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Abstract: We consider Grenander type estimators for monotone func-
tions f in a very general setting, which includes estimation of monotone
regression curves, monotone densities, and monotone failure rates. These
estimators are defined as the left-hand slope of the least concave majo-
rant F̂n of a naive estimator Fn of the integrated curve F corresponding
to f . We prove that the supremum distance between F̂n and Fn is of the
order Op(n−1 logn)2/(4−τ), for some τ ∈ [0, 4) that characterizes the tail
probabilities of an approximating process for Fn. In typical examples, the
approximating process is Gaussian and τ = 1, in which case the convergence
rate n−2/3(logn)2/3 is in the same spirit as the one obtained by Kiefer and
Wolfowitz [9] for the special case of estimating a decreasing density. We also
obtain a similar result for the primitive of Fn, in which case τ = 2, leading
to a faster rate n−1 logn, also found by Wang and Woodfroofe [22]. As an
application in our general setup, we show that a smoothed Grenander type
estimator and its derivative are asymptotically equivalent to the ordinary
kernel estimator and its derivative in first order.
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1. Introduction

Grenander [8] proved that the maximum likelihood estimator of a distribution F

that is concave on its support, is the least concave majorant F̂n of the empirical
distribution function Fn of the n independent observations. In the case where F
is absolutely continuous with probability density function f , the concavity as-
sumption on F simply means that f is non-increasing on its support, and the

2479

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS958
mailto:cecile.durot@gmail.com
mailto:H.P.Lopuhaa@tudelft.nl


2480 C. Durot and H.P. Lopuhaä

so-called Grenander estimator of f is the left-hand slope of F̂n. Kiefer and Wol-
fowitz [9] showed that F̂n and Fn are close for large n and as a consequence,

that F̂n enjoys similar optimality properties as Fn, with the advantage of tak-
ing care of the shape constraint of being concave. Roughly speaking, Kiefer and
Wolfowitz [9] prove in their Theorem 1 that, if f is bounded away from zero
with a continuous first derivative f ′ that is bounded and bounded away from
zero, then, with probability one, the supremum distance between F̂n and Fn

is of the order n−2/3 logn. Their main motivation was to prove the asymptotic
minimax character of F̂n. Their result easily extends to the case of an increasing
density function, replacing the least concave majorant with the greatest convex
minorant.

In the setting of estimating an increasing failure rate, Wang [21] proves
that under appropriate assumptions, the supremum distance between the em-
pirical cumulative hazard and its greatest convex minorant is of the order
op(n

−1/2), again with the motivation of establishing asymptotic optimality of
the constrained estimator. A similar result is proved in Kochar, Mukerjee and
Samaniego [10] for a monotone mean residual life function. In the regression
setting with a fixed design, Durot and Toquet [7] consider the supremum dis-
tance between the partial sum process and its least concave majorant and prove
that, if the regression function is decreasing with a continuous derivative that
is bounded and bounded away from zero, then this supremum distance is of
the order Op(n

−2/3(log n)2/3). They also provide a lower bound, showing that
n−2/3(logn)2/3 is the exact order of the supremum distance. A generalization
to the case of a random design was developed by Pal and Woodroofe [16]. Sim-
ilar results were proved for other shape-constrained estimators, see Balabdaoui
and Wellner [1] for convex densities and Dümbgen and Rufibach [4] for log-
concave densities. Wang and Woodroofe [22] obtained a similar result for Wick-
sell’s problem. Their result compares to the supremum distance between the
primitive of Fn and its least concave majorant, which leads to a faster rate
n−1 logn.

Although the first motivation for Kiefer-Wolfowitz type of results has been
asymptotic optimality of shape constrained estimators, other important statisti-
cal applications are conceivable. For instance, the Kiefer-Wolfowitz result was a
key argument in Sen, Banerjee and Woodroofe [18] to prove that, although boot-
strapping from the empirical distribution function Fn or from its least concave
majorant F̂n does not work for the Grenander estimator of a decreasing density
function at a fixed point, the m out of n bootstrap, with m ≪ n, from F̂n does
work. Likewise, Durot, Groeneboom and Lopuhaä [6] use a Kiefer-Wolfowitz
type of result to prove that a smoothed bootstrap from a Grenander-type esti-
mator works for k-sample tests in a general statistical setting, which covers the
monotone regression model and monotone density model among others. Mam-
men [14] suggests to use such a result to make an asymptotic comparison of
two different estimators for a monotone regression function: one of them is ob-
tained by smoothing a Grenander type estimator and the other one is obtained
by “monotonizing” a kernel estimator. See also Wang and Woodroofe [22] for a
similar application of their Kiefer-Wolfowitz comparison theorem.
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The aim of this paper is to establish a Kiefer-Wolfowitz type of result in a
very general setting that covers the setting considered in [6]. We recover the

aforementioned Kiefer-Wolfowitz type of results for F̂n − Fn as special cases
of our general result. Furthermore, in a similar general setting we consider the
supremum distance between the primitive of Fn and its least concave majorant,
and obtain the same faster rate as found in [22]. As an application of our results,
we consider the problem of estimating a smooth monotone function and provide
an asymptotic comparison between an ordinary kernel estimator and a smooth
monotone estimator.

The paper is organized as follows. In Section 2, we define our general setting
and state our Kiefer-Wolfowitz type inequality. Section 3 is devoted to specific
settings to which our main theorem applies. Applications to estimating smooth
monotone functions are described in Section 4. Proofs are deferred to Section 5.

