
Electronic Journal of Statistics

Vol. 8 (2014) 2585–2618
ISSN: 1935-7524
DOI: 10.1214/14-EJS962

The horseshoe estimator: Posterior

concentration around nearly black

vectors

S. L. van der Pas∗

Mathematical Institute, Leiden University
e-mail: svdpas@math.leidenuniv.nl

B. J. K. Kleijn

Korteweg-de Vries Institute for Mathematics, University of Amsterdam
e-mail: b.kleijn@uva.nl

and

A. W. van der Vaart†

Mathematical Institute, Leiden University
e-mail: avdvaart@math.leidenuniv.nl

Abstract: We consider the horseshoe estimator due to Carvalho, Polson
and Scott (2010) for the multivariate normal mean model in the situation
that the mean vector is sparse in the nearly black sense. We assume the fre-
quentist framework where the data is generated according to a fixed mean
vector. We show that if the number of nonzero parameters of the mean
vector is known, the horseshoe estimator attains the minimax ℓ2 risk, pos-
sibly up to a multiplicative constant. We provide conditions under which
the horseshoe estimator combined with an empirical Bayes estimate of the
number of nonzero means still yields the minimax risk. We furthermore
prove an upper bound on the rate of contraction of the posterior distri-
bution around the horseshoe estimator, and a lower bound on the poste-
rior variance. These bounds indicate that the posterior distribution of the
horseshoe prior may be more informative than that of other one-component
priors, including the Lasso.

MSC 2010 subject classifications: 62F15, 62F10.

Keywords and phrases: Sparsity, horseshoe prior, worst case risk, Bayesian
inference, empirical Bayes, posterior contraction, normal means model.

Received February 2014.

∗Research supported by Netherlands Organization for Scientific Research NWO.
†The research leading to these results has received funding from the European Research

Council under ERC Grant Agreement 320637.

2585

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS962
mailto:svdpas@math.leidenuniv.nl
mailto:b.kleijn@uva.nl
mailto:avdvaart@math.leidenuniv.nl


2586 S. L. van der Pas et al.

1. Introduction

We consider the normal means problem, where we observe a vector Y ∈ R
n,

Y = (Y1, . . . , Yn), such that

Yi = θi + εi, i = 1, . . . , n,

for independent normal random variables εi with mean zero and variance σ2.
The vector θ = (θ1, . . . , θn) is assumed to be sparse, in the ‘nearly black’ sense
that the number of nonzero means

pn := #{i : θi 6= 0}

is o(n) as n → ∞. A natural Bayesian approach to recovering θ would be
to induce sparsity through a ‘spike and slab’ prior (Mitchell and Beauchamp,
1988), which consists of a mixture of a Dirac measure at zero and a (heavy-
tailed) continuous distribution. Johnstone and Silverman (2004) analyzed an
empirical Bayes version of this approach, where the mixing weight is obtained
by marginal maximum likelihood. In the frequentist set-up that the data is
generated according to a fixed mean vector, they showed that the empirical
Bayes coordinatewise posterior median attains the minimax rate, in ℓq norm,
q ∈ (0, 2], for mean vectors that are either nearly black or of bounded ℓp norm,
p ∈ (0, 2]. Castillo and Van der Vaart (2012) analyzed a fully Bayesian version,
where the proportion of nonzero coefficients is modelled by a prior distribution.
They identified combinations of priors on this proportion and on the nonzero
coefficients (the ‘slab’) that yield posterior distributions concentrating around
the underlying mean vector at the minimax rate in ℓq norm, q ∈ (0, 2], for mean
vectors that are nearly black, and in ℓq norm, q ∈ (0, 2) for mean vectors of
bounded weak ℓp norm, p ∈ (0, q). Other work on empirical Bayes approaches
to the two-group model includes (Efron, 2008; Jiang and Zhang, 2009; Yuan and
Lin, 2005).

As a full Bayesian approach with a mixture of a Dirac and a continuous
component may require exploration of a model space of size 2n, implementa-
tion on large datasets is currently impractical, although Castillo and Van der
Vaart (2012) present an algorithm which can compute several aspects of the
posterior in polynomial time, provided sufficient memory can be allocated. Sev-
eral authors, including (Armagan, Dunson and Lee, 2013; Griffin and Brown,
2010), have proposed one-component priors, which model the spike at zero by
a peak in the prior density at this point. For most of these proposals, theoret-
ical justification in terms of minimax risk rates or posterior contraction rates
is lacking. The Lasso estimator (Tibshirani, 1996), which arises as the MAP
estimator after placing a Laplace prior with common parameter on each θi, is
an exception. It attains close to the minimax risk rate in ℓq, q ∈ [1, 2] (Bickel,
Ritov and Tsybakov (2009)). It has however been recently shown that the cor-
responding full posterior distribution contracts at a much slower rate than the
mode (Castillo, Schmidt-Hieber and Van der Vaart, 2014). This is undesirable,
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because this implies that the posterior distribution cannot provide an adequate
measure of uncertainty in the estimate.

In general one would use a posterior distribution both for recovery and for
uncertainty quantification. For the first, a measure of centre, such as a median
or mode, suffices. For the second, one typically employs a credible set, which
is defined as a central set of prescribed posterior probability. For realistic un-
certainty quantification it is necessary that the posterior contracts to its center
at the same rate as the posterior median or mode approaches the true param-
eter.

In this paper we study the posterior distribution resulting from the horse-
shoe prior, which is a one-component prior, introduced in (Carvalho, Polson
and Scott, 2010, 2009) and expanded upon in (Scott, 2011; Polson and Scott,
2012a,b). It combines a pole at zero with Cauchy-like tails. The correspond-
ing estimator does not face the computational issues of the point mass mixture
models. Carvalho, Polson and Scott (2010) already showed good behaviour of
the horseshoe estimator in terms of Kullback-Leibler risk when the true mean is
zero. Datta and Ghosh (2013) proved some optimality properties of a multiple
testing rule induced by the horseshoe estimator. In this paper, we prove that
the horseshoe estimator achieves the minimax quadratic risk, possibly up to a
multiplicative constant. We furthermore prove that the posterior variance is of
the order of the minimax risk, and thus the posterior contracts at the mini-
max rate around the underlying mean vector. These results are proven under
the assumption that the number pn of nonzero parameters is known. However,
we also provide conditions under which the horseshoe estimator combined with
an empirical Bayes estimator still attains the minimax rate, when pn is un-
known.

This paper is organized as follows. In Section 2, the horseshoe prior is de-
scribed and a summary of simulation results is given. The main results, that
the horseshoe estimator attains the minimax squared error risk (up to a mul-
tiplicative constant) and that the posterior distribution contracts around the
truth at the minimax rate, are stated in Section 3. Conditions on an empirical
Bayes estimator of the key parameter τ such that the minimax ℓ2 risk will still
be obtained are given in Section 4. The behaviour of such an empirical Bayes es-
timate is compared to a full Bayesian version in a numerical study in Section 5.
Section 6 contains some concluding remarks. The proofs of the main results and
supporting lemmas are in the appendix.

1.1. Notation

We write An ≍ Bn to denote 0 < limn→∞ inf An

Bn
≤ limn→∞ sup An

Bn
< ∞ and

An . Bn to denote that there exists a positive constant c independent of n such
that An ≤ cBn. A∨B is the maximum of A and B, and A∧B the minimum of
A and B. The standard normal density and cumulative distribution are denoted
by φ and Φ and we set Φc = 1−Φ. The norm ‖ · ‖ will be the ℓ2 norm and the
class of nearly black vectors will be denoted by ℓ0[pn] := {θ ∈ R

n : #(1 ≤ i ≤
n : θi 6= 0) ≤ pn}.
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Fig 1. The effect of decreasing τ on the priors on κ (left) and θ (middle) and the poste-
rior mean Tτ (y) (right). The solid line corresponds to τ = 1, the dashed line to τ = 0.05.
Decreasing τ results in a higher prior probability of shrinking the observations towards zero.

2. The horseshoe prior

In this section, we give an overview of some known properties of the horseshoe
estimator which will be relevant to the remainder of our discussion. The horse-
shoe prior for a parameter θ modelling an observation Y ∼ N (θ, σ2In) is defined
hierarchically (Carvalho, Polson and Scott, 2010):

θi | λi, τ ∼ N (0, σ2τ2λ2
i ), λi ∼ C+(0, 1),

for i = 1, . . . , n, where C+(0, 1) is a standard half-Cauchy distribution. The
parameter τ is assumed to be fixed in this paper, rendering the θi independent
a priori. The corresponding density pτ increases logarithmically around zero,
while its tails decay quadratically. The posterior density of θi given λi and τ is
normal with mean (1− κi)yi, where κi =

1
1+τ2λ2

i
. Hence, by Fubini’s theorem:

E[θi | yi, τ ] = (1 − E[κi | yi, τ ])yi.

The posterior mean E[θ | y, τ ] will be referred to as the horseshoe estimator
and denoted by Tτ (y). The horseshoe prior takes its name from the prior on κi,
which is given by:

pτ (κi) =
τ

π

1

1− (1 − τ2)κi
(1 − κi)

− 1
2 κ

− 1
2

i .

If τ = 1, this reduces to a Be(12 ,
1
2 ) distribution, which looks like a horseshoe. As

illustrated in Figure 1, decreasing τ skews the prior distribution on κi towards
one, corresponding to more mass near zero in the prior on θi and a stronger
shrinkage effect in Tτ (y).

The posterior mean can be expressed as:

Tτ (yi) = yi


1−

2Φ1

(
1
2 , 1,

5
2 ;

y2
i

2σ2 , 1− 1
τ2

)

3Φ1

(
1
2 , 1,

3
2 ;

y2
i

2σ2 , 1− 1
τ2

)


 = yi

∫ 1

0 z
1
2

1
τ2+(1−τ2)z e

y2i
2σ2 zdz

∫ 1

0
z−

1
2

1
τ2+(1−τ2)z e

y2
i

2σ2 zdz

,

(1)
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where Φ1(α, β, γ;x, y) denotes the degenerate hypergeometric function of two
variables (Gradshteyn and Ryzhik, 1965).

An unanswered question so far has been how τ should be chosen. Intuitively, τ
should be small if the mean vector is very sparse, as the horseshoe prior will then
place more of its mass near zero. By approximating the posterior distribution
of τ2 given κ = (κ1, . . . , κn) in case a prior on τ is used, Carvalho, Polson and
Scott (2010) show that if most observations are shrunk near zero, τ will be very
small with high probability. They suggest a half-Cauchy prior on τ . Datta and
Ghosh (2013) implemented this prior on τ and their plots of posterior draws
for τ at various sparsity levels indicate the expected relationship between τ and
the sparsity level: the posterior distribution of τ tends to concentrate around
smaller values when the underlying mean vector is sparser. As will be discussed
further in the next section, the value τ = pn

n (up to a log factor) is optimal in
terms of mean square error and posterior contraction rates.

