Smirnov and Shannon-Jensen distances, for various scenarios through Monte
Carlo experiments in Section 4. In Section 5 the proposed method is applied
to real datasets obtained from numerical experiments where mixtures of Gum-
bel and Gaussian distributions are suspected. Appendix A is dedicated to the
proofs of the theorems established in Section 3. In Appendix B we provide a
brief description of the QMLE and its asymptotic convergence properties, and
show that the technical assumptions insuring the validity of our method are
fully satisfied when considering mixtures of Gumbel and Normal distributions
as applied to datasets obtained from numerical simulations in Section 5.

2. Problem and methodology

Let us suppose that we observe a univariate iid sample X = (X1, . . . , Xn) dis-
tributed according to an unknown pdf f0 which is possibly a mixture of pdfs
belonging to a given collection

M :=



fj(x, ϑj) =

Kj∑

k=1

πj,khj,k(x, θj,k), x ∈ R, j = 1, . . . , J



 , (1)

where, for all j ∈ J := {1, . . . , J}, respectively, the Euclidean parameter

ϑj := (πj ; θj,1, . . . , θj,Kj
), with πj := (πj,1, . . . , πj,Kj

),

is supposed to belong to a parametric space Θj := S(Kj)
∏Kj

k=1 Φj,k, where

S(Kj) := {πj,k > 0, 1 ≤ k ≤ Kj :
∑Kj

k=1 πj,k = 1}, Φj,k is a parametric space
corresponding specifically to each θj,k, and {hj,k(·, θj,k), k = 1, . . . ,Kj} is a set
of given pdfs.
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For simplicity and to avoid technical issues related to the identifiability and
degeneracy of the MLEs asymptotic normality in the neighborhood of negligi-
ble mixture weights, see example given in Keribin [6], p. 51, we suppose that
there are no nested models in the collection M, which is stated in the following
assumption.

Assumption (NN). We suppose that in the collection M there do not exist
two indices j1 and j2 such that Kj1 < Kj2 and

fj1(x, ϑj1 ) = fj2(x, ϑj2 ) x ∈ R,

when considering

πj2 = (πj1,1, . . . , πj1,Kj−1, 0, . . . , 0︸ ︷︷ ︸
Kj2

−Kj1

).

Such a setup holds easily by assuming that the mixture weight vectors are com-
ponentwise uniformly lower bounded over the collection M. This last approach
matches in fact the natural thinking of a practitioner during the construction
process of an interpretable collection of models to investigate (every component
having to play a “real” role). Let us state now the basic question of this paper:

Model Selection Problem. How to select, among the J mixture models of
interest considered in M and fitted by a QML approach, the one that fits the
dataset X best, the true density f0 of which is unknown?

To answer this question we propose to introduce a new adapted statisti-
cal distance able to establish a total ordering among the models in competi-
tion (discrete topology on models set), with some expected good finite sample
properties compared to those usually encountered when using the Kolmogorov-
Smirnov (strong sensitivity of the supremum norm to local defects or outliers)
and Shannon-Jensen distances (asymptotic tailed-oriented approach suffering
of a bandwidth selection problem in finite range applications), see (10–11) for
definitions and following discussion.

Proposed Methodology. For each label j ∈ J , we introduce

ϑ̂j(X
n
1 ) := ϑ̂j := (π̂j,1, . . . , π̂j,K−1; θ̂j,1, . . . , θ̂j,K)

the QMLE of ϑj,∗, where ϑj,∗ is defined as the minimizer in ϑj of the Kullback-
Leibler divergenceK(f0, fj(·, ϑj)) over Θj , when considering the j-labelled model
in family M, i.e.

ϑj,∗ := arg min
ϑj∈Θj

K(f0, fj(·, ϑj)). (2)

Note that if there exists a label j0 ∈ J such that K(f0, fj0(·, ϑj0,∗)) = 0 then
ϑj0,∗ coincides with ϑ0. Generally the above estimators are computed by using
the Expectation Maximization (EM) algorithm, see e.g. Dempster et al. [21]
and Wu [20], which is by far the most efficient and essential fitting method in
missing data problems.
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We define next, for every label j ∈ J , the plug-in QMLE mixture estimate
of fj(·, ϑj,∗), also denoted for convenience fj,∗, by

f̂j(x) := fj(x, ϑ̂(X
n
1 )) =

Kj∑

k=1

π̂j,khj,k(x, θ̂j,k), x ∈ R. (3)

Finally, we introduce the collection of pdfs M∗ defined by

M∗ := {f0(x), fj,∗(x), x ∈ R, j = 1, . . . , J} , (4)

composed by f0 and the Kullback-closest pdfs to f0 picked from M, along with
the key Integrated Cumulative Error (ICE) quantity on M∗ defined for all
(f1, f2) ∈ M2

∗ by

ICE(f1, f2) :=
1

2

∫

R

|F1(x)− F2(x)|dFM∗
(x), x ∈ R, (5)

where Fi(x) =
∫ x
−∞

fi(t)dt, i = 1, 2, and FM∗
:= 1/(J + 1)

∑J
j=0 Fj,∗ with the

convention F0,∗ = F0. To differentiate the behavior of the method when f0 truly
belongs to the family M or the contrary, we propose to introduce two additional
assumptions.

Assumption (S1). The density f0 does not belong to the collection M, or
equivalently K(f0, fj,∗) > 0 for all j ∈ J .

Assumption (S2). The collection M contains the true density f0 , i.e. there
exists a unique j0 and a unique parameter ϑ0 ∈ Θj0 such that

f0(x) = fj0(x, ϑ0) x ∈ R,

or equivalently K(f0, fj,∗) = 0, if and only if j = j0 anf ϑj,∗ = ϑ0.

To use a QML based approach for choosing the most appropriate model, we
suggest to select among the collection of models M defined in (1), the one, with
label j∗ ∈ J , that minimizes the ICE distance to f0, i.e.

j∗ := argmin
j∈J

ICE(fj,∗, f0). (6)

Note that under (S2), we have j∗ = j0.

In order to implement this procedure we introduce, for all x ∈ R and j ∈ J ,
the empirical and smoothed versions of the cdfs involved in (5), i.e.

F̄0(x) :=
1

n

n∑

q=1

IXq≤x, F̂j(x) :=

∫ x

−∞

f̂j(t)dt, and

F̄j(x) :=
1

n

n∑

q=1

IYj,q≤x, (7)



ICE distance for non-nested mixture model selection 3147

where Yj := (Yj,1, . . . , Yj,n) is an iid sample drawn from f̂j, and denote for
convenience Y0 := (Y0,1, . . . , Y0,n) = (X1, . . . , Xn). An empirical estimator of
ICE(fj,∗, f0) is then naturally defined by the ICE statistic

ÎCE(fj,∗, f0) :=
1

n(J + 1)

J∑

l=0

n∑

i=1

|F̂j(Yi,l)− F̄0(Yi,l)|

=
1

n(J + 1)

J∑

l=0

n∑

i=1

∣∣∣∣F̂j(Yl,(i))−
nX,Yl

(i)

n

∣∣∣∣ , x ∈ R, (8)

where for all l = 0, . . . , J , Yl,(1) < · · · < Yl,(n), and nX,Yl
(i) = #{Xq ≤ Yl,(i);

q = 1, . . . , n}.
Finally we estimate j∗ by ̂ defined by:

̂ := argmin
j∈J

ÎCE(fj , f0). (9)

Alternative distances and their estimators. The natural counterparts
of the ICE distance in the statistical literature are the Kolmogorov-Smirnov
(KS) and Shannon-Jensen (SJ) distances. For all (f1, f2) ∈ M2

∗ the KS and SJ
distances are defined respectively by: i)KS(f1, f2) := supx∈R

|F1(x)−F2(x)| and
ii) SJ(f1, f2) :=

1
2 [E(f1|m)+ E(f2|m)] where m = 1/2f1+1/2f2 and E(fi|m) =∫

log(fi/m)dfi, i = 1, 2. For implementation and comparison perspective we
define the natural estimators of the above distances evaluated at each (fj , f0),
j ∈ J :

KS statistic: : K̂S(fj , f0) := sup
x∈R

|F̂j(x) − F̄0(x)|, (10)

where F̂j and F̄0 are defined in (7), and

SJ statistic: ŜJ(fj , f0) :=
1

2

[
Ê(fj |m) + Ê(f0|m)

]
, (11)

where

Ê(fj |m) :=
1

n

n∑

i=1

log

(
f̂j(Yi,j)

m̂(Yi,j)

)
, and Ê(f0|m) :=

1

n

n∑

i=1

log

(
f̂0(Xi)

m̂(Xi)

)
,

with f̂j defined in (3), f̂0(x) := 1/nbn
∑n

i=1 K(Xi−x/bn) is a standard Parzen-
Rosenblatt kernel density estimate of f0 with bandwidth parameter bn → 0 as
n → +∞, and m̂ := 1/2f̂j + 1/2f̂0.

Note that Babu [24] considers similarly, for model selection purposes, a boot-
strap estimate of the KS distance obtained basically by replacing in (10) the
smooth cdf F̂j(x) by the scaled F̄j(x), both defined in (7).