2. A Kiefer-Wolfowitz type of inequality in a general setting

First, we define our general setting as well as the notation that will be used
throughout the paper. Then we state our main result. The result will be il-
lustrated for several classical settings, such as monotone density or monotone
regression, in Section 3.

2.1. The setting

Suppose that based on n observations, we have at hand a cadlag step estima-
tor Fn for a concave function F : [a, b] → R, where a and b are know reals. In
the sequel, we assume that F is continuously differentiable with F (a) = 0 and
we denote by f the first derivative, which means that

F (t) =

∫ t

a

f(x) dx, (1)

for t ∈ [a, b]. A typical example is the case where we have independent observa-
tions with a common density f on [a, b], and where the estimator for F is the
empirical distribution function Fn of the observations. Further details are given
in Section 3, where some more examples are investigated.

We will impose the following assumptions on f :

(A1) The function f : [a, b] 7→ R is decreasing and continuously differentiable,
such that 0 < inft∈[a,b] |f ′(t)| ≤ supt∈[a,b] |f ′(t)| < ∞.

Furthermore, we assume that the cadlag estimator Fn can be approximated in
the sense that

sup
t∈[a,b]

|Fn(t)− F (t)− n−1/2Bn ◦ L(t)| = Op (γn) , (2)

where γn → 0, L : [a, b] → R is non-decreasing, and Bn is a process on
[L(a), L(b)] that satisfies the following two conditions for a given τ ∈ [0, 4):
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(A2) There are positive K1,K2 such that for all x ∈ [L(a), L(b)], u ∈ (0, 1],
and v > 0,

P

(
sup

|x−y|≤u

|Bn(x) −Bn(y)| > v

)
≤ K1 exp(−K2v

2u−τ ).

(A3) There are positive K1,K2 such that for all x ∈ [L(a), L(b)], u ∈ (0, 1],
and v > 0,

P

(
sup
z≥u

{
Bn(x− z)−Bn(x)− vz2

}
> 0

)
≤ K1 exp

(
−K2v

2u4−τ
)
.

Finally, we will impose the following smoothness condition on L.

(A4) The function L : [a, b] 7→ R is increasing and continuously differentiable,
such that 0 < inft∈[a,b] L

′(t) ≤ supt∈[a,b] L
′(t) < ∞.

A typical example is estimation of a monotone density f , in which case the em-
pirical distribution function Fn can be approximated by a sequence of Brownian
bridges Bn, L is equal to the cumulative distribution function F corresponding
to f , and γn = (logn)/n in (2), due to the Hungarian embedding (see [11]).
Other examples are the monotone regression model and the random censorship
model with a monotone hazard, in which case Bn is a Brownian motion and γn
relies on the integrability of the errors in the regression case, and γn = (log n)/n
in the random censorship model, see Sections 3.1.1 and 3.1.3 for more details.

2.2. Main results

Hereafter, F̂n denotes the least concave majorant of Fn on [a, b]. We are in-

terested in the supremum distance between Fn and F̂n. Our main result is a
Kiefer-Wolfowitz type of inequality for the supremum distance in our general
setting. We will obtain such an inequality by decomposing F̂n − Fn into two
parts, the difference between the approximating process FB

n = F +n−1/2Bn ◦L
and its least concave majorant, and remainder terms that can be bounded by
means of (2). We then first establish a Kiefer-Wolfowitz type of result for FB

n

by making use of assumptions (A2) and (A3). The reason is that in typical
examples, the bound provided by the approximation in (2) is of smaller order
than the bound on the difference between FB

n and its least concave majorant,
and hence, the latter difference determines the rate in the Kiefer-Wolfowitz re-
sult. Moreover, it has the advantage that it allows one to avoid the specific
structure of the particular statistical model at hand, and it only requires as-
sumptions (A2) and (A3) on the approximating process. Note however, that if
the specific structure does provide suitable exponential bounds on tail probabili-
ties for n1/2(Fn−F ), one can just take the identity for L and Bn = n1/2(Fn−F )
in (2). As it may be of interest in its own right, we first state a Kiefer-Wolfowitz
type of result for FB

n .
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Theorem 2.1. Let FB
n = F+n−1/2Bn◦L, where F is defined by (1) for some f

satisfying (A1), L satisfying (A4), and Bn satisfying (A2) and (A3) for some

τ ∈ [0, 4). Let F̂B
n be the least concave majorant of FB

n on [a, b]. We then have

sup
x∈[a,b]

|F̂B
n (x) − FB

n (x)| = Op

(
log n

n

)2/(4−τ)

.

The main ingredient to prove Theorem 2.1 is a localization result stated
in Lemma 2.1 below. It shows that although the least concave majorant F̂B

n

depends on the whole process FB
n , its value at a fixed point x mainly depends

on FB
n in a small neighborhood of x. Precisely, with probability tending to

one, F̂B
n (x) coincides with the least concave majorant of the restriction of Fn

to a shrinking interval with center x. This result generalizes Lemma 5.1 in [7],
where only the case of a Brownian motion Bn with the specific variance function
L(t) = t was considered.

