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Abstract: Let Mn be the maximum of n unit Gaussian variables X1, . . . ,

Xn with correlation matrix having minimum eigenvalue λn. Then

Mn ≥ λn

√

2 logn+ op(1).

As an application, the log likelihood ratio statistic testing for the presence
of two components in a 1-dimensional exponential family mixture, with one
component known, is shown to be at least 1

2
log logn(1 + op(n)) under the

null hypothesis that there is only one component.
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1. Introduction

The asymptotic behaviour of the maximumMn of n independent and identically
distributed random variables, with continuous distribution function F , is well
known following Gumbel [8], namely that

− logn− log (1− F (Mn)) → G in distribution,

where the Gumbel variable G = − log(− logU) for U uniform.
When the variables are not independent, but identically distributed, upper

bounds for the tail probabilities of Mn are available through

Pr{Mn ≥ A} ≤ n (1− F (A)) ,

but lower bounds are rare.
Berman [2] shows that for stationary Gaussian processes with correlations

satisfying
lim

|i−j|→∞
ρ(Xi, Xj) log |i − j| = 0,

the maximum behaves in distribution asymptotically like the maximum of i.i.d
variables. Under the slightly weaker condition lim|i−j|→∞ ρ(Xi, Xj) = 0,

lim
n→∞

Mn/(2var(X1) log n)
1

2 = 1.

Darling and Erdos [5] state: For X1, . . . , Xn independent and identically dis-
tributed with expectation zero, variance 1, finite third absolute third moment,

3126

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS974
mailto:john.hartigan@yale.edu


Bounding the maximum 3127

and standardized partial sums Zi =
∑

1≤j≤i Xj/
√
i,

lim
n→∞

Pr{a(n) max
1≤i≤n

Zi < t+ b(n)} = exp(−e−t).

where a(n) = (2 log logn)1/2,

b(n) = 2 log logn+
1

2
log log logn− 1

2
log(4π).

Thus maxZi behaves asymptotically like the maximum of logn independent
unit normals. Essentially, only the sums Zi with i = o(n) determine the maxi-
mum asymptotically, and there are about logn nearly independent sums among
those Zi. Yao and Davis [13] apply this theorem to find the asymptotic distribu-
tion for the likelihood ratio statistic testing for a change in means of a sequence
of n independent normal variables with variance 1. In fact, the test statistic dif-
fers negligibly from half the squared maximum of standardized sums. Gombay
and Horvath [6] show that the Darling-Erdos asymptotics hold for general one
parameter change point problems. Kim and Siegmund [10] study the log likeli-
hood ratio with the change point constrained to lie in the interval [αn, 1− αn]
for 0 < α < 1

2 , showing that the test statistic, under the null hypothesis, is dis-
tributed asymptotically as half the squared maximum on an internal segment
of an Ornstein-Uhlenbeck process.

Our principal result, Theorem 3.4, provides lower bounds for the tail proba-
bilities of the maximum of dependent Gaussian variables. We use the theorem to
show the log likelihood ratio statistic testing for the presence of two components
in a 1-dimensional exponential family mixture, with one component known, is
at least 1

2 log logn(1− op(n)) under the null hypothesis of there being only one
component.

2. General bounds

We will use EX to denote the expectation of the random variable X , and {S}
to denote the function that is 1 when S is true, and 0 when S is false.

Theorem 2.1. Let Mn denote the maximum of n random variables X1, . . . , Xn

each with continuous distribution function F. Then, for each n, there exists an
exponential variable Wn with

− logn− log (1− F (Mn)) ≤ Wn.

Proof. Let Fn denote the distribution function of Mn. Note that Un = Fn(Mn)
is uniformly distributed, and define Wn = log(1 − Un), which is exponentially
distributed. Then

{Mn > A} ≤
n
∑

i=1

{Xi > A},

1− Fn(A) ≤ n (1− F (A)) ,

− logn− log (1− F (Mn)) ≤ Wn,

since 1− Fn(Mn) ∼ exp(−Wn).
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Theorem 2.2. Let Mn denote the maximum of n independent random variables
Xi, 1 ≤ i ≤ n, each with continuous distribution function F. Then the function

G(Mn) = − log(−n logF (Mn)),

has a Gumbel distribution and,

G ≤ − log (n(1− F (Mn))) ≤ G+ exp(−G)/n.