Discussion. It is well known that in case the original dataset X contains
outliers, then the empirical cdf F̄0 turns to be a bad estimator of F0 in the
distribution-tails. Practically this leads to observe sometimes excessively high
values of the KS statistic when the approximation F̂j under the modes of f0 is
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rather acceptable. In addition, especially when the sample size is small and the
dispersion of f0 is large, it is not rare to observe “gaps” in the ordered dataset
along intervals normally reasonably weighted by f0. This situation usually leads
to local defects of F̄0 which are generally very strongly punished by the KS
statistic and could deteriorate even more if F̄j is used instead of F̂j , as considered
in Babu [24]. On the other hand, the advantage of the KS statistic lies in the
fact that his computation is completely tuning-parameter free which makes its
implementation and interpretation rather straightforward.

Regarding the SJ statistic, it is interesting to notice that it is a much more
robust (with respect to outliers and local sampling imperfections) quantity in
the sense that it integrates progressively the dissimilarities of fj and f0 versus
m = 1/2fj+1/2f0 proportionnaly to fj and f0, smoothing by the way the impact
of local defects and vanishing the influence of outliers. The downside of the SJ
statistic lies in the fact that it requires the tuning of a bandwidth parameter,
which is known to have a big influence on the quality of the estimation (and final
interpretation) especially in small range sample sizes.

We attempt, by proposing the ICE statistic, to keep the best properties of
the KS and SJ statistics and avoid as much as possible their shortcomings.
Indeed, we clearly see in (8) that the cdf difference originally involved in the
KS statistic is averaged according to a probability density distribution reflecting
equally the fitted distributions f̂j , j ∈ J . This step should hopefully prevent
the ICE statistic to be oversensitive to outliers and local random defects by
providing a more global-fitting oriented information similarly to the SJ statistic.
On the other hand, since the ICE statistic only relies on closed form pdfs and
empirical measures based integration, it does not require any tuning parameter
which makes its use particularly simple.

Small sample size: A Monte Carlo alternative. When there is no hope,
for some technical reasons, to get large observed datasets xn1 := (x1, . . . , xn), the

interpretation of ÎCE criterion has to be handled carefully. Indeed, the empirical
means involved in definition (8), based on the random samples (Yj,1, . . . , Yj,n)’s,
may show themselves to be sources of stochastic instability and, as a conse-

quence, badly impact the interpretation of the results provided by the ÎCE cri-
terion. Nevertheless, this stochastic instability can be easily removed. Indeed,
denoting by ϑ̂j(x

n
1 ) the QMLE of ϑj,∗, j ∈ J , based on the observed sample xn1 ,

we can figure out to evaluate the accuracy of the fitted pdf f̂j(x, ϑ̂j(x
n
1 )) with

f0, by generating independently N iid samples of size n, Y n
1,ℓ := (Y1,ℓ, . . . , Yn,ℓ),

for ℓ = 1, . . . , N , and estimate the mean value of criterion ICE conditionally

on {Xn
1 = xn1 }, i.e. ICEj(x

n
1 ) := E.(ÎCE(f̂j , f))|{Xn

1 = xn1}), by the empirical
mean

ICEj(x
n
1 ) :=

1

N

N∑

ℓ=1

ÎCEℓ(f̂j , f), (12)

where ÎCEℓ corresponds to expression (8) when taking Y n
1,ℓ instead of Y n

1 . More-
over since the samples (Y n

1,ℓ)1≤ℓ≤N are mutually independent and the random
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variables 0 ≤ ICEℓ(f̂j , f) ≤ 1 we have the Central Limit Theorem (CLT):

√
N(ICEj(x

n
1 )− ICEj(x

n
1 ))

L−→ N (0,Σj(x
n
1 )), as N → ∞,

which allows to derive classical parametric bootstrap confidence intervals. Note

that averaged criteria KS and SJ can also be obtained by replacing ÎCEℓ

in (12) by K̂Sℓ and ŜJℓ respectively. This last approach will be employed to
reinforce the stability of the various criteria during the study of models M3–4
in Section 4.1 and also in the real datasets Section 4.3.

3. Assumptions and asymptotic results

For simplicity, we endow the space Rs, s ≥ 1, with the ‖ · ‖s norm defined for
all v = (v1, . . . , vs) by ‖v‖s =

∑s
j=1 |vj | where | · | denotes the absolute value.

To reduce wastefully heavy expressions due to the dependence on s, we omit to
mention it by considering, equally on s, ‖ · ‖s = ‖ · ‖.

We introduce now a basic assumption dealing with the resampling step of
our method (see Section B.3 for illustrative examples).

Assumption (G). For all (j, k) ∈ J × {1, . . . ,Kj} and all θj,k ∈ Φj,k, there
exists a pdf fj,k and an analytic function ρj,k(·, θj,k) such that for any random
variable Yj,k ∼ fj,k we have ρj,k(Yj,k, θj,k) ∼ fj,k(·|θj,k). In addition, there
exists a constant C independent from (j, k) ∈ J × {1, . . . ,Kj} such that for all
(θ, θ′) ∈ Φ2

k we have

|ρj,k(x, θ) − ρj,k(x, θ
′)| ≤ C[|x|+ 1]× ‖θ − θ′‖, x ∈ R. (13)

In addition, we define for all j ∈ J and all k = 1, . . . ,Kj :

Ḟj,k(x, θ) :=

(
∂Fj,k(x, θ)

∂θ1
, . . . ,

∂Fj,k(x, θ)

∂θdj,k

)T
, θ ∈ Φj,k,

where dj,k := dim(Φj,k).

Assumption (R). For all j ∈ J and all k = 1, . . . ,Kj, the cdf Fj,k(x, θ) is
a continuously differentiable function of θ ∈ Φj,k for each x ∈ R. Moreover, we
suppose that there exists a constant M > 1 such that

sup
x∈R,θ∈Φj,k

‖Ḟj,k(x, θ)‖ < M, j ∈ J and k = 1, . . . ,Kj.

Note that fully detailed verification of assumptions (R) and (G) is done in
Appendix A for the Normal and Gumbel distributions.

The following theorems establish respectively the metric property of the ICE

quantity and the asymptotic behavior of ÎCE and ̂ when the sample size n goes
to infinity.
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Theorem 1. Under assumption (R) the ICE quantity is a distance on the
finite collection M∗ (inducing a total ordering), i.e. for all pdf fj, j = 1, 2, 3
belonging to M∗ we have

i) ICE(f1, f2) ≥ 0, and ICE(f1, f2) = 0 ⇔ f1 = f2 λ-a.e. (definite positive-
ness),

ii) ICE(f1, f2) = ICE(f2, f1) (symmetry),
iii) ICE(f1, f3) ≤ ICE(f1, f2) + ICE(f2, f3) (subadditivity).

Theorem 2. i) If all the parametric mixture models belonging to the collection
M satisfy conditions (A1–6), given in Appendix A, and assumptions (NN, S1
or S2, G, R) hold, then for all j ∈ J we have

√
n
∣∣∣ÎCE(fj , f0)− ICE(fj , f0)

∣∣∣ = OP (1) .

ii) Under (S1), if conditions (A1–6) and assumptions (NE, G, R) hold, then
the ICE criterion defined in (9) is quasi-consistent in Probability, i.e.

P (̂ = j∗) → 1, as n → ∞. (14)

iii) Under (S2), if conditions (A1–6) and assumptions (NE, G, R) hold, then
the ICE criterion defined in (9) is consistent in Probability, i.e.

P (̂ = j0) → 1, as n → ∞. (15)

The proofs of Theorem 1 and 2 are relegated to the Appendix A.

4. Simulation study

4.1. Large sample Monte Carlo study

In order to study the qualitative finite sample properties of the ICE criterion
compared to the KS and SJ criteria, we propose to test these criteria on two
families of benchmark examples: i) mixtures of Normals and at most one cen-
tered Laplace and ii) mixtures of Normals and Gumbels.

Notations and examples i) We denote by N [r](ϑr) a generic mixture of r
Normal distributions where ϑr := (π, (θi)

r
i=1) is composed by π = (π1, . . . , πr−1)

the mixture weights vector, and (θi)
r
i=1 the collections of parameters correspond-

ing to the Normals.
We also denote by NL[q](ϑq−1, λ), a generic mixture of q − 1 Normal dis-

tributions and one centered Laplace distribution, where ϑq−1 := (π, (θi)
q−1
i=1 , λ)

is composed by π = (π1, . . . , πq−1) the mixture weights vector, (θi)
q−1
i=1 the col-

lections of parameters corresponding to the Normals and λ ∈ R+ \ {0} the
scaling parameter of the centered Laplace distribution which pdf is given by
fL(λ)(x) = λ/2 exp(−λ|x|), x ∈ R. We then consider the benchmark models:
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Fig 1. First row, respectively second row, plot of model M1, respectively M2, probability
density function (solid) and a representative kernel density estimate (dashed) based on n =
300 observations under case j = 1, 2, 3 (columns).