Lemma 2.1. Assume the conditions of Theorem 2.1. Let

cn =

(
c0 logn

n

)1/(4−τ)

(3)

for some c0 > 0. For x ∈ [a, b], let F̂
(B,x)
n,cn be the least concave majorant of the

process
{
FB
n (η), η ∈ [x− 2cn, x+ 2cn] ∩ [a, b]

}
. Then, there exist positive num-

bers K1,K2, C0 independent of n, such that for c0 ≥ C0 we have

P

(
sup

x∈[a,b]

∣∣∣F̂B
n (x) − F̂ (B,x)

n,cn (x)
∣∣∣ 6= 0

)
≤ K1n

−c0K2 .

Theorem 2.1, together with (2), yields the following general Kiefer-Wolfowitz

type of result for the cadlag estimator Fn and its least concave majorant F̂n.

Theorem 2.2. Assume (2), where F is defined by (1) for some f satisfy-
ing (A1), L satisfying (A4), and Bn satisfying (A2) and (A3) for some τ ∈
[0, 4). We then have

sup
x∈[a,b]

|F̂n(x)− Fn(x)| = Op (γn) +Op

(
logn

n

)2/(4−τ)

.

Obviously, when the approximation in (2) is sufficiently strong, that is, γn =
O(n−1 logn)2/(4−τ) then

sup
x∈[a,b]

|F̂n(x) − Fn(x)| = Op

(
logn

n

)2/(4−τ)

. (4)

For models where (A2) and (A3) hold with τ = 1 and γn = O(n−1 logn)2/3

in (2), we recover the traditional Kiefer-Wolfowitz inequality ([9]). See Section 3
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for examples. For models where (A2) and (A3) hold with τ = 2 and γn =
O(n−1 logn), we recover the faster rate found by Wang and Woodroofe (see
Theorem 2.1 in [22]). The reason for finding different values for τ , is that the
case τ = 1 corresponds to a Kiefer-Wolfowitz inequality derived for a naive
estimator Fn for F in (1), whereas the result in [22] compares to an inequality
for the integral of Fn. See Section 3.2 for more details.

Under slightly more restrictive assumptions, the results in Theorems 2.1
and 2.2 can be made more precise by considering moments of the supremum
distance rather than the stochastic order. As before, we first obtain a result for
moments corresponding to the process FB

n .

Theorem 2.3. Assume the conditions of Theorem 2.1. Moreover, assume that
there are positive numbers K1,K2, such that for all v > 0 we have

P

(
sup

x∈[L(a),L(b)]

|Bn(x)| > v

)
≤ K1 exp(−K2v

2). (5)

With r ≥ 1 arbitrary, we then have

E

[
sup

x∈[a,b]

∣∣∣F̂B
n (x)− FB

n (x)
∣∣∣
r
]
= O

(
logn

n

)2r/(4−τ)

.

A similar result for the process Fn is obtained from the previous theorem and
the following condition

E

[
sup

x∈[a,b]

|Fn(x)− F (t)− n−1/2Bn ◦ L(t)|r
]
= O

(
logn

n

)2r/(4−τ)

, (6)

where F is defined by (1) for some f satisfying (A1), L satisfying (A4), and Bn

satisfying (A2) and (A3). Note that the slightly more restrictive moment as-
sumption (6) replaces condition (2), that was used before in Theorem 2.2.

Theorem 2.4. Assume the conditions of Theorem 2.1. Moreover, assume that (6)
holds, for some r ≥ 1 and τ ∈ [0, 4), and assume that there are positive numbers
K1,K2 such that (5) holds for all v > 0. We then have

E

[
sup

x∈[a,b]

∣∣∣F̂n(x)− Fn(x)
∣∣∣
r
]
= O

(
logn

n

)2r/(4−τ)

.

2.3. Local version

We also investigate a local version of the Kiefer-Wolfowitz result. This means
that instead of considering the supremum over the whole interval [a, b] as in
Theorem 2.2, we consider the supremum over a shrinking neighborhood around
a fixed point x0 ∈ [a, b]. For the local supremum, we obtain a bound of smaller
order than for the global supremum. This compares to Theorem 2.2 in [22],
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where a Kiefer-Wolfovitz type of result was established for Wicksell’s problem.
However, only one specific rate of shrinking was considered in [22], whereas we
allow a range of possible rates. Moreover, we give a more precise bound than
in [22].

Theorem 2.5. Fix x0 ∈ [a, b]. Assume (2), where F is defined by (1) for some f
satisfying (A1), L satisfying (A4), and Bn satisfying (A2) and (A3) for some
τ ∈ [0, 4). For any sequence εn ≥ (n−1 logn)1/(4−τ) we then have

sup
|x−x0|≤εn

|F̂n(x)− Fn(x)| = Op(γn) + Op

(
(ετ/2n n−1/2) ∧

(
logn

n

)2/(4−τ)
)
.

As in the case of Theorem 2.2, when the embedding in (2) is sufficiently

strong, i.e., γn = O(ε
τ/2
n n−1/2) and γn = O(n−1 logn)2/(4−τ), we obtain

sup
|x−x0|≤εn

|F̂n(x)− Fn(x)| = Op

(
(ετ/2n n−1/2) ∧

(
logn

n

)2/(4−τ)
)
. (7)

Clearly, the local rate in (7) is at most (n−1 logn)2/(4−τ) and for any allow-
able sequence εn ≥ (n−1 logn)1/(4−τ), it is at least (n−1 logn)2/(4−τ)(logn)−1/2.
Thus, the local rate may vary depending on the rate εn at which the neighbor-
hood around x0 shrinks, and it is of smaller order than the global rate obtained
in Theorem 2.2 in all cases where εn = o

(
(n−1 logn)1/(4−τ)(log n)1/τ

)
.