Proof. Since F (Mn) = F (max1≤i≤n Xi) = max1≤i≤n F (Xi) is the maximum of

n independent uniforms, F (Mn) ∼ U
1

n , so G = − log(−n logF (Mn)) is Gumbel.
Then

1− F (Mn) = 1− e−
1

n
exp(−G),

1

n
exp(−G)/(1 +

1

n
exp(−G)) ≤ 1− e−

1

n
exp(−G) ≤ 1

n
exp(−G),

G ≤ − log (n(1− F (Mn))) ≤ G+ log(1 +
1

n
exp(−G)),

G ≤ − log (n(1− F (Mn))) ≤ G+
1

n
exp(−G).

It follows that the limiting distribution of − logn − log(1 − F (Mn)) is the
Gumbel distribution. Note that E and G are very close in their tail distributions,
so there is not much difference between the upper bounds in the independent
and dependent cases.

3. Gaussian bounds

In the Gaussian case, we invert the standard tail bounds for 1−Φ(x) for large x so
that we can accurately determine the asymptotic distribution of the maximum.

Theorem 3.1. Let V = −2 log(1 − Φ(x))− log(2π).

For x ≥ 2, V − logV ≤ x2,

For x ≥ 1, x2 ≤ V − logV + logV/V.

Proof. The standard bounds from Abramowitz and Stegun [1, p. 932]: For x ≥ 1,
with y = x2,

φ(x)

(

1

x
− 1

x3

)

≤ 1− Φ(x) ≤ φ(x)

(

1

x
− 1

x3
+

3

x5

)

,

y + log y − 2 log

(

1− 1

y
+

3

y2

)

≤ V ≤ y + log y − 2 log

(

1− 1

y

)

.

(3.1)
We demonstrate the specified bounds by explicit calculation for moderate x,

and by using the standard bounds for large x. For the lower bound, let V − y−
log y = 2 log dV

dy = ∆ where, from (3.1), ∆ ≤ −2 log(1− 1
y ).
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y − V + logV = log(V/y)−∆

≥ log(1 + log y/y) + 2 log

(

1− 1

y

)

≥ 0 for y ≥ 11.

The lower bound is thus established for y ≥ 11. The lower bound is exhibited
in explicit calculation for 4 < y < 11, so that the lower bound holds for y ≥ 4
which is x ≥ 2.

For the upper bound, using V = y + log y +∆ and ∆ ≥ 1
y − 3

y2 ,

y − V + logV − logV/V = log(V/y)− logV/V −∆

= log(1 + (log y +∆)/y)− log V/V −∆

≤ log y/y − log V/V − (1− 1/y)∆

≤ (V − y) log y/y2 − (1− 1/y)∆

≤ (log y +∆) log y/y2 − (1− 1/y)∆

≤ (log y/y)2 − (1 − 1/y − log y/y2)

(

1

y
− 3

y2

)

≤ 0 for y > 5

The upper bound is thus established for y ≥ 5. The upper bound is exhibited
in explicit calculation for 1 < y < 5, so that the upper bound holds for x ≥ 1.

Theorem 3.2. Let Mn be the maximum of n independent unit Gaussians. Let
N = log(n2/2π). For each n, there exists a Gumbel variable G, a monotone
function of Mn, such that, for Mn ≥ 2,

(N + 2G)− log(2G+N) ≤ M2
n ≤ V − logV + logV/V,

where V = N + 2G+ 2 exp(−G)/n.

Proof. Substitute the Gaussian probability bounds from Theorem 3.1 into the
probability bounds for log(1− Φ(Mn)) given in Theorem 2.2.

We see from Theorem 3.2, that as n → ∞, M2
n − N − logN → 2G in

distribution. Note that the bounds apply only to tail probabilities Pr{Mn ≥ A}
for A > 2.

Theorem 3.3. Let Mn denote the maximum of n unit Gaussian random vari-
ables. Let N = log(n2/2π). Then there is an exponential variable W with

M2
n ≤ max (1, N + 2W − log(N + 2W ) + log(N + 2W )/(N + 2W )) .

Proof. From Theorem 3.1, with V = − log(2π)− 2 log(1−Φ(Mn)), we have, for
Mn ≥ 1, M2

n ≤ V − logV + logV/V. From Theorem 2.1, there exists a function
W (Mn) distributed exponentially, with V ≤ N + 2W. Thus,

M2
n ≤ max (1, N + 2W − log(N + 2W ) + log(N + 2W )/(N + 2W )) .