In case τ is estimated empirically, as will be considered in Section 4, the
horseshoe estimator can be computed by plugging this estimate into expression
(1), thereby avoiding the use of MCMC. Other aspects of the posterior, such as
the posterior variance, can be computed using such a plug-in procedure as well.
Polson and Scott (2012a) and Polson and Scott (2012b) consider computation
of the horseshoe estimator based on the representation in terms of degenerate
hypergeometric functions, as these can be efficiently computed using converging
series of confluent hypergeometric functions. They report unproblematic compu-
tations for τ2 between 1

1000 and 1000. A second option is to apply a quadrature
routine to the integral representation in (1). As the continuity and symmetry
of Tτ (y) in y can be taken advantage of when computing the horseshoe estima-
tor for a large number of observations, the complexity of these computations
mostly depends on the value of τ . Both approaches will be slower for smaller
values of τ . Hence, if we use the (estimated) sparsity level pn

n (up to a log fac-
tor) for τ , the computation of the horseshoe estimator will be slower if there are
fewer nonzero parameters. As noted by Scott (2010), problems arise in Gibbs
sampling precisely when τ is small as well. Hence care needs to be taken with
any computational approach if pn

n is suspected to be very close to zero.
The performance of the horseshoe prior, with additional priors on τ and σ2, in

various simulation studies has been very promising. Carvalho, Polson and Scott
(2010) simulated sparse data where the nonzero components were drawn from
a Student-t density and found that the horseshoe estimator systematically beat
the MLE, the double-exponential (DE) and normal-exponential-gamma (NEG)
priors, and the empirical Bayes model due to Johnstone and Silverman (2004)
in terms of square error loss. Only when the signal was neither sparse nor heavy-
tailed did the MLE, DE and NEG priors have an edge over the horseshoe esti-
mator. In similar experiments in (Carvalho, Polson and Scott, 2009; Polson and
Scott, 2012a) the horseshoe prior outperformed the DE prior, while behaving
similarly to a heavy-tailed discrete mixture. In a wavelet-denoising experiment
under several noise levels and loss functions, the horseshoe estimator compared
favorably to the discrete wavelet transform and the empirical Bayes model (Pol-
son and Scott, 2010). Bhattacharya et al. (2012) applied several shrinkage priors
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to data with the underlying mean vector consisting of zeroes and fixed nonzero
values and found the posterior median of the horseshoe prior performing better
in terms of squared error than the Bayesian Lasso (BL), the Lasso, the posterior
median of a point mass mixture prior as in (Castillo and Van der Vaart, 2012)
and the empirical Bayes model proposed by Johnstone and Silverman (2004),
and comparable to their proposed Dirichlet-Laplace (DL) prior with parameter
1
n . Results in (Armagan, Dunson and Lee, 2013) are similar. In a second simula-
tion setting, Bhattacharya et al. (2012) generated data of length n = 1000, with
the first ten means equal to 10, the next 90 equal to a number A ∈ {2, . . . , 7}
and the remainder equal to zero. In this simulation, the horseshoe prior beat
the BL (except when A = 2) and the DL prior with parameter 1

n (except when
A = 7), while performing similarly to the DL prior with parameter 1

2 . It is wor-
thy of note that Koenker (2014) generated data according to the same scheme
and applied the empirical Bayes procedures due to Martin and Walker (2014)
(EBMW) and Koenker and Mizera (2014) (EBKM) to it. The MSE of EBMW
was lower than that of the horseshoe prior for A ∈ {5, 6, 7}, while that of EBKM
was much lower in all cases.

3. Mean square error and bounds on the posterior variance

In this section, we study the mean square error of the horseshoe estimator, and
the spread of the posterior distribution, under the assumption that the number
of nonzero parameters pn is known. Theorem 3.1 provides an upper bound on
the mean square error, and shows that for a range of choices of the global
parameter τ , the horseshoe estimator attains the minimax ℓ2 risk, possibly up
to a multiplicative constant. Theorem 3.3 states upper bounds on the rate of
contraction of the posterior distribution around the underlying mean vector and
around the horseshoe estimator, again for a range of values of τ . These upper
bounds are equal, up to a multiplicative constant, to the minimax risk. The
contraction rate around the truth is sharp, but this may not be the case for
the rate of contraction around the horseshoe estimator. Theorems 3.4 and 3.5
provide more insight into the spread of the posterior distribution for various
values of τ and indicate that τ = pn

n

√
log(n/pn) is a good choice.

Theorem 3.1. Suppose Y ∼ N (θ0, σ
2In). Then the estimator Tτ (y) satisfies

sup
θ0∈ℓ0[pn]

Eθ0‖Tτ(Y )− θ0‖2 . pn log
1

τ
+ (n− pn)τ

√
log

1

τ
(2)

for τ → 0, as n, pn → ∞ and pn = o(n).

By the minimax risk result in (Donoho et al., 1992), we also have a lower
bound:

sup
θ0∈ℓ0[pn]

Eθ0‖Tτ (Y )− θ0‖2 ≥ 2σ2pn log
n

pn
(1 + o(1)),

as n, pn → ∞ and pn = o(n). The choice τ = (pn

n )α, for α ≥ 1, leads to an
upper bound (2) of order pn log(n/pn), with (as can be seen from the proof)
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a multiplicative constant of at most 4ασ2. Thus, for this choice of τ , we have:

sup
θ0∈ℓ0[pn]

Eθ0‖Tτ (Y )− θ0‖2 ≍ pn log
n

pn
.

The horseshoe estimator therefore performs well as a point estimator, as it
attains the minimax risk (possibly up to a multiplicative constant of at most
2 for α = 1). This may seem surprising, as the prior does not include a point
mass at zero to account for the assumed sparsity in the underlying mean vector.
Theorem 3.1 shows that the pole at zero of the horseshoe prior mimics the point
mass well enough, while the heavy tails ensure that large observations are not
shrunk too much.

An upper bound on the rate of contraction of the posterior can be obtained
through an upper bound on the posterior variance. The posterior variance can
be expressed as:

Var(θi | yi) =
σ2

yi
Tτ (yi)− (Tτ (yi)− yi)

2
+ y2i

8Φ1

(
1
2 , 1,

7
2 ;

y2
i

2σ2 , 1− 1
τ2

)

15Φ1

(
1
2 , 1,

3
2 ;

y2
i

2σ2 , 1− 1
τ2

) .

Details on the computation can be found in Lemma A.4. Using a similar ap-
proach as when bounding the ℓ2 risk, we can find an upper bound on the ex-
pected value of the posterior variance.

Theorem 3.2. Suppose Y ∼ N (θ0, σ
2In). Then the variance of the posterior

distribution corresponding to the horseshoe prior satisfies

sup
θ0∈ℓ0[pn]

Eθ0

n∑

i=1

Var(θ0i | Yi) . pn log
1

τ
+ (n− pn)τ

√
log

1

τ
(3)

for τ → 0, as n, pn → ∞ and pn = o(n).

Again, the choice τ = (pn

n )α, for α ≥ 1 leads to an upper bound (3) of the
order of the minimax risk. This result indicates that the posterior contracts fast
enough to be able to provide a measure of uncertainty of adequate size around
the point estimate. Theorems 3.1 and 3.2 combined allow us to find an upper
bound on the rate of contraction of the full posterior distribution, both around
the underlying mean vector and around the horseshoe estimator.

Theorem 3.3. Under the assumptions of Theorem 3.1, with τ = (pn

n )α, α ≥ 1:

sup
θ0∈ℓ0[pn]

Eθ0Πτ

(
θ : ‖θ − θ0‖2 > Mnpn log

n

pn

∣∣∣∣ Y

)
→ 0, (4)

and

sup
θ0∈ℓ0[pn]

Eθ0Πτ

(
θ : ‖θ − Tτ (Y )‖2 > Mnpn log

n

pn

∣∣∣∣ Y

)
→ 0, (5)

for every Mn → ∞ as n → ∞.
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Proof. Combine Markov’s inequality with the results of Theorems 3.1 and 3.2
for (4), and only with the result of Theorem 3.2 for (5).

A remarkable aspect of the preceding Theorems is that many choices of
τ , such as τ = (pn

n )α for any α ≥ 1, lead to an upper bound of the order
pn log(n/pn) on the worst case ℓ2 risk and posterior contraction rate. The upper
bound on the rate of contraction in (4) is sharp, as the posterior cannot contract
faster than the minimax rate around the true mean vector (Ghosal, Ghosh and
Van der Vaart, 2000). However, this is not necessarily the case for the upper
bound in (5), and for τ = (pn

n )α with α > 1, the posterior spread may be of
smaller order than the rate at which the horseshoe estimator approaches the
underlying mean vector. Theorems 3.4 and 3.5 provide more insight into the
effect of choosing different values of τ on the posterior spread and mean square
error.

Theorem 3.4. Suppose Y ∼ N (θ0, σ
2In), θ0 ∈ ℓ0[pn]. Then the variance of the

posterior distribution corresponding to the horseshoe prior satisfies

inf
θ0∈ℓ0[pn]

Eθ0

n∑

i=1

Var(θ0i | Yi) & (n− pn)τ

√
log

1

τ
(6)

for τ → 0 and pn = o(n), as n → ∞. This lower bound is sharp for vectors θ0,n
with pn entries equal to an and the remaining entries equal to zero, if an is such
that |an| . 1/

√
log(1/τ).

Theorem 3.5. Suppose Y ∼ N (θ0,n, σ
2In) and θ0,n ∈ ℓ0[pn] is such that pn

entries are equal to γ
√
2σ2 log(1/τ), γ ∈ (0, 1), and all remaining entries are

equal to zero. Then:

Eθ0,n‖Tτ (Y )− θ0,n‖2 ≍ pn log
1

τ
+ (n− pn)τ

√
log

1

τ
, (7)

and

Eθ0,n

n∑

i=1

Var(θ0,ni | Yi) ≍ pnτ
(1−γ)2

(
log

1

τ

)γ−1
2
+ (n− pn)τ

√
log

1

τ
, (8)

for τ → 0 and pn = o(n), as n → ∞.

Consider τ = (pn

n )α. Three cases can be discerned:

(i) 0 < α < 1. Lower bound (6) may exceed the minimax rate, implying
suboptimal spread of the posterior distribution in the squared ℓ2 sense.

(ii) α = 1. Bounds (3) and (6) differ by a factor
√
log(n/pn), as do (7) and

(8). The gap can be closed by choosing τ = pn

n

√
log n

pn
.

(iii) α > 1. Bound (6) is not very informative, but Theorem 3.5 exhibits a se-
quence θ0,n ∈ ℓ0[pn] for which there is a mismatch between the order of the
mean square error and the posterior variance. Bounds (7) and (8) are of the
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orders pn(log(1/τ) + τ1−1/α
√
log(1/τ)) and pn(τ

(1−γ)2(log(1/τ))γ−1/2 +

τ1−1/α
√
log(1/τ)), respectively. Hence up to logarithmic factors the total

posterior variance (8) is a factor τ (1−1/α)∧(1−γ)2 smaller than the square
distance of the center of the posterior to the truth (7). For pn ≤ nc for
some c > 0, this factor behaves as a power of n.