M1 : N [3](ϑ3) under

case 1 : π = (0.2, 0.5), θ1 = (8, 0.5), θ2 = (4, 1), θ3 = (0, 1),

case 2 : π = (0.4, 0.3), θ1 = (7, 1), θ2 = (3, 3), θ3 = (0, 1),

case 3 : π = (0.4, 0.3), θ1 = (5, 1), θ2 = (3, 1), θ3 = (0, 0.3).

M2 : NL[2](ϑ1, λ) under

case 1 : π = 0.5, θ1 = (3, 1), λ = 2,

case 2 : π = 0.3, θ1 = (4, 0.5), λ = 2,

case 3 : π = 0.7, θ1 = (7, 2), λ = 0.5.

For model M1, we consider three models in competition labeled by j: when
j = 1, 2, 3 we consider respectivelyN [2],N [3],NL[3], which gives j0 = 2 forM1.

For model M2, we consider three models in competition labeled by j: when
j=1, 2, 3 we consider respectively, N [2], NL[2], N [3], which gives j0 =2 forM2.

Remarks. The interest of comparing mixtures of Normals and Normals with
one centered Laplace distribution lies in the fact that the EM algorithms linked
to these models have closed iterative forms allowing a fast investigation on a
varied collection of models. In addition, it is worth to notice that they also
provide very challenging modeling problems when a Laplace component has, for
example, to be validated against a peaky Normal component (see the plots in
Fig. 1).

ii) We denote by NG[r, q](ϑr,q) a generic mixture of r Normal and q Gum-
bel distributions where ϑr,q := (πr,q, (θi)

r
i=1, (φj)

q
j=1) is composed by πr,q :=

(π1, . . . , πr+q) the mixture weights vector, and (θi)
r
i=1, respectively (φj)

q
j=1, the

collections of parameters corresponding to the Normal and Gumbel distributions
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respectively. We then consider the benchmark models:

M3 : NG[1, 2](ϑ1,2), with π1,2 = (1/2, 1/4), θ1 = (2, 0.5), φ1 = (0, 2), φ2 = (4, 3).

M4 : NG[2, 1](ϑ2,1), with π2,1 = (1/3, 1/3), θ1 = (0, 1), θ2 = (2, 0.5), φ1 = (3, 2).

For these two models we consider three models in competition labeled by j:
when j = 1, 2, 3 we consider respectively NG[1, 1], NG[2, 1], NG[1, 2] which
gives j0 = 3 for M3 and j0 = 2 for M4.

EM and GEM algorithms i) For the fitting of mixtures of Normals and
at most one centered Laplace distribution, we use the standard closed form
Expectation-Maximization (EM) algorithms (the MLE for the centered Laplace
distribution being explicit) as defined in Dempster et al. [21] p. 4. The EM
algorithms are initialized at arbitrarily values supposed to reflect the guess of a
practitioner and run until the difference between two successive iteration outputs
is inferior to 10−9 or when one of the estimated proportion mixture is less
than 0.1 to insure the no-nested model condition (NN) especially in the over-
parametrization case N [3] under model M2.

ii) For the fitting of mixtures of Normal and Gumbel distributions, unfor-
tunately there do not exist closed form solutions for updating the parameters
of the Gumbel components during the maximization step of the EM algorithm.
This concern forces us to implement a generalized EM algorithm (GEM), see
Dempster et al. [21], p. 7, in which a discretized search in the neighborhood
of the current parameters is performed in order to ensure the increase of the
log-likelihood function. The search is performed over a grid of uniformly spaced
points and the weighted log-likelihood of each component is calculated at each
of these points. The limits of the grid are defined as ±0.1 with increments of
0.01 for the location parameter and ±0.01 with increments of 0.001 for the scale
parameter. The parameters of a component of the mixture are updated, if neces-
sary, by identifying the argument of the maximum of the weighted log-likelihood
evaluated over the grid of points specified. The support of the area/grid over
which the weighted log-likelihood of a component is maximized, is also up-
dated along with the updated parameters. The weights of the components of
the model are updated in the successive iteration based on the updated values
of the parameters. The method is assumed to have converged when the global
log-likelihood of the model being estimated varies within a tolerance of 10−10

for fifty successive iterations.
In our Monte Carlo simulation experiment, we generate 100 samples of size

n from models M1–4 and their different cases. For each sample, we compute

the QMLE for the various models in competition, estimate their distances ÎCE,
K̂S and ĴS when considering M1–2 and ICE, KS and JS (based on N = 100
resamplings) when considering M3–4, to the true model, and pick the models
minimizing respectively these quantities. In Tables 1–3 we report, for different
values of n, the selection rate obtained by each model when using these criteria.
For clarity purposes, the entries of Tables 1–3 corresponding to the true model
are colored in green.
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Table 1

Within brackets selection rates of competing models j = 1, 2, 3 associated respectively to

ÎCE, K̂S, ŜJ under M1 and cases 1, 2, 3

Model j n case 1 case 2 case 3
j = 1 50 {0, 0, 0} {0, 11, 0} {4, 10, 0}
j = 2 50 {82, 69, 57} {77, 63, 57} {74, 54, 60}
j = 3 50 {18, 31, 43} {23, 26, 43} {22, 36, 40}
j = 1 100 {0, 0, 0} {1, 8, 0} {3, 10, 0}
j = 2 100 {90, 64, 69} {84, 73, 61} {78, 52, 61}
j = 3 100 {10, 36, 31} {15, 19, 39} {19, 38, 39}
j = 1 200 {0, 0, 0} {0, 8, 0} {0, 4, 0}
j = 2 200 {95, 79, 83} {87, 67, 61} {87, 68, 68}
j = 3 200 {5, 21, 17} {13, 25, 39} {13, 28, 32}

Table 2

Within brackets selection rates of competing models j = 1, 2, 3 associated respectively to

ÎCE, K̂S, ŜJ under M2 and cases 1, 2, 3

Model j n case 1 case 2 case 3
j = 1 100 {39, 34, 27} {34, 29, 33} {32, 19, 25}
j = 2 100 {22, 24, 30} {62, 61, 65} {46, 52, 51}
j = 3 100 {39, 36, 49} {4, 10, 2} {22, 30, 23}
j = 1 200 {14, 23, 17} {18, 14, 25} {18, 17, 20}
j = 2 200 {38, 36, 29} {82, 82, 75} {65, 63, 57}
j = 3 200 {10, 36, 31} {0, 4, 0} {17, 20, 23}
j = 1 500 {2, 3, 6} {5, 6, 9} {16, 20, 18}
j = 2 500 {53, 49, 40} {95, 92, 91} {75, 71, 71}
j = 3 500 {45, 48, 54} {0, 2, 0} {9, 9, 11}
j = 1 1000 {2, 1, 1} {0, 2, 0} {3, 10, 8}
j = 2 1000 {63, 59, 41} {100, 95, 93} {95, 89, 90}
j = 3 1000 {35, 40, 58} {0, 3, 7} {2, 1, 2}

Comments on Tables 1–3

Table 1. It is interesting to notice first that case 1, which is a clearly designed
3 components Normal mixture, is well identified by all the criteria despite the
small sample size under consideration. For case 2 and 3, which have been delib-
erately setup to mimic a two components mixture model, we observe that K̂S
falls in that trap about 10% of the trials when the other criteria do not. Overall

the ÎCE criterion outperforms very clearly the other criteria (15% to 20% more

efficient) and ĴS seems to have more difficulties in distinguishing a (peaky)
Laplace component vs a Normal component due to the kernel smoothing step
involved in its definition (11).

Table 2. The main difficulty in that collection of cases is that our criteria have
to “decide” at some point if the zero-centered peaky component corresponds to
a Laplace distribution or a peaky gaussian distribution (see Fig. 1 second row).
This explains the fact that much more data is needed to get a valid conclusion. In
case 1, where the Laplace component is strongly weighted and widely overlapped
by the Normal component, we observe that there is no really valid conclusion

under n = 500. For case 1, the ÎCE criterion outperforms sligthly the other
criteria when ĴS struggles more in rejecting the over-fitted model j = 3. For
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Table 3

Within brackets selection rates of competing models j = 1, 2, 3 associated respectively to
ICE, KS, SJ under M3 and M4

Model j n M3 M4

j = 1 100 {13, 25, 1} {2, 10, 5}
j = 2 100 {36, 43, 56} {54, 42, 58}
j = 3 100 {51, 32, 43} {44, 48, 37}
j = 1 300 {13, 21, 2} {1, 6, 2}
j = 2 300 {29, 37, 52} {70, 66, 55}
j = 3 300 {58, 43, 46} {29, 28, 43}
j = 1 1000 {8, 14, 2} {0, 1, 0}
j = 2 1000 {17, 45, 46} {87, 75, 61}
j = 3 1000 {75, 41, 52} {13, 24, 39}

cases 2 and 3, we can observe in Fig. 1 that the kernel density estimators fit
pretty well the probability density curve of the mixtures, which is reflected in
the very good selection rate obtained by all the criteria (we even obtained a

100% of success for ÎCE during our N = 100 experiments when considering
case 2 with n = 1000).