Asymptotically, M2
n −N − logN ≤ 2W as n → ∞.
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Theorem 3.4. Let Mn be the maximum of n zero-mean Gaussian variables
X1, . . . , Xn. Define

Ei = E(Xi|X1, . . . , Xi−1),

Ri = Xi − Ei,

σ2
i = ER2

i , σ
2 = min

1≤i≤n
σ2
i ,

τ2i = EE2
i = EX2

i − ER2
i , τ

2 = max
1≤i≤n

τ2i ,

N = log(n2/2π),

Lα = −2 log(− logα).

Then, for N + Lα ≥ 6,

Pr{Mn ≥ σ
(

N + Lα − log(N + Lα)
1

2 + τΦ−1(α)
)

} ≥ 1− 2α.

The term σ
√
2 logn dominates the lower bound for n large, so for each ǫ > 0,

lim
n→∞

Pr{Mn ≥ σ
√

2 logn(1− ǫ)} = 1.

Proof. We first show that for each real A and non-positive B,

Pr{Mn ≥ A+B} ≥ Pr{max
i

Ri ≥ A}min
i

Pr{Ei ≥ B}.

Construct n disjoint events

Hi = {Ri ≥ A}
∏

j>i

{Rj < A}.

Note that
∑

iHi = {maxiRi ≥ A}. Since the terms {Ri ≥ A} are independent
of all variables Xj , j < i, the individual terms in each Hi are l independent, and
Hi is independent of {Ei ≥ B}. Also, {Mn ≥ A+B} ≥∑i Hi{Ei ≥ B}, since at
most one of the events Hi{Ei ≥ B} occurs, and if any occurs Mn ≥ A+B. Then

Pr{Mn ≥ A+B} ≥
∑

i

EHi Pr{Ei ≥ B}

≥
∑

i

EHimin
j

Pr{Ej ≥ B}

≥ Pr{max
i

Ri ≥ A}min
i

Pr{Ei ≥ B}.

For A > 0, {maxiRi ≥ A} ≥ {σmaxi(Ri/σi) ≥ A}.
Let R(n) = σmaxi(Ri/σi). From Theorem 3.2, for A/σ ≥ 2,

Pr{R(n) ≥ A} ≥ Pr{(N + 2G− log(N + 2G))
1

2 ≥ A/σ}.
Since Pr{2G ≥ Lα} = 1− α, for N + Lα ≥ 6 (which implies A/σ ≥ 2),

Pr{R(n) ≥ σ(N + Lα − log(N + Lα))
1

2 } ≥ 1− α.

Also mini Pr{Ei ≥ B} = 1− Φ(B/τ), so

min
i

Pr{Ei ≥ τΦ−1(α)} = 1− α.
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Combining the two bounds gives, for N + Lα ≥ 6,

Pr{Mn ≥ σ
(

N + Lα − log(N + Lα)
1

2 + τΦ−1(α)
)

} ≥ 1− 2α.

as asserted.
For each ǫ > 0,

√
2 logn(1 − ǫ) < N + Lα − log(N + Lα)

1

2 + τΦ−1(α) for n
large, so that, for each α > 0,

Pr{Mn ≥ σ
√

2 logn(1− ǫ)} ≥ 1− 2α.

as required.

4. Diagonally dominated correlation matrices

If the random variables X1, . . . , Xn have correlation matrix C, then

1− τ2 = σ2 ≥ min
i

1

(C−1)ii
≥ min

x

x′Cx

x′x
= λ.

If a sequence of corrrelation matrices C for n gaussians has minimum eigenvalue
exceeding λ, the lower bound of Theorem 3.4 holds with λ substituted for σ2

and 1− λ is substituted for τ2:

lim
n→∞

Pr{Mn ≥ λ
√

2 logn(1− ǫ)} = 1. (4.1)

The principal contributor to the bound is the minimum eigenvalue. A corre-
lation matrix C is strictly diagonally dominated if

1 > max
i





∑

j|j 6=i

|Cij |



 .

For such a matrix, Varah [12] shows that the minimum eigenvalue λ satisfies

λ ≥ 1−max
i





∑

j|j 6=i

|Cij |



 .

In practice then, to find a lower bound for the maximum, we look for a subset
of the variables such that each is unpredictable from the rest. One way to find
that selection is to make sure the absolute correlations in each row have a small
sum.