These observations suggest that τ = pn

n

√
log(n/pn) is a good choice, because

then (2), (3), (6), (7), (8) are all of the order pn log(n/pn), suggesting that the
posterior contracts at the minimax rate around both the truth and the horseshoe
estimator.

4. Empirical Bayes estimation of τ

A natural follow-up question is how to choose τ in practice, when pn is unknown.
As discussed in Section 2, the full Bayesian approach suggested by Carvalho,
Polson and Scott (2010) performs well in simulations. The analysis of such a
hierarchical prior would however require different tools than the ones we have
used so far. An empirical Bayes estimate of τ would be a natural solution, and
allows us in practice to use one of the representations in (1) for computations,
instead of an MCMC-type algorithm.

By adapting the approach in Paragraph 6.2 in (Johnstone and Silverman,
2004), we can find conditions under which the horseshoe estimator with an
empirical Bayes estimate of τ will still attain the minimax ℓ2 risk. Based on the
consideration of Section 3, we proceed with the choices τ = pn

n

√
log(n/pn) and

τ = pn

n . The former is optimal in the sense that the posterior spread is of the
order of the minimax risk, but the latter has the simple interpretation of being
the proportion of nonzero means, and the difference between the two is only the
square root of a log factor.

Theorem 4.1. Suppose we observe an n-dimensional vector Y ∼ N (θ0, σ
2In)

and we use Tτ̂ (y) as our estimator of θ0. If τ̂ ∈ (0, 1) satisfies the following two
conditions for τ = pn

n or τ = pn

n

√
log(n/pn):

1. Pθ0(τ̂ > cτ) . pn

n for a constant c ≥ 1 such that τ ≤ 1
c ;

2. There exists a function g : N × N → (0, 1) such that τ̂ ≥ g(n, pn) with
probability one and − log(g(n, pn))Pθ0(τ̂ ≤ τ) . log(n/pn),

then:

sup
θ0∈ℓ0[pn]

Eθ0‖Tτ̂(Y )− θ0‖2 ≍ pn log
n

pn
(9)

as n, pn → ∞ and pn = o(n). If only the first condition can be verified for an
estimator τ̂ , then sup{ 1

n , τ̂} will have an ℓ2 risk of at most order pn logn.

The first condition requires that τ̂ does not overestimate the fraction pn

n of
nonzero means (up to a log factor) too much or by a too large probability. If
pn ≥ 1, as we have assumed, then it is satisfied already by τ̂ = 1

n (and c = 1).
According to the last assertion of the theorem, this ‘universal threshold’ yields
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the rate pn log n (possibly up to a multiplicative constant). This is equal to the

rate of the Lasso estimator with the usual choice of λ = 2
√
2σ2 log n (Bickel,

Ritov and Tsybakov, 2009). However, in the framework where pn → ∞, the
estimator τ̂ = 1

n will certainly underestimate the sparsity level. A more natural
estimator of pn

n is:

τ̂ =
#{|yi| ≥

√
c1σ2 logn, i = 1, . . . , n}

c2n
, (10)

where c1 and c2 are positive constants. By Lemma A.7, this estimator satisfies
the first condition for τ = pn

n and τ = pn

n

√
log(n/pn) if c1 > 2, c2 > 1 and

pn → ∞ or c1 = 2, c2 > 1 and pn & logn. Thus max{τ̂ , 1
n} will also lead to

a rate of at most order pn logn under these conditions. Its behaviour will be
explored further in Section 5.

The rate can be improved to pn log(n/pn) if the second condition is met as
well, which ensures that the sparsity level is not underestimated too much or
by a too large probability. As we are not aware of any estimators meeting this
condition for all θ0, this condition is currently mostly of theoretical interest. If
the true mean vector is very sparse, in the sense that there are relatively few
nonzero means or the nonzero means are close to zero, there is not much to
be gained in terms of rates by meeting this condition. The extra occurrence of
pn relative to the rate pn log n is of interest only if pn is relatively large. For
instance, if pn ≍ nα for α ∈ (0, 1), then pn log(n/pn) = (1 − α)pn log n, which
suggests a decrease of the proportionality constant in (9), particularly if α is
close to one. Furthermore, when pn is large, the constant in (9) may be sensitive
to the fine properties of τ̂ , as it depends on g(n, pn) (as can be seen in the
proof). If τ̂ seriously underestimates the sparsity level, the corresponding value
of g(n, pn) from the second condition may be so small that the upper bound on
the multiplicative constant before (9) becomes very large. Hence in this case,
τ̂ is required to be close to the proportion pn

n (up to a log factor) with large
probability in order to get an optimal rate.

Datta and Ghosh (2013) warned against the use of an empirical Bayes esti-
mate of τ for the horseshoe prior, because the estimate might collapse to zero.
Their references for this statement, Scott and Berger (2010) and Bogdan, Ghosh
and Tokdar (2008), indicate that they are thinking of a marginal maximum like-
lihood estimate of τ . However, an empirical Bayes estimate of τ does not need to
be based on this principle. Furthermore, an estimator that satisfies the second
condition from Theorem 4.1 or that is truncated from below by 1

n , would not
be susceptible to this potential problem.

5. Simulation study

A simulation study provides more insight into the behaviour of the horseshoe
estimator, both when using an empirical Bayes procedure with estimator (10)
and when using the fully Bayesian procedure proposed by Carvalho, Polson and
Scott (2010) with a half-Cauchy prior on τ . For each data point, 100 replicates
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Fig 2. Average squared error loss over 100 replicates with underlying mean vectors of length
n = 400 if the nonzero coefficients are taken equal to A, in case 5% (Figure (a)), 10%
(Figure (b)) or 50% (Figure (c)) of the means are equal to a nonzero value A. The solid line
corresponds to empirical Bayes with (10), c1 = 2, c2 = 1, the dashed line to full Bayes with a
half-Cauchy prior on τ . Figure (d) displays a histogram of all Gibbs samples of τ (after the
burn-in) of all replicates in the setting τ ∼ C+(0, 1), A = 10, pn = 200.

of an n-dimensional vector sampled from a N (θ0, In) distribution were created,
where θ0 had either 20, 40 or 200 (5%, 10% or 50%) entries equal to an integer
A ranging from 1 to 10, and all the other entries equal to zero. The full Bayesian
version was implemented using the code provided in (Scott, 2010), and the co-
ordinatewise posterior mean was used as the estimator of θ0. For the empirical
Bayes procedure, the estimator (10) was used with c1 = 2 and c2 = 1. Perfor-
mance was measured by squared error loss, which was averaged across replicates
to create Figure 2.

In all settings, both estimators experience a peak in the ℓ2 loss for values of A
close to the ‘universal threshold’ of

√
2 log 400 ≈ 3.5. This is not unexpected, as

in the terminology of Johnstone and Silverman (2004), the horseshoe estimator
is a shrinkage rule, and while it is not a thresholding rule in their sense, it does
have the bounded shrinkage property which leads to thresholding-like behaviour.
The bounded shrinkage property can be derived from Lemma A.3, which yields
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the following inequality as τ approaches zero:

|Tτ (y)− y| ≤
√
2σ2 log

1

τ
.

With τ = 1
n , this leads to the ‘universal threshold’ of

√
2σ2 logn, or with τ =

(pn

n )α, a ‘threshold’ at
√
2ασ2 log(n/pn). Based on this property and the proofs

of the main results, we can divide the underlying parameters into three cases:

(i) Those that are exactly or close to zero, where the observations are shrunk
close to zero;

(ii) Those that are larger than the threshold, where the horseshoe estimator
essentially behaves like the identity;

(iii) Those that are close to the ‘threshold’, where the horseshoe estimator is
most likely to shrink the observations too much.

The horseshoe estimator performs well in cases (i) and (ii) due to its pole at
zero and its heavy tails respectively. The hardest parameters to recover from
the noise are those that are close to the threshold, and these are the ones that
affect the estimation risk the most. This phenomenon explains the peaks in the
graphs of Figure 2 around A = 3.5.

The full Bayes implementation with a Cauchy prior on τ attains a lower ℓ2
loss around the universal threshold than the empirical Bayes procedure. This
is because estimator (10) counts the number of observations that are above the
universal threshold. When all the nonzero means are close to this threshold,
τ̂ may ‘miss’ some of them, thereby underestimating the sparsity level pn

n and
thus leading to overshrinkage.

For values of A well past the universal threshold, the empirical Bayes esti-
mator does better than the full Bayes version. For such large values of A, the
estimator (10) will be equal to the true sparsity level with large probability and
hence its good performance is not unexpected. However, an interesting question
is why the full Bayes estimator does not do as well as the empirical Bayes esti-
mator, especially because the nonzero means are so far removed from zero that
the problem is ‘easy’. This could be due to the choice of a half-Cauchy prior
for τ : it places no restriction on the possible values of τ and has such heavy tails
that values far exceeding the sparsity level pn

n are possible. This would lead to
undershrinkage of the observations corresponding to a zero mean, which would
be reflected in the ℓ2 loss. Figure 2(d) shows a histogram of all Gibbs samples of
τ in the setting where 50% of the means are set equal to 10. The range of these
values is (3.1, 7.3), which is very far away from pn

n = 1
2 . This indicates that a

full Bayesian version of the horseshoe prior could benefit from a different choice
of prior on τ than a half-Cauchy one, for example one that is restricted to [0,1].

6. Concluding remarks

The choice of the global shrinkage parameter τ is critical towards ensuring the
right amount of shrinkage of the observations to recover the underlying mean
vector. The value of τ = pn

n

√
log(n/pn) was found to be optimal. Theorem 4.1
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indicates that quite a wide range of estimators for τ will work well, especially in
cases where the underlying mean vector is sparse. Of course, it should not come
as a surprise that an estimator designed to recover sparse vectors will work es-
pecially well if the truth is indeed sparse. An interesting extension to this work
would be to investigate whether the posterior concentration properties of the
horseshoe prior still remain when a hyperprior is placed on τ . The result that
τ = pn

n (up to a log factor) yields optimal rates, together with the simulation re-
sults, suggests that in a fully Bayesian approach, a prior on τ which is restricted
to [0, 1] may perform better than the suggested half-Cauchy prior.

The simulation results also indicate that mean vectors with the nonzero
means close to the universal threshold are the hardest to recover. In future
simulations involving shrinkage rules, it would therefore be interesting to study
the challenging case where all the nonzero parameters are at this threshold.
The performance of the empirical Bayes estimator (10) leaves something to be
desired around the threshold. In additional numerical experiments (not shown),
we tried two other estimators of τ . The first was the ‘oracle estimator’ τ̂ = pn

n .
For values of the nonzero means well past the ‘threshold’, the behaviour of this
estimator was very similar to that of (10). However, before the threshold, the
squared error loss of the empirical procedure with the oracle estimator was be-
tween that of the full Bayes estimator and empirical Bayes with estimator (10).
The second estimator was the mean of the samples of τ from the full Bayes
estimator. The resulting squared error loss was remarkably close to that of the
full Bayes estimator, for all values of the nonzero means. Neither of these two
estimators is of much practical use. However, their range of behaviours suggests
room for improvement over the estimator (10), and it would be worthwhile to
study more refined estimators for τ .