Remark 2.1. Note that for τ = 2, the boundary case εn = (n−1 logn)1/2

coincides with the shrinking rate in Theorem 2.2 in [22]. This leads to local
rate Op(ε

2
n(log n)

−1/2) in (7), which is conform the the rate op(ε
2
n), as stated in

Theorem 2.2 in [22].

We end this section by considering the rate of convergence at a fixed point.
As stated in the following theorem, the resulting rate is n−2/(4−τ) with no
logarithmic term.

Theorem 2.6. Fix x0 ∈ [a, b] and suppose that γn = O(n−2/(4−τ)) in (2). Then
under the assumptions of Theorem 2.5 we have

F̂n(x0)− Fn(x0) = Op

(
n−2/(4−τ)

)
. (8)

For models where (A2) and (A3) hold with τ = 1, such as the monotone
density model, the rate n−2/3 in Theorem 2.6 matches with the result in [23].
See also [7] and [12].

3. Examples of specific settings

The section is devoted to specific settings to which Theorem 2.2 applies. We
first discuss statistical models for which a Kiefer-Wolfowitz result is obtained
for an estimator Fn for the integral F of a decreasing curve f , and in which
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the approximation in (2) is by means of Brownian motion of Brownian bridge.
In these cases the Kiefer-Wolfowitz result coincides with the traditional one
in [9]. Next, we consider the situation for which a Kiefer-Wolfowitz result is
obtained for the primitive of Fn. This matches the setup for the Wicksell problem
considered by [22] and we obtain the same (faster) rate as found in [22]. Finally,
we discuss a few setups that are not covered by our general setting.

3.1. Decreasing functions

It turns out that in various usual settings (where the decreasing function f
could be for instance a density, or a regression function), the embedding (2)
holds with Bn being either Brownian Bridge or Brownian motion. For such a
process Bn, it can be proved that (A2) and (A3) hold with τ = 1, leading to
the usual rate (n−1 logn)2/3 in the Kieffer-Wolfowitz inequality. This is made
precise in the following corollary. Then, we discuss a number of specific settings
that are covered by Corollary 3.1.

Corollary 3.1. Assume (2) with γn = O(n−1 logn)2/3, where F is defined
by (1) for some f that satisfies (A1), L satisfies (A4), and Bn is either Brownian
motion or Brownian Bridge. We then have

sup
x∈[a,b]

∣∣∣F̂n(x) − Fn(x)
∣∣∣ = Op

(
log n

n

)2/3

. (9)

If, moreover, 0 ∈ [L(a), L(b)] and (6) holds with τ = 1 and some r ≥ 1, then
we also have

E

[
sup

x∈[a,b]

∣∣∣F̂n(x) − Fn(x)
∣∣∣
r
]
= O

(
logn

n

)2r/3

. (10)

3.1.1. Monotone regression function

We have observations Yi, for i = 1, 2, . . . , n, satisfying Yi = f(ti) + ǫi, where
E(ǫi) = 0 and

max
i

|ti − (a+ (b− a)i/n)| = O(n−2/3), (11)

which means that the design points are close to uniformly spread on [a, b]. We
assume that the ǫi’s are independent having the same distribution. In this case,
the estimator for F in (1) is

Fn(t) =
1

n

n∑

i=1

Yi1{ti ≤ t}, t ∈ [a, b]. (12)

As a special case of Corollary 3.1 we obtain the following result.

Corollary 3.2. If E|ǫi|3 < ∞, E|ǫi|2 > 0 and (A1) holds, then we have (9)

with Fn taken from (12) and F̂n the least concave majorant of Fn.
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3.1.2. Monotone density

We have independent observations Xi, for i = 1, 2, . . . , n, with common den-
sity f : [a, b] → R, where a and b are known real numbers. The estimator for
the distribution function F in this case is the empirical distribution function

Fn(t) =
1

n

n∑

i=1

1{Xi ≤ t}, t ∈ [a, b]. (13)

Corollary 3.3. If (A1) holds and inft∈[0,1] f(t) > 0, then we have (9) with Fn

taken from (13) and F̂n the least concave majorant of Fn.

3.1.3. Random censorship with monotone hazard

We have right-censored observations (Xi,∆i), for i = 1, 2, . . . , n, where Xi =
min(Ti, Yi) and ∆i = 1{Ti ≤ Yi}. The failure times Ti are assumed to be
nonnegative independent with distribution function G and are independent of
the i.i.d. censoring times Yi that have distribution function H . Define F =
− log(1 −G) the cumulative hazard on [0, b]. Note that in this setting, we only
consider the case a = 0, since this is more natural. The estimator for the cu-
mulative hazard F is defined via the Nelson-Aalen estimator Nn as follows: let
t1 < · · · < tm denote the ordered distinct uncensored failure times in the sample
and nk the number of i ∈ {1, 2, . . . , n} with Xi ≥ tk,

Fn(ti) =
∑

k≤i

1

nk
, (14)

and Fn(t) = 0 for all t < t1 and Fn(t) = Nn(tm) for all t ≥ tm.

Corollary 3.4. Suppose (A1), inft∈[0,b] f(t) > 0, G(b) < 1, and limt↑b H(t) < 1.