5. Asymptotic lower bound for the log likelihood ratio in
exponential family mixtures

In Hartigan [9] it was shown that the maximum log likelihood ratio for testing
the mixture (1 − p)φ(x) + pφ(x − θ) against the null hypotheses φ(x) diverged
in probability to ∞ under the null hypothesis, and it was conjectured that the
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maximum would be Op(log logn). Bickel and Chernoff [3] used the Komlos,
Major and Tusnady [11] “Hungarian construction” to show that the maximum
log likelihood is indeed 1

2 log logn(1+ op(1)). Chernoff and Lander [4], studying
mixtures of binomials with k trials, show that the maximum log likelihood ratio
is asymptotically finite, and conjecture that it would O(

√
log k) for k large. See

also Ghosh and Sen [7].

Theorem 5.1. Let f(x, θ) = exp(xθ− c(θ)), θ ∈ T , be a one-dimensional expo-
nential family of densities with respect to a base measure µ, with the real interval
T consisting of those parameter values θ for which

∫

exp(xθ)dµ(x) is finite. The

Jeffreys density is j(θ) =
√

c′′(θ).
Suppose that, for some A > 0,

1. The upper endpoint of T is ∞.
2.
∫∞

A
j(θ)dθ = ∞.

3. supA<θ<∞ |j′(θ)|/j(θ) < ∞.

Then, for each θ0 ∈ T , for n observations X1, . . . , Xn from f(x, θ0), the log
likelihood ratio test statistic for the mixture

((1− p)f(x, θ0) + pf(x, θ), 0 ≤ p ≤ 1, θ ∈ T ) versus f(x, θ0),

LLn = sup
p,θ

∑

1≤i≤n

log

(

1 + p

(

f(Xi, θ)

f(Xi, θ0)
− 1

))

satisfies LLn ≥ 1
2 log logn(1 + op(n)) as n → ∞.

Proof. It will be convenient, without loss of generality, to assume

θ0 = 0, A = 0, c(0) = 1, c′′(0) = 1, sup
0<θ<∞

|j′(θ)|/j(θ) = 1.

Define J(θ) =
∫ θ

0 j(v)dv.
In order to facilitate the uniform approximation of a likelihood process by

a gaussian process, let U be uniformly distributed, and let X be a function
on [0, 1], such that X(U) has the density f(x, θ0) with respect to µ. A random
sample U1, . . . U2 from the uniform generates the sampleX(U1), . . . , X(Un) from
the member of the exponential family at θ = 0.

Define, for 0 ≤ θ < ∞,

Y (U, θ) = exp (X(U)θ − c(θ))− 1,

Ln(p, θ) =
∑

1≤i≤n

log (1 + pY (Ui, θ)) ,

Ln(θ) = sup
0≤p≤1

Ln(p, θ),

LLn = sup
0≤θ<∞

Ln(θ),

ln(θ) =
∑

i

(Y (Ui, θ)/

√

∑

i

Y (Ui, θ)2,
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For Tn a subset of {0 ≤ θ < ∞}, define uniform orders of magnitude by

A(n, θ) = oTn

p (1) : max
θ∈Tn

|A(n, θ)| = op(1) as n → ∞,

A(n, θ) = OTn

p (1) : max
θ∈Tn

|A(n, θ)| = Op(1) as n → ∞.

Outline of the proof:

Step 1: Identify a subset Tn of size O(
√
logn/(log logn)2) such that the corre-

lations between the neighboring values are less than 1/ logn.
Step 2: For some gaussian process gn(θ) with unit variances and the same

correlations as Y (θ), gn(θ) = ln(θ) + oTn
p (1).

Step 3: The maximum log likelihood ratio at θ, Ln(θ) ≥ 1
2 l

+
n (θ)

2(1 + oTn
p (1)).

Step 4: Combine approximations to show LLn ≥ 1
2 log logn(1 + op(1)).

Step 1: Identify a subset Tn of size O(
√
logn/(log logn)2) such that

the correlations between the neighboring values are less than 1/ logn.

The covariance of Y (u) and Y (v) is cov(u, v) = exp(c(u+v)−c(u)−c(v))−1.
It may be verified, by integrating by parts, that

c(u+ v)− c(u)− c(v) =

∫

min(w, u, u+ v − w)+c′′(w)dw.