An interesting question is what aspects of the horseshoe prior are truly es-
sential towards optimal posterior contraction properties. Our proofs do not elu-
cidate whether the pole at zero of the horseshoe prior is required, or if a prior
with heavy tails, and in a sense ‘sufficient’ mass at zero would work as well. The
failure of the Lasso to concentrate around the true mean vector at the minimax
rate does indicate that heavy tails in itself may not be sufficient, and adding
mass at zero solves this problem (Castillo, Schmidt-Hieber and Van der Vaart,
2014; Castillo and Van der Vaart, 2012). It is possible that the pole at zero is
inessential, in particular if the global tuning parameter is chosen carefully, for
instance by empirical Bayes. If the tuning parameter is chosen by a full Bayes
method, the peak may be more essential, depending on its prior.

The horseshoe estimator has the property that its computational complexity
depends on the sparsity level rather than the number of observations. Although
there is no point mass at zero to induce sparsity, it still yields good reconstruc-
tion in ℓ2, and a posterior distribution that contracts at an informative rate.
None of the estimates will however be exactly zero. Variable selection can be
performed by applying some sort of thresholding rule, such as the one suggested
in (Carvalho, Polson and Scott, 2010) and analyzed by Datta and Ghosh (2013).
The performance of this thresholding rule in simulations in the two works cited
has been encouraging.
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Appendix: Proofs

This section begins with Lemma A.1, providing bounds on some of the degen-
erate hypergeometric functions appearing in the posterior mean and posterior
variance. This is followed by two lemmas that are needed for the proofs of The-
orems 3.1 and 3.2: Lemma A.2 provides two upper bounds on the horseshoe
estimator and Lemma A.3 gives a bound on the absolute value of the difference
between the horseshoe estimator and an observation. We then proceed to the
proof of Theorem 3.1, after which Lemma A.4 provides upper bounds on the
posterior variance. These upper bounds are then used in the proof of Theorem
3.2. The proof of Theorem 3.4 is given next, followed by Lemmas A.5 and A.6
supporting the proof of Theorem 3.5. This section concludes with the proofs of
Theorem 4.1 and Lemma A.7, which both concern the empirical Bayes procedure
discussed in Section 4.

Lemma A.1. Define

Ik(y) :=

∫ 1

0

zk
1

τ2 + (1 − τ2)z
e

y2

2σ2 zdz.

Then, for a > 1:

I 3
2
(y) ≥ 1

5
τ3 + σ2 τ

y2

(
e

y2

2aσ2 − eτ
2 y2

2σ2

)
+

σ2

√
ay2

(
e

y2

2σ2 − e
y2

2aσ2

)
, (11)

I 1
2
(y) ≥ 1

3
τ +

σ2

y2

(
e

y2

2σ2 − eτ
2 y2

2σ2

)
, (12)

I 1
2
(y) ≤ 2

3
eτ

2 y2

2σ2 τ + 2e
y2

2aσ2

(
1√
a
− τ

)
+

2
√
aσ2

y2

(
e

y2

2σ2 − e
y2

2aσ2

)
, (13)

I− 1
2
(y) ≥ 1

τ
+ eτ

2 y2

2σ2

(
1

τ
− 1√

τ

)
+

a
√
aσ2

y2

(
e

y2

2aσ2 − eτ
y2

2σ2

)

+
σ2

y2

(
e

y2

2σ2 − e
y2

2aσ2

)
, (14)

I− 1
2
(y) ≤ 2eτ

2 y2

2σ2

τ
+ 2eτ

y2

2σ2

(
1

τ
− 1√

τ

)
+ 2e

y2

2aσ2

(
1√
τ
−√

a

)

+
2a

√
aσ2

y2

(
e

y2

2σ2 − e
y2

2aσ2

)
, (15)

where (11) and (13) hold for τ < 1/
√
a, (12) holds for τ < 1, and (14) and (15)

hold for τ < 1/a.
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Proof. Write ξ = y2/(2σ2). We first note that for z ≥ τ2, we have z ≤ τ2 +(1−
τ2)z ≤ 2z, while for z ≤ τ2, we have τ2 ≤ τ2 + (1 − τ2)z ≤ 2τ2. Hence, we can
bound Ik from above by:

Ik(y) ≤
1

τ2

∫ τ2

0

zkeξzdz +

∫ 1

τ2

zk−1eξzdz,

and from below by half of that quantity. We bound the integral over [0, τ2] in

all cases by bounding the factor eξz by 1 or eτ
2ξ. For the integral over [τ2, 1], we

first substitute u = ξz, yielding:
∫ 1

τ2 z
k−1eξzdz = ξ−k

∫ ξ

τ2ξ
uk−1eudu. For (11)

and (13), we split the domain of integration into [τ2ξ, ξ
a ] and [ ξa , ξ]. For I 3

2
, we

bound by:

I 3
2
(y) ≥ 1

2

(
1

τ2

∫ τ2

0

z
3
2 dz + ξ−

3
2 (τ2ξ)

1
2

∫ ξ
a

τ2ξ

eudu+ ξ−
3
2

(
ξ

a

) 1
2
∫ ξ

ξ
a

eudu

)
,

yielding (11). Similarly, for I 1
2
:

I 1
2
(y) ≤ 1

τ2
eτ

2ξ

∫ τ2

0

z
1
2 dz + ξ−

1
2 e

ξ
a

∫ ξ
a

τ2ξ

u− 1
2 du+ ξ−

1
2

(
ξ

a

)− 1
2
∫ ξ

ξ
a

eudu,

resulting in (13). The bound (12) is obtained similarly, but without splitting up
[τ2ξ, ξ] further, by the inequality

I 1
2
(y) ≥ 1

2τ2

∫ τ2

0

z
1
2 dz +

1

2
ξ−1

∫ ξ

τ2ξ

eudu.

For the bounds on I− 1
2
, we split up the domain of integration [τ2ξ, ξ] into

[τ2ξ, τξ], [τξ, ξ
a ] and [ ξa , ξ], and then bound by:

I− 1
2
(y) ≥ 1

2

(
1

τ2

∫ τ2

0

z−
1
2 dz + ξ

1
2 eτ

2ξ

∫ τξ

τ2ξ

u− 3
2 du+ ξ

1
2

(
ξ

a

)− 3
2
∫ ξ

a

τξ

eudu

+ ξ
1
2 ξ−

3
2

∫ ξ

ξ
a

eudu

)
,

yielding (14), and by:

I− 1
2
(y) ≤ 1

τ2
eτ

2ξ

∫ τ2

0

z−
1
2 dz + ξ

1
2 eτξ

∫ τξ

τ2ξ

u− 3
2 du + ξ

1
2 e

ξ
a

∫ ξ
a

τξ

u− 3
2 du

+ ξ
1
2

(
ξ

a

)− 3
2
∫ ξ

ξ
a

eudu,

to find (15).

Lemma A.2. If τ2 < 1, the posterior mean of the horseshoe prior can be
bounded above by:
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1. Tτ (y) ≤ ye
y2

2σ2 f(τ), where f is such that f(τ) ≤ 2
3τ ;

2.

Tτ (y) ≤ y

2
3e

τ2 y2

2σ2 τ +2e
y2

2aσ2 ( 1√
a
− τ)+ 2

√
aσ2

y2 (e
y2

2σ2 − e
y2

2aσ2 )

1
τ + eτ

2 y2

2σ2 ( 1τ − 1√
τ
)+ aσ2

√
a

y2 (e
y2

2aσ2 − eτ
y2

2σ2 )+ σ2

y2 (e
y2

2σ2 − e
y2

2aσ2 )
,

for any a > 1 and τ < 1
a .

Proof. We bound the integrals in the numerator and denominator of expression

(1). For the first upper bound, we will use the fact that for 0 ≤ z ≤ 1, e
y2

2σ2 z is

bounded below by 1 and above by e
y2

2σ2 . The posterior mean can therefore be
bounded by:

Tτ (y) ≤ ye
y2

2σ2

∫ 1

0 z
1
2

1
τ2+(1−τ2)zdz∫ 1

0 z−
1
2

1
τ2+(1−τ2)zdz

= ye
y2

2σ2 f(τ),

where

f(τ) =
τ

1− τ2




√
1− τ2

arctan
(√

1−τ2

τ

) − τ


 .

By Shafer’s inequality for the arctangent (Shafer, 1966):

f(τ)

τ
=

1

1− τ2




√
1− τ2

arctan
(√

1−τ2

τ

) − τ


 <

2

3

1

1 + τ
≤ 2

3
,

which completes the proof for the first upper bound.

For the second inequality, we note that, in the notation of Lemma A.1,

Tτ (y) = y
I 1
2
(y)

I
−

1
2
(y) . The bounds in Lemma A.1 yield the stated inequality.

Lemma A.3. For τ2 < 1, the absolute value of the difference between the
horseshoe estimator and an observation y can be bounded by a function h(y, τ)
such that for any c > 2:

lim
τ↓0

sup
|y|>

√
cσ2 log 1

τ

h(y, τ) = 0.

Proof. We assume y > 0 without loss of generality. By a change of variables of
x = 1− z:

|Tτ (y)− y| = y

∫ 1

0 e−
y2

2σ2 xx(1− x)−
1
2

1
1−(1−τ2)xdx

∫ 1

0 e−
y2

2σ2 x(1 − x)−
1
2

1
1−(1−τ2)xdx

.

By following the proof of Watson’s lemma provided in Miller (2006), we can
find bounds on the numerator and denominator of the above expression. First
define g(x) = (1 − x)−

1
2

1
1−(1−τ2)x and note that by Taylor’s theorem, g(x) =

g(0) + xg′(ξx), where ξx is between 0 and x. Let s be any number between 0
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and 1. Because g′′(x) is not negative for x ∈ [0, 1), we have that for x ∈ [0, s],
s ∈ (0, 1): g′(0) ≤ g′(x) ≤ g′(s). The numerator can then be bounded by:

∫ 1

0

e−
y2

2σ2 xxg(x)dx =

∫ s

0

e−
y2

2σ2 xxg(0)dx+

∫ s

0

e−
y2

2σ2 xx2g′(ξx)dx

+

∫ 1

s

e−
y2

2σ2 xxg(x)dx

≤ 1

y4
h1(y, σ, s) +

g′(s)

y6
h2(y, σ, s) + 2e−

sy2

2σ2 h3(τ),

where h1(y, σ, s) = 4σ4 − 2σ2(sy2 + 2σ2)e−
sy2

2σ2 , h2(y, σ, s) = 16σ6 − 2σ2(s2y4 +

4sσ2y2+8σ4)e−
sy2

2σ2 and h3(τ) = arctan(
√
1−τ2

τ )τ−1(1−τ2)−
3
2 − (1−τ2)−1. The

denominator can similarly be bounded by:
∫ 1

0

e−
y2

2σ2 xg(x)dx =

∫ s

0

e−
y2

2σ2 xg(0)dx+

∫ s

0

e−
y2

2σ2 xxg′(ξx)dx

+

∫ 1

s

e−
y2

2σ2 xg(x)dx

≥ 1

y2
h4(y, σ, s) +

g′(0)

y4
h5(y, σ, s) + 0,

where h4(y, σ, s) = 2σ2−2σ2e−
sy2

2σ2 and h5(y, σ, s) = 4σ4−2σ2e−
sy2

2σ2 (sy2+2σ2).
Hence:

|Tτ (y)− y| ≤
1
yh1(y, σ, s) +

g′(s)
y3 h2(y, σ, s) + 2y3e−

sy2

2σ2 h3(τ)

h4(y, σ, s) +
g′(0)
y2 h5(y, σ, s)

.