Table 3. The interesting aspect in model M3 is that its third Gumbel compo-
nent has a very heavy right-side tail compared to the cases considered in M1
and M2, when model M4 allows to illustrate the behavior of our method in a
kind of well designed situation (M1–2 like) including a more reasonably tailed
Gumbel distribution.

Since the datasets generated from M3 are basically very spread-out, we en-
counter very often situations, especially for small sample sizes, where nearest
neighbors are relatively far from each over. This concern impacts very badly the
quality estimation of the cumulative distribution and the probability density
function (see left side of Fig. 2) as it is discussed at the end of Section 2. In this

very challenging example, we observe that criterion ĴS excludes very early the

underparametrized model NG[1, 1] while criteria ÎCE and K̂S, both based on
the empirical cdf, struggle in rejecting it (still about 10% of NG[1, 1] models
are selected when n = 1000). On the other hand, we have to recognize the good

behavior of the ÎCE criterion which actually is the only one able to detect sig-
nificantly the right model by having a success rate of 75% for n = 1000 when
other criteria stabilize their success rates around 30–50% for n = 100, 300, 1000
which are values close to the prior probability of picking the right model.

The study of model M4 confirms the major influence of the distribution-tails
on the finite sample size performances of the various criteria. Indeed, the fact
that the mixture modelM4 has only one Gumbel component with a scale param-
eter equal to 2, when there was two Gumbel components with scale parameters
equal to 2 and 3 in M3, allows a better estimation of the cdf and pdf (compare
both sides of Fig. 2). As a consequence, the results displayed in Table 3 cor-
responding to model M4 are clearly better than those corresponding to model

M3. Again we have to recognize the superiority of ÎCE on its competitors since
it gets respectively 70% and 87% of success rate when K̂S, respectively ĴS, only
reach 66% and 75%, respectively 55% and 61%, for n = 300 and n = 1000.
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Fig 2. Left side, respectively right side, plot of model M3, respectively M4, probability density
function (solid) and a representative kernel density estimate (dashed) based on n = 300
observations.

4.2. Simulation methodology

We attempt to relate the distribution of fatigue life typically observed in ma-
terials through numerical simulations that take into account the effect of the
microstructure of the material i.e., by modeling individual grains. A schematic
of the microstructure generated is shown in Fig. 3. The different color codes
of each grain in Fig. 3 indicate that different orientations are assigned to each
grain. For simplicity, we have considered an idealized grain structure (cubes)
subject to monotonic deformation with linear elastic material properties. We
have considered the elastic properties of a material with a face centered cubic
crystalline structure (austenitic stainless steel at room temperature) for the pur-
pose of these simulations. The single crystal elastic constants have been adopted
from [26].

Fig 3. Realization of the idealized microstructure used for the finite element simulations.
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The distribution of fatigue crack initiation potencies for different microstruc-
tures is usually quantified by the distribution of fatigue indicator parameters
[12], which consider grain averaged parameters that include microscale cyclic
plasticity obtained from computational experiments. The distribution of the
microscale cyclic plasticity in a computational volume has been shown to vary
with the imposed deformation amplitude [25]. In the present context of us-
ing linear elastic material models subject to tension, i.e. no cyclic plasticity,
the simulations would qualitatively approach the high cycle and very high cy-
cle fatigue regime where the plasticity averaged over the volume of the com-
putational cell would be very low. Further, here we characterize the distri-
bution of the extreme values of the shear stress resolved along specific crys-
tallographic (slip) directions, averaged over a grain. Thus, the extremal value
of this grain averaged resolved shear stress would be an indicator of the po-
tency of fatigue crack formation in a microstructural realization. Also, while
inter-granular interactions are being considered here, the effect of grain size
distribution will not be accounted for due to the simplified microsctructure as-
sumed. The computational cell shown in Fig. 3, serves as a statistical volume
element (SVE) i.e. a single computational cell is not large enough to capture
all the statistical variations of the fatigue crack formation potency generated
due to microstructural variations. Thus, multiple realizations are required to
obtain the distribution of the extremal values of the fatigue crack formation
potency.

The boundary value problem is solved by the finite element method [27] using
the software ABAQUS [28]. We explore the distribution of the extreme values
of the grain averaged resolved shear stresses for different boundary conditions
and computational cell size. In this study, the computational cell is subject
to uniaxial tension using two boundary conditions viz. free surface boundary
conditions and generalized periodic boundary conditions [12, 29]. The compu-
tational cell size is varied from 5 grains in each dimension to 10 grains in each
dimension with 27 8-node brick elements with linear interpolation and reduced
integration (C3D8R) finite elements for each grain. For each microstructural
realization, the grain averaged values of shear stress along all possible slip di-
rections at the peak tensile strain (0.2%) form the random variable, from which
the extremal value is selected. The collection of such extreme values for mul-
tiple realizations is referred to as the real dataset in the subsequent subsec-
tion.

4.3. Application to a real data set: Results and discussion

Let consider a set of r3 Input random variables

U(r) :=
{
Uk,l,m, (k, l,m) ∈ Sr3

}
,

with Sr := {1, . . . , r}, valued in a measurable space (U,BU ), where for each
triplet (k, l,m) ∈ S3

r , Uk,l,m represents the resolved shear stresses averaged
over a grain in a particular realization of the numerical experiments. Thus, the
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set of grain averaged resolved shear stresses obtained for all the grains from a
realization are given by:

Rk,l,m := ξ(k, l,m, U(r), ∂B),

where ξ(·) is treated as a black-box function whose entries are the location of
a grain in the computational cell (k, l,m), the random input in the block U(r),
and the boundary condition ∂B. The input U(r) is considered random, since
each computational realization has randomly assigned grain orientations. We
denote by

X(r) := max
1≤k,l,m≤r

Rk,l,m.

Let us suppose that we repeat the experiment n times and collect n extreme
values Xn

1 (r) := (X1(r), . . . , Xn(r)), which forms the dataset. Our aim is to sta-
tistically model the distribution of X(r)’s for different levels of discretization r,
and boundary conditions ∂B. For our simulations, (k, l,m) vary from 5 to 10
yielding a computational cell size of 125 to 1000 grains and n = 300. Here, since
Rk,l,m is the set of grain averaged resolved stresses for all the grains in a given
realization of the microstructure, the dataset Xn

1 (r) represents the collection
of the extreme values of the grain averaged resolved shear stress (indicative of
fatigue crack formation potency) for n realizations of the microstructure.

The method of identifying the best model to estimate the underlying mixture
of Xn

1 (r) is similar to the one outlined in the previous section i.e., we start by
assuming various possible models that would describe the underlying mixture
and estimate the parameters of the model using the EM algorithm. However,
the tolerance used as criterion for the convergence of the method, is changed
to 10−6. A comparison of the pdfs of the dataset and a random variable of
size n = 300 generated from the estimated parameters, using nonparametric
density estimates, is shown in Figs. 4 and 5, for different assumed mixture
models. It can be seen that the EM algorithm estimates the parameters of the
mixture model accurately, not only for the location and scale parameters for
the dominant distribution, but also the parameters of the smaller components
of the mixture that present as perturbations (bumps). From the nonparametric
density estimates (Figs. 4 and 5), it can be seen that the dataset is a mixture
of many distributions (possibly 3–4).

We recall that the dataset is a collection of the extreme values of the grain
averaged resolved shear stresses in a computational cell for multiple microstruc-
tural realizations. In the present case, the interaction with neighboring grains,
which have different crystallographic orientations, coupled with the boundary
conditions introduce perturbations from homogeneous deformation of the as-
sembly. This could be the primary reason of the convergent extreme value dis-
tribution being corrupted which manifests as a mixture of distributions. Never-
theless, assuming the existence of a model that has mixture of distributions, an
approach to order the different possible mixture models is presented next.

Since the exact model describing the underlying mixture is not known a pri-
ori, a collection of competing models is considered to obtain the best fit to
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Fig 4. Left side, respectively right side, plot of the fitted mixture model (solid) when model
(a) NG[0, 3], respectively (b) NG[1, 3], is assumed for the dataset X300

1
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parametric density estimate (dashed).
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Fig 5. Left side, respectively right side, plot of the fitted mixture model (solid) when model
(a) NG[1, 3], respectively (b) NG[0, 4], is assumed for the dataset X300

1
(10) along with a

nonparametric density estimate (dashed).

the dataset Xn
1 (r). The models in competition are model 1: NG[0, 1], model 2:

NG[1, 1], model 3: NG[0, 2], model 4: NG[1, 2], model 5: NG[0, 3], model 6:
NG[2, 2], model 7: NG[1, 3] and model 8: NG[0, 4]. The parameters of each
model are estimated using the EM algorithm described in Section 4.1. Subse-
quent to determining the parameters of each model j ∈ {1, . . . , 8}, a random

sample of size n is generated to compute the criterion ÎCEj from the dataset
Xn

1 (r). This process is repeated for N = 100 samples in order to compute the
Monte Carlo estimate ICEj(r) := ICEj(X

n
1 (r)), see definition (12), based on

the dataset Xn
1 (r) for each model j. This approach assumes significance in the

current context of a small sample size (n = 300) relatively to the observation
domain which is approximately equal to [200, 240]. The model that most ac-
curately fits the dataset is assessed based on the minimum ICE for all the
models considered. This approach of considering models in competition allows
the ranking of the different models considered. The ICEj for all the models
j ∈ {1, . . . , 8} and different sizes of the computational cell are plotted in Fig. 6.
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Fig 6. Variation of ICE criterion for different assumed mixture models for computational
cells consisting of 125 grains (left side) and 1000 grains (right side). Points depicted by
triangles and circles correspond to free surface BC and periodic BC respectively.