Since c is strictly convex and min(w, u, u + v − w)+ is non-decreasing in u and
v for all w, and is increasing for some values of w, it follows that c(u, v) is
increasing in u and v. Also, since c′(u + w) − c′(w) =

∫ u

0 c′′(w + x)dx is non-
decreasing in u, for 0 ≤ u ≤ v ≤ w,

∂

∂w
(log cov(u,w)− log cov(v, w)) =

c′(u+ w)− c′(w)

1 + 1/cov(u,w)
− c′(v + w)− c′(w)

1 + 1/cov(v, w)
≤ 0.

Thus cov(u,w)/cov(v, w) is decreasing in w, so the covariances are

submultiplicative : for 0 < u ≤ v ≤ w, cov(u,w)cov(v, v) ≤ cov(u, v)cov(v, w).

For u ≤ v, cov(u, u) ≤ cov(u, v) ≤ cov(v, v), so the correlation ρ(u, v) satisfies

log(ρ(u, v)) +
1

2
log(1− 1/cov(u, u)) ≤ c(u+ v)− 1

2
c(2u)− 1

2
c(2v)

= −1

2

∫

(|v − u| − |w − (v + u)|)+c′′(w)dw

≤ −1

8
(J(2v)− J(2u))2.

The last assertion follows from condition (3): |j′(θ)| ≤ j(θ). The small-
est value of I2 =

∫

(|v − u| − |w − (v + u)|)+c′′(w)dw for a given value of

I1 =
∫ 2v

2u
j(w)dw occurs when c′′ is concentrated as much as possible near the

endpoints of the interval (2u, 2v), which is when |j′(θ)| = j(θ) in the interval.
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In this case,
I2
I21

=
e2(v−u) − 2(v − u)− 1

4(e(v−u) − 1)2
,

which has a minimum value of 1
4 at v − u = ∞. Thus for any choice of j(θ)

satisfying condition (3),
∫

(|v − u| − |w − (v + u)|)+c′′(w)dw ≥ 1

4
(J(2v) − J(2u))2.

Choose θn such that J(2θn) =
√
2 logn/ log logn to ensure that ln(θ) is

asymptotically gaussian for θ < θn (to be shown later).
Choose a an initial sequence of parameter values T ∗

n = {θ1, θ2, . . . , θkn}
in the interval 0 < θ < θn such that the correlations are less than 16

17 be-
tween all neighbouring pairs Y (θi), Y (θi+1). First choose θ1 large enough so
that cov(θ1, θ1) > 1

8 , (possible since cov(u, u) ↑ ∞ as u → ∞). Next, for
j = 1, 2, 3, , kn, choose θj+1 such that J(2θj+1)− J(2θj) = 1. Then

log ρ(θj , θj+1) ≤ 1

2
log(1− 1/cov(θj , θj+1))− 1

8
≤ − 1

16

ρ(θj , θj+1) ≤ 16

17
.

We can find k∗n such values, with k∗n the integer part of
√
2 logn/ log logn−

J(2θ1). Since the covariances of the Y (θ) are submultiplicative, so also are the
correlations, and so ρ(θi, θj) ≤ (1617 )

−|i−j|.
Choose mn to be the integer part of 1 + 17 log logn, so that ρ(θi, θi+mn) ≤

1/ logn. We now choose the final set of parameter values Tn = {θ1, θ1+mn ,
θ1+2mn , . . .} of length kn ≥

√
logn/(log logn)2, in which the neighbouring cor-

relations are less than 1/ logn, the sum of off-diagonal terms in each row of the
correlation matrix is bounded by 2/(logn − 1), and so the smallest eigenvalue
of the diagonally dominated correlation matrix exceeds (1− 3/(logn− 1)) from
Varah [12].

Step 2: For some gaussian process gn(θ) with unit variances and the
same correlations as Y (θ), gn(θ) = ln(θ) + oTn

p
(1).

It is straightforward to show a uniformly close gaussian approximation to
ln(θ) for any finite number of θ values, but far more difficult to show a uniform
approximation when the number of θ values increases with n.

Let Fn(u) be the empirical distribution of the sample U1, . . . , Un from a
uniform distribution. Let B be a Brownian bridge on [0, 1], a gaussian process
having zero means and covariances E(BsBt) = min(s, t) − st, 0 ≤ s ≤ t ≤ 1,
the same as the process

√
n(Fn(u)−u). From Komlos, Major and Tusnady [11],

there exists such a brownian bridge Bn, for each n, such that

sup
0<u<1

|
√
n (Fn(u)− u)−Bn(u)| = Op(n

− 1

2 logn).