Then we have (9) with Fn taken from (14) and F̂n the least concave majorant
of the restriction of Fn to [0, b].

3.2. Decreasing primitive of nonnegative functions

Wang andWoodroofe [22] obtain a Kiefer-Wolfowitz result for the Wicksell prob-
lem and find n−1 logn as rate of convergence, which is faster than (n−1 logn)2/3

from Corollary 3.1. The reason is that in their setup the Kiefer-Wolfowitz re-
sult is obtained for U#

n , defined as the primitive of Ψ#
n , which serves as an

estimator for Ψ(y) =
∫∞

y
π2ϕ(x) dx, for some nonnegative ϕ. We investigate a

similar setup, where we establish a Kiefer-Wolfowitz result for the primitive of
the cadlag estimator Fn for F with f being positive. Precisely, in the sequel we
assume

(A5) The function f : [a, b] 7→ R is continuous, such that 0 < inft∈[a,b] f(t) ≤
supt∈[a,b] f(t) < ∞.
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Let F be defined in (1) with corresponding cadlag estimator Fn. Define

S(y) =

∫ b

y

f(x) dx = F (b)− F (y);

Sn(y) = Fn(b)− Fn(y).

(15)

If f satisfies (A5), then S is decreasing. We will investigate a Kiefer-Wolfowitz
result for

Hn(t) =

∫ t

a

Sn(x) dx =

∫ t

a

(Fn(b)− Fn(x)) dx, (16)

which serves as an estimator for

H(t) =

∫ t

a

S(x) dx =

∫ t

a

(F (b)− F (x)) dx. (17)

In the case where (2) holds with γn = O(n−1 logn) and Bn is either Brownian

motion or Brownian bridge, we find the same rate as in [22]. Let Ĥn denote the
least concave majorant of Hn on [a, b].

Corollary 3.5. Assume (2) with γn = O(n−1 logn), where F is defined by (1)
for some f that satisfies (A5), L is bounded, and Bn is either Brownian motion
or Brownian Bridge. Then, we have

sup
x∈[a,b]

|Ĥn(x)−Hn(x)| = Op

(
logn

n

)
.

Note that we recover the rate obtained in [22] for Wicksell’s problem. Our
result applies for instance to the regression setting of Subsection 3.1.1, where the
εi’s are i.i.d. Gaussian and, where instead of (A1), f is assumed to satisfy (A5).

Remark 3.1. The general setup of Corollary 3.5 does not cover the Wickell
problem considered in [22]. The reason is that the approximating process for
their process U#

n is more complicated than the one for Hn, leading to extra
logarithmic terms in (A2) and (A3), and to difficulties in obtaining bounds for
a supremum in these assumptions. Nevertheless, by using the specific structure
of the Wicksell problem, the authors do obtain the same rate n−1 logn, see
Theorem 2.2 in [22].

3.3. Discussion

Although, the above Kiefer-Wolfowitz results have been obtained for two dif-
ferent general settings, there are still complex statistical models that are not
covered by either setup. One such example is interval censoring, where one
would expect the same result as in Theorem 2.2. The main difference with our
general setting is that the estimator for f is the slope of the least concave majo-
rant of a cumulative sum diagram (CSD), which has y-coordinates determined
by a cadlag function, e.g., Fn(t) in the case of monotone density or monotone
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regression, and an x-coordinate determined by the identity. In this case, the
points are of the form (t, Fn(t)) for specific values of t, e.g., t = X(1), . . . , X(n)

in the case of monotone density. This is essentially different from, for instance,
interval censoring Case 1. In this model, the observations are (Ti,∆i), where
∆i = {Xi ≤ Ti} indicates whether the event time Xi is before or after the
observed censoring time Ti. The parameter of interest is the cdf F of the event
times and the coordinates of the CSD are of the form(

Gn(s),

∫
{x ≤ t}{t ≤ s} dPn(x, t)

)
, s = T(1), . . . , T(n),

where Gn is the empirical cdf of the Ti and Pn is the empirical measure of the
tuples (Xi, Ti). First of all, one would need to find an approximating process
satisfying (A2)-(A3), for the process

Yn(s) =

∫
{x ≤ t}{t ≤ s} dPn(x, t).

More importantly, our proof of the key Lemma 2.1 relies heavily on the fact that
the points of the CSD are of the form (t, Yn(t)), for some process Yn, and it is not
clear how this can be extended to a CSD with points of the form (Gn(t), Yn(t)).
Interval censoring case 2 is even more difficult, because the CSD is self-induced,
i.e., the points of the diagram depend on the actual solution itself.

4. Estimating a smooth monotone function

In many applications, the parameter of interest f : [a, b] → R, e.g., a density
function, a regression mean, or a failure rate, is known to be non-increasing
(the non-decreasing case can be treated likewise) so it is natural to incorporate
this shape constraint into the estimation procedure. Consider the setting of
Section 3.1. A popular estimator for f under the constraint that f is non-
increasing is the Grenander-type estimator f̂n, defined on (a, b] as the left-hand

slope of the least concave majorant F̂n of Fn, with

f̂n(a) = lim
s↓a

f̂n(s).

This estimator is a step function and as a consequence it is not smooth. More-
over, the rate of convergence of f̂n is n1/3, if f has a first derivative f ′ that
is bounded away from zero, whereas competitive smooth estimators may have
faster rates in cases where f is smooth. On the other hand, such estimators
typically do not satisfy the monotonicity constraint.