The values of the ICE for all the models and combinations of computational
cell size and Boundary Conditions (BC) are listed in Table 4 (at the end of
Appendix B).

From Fig. 6, it is apparent that a better fit to the dataset is obtained by using
a higher number of distributions. In almost all cases, a single Gumbel distribu-
tion provides the least accurate fit to the dataset. This is particularly important
since the fatigue life distributions are often fitted to a single extreme value dis-
tribution [16, 17, 18, 19]. We have previously surmised that the departure of
the dataset from a single extreme value distribution is due to perturbations
induced by inter-granular interactions and boundary conditions. It is, however,
noteworthy that a single Gumbel distribution shows a marked increase of ac-
curacy in modeling the dataset for the larger assembly. Thus, it can be argued
that the the periodic BC might partially mitigate the perturbations introduced
due to the boundary conditions, thus increasing the accuracy of one extreme
value distribution in describing the dataset.

It is also noteworthy that the same mixture models predict the distribu-
tion most accurately for both boundary conditions for a given size of the com-
putational cell – model 7 (NG[1, 3]) for the 125 grain assembly and model 8
(NG[0, 4]) for the 1000 grain assembly. We conjecture that a normal distribu-
tion acts as an attractor for the 125 grain assembly since the extreme values are
being sampled from a smaller population of outliers.

Conjecture on multi-regime model. One possible physical explanation
regarding the mixture of Gumbel and Normal distributions selected by the
ICE criterion, should be the existence of a multi-regime model. Let us define,
for simplicity, a generic model with L so-called regimes. We conjecture that
there exist two types of attraction domains, i.e., the so-called Gumbel attraction
domain AGumbel = {Ci}i=1,...,L1

and Normal attraction domain ANormal =
{Ci}i=L1+1,...,L, justified as follows:
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• given {U(r) ∈ Ci}, i = 1, . . . , L1, the set of resolved shear stresses from a
numerical realization, Rk,l,m, (k, l,m) ∈ S3, is quasi-homogeneous (mixing
enough and marginally approximately equally distributed) in a such a
way that the Dabrowski’s [30] convergence theorem for extreme value of
mixing random sequences applies, i.e. L(X(r)|U(r) ∈ Ci) ≃ G(µi, βi),
i = 1, . . . , L1.

• given {U(r) ∈ Cj}, j = L1+1, . . . , L, the set of resolved shear stresses from
a numerical realization, Rk,l,m, (k, l,m) ∈ S3, is not quasi-homogeneous,
as it is supposed to hold under AGumbel, and contains a small collection
of Gaussian outliers. In such a case, the extreme values being taken from
among a small population of Gaussian random variables, and the conver-
gence for extreme values of Gaussian samples being known to converge at
the (possibly) slowest rate, i.e. O(log(n)−1), see Han and Ferreira [31], we
suppose that these maxima are themselves approximately Gaussian, i.e.
L(X(r)|U(r) ∈ Ci) ≃ N (mi, σ

2
i ), j = L1 + 1, . . . , L.

In conclusion, we have the following mixture model structure:

X(r) =

L1∑

i=1

max
1≤k,l,m≤r

Rk,l,m
︸ ︷︷ ︸

IU(r)∈Ci︸ ︷︷ ︸
+

L∑

j=L1+1

max
1≤k,l,m≤r

Rk,l,m
︸ ︷︷ ︸

IU(r)∈Cj︸ ︷︷ ︸

distribution≃
L1∑

i=1

fG(µi,βi) × πi +

L∑

j=L1+1

fN (mj,σ
2

j
) × πj ,

where πj = P (U(r) ∈ Cj), j = 1, . . . , L.

Comment. Recall that the EM algorithm computes for eachXi(r), i = 1, . . . , n,
the probabilities to belong to the groups characterized by conditions (Cj)1≤j≤L,
providing a very useful exploratory tool to posteriorly investigate the particular
structure of each block based on its extreme value observation.

5. Summary and conclusions

In this work, we have addressed the problem of identifying the model that best
fits a dataset among a given finite collection of non-nested mixture models. The
parameters of the models are identified using EM or GEM algorithms. A GEM
algorithm, involving a maximization step based on a neighborhood screening
method, has been especially implemented to deal with mixtures of Normal and
Gumbel distributions.

To test the accuracy of the models in describing the mixture, a novel metric,
the Integrated Cumulative Error (ICE) distance has been defined. The estima-
tor of the ICE distance has been shown to be asymptotically consistent and
practically more efficient in identifying the correct model than commonly used
approaches, such as the ones based on the Kolmogorov-Smirnov or Shannon-
Jensen statistics.

The approach developed in this paper is used to identify a mixture that fits
best the distribution of indicators of fatigue crack formation potency (grain av-
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eraged resolved shear stresses). The observations show that a mixture model
characterizes the distribution of interest more accurately than a single extreme
value distribution, which is the hypothesis commonly assumed. It is to be noted
that the methods developed in this work have not been applied, yet, to exper-
imentally observed fatigue life distributions. The solution in this case is direct,
since observations of significant deviations from an assumed unique extreme
value distribution that characterizes the fatigue life distributions are widely
found in literature. The use of computational models is motivated from the nu-
merous constraints of performing a large number of experiments in the regime
of very high cycle fatigue life of a material. However, correlating distributions
from computational models with experimental observations for the same ma-
terial would improve predictions of fatigue life distributions. Nevertheless, the
use of the methods developed in this work would better characterize the overall
fatigue life distribution of a material, which would be informative for minimum
life based design approaches. Finally, since the approach developed here is gen-
eral to the number and types of distributions that form a mixture, it can be used
for characterizing fatigue life distributions through multiple failure mechanisms
as well. Thus, the statistical framework developed in this work could contribute
significantly to current design approaches.
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Appendix A

Let us recall some basic results on the empirical cdf F̄ (x) = 1/n
∑n
k=1 IXk≤x.

From well known results on empirical processes (see, e.g., Shorack and Well-
ner [34]), for a general distribution function f0, we have

√
n‖F̄ − F‖∞ = OP (1). (16)

Lemma 1. Under assumption (R) we have, for all j ∈ J ,

‖F̂j − Fj,∗‖∞ = O(‖ϑ̂− ϑ∗‖).

Proof. Let us consider

|F̂j(x)− Fj,∗(x)| ≤
K∑

k=1

(
π̂k|Fj,k(x, θ̂k)− Fj,k(x, θk,∗)|+ Fj,k(x, θ∗)|π̂j,k − πj,k|

)

≤
K∑

k=1

(
sup

x∈R,θk∈Θk

‖Ḟk(x, θk)‖k × ‖θ̂k − θk,∗‖+ |π̂j,k − πj,k|
)

≤ max(M, 1)‖ϑ̂− ϑ∗‖. (17)

where the last inequality holds because of assumption (R).
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Proof of Theorem 1. i) Let us suppose that f1 6= f2 on a set E with λ(E) > 0,
then there exists at least one point x0 ∈ R such that F1(x0) 6= F2(x0), and
(F1, F2) being continuous functions over R, there also exists ε > 0 such that
|F1(x)− F2(x)| > 0 on ]x0 − ε, x0 + ε[. To conclude, it can be deduced that

ICE(f1, f2) ≥
∫ x0+ε

x0−ε

|F1(x)− F2(x)|
dF1 + dF2

J + 1
> 0.

ii) The symmetry property is straightforward by noticing |F1−F2| = |F2−F1|
and that FM∗

∝∑J
j=0 Fj,∗ is invariant by permutation of indices.

iii) The subadditivity is a direct consequence of the triangular inequality for
the absolute value and the fact that FM∗

equally considers all the Fj belonging
to M∗.

Proof of Theorem 2. i) For simplicity, let us drop the dependence on j in our

expression, i.e., fj,∗ := f∗, Fj,∗ := F∗, f̂j := f̂ , F̂j := F̂ . Now, denote Ψ(·) :=
|F∗(·)− F0(·)|, and consider the following decomposition

∆(f̂ , f) := |ÎCE(f̂ , f)− ICE(f∗, f)| ≤
1

J + 1
(T1 +

J∑

l=1

T2(l)),

where for all l ∈ J ,

T1 :=

∣∣∣∣∣
1

n

n∑

i=1

(
|F̂ (Xi)− F̄0(Xi)|

)
− Ef0(Ψ)

∣∣∣∣∣ ,

T2(l) :=

∣∣∣∣∣
1

n

n∑

l=1

(
|F̂ (Yi,l)− F̄0(Yi,l)|

)
− Efl,∗(Ψ)

∣∣∣∣∣ ,

with Ef0 (Ψ) :=
∫
R
Ψ(x)dF0(x), Ef∗(Ψ) :=

∫
R
Ψ(x)dF∗(x). We denote by Fn the

σ-algebra generated by the random variables (X1, . . . , Xn).