For any fixed τ , this bound tends to zero as y tends to infinity. If τ → 0, the term
containing h3(τ) could potentially diverge. For s = 2

3 and y =
√
cσ2 log(1/τ),

where c is a positive constant, this term displays the following limiting behaviour
as τ → 0:

lim
τ↓0

y3e−
1

3σ2 y2

h3(τ) = lim
τ↓0

(
cσ2 log

1

τ

) 3
2

τ
c
3−1



arctan

(√
1−τ2

τ

)

(1 − τ2)
3
2

− τ

1− τ2




=

{
0 c > 3

∞ otherwise,

because limτ↓0 arctan(
√
1−τ2

τ )(1 − τ2)−
3
2 = π

2 , limτ↓0
τ

1−τ2 = 0 and the factor

(cσ2 log(1/τ))
3
2 τ

c
3−1 tends to zero as τ ↓ 0 if c

3 − 1 > 0 and infinity otherwise.
The condition c > 3 is related to the choice of s = 2

3 and can be improved to
any constant strictly greater than 2 by choosing s appropriately close to one.
Hence, we find that the absolute value of the difference between the posterior
mean and an observation can be bounded by a function h(y, τ) with the desired
property.
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Proof of Theorem 3.1

Proof. Suppose that Y ∼ N (θ, σ2In), θ ∈ ℓ0[pn] and p̃n = #{i : θi 6= 0}. Note
that p̃n ≤ pn. Assume without loss of generality that for i = 1, . . . , p̃n, θi 6= 0,
while for i = p̃n + 1, . . . , n, θi = 0. We split up the expectation Eθ‖Tτ (Y )− θ‖2
into the two corresponding parts:

n∑

i=1

Eθi(Tτ (Yi)− θi)
2 =

p̃n∑

i=1

Eθi(Tτ (Yi)− θi)
2 +

n∑

i=p̃n+1

E0Tτ (Yi)
2.

We will now show that these two terms can be bounded by p̃n(1 + log 1
τ ) and

(n− p̃n)
√

log(1/τ)τ respectively, up to multiplicative constants only depending
on σ, for any choice of τ such that τ ∈ (0, 1).

Nonzero parameters
Denote ζτ =

√
2σ2 log(1/τ). We will show

Eθi(Tτ (Yi)− θi)
2 . σ2 + ζ2τ . (16)

for all nonzero θi, which can be done by bounding supy |Tτ (y)− y|:

Eθi(Tτ (Yi)− θi)
2 = Eθi((Tτ (Yi)− Yi) + (Yi − θi))

2

≤ 2Eθi(Yi − θi)
2 + 2Eθi(Tτ (Yi)− Yi)

2

≤ 2σ2 + 2

(
sup
y

|Tτ (y)− y|
)2

,

Lemma A.3 yields the following bound on the difference between the observation
and the horseshoe estimator: |Tτ (y) − y| ≤ h(y, τ), where h(y, τ) is such that
limτ↓0 sup|y|>cζτ h(y, τ) = 0 for any c > 1. Combining this with the inequality
|Tτ (y)− y| ≤ |y|, we have as τ → 0:

argmax
y

|Tτ (y)− y| . ζτ , (17)

which implies (16), as |Tτ (y)| ≤ |y|:
(
sup
y

|Tτ (y)− y|
)2

. ζ2τ .

Parameters equal to zero
We split up the term for the zero means into two parts:

E0Tτ (Y )2 = E0Tτ (Y )21|Y |≤ζτ + E0Tτ (Y )21|Y |>ζτ ,

where ζτ =
√
2σ2 log(1/τ). For the first term, we have, by the first bound in

Lemma A.2:

E0Tτ (Y )21{|Y |≤ζτ} =

∫ ζτ

−ζτ

Tτ (y)
2 1√

2πσ2
e−

y2

2σ2 dy
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≤
∫ ζτ

−ζτ

y2e
y2

σ2 f(τ)2
1√
2πσ2

e−
y2

2σ2 dy =
f(τ)2√
2πσ2

∫ ζτ

−ζτ

y2e
y2

2σ2 dy

≤
√

2

π
σf(τ)2ζτ

1

τ
≤
√

2

π
σ
4

9
ζτ τ . ζτ τ,

where the identity d
dyye

y2

2σ2 = y2

σ2 e
y2

2σ2 + e
y2

2σ2 was used to bound
∫ ζτ
−ζτ

y2e
y2

2σ2 dy.

For the second term, because |Tτ (y)| ≤ |y| for all y, we have by the identity
y2φ(y) = φ(y)− d

dy [yφ(y)], and by Mills’ ratio:

E0Tτ (Y )21{|Y |>ζτ} ≤ E0Y
21{|Y |>ζτ} = 2

∫ ∞

ζτ
σ

σ2y2φ(y)dy

≤ 2σζτφ

(
ζτ
σ

)
+ 2σ3

φ
(

ζτ
σ

)

ζτ
≤ 4σζτφ

(
ζτ
σ

)
= 4σζτ

1√
2π

τ,

where the last inequality holds for ζτ > σ2. If we apply this inequality and
combine this upper bound with the upper bound on the first term, we find, for

ζτ > σ2 (corresponding to τ < e−
σ2

2 ):

E0Tτ (Y )2 = E0Tτ (Y )21{|Y |≤ζτ} + E0Tτ (Y )21{|Y |>ζτ} . ζτ τ. (18)

Hence, for τ < e−
σ2

2 :
n∑

i=pn+1

E0Tτ (Yi)
2 . (n− pn)ζτ τ. (19)

Conclusion
By (16) and (19), we find for τ < e−

σ2

2 :

n∑

i=1

Eθi(Tτ (Yi)− θi)
2 . p̃n(1 + ζ2τ ) + (n− p̃n)τζτ .

Lemma A.4. The posterior variance when using the horseshoe prior can be
expressed as:

Var(θ | y) = σ2

y
Tτ (y)−(Tτ (y)− y)2+y2

∫ 1

0

(1− z)2z−
1
2

1

τ2 + (1− τ2)z
e

y2

2σ2 zdz

∫ 1

0

z−
1
2

1

τ2 + (1− τ2)z
e

y2

2σ2 zdz

,

(20)
and bounded from above by:

1. Var(θ | y) ≤ σ2 + y2;

2. Var(θ | y) ≤ (σ
2

y + y)Tτ (y)− Tτ (y)
2.

Proof. As proven in Pericchi and Smith (1992):

Var(θ | y) = σ2 + σ4 d2

dy2
logm(y) = σ2 −

(
σ2m

′(y)

m(y)

)2

+ σ4m
′′(y)

m(y)
,
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where m(y) is the density of the marginal distribution of y. Equality (20) can
be found by combining the expressions

m(y) =
1√

2π3στ
e−

y2

2σ2

∫ 1

0

z−
1
2

1

1−
(
1− 12

τ2

)
z
e

y2

2σ2 zdz

m′′(y) =
1

y
m′(y) +

1√
2π3στ

y2

σ4
e−

y2

2σ2

∫ 1

0

z−
1
2 (1− z)2

1

1−
(
1− 1

τ2

)
z
e

y2

2σ2 zdz

with the equality Tτ (y) = y + σ2 m′(y)
m(y) . The first upper bound is implied by the

property |Tτ (y)| < |y| and the fact that (1 − z)2 ≤ 1 for z ∈ [0, 1]. The second
upper bound can be demonstrated by noting that (1− z)2 ≤ 1− z for z ∈ [0, 1]
and hence:

Var(θ | y) ≤ σ2

y
Tτ (y)− (y − Tτ (y))

2 + y2
(
1− 1

y
Tτ (y)

)
.

Proof of Theorem 3.2

Proof. As in the proof of Theorem 3.1 we assume that θi 6= 0 for i = 1, . . . , p̃n
and θi = 0 for i = p̃n + 1, . . . , n, where p̃n ≤ pn by assumption. We consider
the posterior variances for the zero and nonzero means separately. Denote ζτ =√
2σ2 log(1/τ).

Nonzero means
By applying the same reasoning as in Lemma A.3 to the final term of Var(θ|y)

in (20), we can find a function h̃(y, t) such that Var(θ|y) ≤ h̃(y, τ), where
h̃(y, τ) → σ2 as y → ∞ for any fixed τ . If τ → 0, the function h̃(y, τ) dis-
plays the following limiting behaviour for any c > 1:

lim
τ↓0

sup
|y|>cζτ

h̃(y, τ) = σ2.

Hence, as τ → 0: Var(θ|y) . σ2, for any |y| that increases as least as fast as ζτ
when τ decreases. Now suppose |y| ≤ ζτ . Then, by the bound Var(θ | y) ≤ σ2+y2

from Lemma A.4, we find:

Var(θ | y) ≤ σ2 + ζ2τ .

Therefore:
p̃n∑

i=1

EθiVar(θi | Yi) . p̃n(1 + ζ2τ ). (21)

Zero means
By the bound Var(θ | y) ≤ σ2 + y2, we find for c ≥ 1:

E0Var(θ | Y )1{|Y |>cζτ} ≤ 2

∫ ∞

cζτ

(σ2 + y2)
1√
2πσ2

e−
y2

2σ2 dy
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= 2σ2Φc

(
cζτ
σ

)
+ 2

∫ ∞

cζτ
σ

σ2x2φ(x)dx

≤ 4σ3
φ
(

cζτ
σ

)

cζτ
+ 2σcζτφ

(
cζτ
σ

)
.

τ

ζτ
+ ζτ τ.

For |y| < cζτ , we consider the upper bound Var(θ | y) ≤ (σ
2

y + y)Tτ (y)−Tτ (y)
2

from Lemma A.4. From this bound, we get Var(θ | y) ≤ σ2

y Tτ (y)+yTτ (y). Hence:

E0Var(θ | Y )1{|Y |≤cζτ} ≤ σ2

∫ cζτ

−cζτ

1

y
Tτ (y)

1√
2πσ2

e−
y2

2σ2 dy

+

∫ cζτ

−cζτ

yTτ (y)
1√
2πσ2

e−
y2

2σ2 dy. (22)

We bound the first integral from (22) by applying the first bound on Tτ (y) from
Lemma A.2:

σ2

∫ cζτ

−cζτ

1

y
Tτ (y)

1√
2πσ2

e−
y2

2σ2 dy ≤ σ2

∫ cζτ

−cζτ

f(τ)
1√
2πσ2

dy

=

√
2σ

π
cζτf(τ) . ζττ,

because f(τ) ≤ 2
3 τ . For the second term in (22), we first note that the second

bound from Lemma A.2 can be relaxed to:

Tτ (y) ≤ τy

(
2

3
τeτ

2 y2

2σ2 +
2√
a
e

y2

2aσ2 + 2
√
aσ2 1

y2
e

y2

2σ2

)
(23)

for any a > 1 and τ < 1
a . By plugging this bound into the second integral of

(22), we get three terms, which we will name I1, I2 and I3 respectively. We then
find, bounding above by the integral over R instead of [−cζτ , cζτ ] for I1 and I2:

I1 =
2

3
τ2
∫ cζτ

−cζτ

y2
1√
2πσ2

e−(1−τ2) y2

2σ2 dy ≤ 2

3
τ2

σ2

(1− τ2)
3
2

. τ2.