In this section, we are interested in an estimator that is both non-increasing
and smooth, and that achieves the optimal rate of convergence under certain
smoothness conditions. The estimator is obtained by smoothing the Grenander-
type estimator f̂n, and resembles the estimators mIS in [14] and mn in [15],
see also Ψ̃n,s in [22]. In this way, one first applies an isotonization procedure
followed by smoothing. A natural alternative would be to interchange the two
steps, that is, first smooth and then isotonize, but this typically results in a
non smooth estimator. It may happen that the two proposals are asymptotically



2490 C. Durot and H.P. Lopuhaä

equivalent in first order; see [14] for a precise statement in the smooth regression
setting. See also [19] for a comparison of the second proposal with an ordinary
kernel estimator and with the Grenander estimator when estimating a monotone
density with a single derivative.

Consider an ordinary kernel-type estimator f̃n, corrected at the boundaries
in such a way that it converges to f , with a fast rate over the whole inter-
val [a, b] (whereas the non-corrected kernel estimator may show difficulties at
the boundaries): for every t ∈ [a+ hn, b− hn],

f̃n(t) =
1

hn

∫

R

K

(
t− x

hn

)
dFn(x), (18)

where hn > 0 and the kernel function K : R → [0,∞) satisfies
∫
K(t) dt = 1. We

are interested in f̂ns, the estimator defined in the same manner as f̃n, with Fn

replaced by the least concave majorant F̂n. At the boundaries [a, a + hn) and
(b−hn, b], we consider the local linear bias correction defined as follows: with fn
denoting either f̃n or f̂ns,

fn(t) =

{
fn(a+ hn) + f ′

n(a+ hn)(t− a− hn), t ∈ [a, a+ hn];

fn(b − hn) + f ′
n(b − hn)(t− b+ hn), t ∈ [b− hn, b],

(19)

see, e.g. [20]. Thus, f̂ns is a smoothed version of the Grenander-type estima-

tor f̂n, linearly extended at the boundaries. According to the following lemma,
it is monotone provided that K ≥ 0 is supported on [−1, 1]. A similar result was
obtained by [15], page 743, in the regression setting for a log-concave kernel K.

Moreover, since f̂n can easily be computed using the PAVA or a similar device,
see e.g., [2], the monotone smooth estimator f̂ns(t) is easy to implement thanks
to (20) below. This was already pointed out in [6], Section 4.2.

Lemma 4.1. Let p1, . . . , pm be the jump sizes of f̂n at the points of jump
τ1 < · · · < τm ∈ (a, b]. If K ≥ 0 is supported on [−1, 1], then f̂ns is non-
increasing on [a, b] and for all t ∈ [a+ hn, b− hn], we have

f̂ns(t) =

m∑

j=1

pj

∫ ∞

(t−τj)/hn

K(u) du+ f̂n(b). (20)

As application of Corollary 3.1, we establish that f̂ns is uniformly close to f̃n,
and similarly for their derivatives. This will ensure that the two estimators and
their derivatives are asymptotically equivalent in first order. In [22] a similar
application of a Kiefer-Wolfowitz result is discussed. Their result is for t fixed
and compares to our result for the derivatives of f̂ns and f̃n.

Lemma 4.2. Assume the conditions of Corollary 3.1. If K is supported on
[−1, 1] with integrable first and second derivatives, then for l = 0, 1,

sup
t∈[a,b]

∣∣∣f̂ (l)
ns (t)− f̃ (l)

n (t)
∣∣∣ = Op

(
h−(1+l)
n n−2/3(log n)2/3

)
,

where f̂
(l)
ns and f̃

(l)
n denote l-th derivatives.
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Thanks to Lemma 4.2, we are able to derive the limit behavior of f̂ns from
that of f̃n. To illustrate this, suppose that f belongs to a Hölder class H(L, α),
for some L > 0 and α ∈ (1, 2], which means that f has a first derivative satisfying

|f ′(u)− f ′(v)| ≤ L|u− v|α−1,

for all u, v ∈ [a, b]. It is known that in typical settings (including the specific
settings investigated in Subsection 3.1), the estimator defined by (18) with

hn = Rnn
−1/(2α+1), (21)

where 0 < Rn + R−1
n = OP (1), and a kernel function K with

∫
uK(u) du = 0,

satisfies
f̃n(x)− f(x) = OP

(
n−α/(2α+1)

)
,

for all fixed x ∈ (a, b) independent of n. Moreover, this rate of convergence is
optimal in the minimax sense in typical settings, e.g., see Theorem 2.3 in [3].
With hn defined as in (21), Lemma 4.2 yields that

f̂ns(x)− f(x) = f̃n(x) − f(x) + oP

(
n−α/(2α+1)

)
.

This means that f̂ns is asymptotically equivalent to f̃n in first order. In par-
ticular, f̂ns(x) has the same limit distribution and the same minimax rate of

convergence as f̃n(x), provided that hn is chosen according to (21). Therefore,
one can use any adaptive method for calibrating the bandwidth hn of the ordi-
nary kernel estimator f̃n, e.g., see [13], and use the same bandwidth in f̂ns(x),
so that it achieves the minimax rate. Similar arguments enable us to derive the
global limit behavior of f̂ns from that of f̃n, e.g., the limit distribution or the
rate of convergence of the supremum distance between f̂ns and f . See [6] for
further details.