We note that

T1 ≤ D1 +R1,1 +R1,2, (18)

where

D1 :=

∣∣∣∣∣
1

n

n∑

i=1

[Ψ(Xi)− Ef (Ψ)]

∣∣∣∣∣ , R1,1 :=
1

n

n∑

i=1

∣∣∣F̂ (Xi)− F∗(Xi)
∣∣∣ ,

R1,2 :=
1

n

n∑

i=1

∣∣F̄0(Xi)− F0(Xi)
∣∣ .

According to the central limit theorem, we haveD1 = OP (1/
√
n), and from (16)

and subsequently Lemma 1, we obtain R1,1 ≤ max(M, 1)‖ϑn−ϑ∗‖ = OP (1/
√
n)

and R1,2 ≤ ‖F̄0−F0‖∞ = OP (1/
√
n). Let us note that M1 := D1+R1,1+R1,2 =

OP (1/
√
n).
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For the treatment of T2(l), l ∈ J , we drop, for simplicity and without
loss of generality, the dependence on l in our expressions, i.e., (Y1, . . . , Yn) :=
(Y1,l, . . . , Yn,l), fl,∗ := f∗, K := Kl, and for k = 1, . . . ,K, ρk(·, ·) := ρk,l(·, ·),
(π̂k, θ̂k) := (π̂k,l, θ̂k,l), and (πk,∗, θ̂k,∗) := (πk,l,∗, θ̂k,l,∗).

We propose to couple now the sample (Y1, . . . , Yn) with a sample (Ỹ1, . . . , Ỹn)
which is iid according to f∗, in the following way:





Yi =

K∑

k=1

Ip̂k−1<U≤p̂kρk(Zk,i, θ̂k),

Y̌i =

K∑

k=1

Ipk−1<U≤pkρk(Zk,i, θ̂k),

Ỹi =

K∑

k=1

Ipk−1<U≤pkρk(Zk,i, θk,∗),

(19)

where pk =
∑k
l=0 πl and p̂k =

∑k
l=0 π̂l, with the convention π0 = 0 and π̂0 = 0.

Then the term T2 can be treated as follows:

T2 ≤ D2 +R2,1 +R2,2 +R2,3 +R2,4, (20)

where

D2 :=

∣∣∣∣∣
1

n

n∑

i=1

[
Ψ(Ỹi)− Ef∗(Ψ)

]∣∣∣∣∣ ,

R2,1 :=
1

n

n∑

i=1

∣∣∣F̂ (Yi)− F∗(Yi)
∣∣∣ , R2,2 :=

1

n

n∑

i=1

∣∣F̄ (Yi)− F (Yi)
∣∣ ,

R2,3 :=

∣∣∣∣∣
1

n

n∑

i=1

[
Ψ(Yi)− Ψ(Y̌i)

]
∣∣∣∣∣ , R2,4 :=

∣∣∣∣∣
1

n

n∑

i=1

[
Ψ(Y̌i)−Ψ(Ỹi)

]∣∣∣∣∣ ,

The three first terms in the right hand side of (20) being similar to the three
first terms in (18) we can state that M2 := D2 +R2,1 +R2,2 = OP (1/

√
n).

Term R2,3. We note that

R2,3 ≤ 1

n

n∑

i=1

IYi 6=Y̌i
,

where, denoting ∆π :=
∑K

k=1 |π̂k − πk|,

IYi 6=Y̌i
=

K∑

k=1

(Ip̂k−1∧pk−1<Ui<p̂k−1∨pk−1
+ Ip̂k∧pk<Ui<p̂k∨pk), and

L
(
IYi 6=Y̌i

Fn
)
∼ B(∆π).
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Let us remark that:

∆π ≤ ‖ϑ̂− ϑ∗‖. (21)

Term R2,4. Using the mean value Theorem and the fact that Ψ′ is uniformly
bounded on R, we obtain

R2,4 :=
1

n

n∑

i=1

‖Ψ′‖∞|Y̌i − Ỹi|,

where

|Y̌i − Ỹi| ≤
K∑

k=1

|ρk(Zk,i, θ̂k)− ρk(Zk,i, θk,∗)| ≤ C

K∑

k=1

[|Zk,i|+ 1]× ‖θ̂k − θk,∗‖.

Let us denote Wi :=
∑K

k=1(E(|Zk,i| + 1), m := E(W1) and V := Var(W1). To
conclude, we prove that there exists a constant γ > 0 such that for all ε > 0
there exists an integer Nε such that P (

√
n∆(f̂ , f)| ≥ γ) ≤ ε, for all n ≥ Nε.

Since ‖ϑ̂ − ϑ∗‖ = OP (1/
√
n) there exists κ > 0 such that for all δ > 0 there

exists Nδ ensuring P (Acn) ≤ δ for all n ≥ Nδ where An,κ := {√n‖ϑ̂−ϑ∗‖ < κ}.
Let us consider γ > 0 large enough such that:

κ

(γ − κ)2
≤ ε

4J
,

V
(
γ
Cκ

−m
)2 ≤ ε

4J
, and γ > max(1,M)κ. (22)

Then,

P (
√
n∆(f̂ , f)| ≥ γ) = P

({√
n∆(f̂ , f)| ≥ γ

}
∩ An,κ

)

+ P
({√

n∆(f̂ , f)| ≥ γ
}
∩ Acn,κ

)

≤ P
({√

n∆(f̂ , f)| ≥ γ
}An,κ

)
+ P

(
Acn,κ

)
. (23)

Since D1 = OP (1/
√
n) and R1,2 = OP (1/

√
n), we can choose ξ such that

2ξ/(1 − δ) = ε/4(J + 1) and there exists a non-negative integer Nξ, such that
for all n ≥ Nξ, P (

√
nD1 ≥ γ) ≤ ξ and P (

√
nR1,2 ≥ γ) ≤ ξ (we suppose here

that γ is large enough to satisfy these two conditions).
We now establish an upper bound for the first term in the right hand side of

(23) by

P
({√

n∆(f̂ , f)| ≥ γ
}An,κ

)
(24)

≤ P (
√
nM1 ≥ γ|An,κ)

+

J∑

l=1

(
P (

√
nM2(l) ≥ γ|An,κ) + P (

√
nR2,3(l) ≥ γ|An,κ)

+P (
√
nR2,4(l) ≥ γ|An,κ)

)
.
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Using similar reasoning for establishing bounds on the terms involving M2

(as used for terms involving M1 in (24)), we note, according to the definition of
R1,1 and the last condition in (22), that

P (
√
nM1 ≥ γ|An,κ)

≤ P (
√
nD1 ≥ γ|An,κ) + P (

√
nR1,1 ≥ γ|An,κ) + P (

√
nR1,2 ≥ γ|An,κ)

≤ P (
√
nD1 ≥ γ)

P (An,κ)
+ P

(
Acn,γmax(M,1)−1 |An,κ

)
+

P (
√
nR1,2 ≥ γ)

P (An,κ)

≤ 2ξ

1− δ
≤ ε

4(J + 1)
. (25)

The terms involving R2,3 in (24) are handled by applying Tchebychev’s in-
equality:

P (
√
nR2,3 ≥ γ|An,κ)

≤ P

(
1√
n

n∑

i=1

IYi 6=Y̌i
≥ γ|An,κ

)

= P

(
1√
n

n∑

i=1

(
IYi 6=Y̌i

− E(IY1 6=Y̌1
|Fn)

)
≥ γ −√

nE(IY1 6=Y̌1
|Fn)

An,κ

)

≤
Var

(∑n
i=1 IYi 6=Y̌i

An,κ
)

n(γ −√
nE(IY1 6=Y̌1

|An,κ))2

≤ κ

(γ − κ)2
≤ ε

4J
, (26)

since E(IY1 6=Y̌1
|An,κ) ≤ κ/

√
n due to remark (21), and first condition in (22) is

supposed. The R2,4-dependent terms in (24) are handled in a similar manner
by using again Tchebychev’s inequality:

P (
√
nR2,4 ≥ γ|An,κ)

≤ P



C′
∥∥∥ϑ̂k − ϑk,∗

∥∥∥
√
n

n∑

i=1

Wi ≥ γ


An,κ




≤ P

(
n∑

i=1

(Wi −m) ≥ γ

√
n

C′|ϑ̂k − ϑk,∗|
−m

An,κ

)

≤ P

(
n∑

i=1

(Wi −m) ≥ γn

Cκ
−m

)

≤ Var (
∑n
i=1 Wi)

n
(
γ
Cκ

− m
n

)2

≤ V
(
γ
Cκ

−m
)2 ≤ ε

4J
, (27)
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according to the second condition in (22). The proof of i) is completed by col-
lecting results (22–27) and taking δ = ε/4.

ii) First we have:

P (̂ 6= j∗) = P
(
∪1≤j 6=j∗≤J

{
ÎCE(f̂j∗ , f) > ÎCE(f̂j , f)

})

≤
∑

1≤j 6=j∗≤J

P
(
ÎCE(f̂j∗ , f) > ÎCE(f̂j, f)