I2 =
2√
a
τ

∫ cζτ

−cζτ

y2
1√
2πσ2

e−
a−1
a

y2

2σ2 dy ≤ 2aσ2

(a− 1)
3
2

τ . τ.

I3 = 2
√
aσ2τ

∫ cζτ

−cζτ

1√
2πσ2

dy =
2
√
2acσ√
π

ζττ . ζτ τ.

And thus:
n∑

i=p̃n+1

E0Var(θi | Yi) . (n− p̃n) (ζτ + τ + 1) τ. (24)

Conclusion
By (21) and (24):

Eθ

n∑

i=1

Var(θi | Yi) . p̃n(1 + ζ2τ ) + (n− p̃n) (ζτ + τ + 1) τ.
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Proof of Theorem 3.4

Proof. By expanding (1− z)2z−
1
2 = z−

1
2 − 2z

1
2 + z

3
2 , we see that the final term

in (20) is equal to:

y2 − 2yTτ(y) + y2

∫ 1

0
z

3
2

1
τ2+(1−τ2)z e

y2

2σ2 zdz
∫ 1

0 z−
1
2

1
τ2+(1−τ2)z e

y2

2σ2 zdz
.

As Tτ (y)
y is non-negative, we can bound the posterior variance from below by

the final two terms in (20). By the above equality, this yields the following lower
bound:

Var(θ | y) ≥ y2
I 3

2
(y)

I− 1
2
(y)

− Tτ (y)
2 = y2


 I 3

2
(y)

I− 1
2
(y)

−
(

I 1
2
(y)

I− 1
2
(y)

)2

 ,

where Ik is as in Lemma A.1. We now use the bounds from Lemma A.1 with
a = 2 and take ξ equal to c log(1/τ) for some nonnegative constant c. Then

eξ = 1
τc and e

ξ
2 = 1

τ
c
2
. Taking for each bound on Ik, k ∈ { 3

2 ,
1
2 ,− 1

2}, the term

that diverges fastest as τ approaches zero, we find that the lower bound is
asymptotically of the order:

2σ2ξ




1
2
√
2ξ

1
τc

max
{

2eτξ

τ , 2
√
2

ξ
1
τc

} −




√
2
ξ

1
τc

max{ eτ2ξ

τ , 1
2ξ

1
τc }




2

 .

For c ≤ 1, this reduces to:

σ2

2
√
2
e−τξτ1−c − 4σ2

ξ
e−2τ2ξτ2−2c.

The second term is negligible compared to the first. Hence, we will use the term
σ2

2
√
2
e−τξτ1−c as our lower bound on Var(θ | y) for y = ±

√
2cσ2 log(1/τ) =

√
cζτ ,

where ζτ =
√
2σ2 log(1/τ). To find the lower bound on

∑n
i=1 EθiVar(θi | Yi),

we only need to consider the parameters equal to zero:

n∑

i=1

EθiVar(θi | Yi) ≥ (n− pn)E0Var(θi | Yi)1{|Yi|≤ζτ}. (25)

By the substitution x = y2/ζ2τ , dy =
σ
√

log(1/τ)√
2x

dx, we find:

E0Var(θi | Yi)1{|Yi|≤ζτ} ≥ 2

∫ ζτ

0

σ2

2
√
2
e−τ y2

2σ2 τ
1− y2

ζ2τ
1√
2πσ2

e−
y2

2σ2 dy

=
σ

4
√
π
τζτ

∫ 1

0

ττx√
x
dx ≥ σ

2
√
π
e−

1
e τζτ , (26)
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where in the last step, we used ττx ≥ ττ ≥ e−
1
e for x ∈ [0, 1], τ ∈ (0, 1]. By

plugging this into (25), we find that as τ → 0:

n∑

i=1

EθiVar(θi | Yi) & (n− pn)τζτ , (27)

finishing the proof for the first statement of the theorem.
We now consider θ such that θi = an for i = 1, . . . , pn, and θi = 0 for

i = pn+1, . . . , n, and assume without loss of generality that an > 0. We wish to
find conditions on an such that the lower bound (27) is sharp (up to a constant
factor). Denoting ζτ =

√
2σ2 log(1/τ), as before, it is sufficient if we can find

an such that Eθi=anVar(θi | Yi) . τζτ , because in combination with the bound
(24), this will yield

∑n
i=1 EθiVar(θi | Yi) . nτζτ , which is of the same order as

(27), as pn = o(n). Sufficient conditions on an can be found by adapting the
proof for the ‘zero means’ case of Theorem 3.2.

We first consider |yi| > ζτ . By the first bound of Lemma A.4:

EθiVar(θi | Yi)1{|Yi|>ζτ} ≤
∫ ∞

ζτ

(σ2 + y2)
1√
2πσ2

e−
(y−an)2

2σ2 dy

+

∫ −ζτ

−∞
(σ2 + y2)

1√
2πσ2

e−
(y−an)2

2σ2 dy. (28)

The first integral from (28) can be split into two parts by splitting up the factor
σ2 + y2, the first of which can be bounded, by substituting x = (y − an)/σ and
applying Mills’ ratio:

σ2

∫ ∞

(ζτ−an)/σ

φ(x)dx = σ2Φc

(
ζτ − an

σ

)
≤ σ3

ζτ − an
φ

(
ζτ − an

σ

)
. (29)

The second of these integrals is, by y2 = (y − an)
2 − a2n + 2any, equal to:

∫ ∞

ζτ

(y − an)
2 1√

2πσ2
e−

(y−an)2

2σ2 dy − a2n

∫ ∞

ζτ

1√
2πσ2

e−
(y−an)2

2σ2 dy

+ an

∫ ∞

ζτ

y
1√
2πσ2

e−
(y−an)2

2σ2 dy. (30)

The second integral of (30) can be bounded from below by zero, and the third
from above by anEθiYi = a2n. Again substituting x = (y − an)/σ yields the
following upper bound on (30): σ2

∫∞
(ζτ−an)/σ

x2φ(x)dx + a2n. Now using the

equality x2φ(x) = φ(x) − d
dx [xφ(x)] and again Mills’ ratio, and combining with

(29), we find the following upper bound on the first integral from (28):

2σ3

ζτ − an
φ

(
ζτ − an

σ

)
+ σ(ζτ − an)φ

(
ζτ − an

σ

)
+ a2n. (31)

By substituting x = −y in the second integral from (28) and then applying the
same inequalities to it as to the first integral, the following bound is obtained:

2σ3

ζτ + an
φ

(
ζτ + an

σ

)
+ σ(ζτ + an)φ

(
ζτ + an

σ

)
. (32)
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This bound does not include a term a2n, because in the step equivalent to (30),
the identity y2 = (y + an)

2 − a2n − 2yan is used, and thus only the integral
∫∞
ζτ

(y + an)
2 1√

2πσ2
e−

(y+an)2

2σ2 dy needs to be bounded in that step. EθiVar(θ |
Y )1{|Y |>ζτ} can thus be bounded by the sum of (31) and (32). The factor

φ((ζτ + an)/σ) can be bounded from above by φ(ζτ/σ) = τ/
√
2π. The factor

φ((ζτ − an)/σ) is equal to 1√
2π

e−
ζ2τ
2σ2 e−

a2
n

2σ2 e
ζτan

σ = τ√
2π

e−
a2
n

2σ2 e
ζτan

σ . Hence we

arrive at the following upper bound:

σ√
2π

[(
2σ2

ζτ − an
+ ζτ − an

)
e−

a2
n

2σ2 e
ζτan

σ +
2σ2

ζτ + an
+ ζτ + an

]
τ + a2n. (33)

If an . 1/ζτ , then e−
a2
n

2σ2 e
ζτan

σ = O(1) and ζτ ± an = O(ζτ ), yielding an upper
bound on (33) of order τζτ .

We now consider |yi| ≤ ζτ . We use the second bound of Lemma A.4:

EθiVar(θi | Yi)1{|Yi|≤ζτ} ≤ σ2

∫ ζτ

−ζτ

1

y
Tτ (y)

1√
2πσ2

e−
(y−an)2

2σ2 dy

+ σ2

∫ ζτ

−ζτ

yTτ (y)
1√
2πσ2

e−
(y−an)2

2σ2 dy. (34)

Applying inequality 1
yTτ (y) ≤ 2

3 τe
y2

2σ2 from Lemma A.2 to the first integral
yields the bound:

√
2σ

3
√
π
τ

∫ ζτ

−ζτ

e
y2

2σ2 e−
(y−an)2

2σ2 dy =

√
2σ

3
√
π
τe−

a2
n

2σ2

∫ ζτ

−ζτ

e
any

σ2 dy ≤
√
2σ

3
√
π
τe−

a2
n

2σ2 2ζτe
anζτ
σ2 .

If an . 1/ζτ , we have anζτ = O(1) and thus this term will be of order τζτ . For
the second integral from (34), we use bound (23). This leads to three integrals
to be bounded, I1, I2 en I3.

I1 =
σ√
2π

2

3
τ2e

τ2

1−τ2

a2
n

2σ2

∫ ζτ

−ζτ

y2e
− 1

2σ2/(1−τ2)

(
y− an

1−τ2

)2

dy

≤ 2

3
e

τ2

1−τ2

a2
n

2σ2
σ2

(1− τ2)3/2

(
σ2 +

a2n
1− τ2

)
τ2.

I2 =
2σ√
a
√
2π

τe
a2
n

(b−1)2σ2

∫ ζτ

−ζτ

y2e
− 1

2σ2 a
a−1

(y− a
a−1an)

2

≤ 2√
b
e

a2
n

(b−1)2σ2 σ2

(
a

a− 1

)3/2 (
σ2 +

a

a− 1
a2n

)
τ.

I3 =
2
√
aσ3

√
2π

τ

∫ ζτ

−ζτ

e
y2

2σ2 e−
(y−an)2

2σ2 dy ≤ 2
√
2aσ3

√
π

e−
a2
n

2σ2 e
anζτ
σ2 τζτ .

I1, I2 and I3 will all be of no larger order than τζτ if an . 1/ζτ .
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Lemma A.5. For all k ∈ R,
∫ y

1 ukeudu = ykey(1 +O(1/y)), as y → ∞.

Proof. For k = 0, the statement is immediate. By integration by parts the
integral is seen to be equal to ykey − e −

∫ y

1
kuk−1eudu. For k 6= 0, the latter

integral is bounded above by

|k|
∫ y/2

1

(1 ∨ y/2)k−1eudu+ |k|
∫ y

y/2

(y/2 ∨ y)k−1eudu.