5. Proofs

Note that it suffices to prove the results for the case [a, b] = [0, 1]. Indeed,
suppose that f(t), for t ∈ [a, b], satisfies conditions (A1), (2) and (A4) with
corresponding F , L and Fn on [a, b]. Then this case can be transformed to the
case [0, 1] by considering (b−a)f(a+x(b−a)), for x ∈ [0, 1]. It is straightforward
to see that these are functions on [0, 1] that satisfy (A1), (2) and (A4) with
corresponding functions F (a+ x(b − a)), L(a+ x(b − a)) and Fn(a+ x(b − a))

for x ∈ [0, 1]. Moreover, note that the transformed estimator F̂n(a + x(b − a))
is the least concave majorant of the process {Fn(a+ u(b− a)), u ∈ [0, 1]} at the
point u = x. Thus, we prove the results only for the case [a, b] = [0, 1].

In the remainder of the section, we assume that c0 in (3) satisfies c0 ≥ C0 for
a given C0. The letters K1,K2, . . . denote positive numbers that depend only
on f , L and C0 and that may change from line to line. Moreover, we denote
ε = inft |f ′(t)|.
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5.1. Proofs for Subsection 2.2

Before establishing the key Lemma 2.1, we obtain the following result on the
increments of Bn, which will be used several times.

Lemma 5.1. Let Bn be a process that satisfies (A2) on an interval I. Then
there exist positive K1,K2 such that for all u ∈ (0, 1/2] and v > 0,

P

(
sup
x∈I

sup
|x−y|≤u

|Bn(x)−Bn(y)| > v

)
≤ K1u

−1 exp
(
−K2v

2u−τ
)
.

Proof. Denote I = [α, β], let k be the integer part of (β − α)u−1 and let
tj = α+ ju, for j = 0, 1, . . . , k + 1. We then have

P

(
sup

x∈[α,β]

sup
|x−y|≤u

|Bn(x)−Bn(y)| > v

)

≤
k∑

j=0

P

(
sup

x∈[tj,tj+1]

sup
|x−y|≤u

|Bn(x)−Bn(y)| > v

)
.

Since tj+1 − tj = u, for all j = 0, . . . k we have

P

(
sup

x∈[tj,tj+1]

sup
|x−y|≤u

|Bn(x)−Bn(y)| > v

)

≤ P

(
sup

x∈[tj,tj+1]

|Bn(x)−Bn(tj)| >
v

2
or sup

|tj−y|≤2u

|Bn(tj)−Bn(y)| >
v

2

)

≤ P

(
sup

|tj−y|≤2u

|Bn(tj)−Bn(y)| >
v

2

)

≤ K1 exp(−K2v
2u−τ/22+τ).

We used (A2) for the last inequality. We conclude that

P

(
sup

x∈[α,β]

sup
|x−y|≤u

|Bn(x)−Bn(y)| > v

)

≤ K1(k + 1) exp

(
−K2v

2u−τ

22+τ

)
≤ K1

u
(β − α+ 1) exp

(
−K2v

2u−τ

22+τ

)
,

since k ≤ (β − α)/u and u ∈ (0, 1]. This proves the lemma by renaming K1

and K2. �

Proof of Lemma 2.1. The proof is inspired by the proof of Lemma 5.1 in [7].
Recall that without loss of generality, [a, b] = [0, 1]. For all x ∈ [0, 1], let

x̃i = inf
{
u ≥ (x− 2cn) ∨ 0, such that F̂B

n (u) = F̂ (B,x)
n,cn (u)

}
,
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with the convention that the infimum of an empty set is (x + 2cn) ∧ 1, and let

x̃s = sup
{
u ≤ (x+ 2cn) ∧ 1, such that F̂B

n (u) = F̂ (B,x)
n,cn (u)

}
,

with the convention that the supremum of an empty set is (x − 2cn) ∨ 0. If

F̂B
n (u) = F̂

(B,x)
n,cn (u) for some u ≤ x, and F̂B

n (v) = F̂
(B,x)
n,cn (v) for some v ≥ x,

then we must have F̂B
n = F̂

(B,x)
n,cn on the whole interval [u, v]. Therefore, if for

some x we have F̂B
n (x) 6= F̂

(B,x)
n,cn (x), then we must have either x̃i > x or x̃s < x.

Moreover, note that if x̃i > x ≥ 0, then we must have x− 2cn > 0. Otherwise,

we would have F
(B,x)
n,cn (0) = FB

n (0) = F̂B
n (0), which would mean that x̃i = 0.

Similarly, if x̃s < x ≤ 1, then we must have x + 2cn < 1. Therefore, it suffices
to prove that there exist positive K1,K2 such that

P (x̃i > x, for some x ∈ [2cn, 1]) ≤ K1n
−K2c0 , (22)

and
P (x̃s < x, for some x ∈ [0, 1− 2cn]) ≤ K1n

−K2c0 , (23)

provided that c0 ≥ C0 for some sufficiently large C0. We will only prove (22),
since (23) can be proven with similar arguments.