The variable Z(U, θ) = exp
(

X(U)θ − 1
2c(2θ)

)

, a linear transform of Y (U, θ),
handles more easily because EZ2(U, θ) = 1.
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Define, following Bickel and Chernoff [3],

Sn(θ) = n− 1

2

∑

i

(Z(Ui, θ)− EZ(U, θ))

=
√
n

∫ 1

0

Z(u, θ)(dFn(u)− du),

Gn(θ) =

∫ 1

0

Z(u, θ)dBn(u),

Sα
n (θ) =

√
n

∫ 1

α

Z(u, θ)(dFn(u)− du),

Gα
n(θ) =

∫ 1

α

Z(u, θ)dBn(u).

The integral Gn(θ) exists with probability 1. Since
√
n(Fn(u) − u), 0 < u <

1, and Bn(u), 0 < u < 1, have the same means and covariances, Gn(θ) is a
gaussian process with the same variances and covariances as Z(U, θ) and Sn(θ).
We will show that Gn(θ) differs negligibly from Sn(θ) on Tn. Then we show
that gn(θ) = Gn(θ)/

√

varGn(θ) differs negligibly from ln(θ) on Tn. We do this
in three steps:

Step 2.1: Bounding the upper tails of the integrals.
Step 2.2: Demonstrating the two truncated integrals are close.
Step 2.3: Showing the empirical variance is close to the theoretical variance.
Step 2.4: Combine previous approximations to construct the gaussian process

gn(θ) to uniformly approximate ln(θ) over θ ∈ Tn.

Step 2.1: Bounding the upper tails of the integrals.

We bound the tail integrals in the region {u > α} = {Z(u, θ) > n
1

2 (logn)−2}.
Note that Sα

n (θ) and Gα
n(θ) have the same second moment. Then, using c(θ) =

∫ θ

0
vc′′(v)dv,

E(Gα
n(θ))

2 =

∫ 1

α

Z2(u, θ)du−
(∫ 1

α

Z(u, θ)du

)2

≤
∫ 1

α

Z2(u, θ)du

≤
∫ 1

α

Z2+2ǫ(u, θ)(n(log n)−4)−ǫdu (Lyaponov bound)

≤ exp (c(2θ + 2ǫ)− (1 + ǫ)c(2θ)− ǫ(logn− 4 log logn)

≤ exp

(

ǫ

(

∫ 2(θ+ǫ)

0

vc′′(v)dv − logn+ 4 log logn

))

≤ exp

(

ǫ

(

1

2
J2(2θ + 2ǫ) log(J(2θ + 2ǫ) + 1)− logn+ 4 log logn

))
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The final inequality follows from condition (2): |j′(θ)| < j(θ). The largest value

of
∫ θ

0
vc′′(v)dv for given J(θ) =

∫ θ

0

√

c′′(v)dv occurs for c′′(v) = exp(2v), which
increases maximally, and the inequality

∫ θ

0

c′′(v)dv ≤ 1

2
J2(θ) log(J(θ) + 1)

then holds.
We have chosen θn previously, and now choose ǫn:

θn : J(2θn) =
√

2 logn/ log logn,

ǫn : J(2θn + 2ǫn) = J(2θn) + 1.

Using condition (2), the smallest value of ǫ occurs when j(θ) increases as fast
as possible, so that

j(θ) = exp(θ),

J(2θn) = exp(2θn)− 1,

1 = J(2θn + 2ǫ)− J(2θn) = exp(2ǫn)− 1,

from which we conclude ǫn ≥ (4 + 2J(2θn))
−1.

Now dropping log log n terms for large n we obtain, for 0 < θ < θn,

E(Gα
n(θ))

2 ≤
∫ 1

α

Z(u, θ)du ≤ exp
(

−1

2

√

logn
)

for n large enough.

Let Tn contain O(
√
logn) values in (0, θn), so

Pr{max
j

Gα
n(θ

j) > η} ≤
∑

j

Pr{Gα
n(θ

j) > η}

≤ η−2
∑

j

EGα
n(θ

j)2

≤ η−2
√

logn exp
(

−1

2

√

logn
)

for n large enough

→ 0 as n → ∞.