This is further bounded above by a multiple of (1 ∨ yk−1)ey/2 + yk−1ey.

Lemma A.6. Let Ik be as in Lemma A.1. There exist functions Rk with
supζτ/4≤y≤4ζτ |Rk(y)| → 0 for k > 0 and k = − 1

2 , such that,

Ik(y) =

(
τ2k

∫ 1

0

zk

1 + z
dz +

2σ2

y2
e

y2

2σ2

)
(1 +Rk(y)) , for k > 0,

I− 1
2
(y) =

(
τ−1

∫ ∞

0

1√
z(1 + z)

dz +
2σ2

y2
e

y2

2σ2

)(
1 +R− 1

2
(y)
)
.

Proof. We split the integral in the definition of Ik over the intervals [0, τ2] and
[τ2, 1]. The first interval contributes, uniformly in yτ → 0,

∫ τ2

0

zke
y2

2σ2 z

τ2 + (1− τ2)z
dz =

∫ τ2

0

zk

τ2 + (1− τ2)z
dz (1 + o(1))

= τ2k
∫ 1

0

uk

1 + (1− τ2)u
du (1 + o(1)), (35)

by the substitution u = z/τ2. The integral tends to
∫ 1

0
uk

1+u du, by the dominated
convergence theorem, for any k > −1. The second interval contributes, with the
substitution u = (y2/2σ2)z:

∫ 1

τ2

zke
y2

2σ2 z

τ2 + (1− τ2)z
dz =

(
2σ2

y2

)k


∫ 1

y2

2σ2 τ2

+

∫ y2

2σ2

1


 ukeu

y2

2σ2 τ2 + (1− τ2)u
du.

In the second integral the argument satisfies u ≥ 1, and hence u/((y2τ2/(2σ2)+
(1− τ2)) → 1, uniformly in u and yτ → 0. Hence

(
2σ2

y2

)k ∫ y2

2σ2

1

ukeu

y2

2σ2 τ2 + (1− τ2)u
du ≍

(
2σ2

y2

)k ∫ y2

2σ2

1

uk−1eudu

≍ 2σ2

y2
e

y2

2σ2 (1 + o(1))

as y → ∞, by Lemma A.5. For the first integral we separately consider the cases

k > 0 and k = −1/2. If k > 0, then
∫ 1

0 uk−1eudu converges, and hence, by the
dominated convergence theorem, uniformly in yτ → 0,

(
2σ2

y2

)k ∫ 1

τ2 y2

2σ2

ukeu

y2

2σ2 τ2 + (1− τ2)u
du →

(
2σ2

y2

)k ∫ 1

0

uk−1eudu.
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If k = −1/2, then we substitute v = 2σ2u/(τ2y2) and rewrite the integral as

(
2σ2

y2

)− 1
2
∫ 2σ2

τ2y2

1

v−
1
2 e

τ2y2

2σ2 v

1 + (1 − τ2)v

(
τ2y2

2σ2

)− 1
2

dv =
1

τ

∫ ∞

1

v−1/2

1 + v
dv(1 + o(1)).

This combines with the integral (35).

Proof of Theorem 3.5

Proof. Denote ζτ =
√
2σ2 log(1/τ) and assume that θi = γζτ for i = 1, . . . , pn

and θi = 0 for i = pn + 1, . . . , n. We prove (7) by proving that there exists a
positive constant c1(γ) such that

Eθ=γζτTτ (Y ) = τ (1−γ)2ζ2γ−2
τ c1(γ)(1 + o(1)). (36)

If (36) holds, we have, by Jensen’s inequality:

pn∑

i=1

Eθi(Tτ (Yi)− θi)
2 ≥ pn(τ

(1−γ)2ζ2γ−2
τ c1(γ)− γζτ )

2 & pnζ
2
τ , (37)

as τ → 0. In addition, we have Tτ (y) = yI 1
2
(y)/I− 1

2
(y). For |y| =

√
2σ2c log(1/τ),

with c > 1, the lower bound (12) on I 1
2
(y) behaves as (σ2/y2)e

y2

2σ2 , while the

upper bound (15) on I− 1
2
(y) behaves as (2a

√
aσ2/y2)e

y2

2σ2 , as τ → 0. Therefore,

for |y| > ζτ , we have Tτ (y) & y. Thus, we can bound by:

n∑

i=pn+1

EθiTτ (Yi)
2 ≥ (n− pn)Eθ=0Tτ (Y )21{|Y |>ζτ} & (n− pn)

∫ ∞

ζτ
σ

y2φ(y)dy

= (n− pn)

(∫ ∞

ζτ
σ

φ(y)dy +
ζτ
σ
φ

(
ζτ
σ

))
& (n− pn)ζτφ

(
ζτ
σ

)

= (n− pn)
1√
2π

τζτ . (38)

By combining the lower bounds (37) and (38) with the upper bound (2), we
arrive at (7). For the posterior variance, we already have

∑n
i=pn+1 Var(θi |

Yi) ≍ (n− pn)τζτ by (24) and (26). Expression (8) can therefore be proven by
showing that there exists a positive constant c2(γ) such that:

Eθ=γζτVar(θ | Y ) = τ (1−γ)2ζ2γ−1
τ c2(γ)(1 + o(1)). (39)

Proof of (36)
The expected value Eθ=γζτTτ (Y ) is equal to

1

σ

(∫ − ζτ
2

−∞
+

∫ 3ζτ

− ζτ
2

+

∫ ∞

3ζτ

)
(ζτ + y)

I 1
2
(ζτ + y)

I− 1
2
(ζτ + y)

φ

(
y + (1 − γ)ζτ

σ

)
dy. (40)
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We shall show that the first and third integrals are negligible, while the second
gives the approximation in (36). On the domain of the second integral, we have
ζτ/4 ≤ ζτ + y ≤ 4ζτ , so we can apply Lemma A.6 to see that this integral is
asymptotic to

1

σ

∫ 3ζτ

− ζτ
2

(ζτ + y)
c2τ

2(ζτ + y)2 + 2σ2e
y2+2yζτ

2σ2

c1(y + ζτ )2 + 2σ2e
y2+2yζτ

2σ2

φ

(
y + (1− γ)ζτ

σ

)
dy, (41)

where c1 =
∫∞
0 z−1/2(1− z)−1dz and c2 =

∫ 1

0 z1/2(1− z)−1dz. On [−ζτ/2, 3ζτ ]:

c2τ
2(ζτ + y)2φ

(
y + (1− γ)ζτ

σ

)
≤ c2√

2π
τ2(4ζτ )

3e
(1/2−γ)2ζ2τ

2σ2

=
64c2√
2π

ζ3τ τ
2−(1/2−γ)2 ,

so (41) is asymptotic to:

O(τ) +
2σ√
2π

e−
(1−γ)2ζ2τ

2σ2

∫ 3ζτ

− ζτ
2

(ζτ + y)e
γζτy

σ2

c1(y + ζτ )2 + 2σ2e
y2+2yζτ

2σ2

dy.

By the substitution u = ζτy−2σ2 log ζτ , the remaining integral is equal to, with

aτ = − ζ2
τ

2 − 2σ2 log ζτ and bτ = 3ζ2τ − 2σ2 log ζτ :

2σ√
2π

τ (1−γ)2 1

ζτ

∫ bτ

aτ

(ζτ + ζ−1
τ (u+ 2σ2 log ζτ ))e

γu

σ2 ζ2γτ

c1(ζτ + ζ−1
τ (u+ 2σ2 log ζτ ))2 + 2σ2e

u
σ2 ζ2τ e

(u+2σ2 log ζτ )2

2σ2ζ2
τ

du

∼ 2σ√
2π

τ (1−γ)2 1

ζτ

∫ ∞

−∞

ζτe
γu

σ2 ζ2γτ

(c1 + 2σ2e
u
σ2 )ζ2τ

du,

by the dominated convergence theorem. This yields the approximation in (36),

with c1(γ) = (2σ/
√
2π)

∫∞
−∞ e

γu

σ2 /(c1 + 2σ2e
u
σ2 )du.

For the first integral in (40), we use bound 1 from Lemma A.2, and obtain a
bound on its absolute value equal to

1

σ

∫ − ζτ
2

−∞
|ζτ + y|τe

(ζτ+y)2

2σ2 φ

(
y + (1 − γ)ζτ

σ

)
dy

=
2

3
√
2πσ

τ (1−γ)2
∫ − ζτ

2

−∞
|ζτ + y|e γζτy

σ2 dy . τ (1−γ)2e−
γζ2τ
2σ2 = τ (1−γ)2+γ ,

(42)

where the last inequality follows by integration by parts. This is of much smaller
order than the second integral from (40). In the third integral of (40), we bound
I 1

2
(ζτ + y)/I− 1

2
(ζτ + y) by 1, giving the upper bound

1

σ

∫ ∞

3ζτ

(ζτ + y)φ

(
y + (1− γ)ζτ

σ

)
dy . φ

(
3ζτ + (1 − γ)ζτ

σ

)
=

1√
2π

τ4−γ ,
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by Mills’ ratio. This is also of much smaller order than the second integral from
(40), thus concluding the proof of (36).

Proof of (39)
By expanding the term (1 − z)2 in the numerator of the final term of (20),

the posterior variance can be seen to be equal to:

Var(θ | y) = σ2
I 1

2
(y)

I− 1
2
(y)

+ y2


 I 3

2
(y)

I− 1
2
(y)

−
(

I 1
2
(y)

I− 1
2
(y)

)2

 . (43)

Because I 1
2
(y)/I− 1

2
(y) can be interpreted as the mean of the density proportional

to z → z−1/2ey
2z/(2σ2)/(τ2+(1−τ2)z), and I 3

2
(y)/I− 1

2
(y) as the second moment,

it follows that the term in square brackets in (43) is nonnegative. By (43), we
write:

Eθ=γζτVar(θ | Y ) = σ

∫ I 1
2
(ζτ + y)

I− 1
2
(ζτ + y)

φ

(
y + (1 − γ)ζτ

σ

)
dy

+
1

σ

(∫ − ζτ
2

−∞
+

∫ 3ζτ

− ζτ
2

+

∫ ∞

3ζτ

)
(ζτ + y)2

·


 I 3

2
(ζτ + y)

I− 1
2
(ζτ + y)

−
(

I 1
2
(ζτ + y)

I− 1
2
(ζτ + y)

)2

φ

(
y + (1 − γ)ζτ

σ

)
dy.

(44)

The first term in (44) is as (40), except without the factor (ζτ + y). Following
the same steps as the proof of (36), we see that it is smaller than a multiple of

ζ−1
τ times the bound on (40), so it is of the order ζ2γ−3

τ τ (1−γ)2 . The first and
third integrals of the second term of (44) are also negligible. For the first, we
use that the expression in square brackets is nonnegative and bounded above by
I 3

2
(y)/I− 1

2
(y), which in turn is bounded above by I 1

2
(y)/I− 1

2
(y). We bound as

in (42), with the difference that the leading factor is (ζτ +y)2 instead of (ζτ +y).