)
. (28)

Next, for all 1 ≤ j 6= j∗ ≤ J , since ∆j∗,j := ICE(fj , f) − ICE(fj∗ , f) > 0
(possibly “arbitrarily” small), we suggest to write

{
ÎCE(f̂j∗ , f) > ÎCE(f̂j , f)

}

=
{
ÎCE(f̂j∗ , f)− ICE(fj∗ , f) + ICE(fj , f)− ÎCE(f̂j , f) > ∆j∗,j

}

⊆
{
|ÎCE(f̂j∗ , f)− ICE(fj∗ , f)|+ |ICE(fj , f)− ÎCE(f̂j, f)| > ∆j∗,j

}

⊆
{
|ÎCE(f̂j∗ , f)− ICE(fj∗ , f)| > ∆j∗,j

}

∪
{
|ICE(fj , f)− ÎCE(f̂j , f)| > ∆j∗,j

}

Finally noticing that, according to i) in Theorem 1, for all j ∈ J , there exists
K > 0 such that for all δ := ε/2(J − 1) > 0, there exists an integer Nδ such

that for all n ≥ Nδ: P (|ÎCE(f̂j , f)− ICE(fj , f)| ≥ K/
√
n) ≤ δ, we can define

nj := min

{
n ∈ N : ∆j∗,j ≥

K√
n

}
,

which provides us, for all ε > 0, the existence of an integer Nε := max(Nδ, n1,
. . . , nJ) such that, according to (28), for all n ≥ Nε:

P (̂ 6= j∗) ≤
∑

1≤j 6=j∗≤J

∑

k=j∗,j

P

(
|ÎCE(f̂k, f)− ICE(fk, f)| >

K√
n

)

≤
∑

1≤j 6=j∗≤J

∑

k=j∗,j

ε/2(J − 1) = ε.

which concludes the proof.
iii) The proof is entirely similar to the proof of ii) when replacing j∗ by j0

and noticing that ICE(fj0 , f) = 0

Appendix B: Supplementary materials

B.1. Behavior of the MLE when the model is possibly misspecified

In this section, we briefly recall some basic material, from White [40], regarding
the asymptotic behavior of the MLE when the model is possibly misspecified.
The first assumption defines the structure which generates our observations.
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Assumption (A1). The iid sample Xn
1 = (X1, . . . , Xn), n ≥ 1, is distributed

according to a cdf F0 on R whose density, with respect to the Lebesgue measure,
is denoted f0. Since F0 is not known apriori, we choose a family of cdfs which
may or may not contain the true structure of F0. It is usually easy to choose
this family to satisfy the next assumption.

Assumption (A2). The family of cdfs F (·, ϑ) admits a density f(·, ϑ) (which
will sometimes be denoted for convenience fϑ(·)) with respect to the Lebesgue
measure on R, which is measurable in x for all ϑ in Θ a compact subset of Rp,
and continuous in ϑ for all x ∈ R.

Next, we define the quasi-log-likelihood of the sample as

Ln(X
n
1 , ϑ) :=

1

n

n∑

i=1

log f(Xi, ϑ), (29)

and we define a quasi-maximum likelihood estimator (QMLE) as the parameter

ϑ̂n which solves the maximization problem

ϑ̂n = argmax
ϑ∈Θ

Ln(X
n
1 , ϑ). (30)

In Theorem 2.1, White [40] establishes, under Assumptions A1 and A2, the exis-

tence, for all n ≥ 1, of a measurable QMLE ϑ̂n. Given the existence of a QMLE,
let us precisely define its properties. It is well known that when {F (·, ϑ), ϑ ∈ Θ}
contains the true structure (F (·) := F (·, ϑ0) for some ϑ0 in the interior of Θ),
the MLE is consistent for ϑ0 under suitable conditions, see e.g. Theorem 2 in
Wald [39], Theorem 5.a in LeCam [33]. Without this restriction, Akaike [23] has

noted that since Ln(X
n
1 , ϑ) is a natural estimator for E(log(f(X1, ϑ)), ϑ̂n is a

natural estimator of ϑ∗ that minimizes the Kullback Leibler [32] divergence (K),
i.e.

ϑ∗ := argmin
ϑ∈Θ

K(f, fϑ), where K(f, fϑ) := E

(
log

[
f(X1)

f(X1, ϑ)

])
. (31)

To support Akaike’s observation that ϑ̂n is a natural estimator for ϑ∗, White
[40] imposes the following additional condition.

Assumption (A3).

i) E(log(f0(X1)) exists.

ii) | log(f(x, ϑ))| ≤ m(x) for all ϑ ∈ Θ, where m is integrable with respect to f0.

iii) K(f, fϑ) has a unique minimum at point ϑ∗ in Θ.

When assumption (A3) ii) holds, ϑ∗ is globally identifiable. In Theorem 2.2,
White [40] establishes, under assumptions A1–A3, the strong ϑ∗-consistency of
the QMLE defined in (30), i.e.

ϑ̂n
a.s.−→ ϑ∗, as n → ∞. (32)
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With additionnal conditions (given below), White [40] also shows that the
QMLE is asymptotically normally distributed. When the partial derivatives
exist, we define the matrices

An(ϑ) :=

{
1

n

n∑

i=1

∂2 log(f(Xi, ϑ))

∂ϑk∂ϑl

}

k,l=1,...,p

,

Bn(ϑ) :=

{
1

n

n∑

i=1

∂ log(f(Xi, ϑ))

∂ϑk
× ∂ log(f(Xi, ϑ))

∂ϑl

}

k,l=1,...,p

.

If expectation also exists, we define the matrices

A(ϑ) :=

{
E

(
∂2 log(f(X1, ϑ))

∂ϑk∂ϑl

)}

k,l=1,...,p

,

B(ϑ) :=

{
E

(
∂ log(f(X1, ϑ))

∂ϑk
× ∂ log(f(Xi, ϑ))

∂ϑl

)}

k,l=1,...,p

.

Finally, when the appropriate inverse exists, define

Cn(ϑ) := An(ϑ)
−1Bn(ϑ)An(ϑ)

−1,

C(ϑ) := A(ϑ)−1B(ϑ)A(ϑ)−1.

Assumption (A4). The collection {∂ log((f(x, ϑ))/∂ϑk, k = 1, . . . , p} are
measurable functions of x for each ϑ ∈ Θ and continuously differentiable func-
tions of ϑ for each x in R.

Assumption (A5). The two collections {|∂2 log((f(x, ϑ))/∂ϑk∂ϑl|, k, l = 1,
. . . , p} and {|∂ log((f(x, ϑ))/∂ϑk × ∂ log((f(x, ϑ))/∂ϑl|, k, l = 1, . . . , p}, are
dominated by functions integrable with respect to f0 for all x ∈ R and ϑ ∈ Θ.

Assumption (A6).

i) The parameter ϑ∗ is an interior point of Θ.

ii) The p× p matrix B(ϑ∗) is nonsingular.

iii) The parameter ϑ∗ is a regular point of A(ϑ).

Under assumptions A1–6, White ([40], Theorem 3.2) establishes the asymp-
totic normality of the QMLE, i.e.

√
n(ϑ̂n − ϑ∗)

d−→ N (0, C(ϑ∗)), as n → +∞. (33)

Remark. It is important to recall that if we suppose g(·) = f(·, ϑ0) for ϑ0 ∈ Θ,

then the QMLE ϑ̂n is simply called MLE and if assumptions A1–A6 hold, the
MLE is consistent and asymptotically normally distributed according to (30)
and (33) when replacing ϑ∗ by ϑ0.
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B.2. Mixtures of Gaussian and Gumbel distributions

Identifiability In this paragraph, we propose to establish the identifiability
of finite univariate mixtures of Gaussian and Gumbel distributions. Let us first
establish a more general result on two-group univariate mixtures. Consider L
and G two families of distribution functions defined by:

L := {L(x; θ) : x ∈ R, θ ∈ Θ} , G := {G(x;φ) : x ∈ R, φ ∈ Ψ} (34)

where Θ and Ψ denote parametric spaces. We consider the set H of all finite
mixtures sourcing their distributions in groups L and G defined by:

H :=

{
H(x) =

n1∑

i=1

ciLi(x) +

n1+n2∑

j=n1+1

cjGj(x), (35)

n1+n2∑

i=1

ci = 1, ci > 0, (n1 + n2) ∈ N∗ × N∗

}
. (36)

The class of mixture models H is said identifiable if and only if H has the unique
representation property:

n1∑

i=1

ciLi(x) +

n1+n2∑

j=n1+1

cjGj(x) =

n′

1∑

k=1

c′kL
′
k(x) +

n′

1
+n′

2∑

l=n′

1
+1

c′lG
′
l(x)

which implies n1 = n′
1, n2 = n′

2, and for each i, 1 ≤ i ≤ n1 and respectively,
each j, 1 ≤ j ≤ n2, there is some 1 ≤ k ≤ n1 and respectively, some 1 ≤ l ≤ n2,
such that Fi = F ′

k and Gj = G′
l.