Thus Gα
n(θ) = oTn

p (1) and, by the same argument, Sα
n (θ) = oTn

p (1), since
Gα

n(θ) and Sα
n (θ) have the same second moments.

Step 2.2: Bounding the difference between the truncated integrals.

We next bound the difference ∆n(θ) = Sn(θ)− Sα
n (θ)−Gn(θ) +Gα

n(θ) inte-
grating by parts, and noting that Z(u, θ) increases in u:

Setting δn(u) =
√
n(dFn(u)− du)− dBn(u),

∆n(θ) =

∫ α

0

Z(u, θ)d∆n(u)

= Z(u, α)δn(α) −
∫ α

0

∆n(u)dZ(u, θ)
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|∆n(θ)| ≤ Z(α, θ)|δn(α)| + sup
0<u<1

|δn(u)|
∫ α

0

dZ(u, θ)

≤ 2Z(α, θ) sup
0<u<1

|∆n(u)|

= OTn

p

(√
n(log n)−2

)

OTn

p

(

n− 1

2 logn
)

= OTn

p ((log n)−1).

Combining the tail bounds and trunk difference bounds

|Sn(θ
j)−Gn(θ

j)| = oTn

p (1).

Step 2.3: The first two sample moments are uniformly close to their
expectations.

For the first moment, var( 1n
∑

Z(Ui, θ)) ≤ 1
nEZ2(U, θ) = 1/n so, using

chebyshev, 1
n

∑

Z(Ui, θ) = EZ(U, θ) + oTn
p (1).

For the second moment, from step 2.1,

E

∫ 1

α

Z2(u, θ)dFn =

∫ 1

α

Z2(u, θ)du ≤ exp

(

−1

2

√

logn

)

.

Also
∫ 1

α

du = Pr{Z2(U, θ) > exp(νn)} ≤ EZ2(U, θ) exp(−2νn) = (logn)2/n.

so E|
∫ 1

α (Z
2(u, θ)− 1)dFn(u)| ≤ 2 exp(− 1

2

√
logn).

For the truncated integrals, integrating by parts, and using the Dvoretzky-
Kiefer-Wolfowitz inequality: E

√
n supu |Fn(u)− u| ≤ 2,

∫ α

0

Z2(u, θ)(dFn − du) = Z2(α, θ)(Fn(α)− α)−
∫ α

0

(Fn(u)− u)dZ2(α, θ)

E

∣

∣

∣

∣

∫ α

0

Z2(u, θ)(dFn − du)

∣

∣

∣

∣

< 4n− 1

2Z2(α, θ)

< 4 exp

(

1

2
logn− 2 log2 n− 1

2
logn

)

= 4(logn)−2.

Since
∑

i(Z
2(Ui, θ) − 1)/n =

∫ 1

0
Z2(u, θ)(dFn − du), summing over the

O(
√
logn) terms in Tn gives

∑

θj∈Tn
E|∑i(Z

2(Ui, θ
j)2 − 1)/n| ≤ 12(logn)−1,

which implies 1
n

∑

i(Z
2(Ui, θ)) = 1 + oTn

p (1).

Step 2.4: Gaussian process approximation of ln(θ).

Since Z(U, θ) is a linear function of Y (U, θ),

ln(θ) =
∑

i

(Y (Ui, θ)− EY (U, θ)) /

√

∑

i

(Y (Ui, θ)− EY (U, θ))
2
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=
∑

i

(Z(Ui, θ)− EZ(U, θ)) /

√

∑

i

(Z(Ui, θ)− EZ(U, θ))
2
.

We have shown that

Sn(θ) = Gn(θ) + oTn

p (1),

n− 1

2Sn(θ) = oTn

p (1),

1

n

∑

i

Z2(Ui, θ) = 1 + oTn

p (1).

Since varZ(U, θ) = 1 − exp(2c(θ) − c(2θ)) is increasing in θ and therefore
exceeds varZ(U, θ1) for θ ∈ Tn,

gn(θ) = Gn(θ)/
√

varZ(U, θ) = Sn(θ)/
√

varZ(U, θ) + oTn

p (1).

Since 1
n

∑

i (Z(Ui, θ)− EZ(U, θ))2 = varZ(U, θ) + oTn
p (1),

ln(θ) = gn(θ) + oTn

p (1),

which demonstrates step 2.