This leads to the order ζτ τ
(1−γ)2+γ , much smaller than the claimed rate. For

the third integral, we can bound the term in square brackets by 1 and use Mills’
ratio to see that it is of the order ζτ τ

(4−γ)2 .
We are left with the middle integral of the second term of (44). On the domain

of this integral, by Lemma A.6:

I 3
2
(ζτ + y)

I− 1
2
(ζτ + y)

=
c3τ

4(ζτ + y)2 + 2σ2e
y2+2yζτ

2σ2

c1(ζτ + y)2 + 2σ2e
y2+2yζτ

2σ2

(1 + o(1)),

where c3 =
∫ 1

0 z3/2(1 + z)−1dz, and c1 is as in (41). We see that I 3
2
(y)/I− 1

2
(y)

and I 1
2
(y)/I− 1

2
(y) are asymptotic to the same function on this domain. Since

A/(A + B) − A2/(A + B)2 = AB/(A + B)2, it follows that up to O(τ), the
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middle integral is asymptotic to

1

σ

∫ 3ζτ

− ζτ
2

(ζτ + y)2
c1(ζτ + y)22σ2e

y2+2yζτ
2σ2

(
c1(ζτ + y)2 + 2σ2e

y2+2yζτ
2σ2

)2 φ
(
y + (1− γ)ζτ

σ

)
dy

=
2σc1√
2π

τ (1−γ)2
∫ 3ζτ

− ζτ
2

(ζτ + y)4e
γζτy

σ2

(
c1(ζτ + y)2 + 2σ2e

y2+2ζτy

2σ2

)2 dy.

We substitute u = ζτy − 2σ2 log ζτ to reduce this to

2σc1√
2π

τ (1−γ)2 1

ζτ

∫ 3ζ2
τ−2σ2 log ζτ

− ζ2τ
2 −2σ2 log ζτ

(ζτ + ζ−1
τ (u + 2σ2 log ζτ ))

4e
γu

σ2 ζ2γτ(
c1(ζτ + ζ−1

τ (u+ 2σ2 log ζτ ))2 + 2σ2e
u
σ2 ζ2τ

)2 du

∼ 2σc1√
2π

τ (1−γ)2 1

ζτ

∫ ∞

−∞

ζ4τ e
γu

σ2 ζ2γτ(
c1ζ2τ + 2σ2ζ2τ e

u
σ2

)2 du.

This is asymptotic to expression (39), with c2(γ) = (2σc1/
√
2π)

∫∞
−∞ e

γu

σ2 /(c1 +

2σ2e
u
σ2 )2du.

Proof of Theorem 4.1

Proof. Suppose that Y ∼ N (θ, σ2In), θ ∈ ℓ0[pn]. We adapt the approach in
Paragraph 6.2 in (Johnstone and Silverman, 2004). We first derive the following
inequality for events A such that τ̂ > τ holds with probability one on A:

Eθ(Tτ̂ (Yi)− θi)
21A ≤ 2Eθ(Tτ̂ (Yi)− Yi)

21A + 2Eθ(Yi − θi)
21A

. 2Eθζ
2
τ̂1A + 2σ2

EθZ
21A (45)

where (17) was used in the second line, and Z follows a standard normal distri-
bution. If A is such that τ̂ > τ holds with probability one on A, we can use the
inequality ζτ̂ < ζτ if τ̂ > τ to find:

Eθ(Tτ̂ (Yi)− θi)
21A . 2ζ2τPθ(A) + 2σ2

EθZ
21A, (46)

We now consider the nonzero and zero parameters separately. For both cases,
we split up the expected ℓ2 loss as follows:

Eθ(Tτ̂ (Yi)− θi)
2 = Eθ(Tτ̂ (Yi)− θi)

21{τ̂>cτ} + Eθ(Tτ̂ (Yi)− θi)
21{τ̂≤cτ},

and then bound each of terms on the right hand side. For the nonzero means,
we take c = 1, while for the zero means, we consider c ≥ 1. Note that for ζτ̂ to
be well-defined, we need τ̂ ≤ 1 and consequently, when we consider τ̂ > cτ , we
must have cτ < 1.

Nonzero means
By (46), we find:

Eθ(Tτ̂ (Yi)− θi)
21{τ̂>τ} . 2ζ2τ + 2σ2. (47)
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If τ̂ ≤ τ , the inequality ζ2τ̂ ≤ ζ2τ needed for (46) does not hold. For this case,
we assume that τ̂ ≥ g(n, pn) with probability one, for some function g(n, pn),
corresponding to ζτ̂ ≤

√
−2σ2 log g(n, pn). Then we find by (45):

Eθ(Tτ̂ (Yi)− θi)
21{τ̂≤τ} . 2Eθζ

2
τ̂1{τ̂≤τ} + 2σ2

≤ −4σ2 log(g(n, pn))Pθ(τ̂ ≤ τ) + 2σ2. (48)

By (47) and (48), we have for θi 6= 0:

Eθ(Tτ̂ (Yi)− θi)
2 . 1 + ζ2τ − log(g(n, pn))Pθ(τ̂ ≤ τ). (49)

Zero means
We first establish an inequality for Eθ[Z

21A], where A is an event and Z
a standard normal random variable. By Young’s inequality, we have for any
positive x and y:

xy ≤
∫ x

0

(es − 1)ds+

∫ y

0

log(s+ 1)ds = ex − x− 1 + (y + 1) log(y + 1)− y.

By this inequality combined with the inequality log(y + 1) < y, we have:

EθZ
21A ≤ cdEθ

[
e

Z2

c − Z2

c
− 1

]
+ cdPθ(A)

(
1

d
log

(
1

d
+ 1

)
− 1

d

)
.

With c = 3 and d = Pθ(A), we find:

EθZ
21A ≤ (3

√
3− 4)Pθ(A) + 3Pθ(A) log

(
1 +

1

Pθ(A)

)

< 5Pθ(A) log

(
1 +

1

Pθ(A)

)
. (50)

By (46) and (50), we get for any c ≥ 1 such that cτ < 1:

Eθ(Tτ̂ (Yi)− θi)
21{τ̂>cτ} . 2ζ2τPθ (τ̂ > cτ)

+ 10σ2
Pθ (τ̂ > cτ) log

(
1 +

1

Pθ (τ̂ > cτ)

)
. (51)

Now suppose τ̂ ≤ cτ for some c ≥ 1 such that cτ < 1. First note that |Tτ (y)|
increases monotonically in τ , as is clear from

Tτ (yi) = E[(1 − κi)yi | yi, τ ] = E

[
τ2λ2

i

1 + τ2λ2
i

yi

∣∣∣∣ yi, τ

]
.

Because sign(Tτ̂ (yi)) = sign(Tcτ (yi)) and 0 ≤ |Tτ̂ (yi)| ≤ |Tcτ (yi)|, we have:

(Tτ̂ (yi)− θi)
2 ≤ max{θ2i , (Tcτ (yi)− θi)

2} ≤ θ2i + (Tcτ (yi)− θi)
2.
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Hence:

Eθ(Tτ̂ (Yi)− θi)
21{τ̂≤cτ} ≤ θ2i + Eθ(Tcτ (Yi)− θi)

2.

And thus, by (18), we have for θi = 0:

Eθ(Tτ̂ (Yi)− θi)
21{τ̂≤cτ} . ζcτcτ . ζττ. (52)

Combining (51) and (52), we find:

EθTτ̂ (Yi)
2 . ζτ τ + ζ2τPθ (τ̂ > cτ) + Pθ (τ̂ > cτ) log

(
1 +

1

Pθ (τ̂ > cτ)

)
. (53)

Conclusion
We can now bound the expected ℓ2 loss. We assume that θi 6= 0 for i =

1, . . . , p̃n and θi = 0 for i = p̃n + 1, . . . , n, where p̃n ≤ pn. By combining (49)
and (53), we find:

Eθ‖Tτ̂ (Y )− θ‖2 . p̃n
(
1 + ζ2τ − log(g(n, pn))Pθ(τ̂ ≤ τ)

)
+ (n− p̃n)ζτ τ

+ (n− p̃n)Pθ (τ̂ > cτ)

(
ζ2τ + log

(
1 +

1

Pθ (τ̂ > cτ)

))
.

(54)

The function x log(1 + 1
x ) is monotonically increasing in x for x ∈ [0, 1]. Hence,

with the choice τ = pn

n or τ = pn

n

√
log(n/pn), the conditions stated in the

theorem are sufficient for (54) to be bounded by the minimax squared error rate
in the worst case.

If an estimator τ̂ satisfies only the first condition, then sup{ 1
n , τ̂} satisfies

the second condition with − log g(n, pn) = logn. By the assumption pn → ∞,
we have Pθ(sup{ 1

n , τ̂} > cpn

n ) ≤ Pθ(τ̂ > cpn

n ). Plugging this into inequality (54)
yields an ℓ2 risk of at most order pn logn.

Lemma A.7. Suppose Yi ∼ N (θi, σ
2), i = 1, . . . , pn and Yi ∼ N (0, σ2), i =

pn + 1, . . . , n and define

τ̂ =
#{|yi| ≥

√
c1σ2 log n, i = 1, . . . , n}

c2n

for some c2 > 1. Then Pθ(τ̂ > τ) . pn

n as pn, n → ∞, pn = o(n) if c1 > 2, or

c1 = 2 and pn . logn for τ = pn

n or τ = pn

n

√
log(n/pn).

Proof. We only need to consider Pθ(τ̂ > pn

n ), as we assume pn = o(n) and

thus, for large n, Pθ(τ̂ > pn

n

√
log(n/pn)) ≤ Pθ(τ̂ > pn

n ). Define Ai = {|yi| ≥√
c1σ2 logn}, i = 1, . . . , n. For i = pn + 1, . . . , n, 1Ai follows a Bernoulli dis-

tribution with parameter qn = 2Φc(
√
c1 logn), which by Mills’ ratio can be

bounded from above by
√

2
c1π

(log n)−
1
2n− c1

2 . For X ∼ Bin(n, p), we have the
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bound P(X ≥ k) ≤ ( enpk )k as a consequence of Theorem 1 in (Chernoff, 1952).
Hence:

Pθ

(
τ̂ >

pn
n

)
≤ Pθ




n∑

i=pn+1

1Ai > (c2 − 1)pn


 ≤

(
e(n− pn)qn

(c2 − 1)pn + 1

)(c2−1)pn+1

≤



√

2e2

c1π

1

(c2 − 1)pn + 1

1√
logn

n1− c1
2




(c2−1)pn+1

. (55)

The inequality Pθ(τ̂ > pn

n ) . pn

n holds if − logPθ(τ̂ > pn

n ) ≥ log n
pn

+ c holds

for some positive constant c. The negative logarithm of bound (55) is:

((c2−1)pn+1)

(
1

2
log

c1π

2e2
+ log((c2 − 1)pn + 1) +

1

2
log logn+

(c1
2

− 1
)
logn

)
.

For c1 = 2, this quantity will exceed log n
pn

if pn & logn. If c1 > 2, we require

((c2 − 1)pn + 1)( c12 − 1) ≥ 1, which is certainly satisfied if pn → ∞.
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