Theorem 3. Let F and G two families of cdfs with respective transforms α(t)
and γ(t) defined for t respectively in Dα and Dβ (the domains of definition of
α and γ) such that the mappings L → α and G → γ are linear and one-to-one.
We denote by Iα and Iγ , the largest interval contained respectively in Dα and
Dβ. Let us denote for all F ∈ F ∪ G by ρF , its associated transform. Suppose
that there exists a total ordering of F ∪ G, denoted by � and satisfying G ≺ F
if (F,G) ∈ F × G, such that for all (F1, F2) ∈ (F ∪ G)2 the condition F1 ≺ F2

implies (i) IρF1
⊆ IρF2

(ii) the existence of a certain t1 in the closure of DρF1

(t1 being independent of ρF2
) such that

lim
t→t1

ρF1
(t)

ρF2
(t)

= 0,

then the class of finite mixture H is identifiable.

Proof. The proof of this result is entirely similar to the proof of Theorem 2 in
Teicher [38].

Corollary 4. Let F be the family of Gaussian cdfs and G, the family of Gumbel
cdfs, then the class of finite mixtures sourcing their distributions in groups F
and G is identifiable.
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Proof. Let us consider α(·) and γ(·) the respective moment generating functions
of F and G, where Dα = R and Dγ ⊂ R. We order each family lexicographically
by: F1 ∼ N (m1, σ

2
1) ≺ F2 ∼ N (m2, σ

2
2) if σ1 > σ2 or if σ1 = σ2 but m1 < m2,

and G1 ∼ G(µ1, β1) ≺ F2 ∼ G(µ2, β2) if β1 > β2 or if β1 = β2 but µ1 < µ2. We
cross order families F and G by: G ∈ G ≺ F ∈ F since DψG

⊂ DαF
.

Case (F1, F2) ∈ G × G. The moment generating function of a Gumbel distribu-
tion G(µ, β) is given by

γ(t) = eµtΓ(1− βt), t < 1/β,

and, for i = 1, 2, the largest interval contained in DρFi
is IρFi

= (−∞, 1/βi),
which implies IρF1

⊆ IρF2
if F1 ≺ F2. If β2 < β1 then there exist t1 = 1/β1 such

that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→ 1

β1

eµ2tΓ(1− β2t)

eµ1tΓ(1− β1t)
= 0.

If β2 = β1 and µ1 < µ2 there exists t1 = −∞ such that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→−∞

eµ2t

eµ1t
= 0.

Case (F1, F2) ∈ F × F . The moment generating function of a Normal distri-

bution N (m,σ2) is given by

α(t) = emt+
1

2
σ2t2 , t ∈ R,

and for i = 1, 2, DρFi
= IρFi

= (−∞,+∞). In that case, application of Theorem
3 is straightforward by taking t1 = +∞ (the calculations are similar to Teicher
[38] who considers the Laplace transform instead of the moment generating
function).

Case (F1, F2) ∈ G × F . Since our total ordering is completed byDρF1
⊂ DρF2

⇒
F1 ≺ F2, we have for all F1 ∼ G(µ1, β1) ∈ G and all F2 ∼ N (m2, σ

2
2), IρF1

=
(−∞, 1/β1) ⊆ IρF2

= (−∞,+∞), and there exists t1 = 1/β1 such that

lim
t→t1

ρF2
(t)

ρF1
(t)

= lim
t→ 1

β1

emt+
1

2
σ2t2

eµ1tΓ(1− β1t)
= 0,

which concludes the proof.

B.3. Assumptions checking

Assumption (G). For the Normal distribution and the Gumbel distribution,
it is enough to simulate random variables according to N (0, 1) and G(0, 1) dis-
tributions respectively, and consider the transformation ρ(y,m, σ) := (y−m)/σ
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and ρ(y, µ, β) := (y − µ)/β. Moreover the condition (13) is clearly satisfied in
the Gaussian and Gumbel case since generically for all (m,m′) ∈ [m,m]2 and
(σ, σ′) ∈ [σ, σ]2 we have

|ρ(x,m, σ) − ρ(y,m′, σ′)| =

∣∣∣∣
x−m

σ
− x−m′

σ′

∣∣∣∣

≤ (|x|+m)

∣∣∣∣
σ′ − σ

σσ′

∣∣∣∣+
∣∣∣∣
m−m′

σ′

∣∣∣∣

≤ (|x|+m)

∣∣∣∣
σ′ − σ

σ2

∣∣∣∣+
∣∣∣∣
m−m′

σ

∣∣∣∣

≤ max(1,m)

min(σ, σ2)
(|x| + 1)(|σ − σ′|+ |m−m′|)

= C(|x|+ 1)‖θ − θ′‖.

for C := max(1,m)/min(σ, σ2).

Assumption (R). For the Gaussian pdf FN (m,σ2)(·) := FN (·, θ) where θ =
(m,σ) ∈ [m,m]× [σ, σ] we have, for all x ∈ R,

∣∣∣∣
∂

∂m
FN (x, θ)

∣∣∣∣ =

∣∣∣∣fN (0,1)

(
x−m

σ

)
1

σ

∣∣∣∣ ≤
1√
πσ2

≤ 1√
πmin(σ2, σ3)

,

∣∣∣∣
∂

∂σ
FN (x, θ)

∣∣∣∣ =

∣∣∣∣fN (0,1)

(
x−m

σ

)
1

σ2

∣∣∣∣ ≤
1√
πσ3

≤ 1√
πmin(σ2, σ3)

.

For the Gumbel pdf FG(µ,β)(·) := FG(·, θ) where θ = (µ, β) we have, for all
x ∈ R,

∣∣∣∣
∂

∂µ
FG(x, θ)

∣∣∣∣ =

∣∣∣∣fG(0,1)
(
x− µ

β

)
1

β

∣∣∣∣ ≤
1

eβ2
≤ 1

emin(β2, β3)
,

∣∣∣∣
∂

∂β
FG(x, θ)

∣∣∣∣ =

∣∣∣∣fG(0,1)
(
x− µ

β

)
1

β2

∣∣∣∣ ≤
1

eβ3
≤ 1

emin(β2, β3)
.

Assumption (A3) ii). For any Gaussian pdf fN (m,σ2) with parameters (m,σ) ∈
[m,m]× [σ, σ], we have the following upper-bound:

fN (m,σ2)(x) ≤ 1√
2πσ2

(
Im≤x≤m + exp

(
−1

2

(
x−m

σ

)2
)
Ix≤m

+exp

(
−1

2

(
x−m

σ

)2
)
Ix≥m

)
:= bN (x).

For any Gumbel pdf fG(µ,β) with parameters (µ, β) ∈ [µ, µ]× [β, β], we propose
a similar upper-bound whose construction is detailed next. For this purpose, we
note that for u ∈ (0,+∞), the function r(u) := exp(−u)u is strictly increasing
on (0, 1] and strictly decreasing on (1,+∞). Thus for all x > 0, since exp(x/β) >
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Table 4

ICE values for different mixtures, various computational cell sizes (125 and 1000 grains)
and boundary conditions (FS=Free Surface, PBC=Periodic Boundary Condition)

Model label Model 125-FS 125-PBC 1000-FS 1000-PBC
1 NG[0, 1] 0.015154 0.023928 0.014659 0.010650
2 NG[1, 1] 0.008158 0.007290 0.008982 0.009624
3 NG[0, 2] 0.010069 0.008906 0.008480 0.012682
4 NG[1, 2] 0.007748 0.008262 0.006828 0.008576
5 NG[0, 3] 0.009824 0.007076 0.006731 0.008937
6 NG[2, 2] 0.007598 0.006328 0.006679 0.007552
7 NG[1, 3] 0.005013 0.005218 0.006713 0.008418
8 NG[0, 4] 0.005018 0.007088 0.006239 0.006226

exp(x/β) > 1 we obtain r(exp(x/β)) > r(exp(x/β)). Next for all x ≤ 0, since
exp(x/β) < exp(x/β) ≤ 1 we also obtain r(exp(x/β)) > r(exp(x/β)). Using
this observation, we establish easily that:

fG(µ,β)(x) ≤
1

β

(
Iµ≤x≤µ + r

(
exp

(
x− µ

β

))
Ix≤µ + r

(
exp

(
x− µ

β

))
Ix≥µ

)

:= bG(x).

In conclusion, we have

log

(
n1∑

i=1

fN (mi,σ
2

i
)(x) +

n2∑

i=n1+1

fG(µi,βi)(x)

)

≤ log (n1bN (x) + n2bG(x))

≤ log(n1 + n2) + log (bN (x)) + log (bG(x)) := m(x),

which implies that f0 must have to integrate exp(x/β̄) over R. Note that this
condition always holds if f0 is a mixture of Normal and Gumbel distributions.

Assumption (A3) iii). The identifiability property established in Section
B.2 is a necessary condition, but cannot insure that (A3) iii) is automatically
satisfied.

Assumption (A4–5). Checking assumption A4 is straightforward. We can
prove, similarly to the result established for (A3), that (A5) is satisfied if f0
admits exponential moments.

The remaining standard assumptions involving f0, i.e. A1, A3 i) and iii), A6,
are generally imposed.
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