Step 3: The maximum log likelihood at θ, Ln(θ) ≥ 1

2
l+
n
(θ)2(1+oTn

p
(1)).

We consider first the maximization of Ln(p, θ) over p with θ fixed. The log
likelihood ratio is a concave function of p with maximum achieved at p = 0
when the derivative at p = 0 is non-positive, that is, when

∑

Y (Ui, θ) ≤ 0.

Let s
[j]
n (θ) =

∑

i(Y
j(Ui), θ), j = 1, 2. By a Taylor expansion of Ln(p, θ) about

p = 0, for all p,

Ln(θ) ≥ ps[1]n − 1

2
p2s[2]n /(1− p),

and selecting p̂ = (s
[1]
n (θ))+/s

[2]
n (θ),

max
p

Ln(p, θ) ≥
1− 2p̂

2− 2p̂
l̂+n (θ)

2.

From step 2, noting that the maximum of
√
logn dependent unit gaussians

is bounded by
√
logn logn(1 + op(1)), and that varY (U, θ) is increasing in θ,

n−1s2n(θ)/varY (U, θ) = 1 + oTn

p (1),

ln(θ) = gn(θ) + oTn

p (1).

p̂ =
(

g+n (θ) + oTn

p (1)
)

(1 + oTn

p (1))/
√

nvarY (U, θ)

≤ n− 1

2

(

√

log logn+ oTn

p (1)
)

(1 + oTn

p (1))/
√

varY (U, θ1)

= oTn

p (1).

max
p

Ln(p, θ) ≥
1

2
l+n (θ)

2(1 + oTn

p (1))
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Step 4: Combine approximations to show LLn ≥ 1

2
log logn(1+op(1)).

In step 1 we identified a set of parameter values Tn of size kn ≥
√
logn/

(log logn)2, in which the minimum eigenvalue of the correlation matrix exceeds
1− 3/ logn.

The approximating Gaussian process gn(θ), θ ∈ Tn has the same correlations
as the Y (θ), θ ∈ Tn and so, from equation (4.1), satisfies, for each ǫ > 0,

lim
n→∞

Pr

{

max
θ∈Tn

gn(θ) ≥ (1− 3/ logn)

√

2 log
(

√

logn/(log logn)2
)

(1− ǫ)

}

= 1,

which simplifies to maxθ∈Tn
gn(θ) =

√
log log n(1 + op(1)).

From steps 2 and 4,

Ln(θ) ≥
1

2
l+n (θ)

2(1 + oTn

p (1)) =
1

2

(

g+n (θ) + oTn

p (1)
)2

(1 + oTn

p (1)).

Thus, as proposed, LLn ≥ 1
2 log logn(1 + op(1)).

6. Discussion

Theorem 5.1 applies for the gaussian location, the gamma scale, and the Poisson
exponential families. The conditions do not apply for the binomial or the nega-
tive binomial. For the binomial having k trials, the Jeffreys integral is π

√
k, and

from step 1 of the proof, this means there are order
√
k/ log k parameter values

for which the minimum eigenvalue of their correlation matrix exceeds 1 − 1/k.
Now letting k → ∞, and letting n approach ∞ fast enough for each k so that
the error in the gaussian process approximation becomes uniformly negligible,

LLn(k) ≥
(

1

2
log k

)

(1 + op(1)),

as conjectured by Chernoff and Lander [4].

To apply these methods more widely, I would suspect that for a similar class
of multiparameter exponential families of dimension d, the limiting rate for
the maximum log likelihood would exceed 1

2d log logn, on the grounds that a
d-dimensional grid could be laid out, each direction containing about

√
logn

points, and with all (
√
logn)d parameter settings having nearly independent

likelihood sums. Certainly the Hungarian construction should be available for
general mixture problems; and in principle, seeking out sets of nearly uncor-
related likelihood sums might be possible; however, that project works in the
exponential family case only because of the submultiplicative propery.

A referee asked about similar bounds for maxima of non-independent vari-
ables in the non-Gaussian case. Following the present path would seek subsets of
variables each of which is “nearly independent” of the remaining variables in the
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subset. “Nearly independent” generalised from the gaussian case would mean
that the tail probabilities of each variable conditioned on all other variables are
greater than the tail probabilities of the original variable rescaled. This will be a
formidable task if the covariance matrix does not control everything, as it does
in the Gaussian case.
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