If x̃i > x for some x ∈ [2cn, 1], then by definition,

F̂B
n (u) 6= F̂ (B,x)

n,cn (u),

for all 0 ≤ u ≤ x. In that case, there exist 0 ≤ y ≤ x − 2cn and x ≤ z ≤
(x + 2cn) ∧ 1, such that the line segment joining (y, FB

n (y)) and (z, FB
n (z))

is above (t, FB
n (t)) for all t ∈ (y, z). In particular, this line segment is above

(x − cn, F
B
n (x − cn)), which implies that the slope of the line segment joining

(y, FB
n (y)) and (x−cn, F

B
n (x−cn)) is smaller than the slope of the line segment

joining (z, FB
n (z)) and (x− cn, F

B
n (x− cn)). This means that

FB
n (y)− FB

n (x− cn)

y − x+ cn
<

FB
n (z)− FB

n (x− cn)

z − x+ cn
.

For any fixed α ∈ R, this implies that

either
FB
n (y)− FB

n (x− cn)

y − x+ cn
< α or α <

FB
n (z)− FB

n (x− cn)

z − x+ cn
.

In particular with αx = f(x) + cn|f ′(x)| we have

P (x̃i > x for some x ∈ [2cn, 1]) ≤ P1 + P2, (24)

where

P1 = P

(
∃x ∈ [2cn, 1], ∃y ∈ [0, x− 2cn] :

FB
n (y)− FB

n (x− cn) > (y − x+ cn)αx

)
,
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and

P2 = P

(
∃x ∈ [2cn, 1], ∃z ∈ [x, (x+ 2cn) ∧ 1] :

FB
n (z)− FB

n (x− cn) > (z − x+ cn)αx

)
.

Furthermore, with tx = c2nf
′(x)/4, we have P1 ≤ P1,1 + P1,2, where

P1,1 = P
(
∃x ∈ [2cn, 1] : F

B
n (x) − FB

n (x− cn) > cnαx + tx
)

and

P1,2 = P
(
∃x ∈ [2cn, 1], ∃y ∈ [0, x− 2cn] : F

B
n (x)− FB

n (y) < (x − y)αx + tx
)
.

We first consider P1,1. From (A1), the derivative f ′ (which is defined respectively
as the right and the left derivative of f at the boundary points 0 and 1) is
negative and uniformly continuous on the compact interval [0, 1]. Since cn tends
to zero, by using Taylor’s expansion, we obtain

F (x)− F (x− cn) = cnf(x) +
c2n
2

(
|f ′(x)|+ o(1)

)
,

where the o(1) term is uniform in x ∈ [2cn, 1]. Therefore, with MB
n = FB

n − F ,
we obtain

P1,1 ≤ P

(
∃x ∈ [2cn, 1] :

(
MB

n (x)−MB
n (x− cn)

)
>

c2n
4

(|f ′(x)|+ o(1))

)

≤ P

(
sup

x∈[2cn,1]

(
MB

n (x)−MB
n (x− cn)

)
>

c2n
8

inf
t∈[0,1]

|f ′(t)|
)
,

provided n is sufficiently large. By definition, MB
n = n−1/2Bn ◦ L. Moreover,

|L(x)− L(x− cn)| ≤ cn||L′||∞, where by assumption (A4),

||L′||∞ := sup
t∈[0,1]

L′(t) < ∞.

Using Lemma 5.1, we conclude that with ε= inft |f ′(t)|> 0 and I = [L(2cn), L(1)],

P1,1 ≤ P

(
sup
x∈I

sup
|x−y|≤cn||L′||∞

(Bn(x)−Bn(y)) >
c2n
√
n

8
ε

)

≤ K1||L′||−1
∞ c−1

n exp

(
− K2ε

2

64||L′||τ∞
nc4−τ

n

)

≤ K1||L′||−1
∞

(
n

c0 logn

)1/(4−τ)

n−K2ε
2c0/(64||L

′||τ
∞

).

Possibly enlarging K1, this proves that for c0 sufficiently large and all n,

P1,1 ≤ K1n
−K2ε

2c0/(65||L
′||τ

∞
).
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Renaming K2, we conclude that there exist positive numbers K1 and K2 that
depend only on f , L and C0 such that

P1,1 ≤ K1n
−K2c0 , (25)

for all n, provided that c0 ≥ C0 for some sufficiently large C0.
Next, consider P1,2. For all x ∈ [2cn, 1] and z ∈ [1, x/(2cn)], let Yn(x, z) be

defined by

Yn(x, z) = FB
n (x− 2cnz)− FB

n (x) + 2cnαxz + tx,

so that
P1,2 = P (∃x ∈ [2cn, 1], ∃z ∈ [1, x/(2cn)] : Yn(x, z) > 0) . (26)

Let ε = inft∈[0,1] |f ′(t)| and let a be a real number with aε > 2 supt∈[0,1] |f ′(t)|
(which implies that a ≥ 2). Moreover, recall that αx = f(x) + cn|f ′(x)| and
tx = c2nf

′(x)/4. Now, distinguish between z ∈ [1, a] and z ∈ [a, x/(2cn)].
For all z ∈ [a, x/(2cn)], it follows from Taylor’s expansion and the definition

of a that
F (x− 2cnz)− F (x) + 2cnαxz ≤ −εc2nz

2. (27)

Define An = {(x, z) : x ∈ [2cn, 1], z ∈ [a, x/(2cn)]}. From (27) we have

P

(
sup

(x,z)∈An

Yn(x, z) > 0

)

≤ P

(
sup

(x,z)∈An

{
MB

n (x− 2cnz)−MB
n (x)− εc2nz

2
}
>

c2nε

4

)

≤ P

(
sup

(x,z)∈An

{
Bn ◦ L(x− 2cnz)−Bn ◦ L(x)− εc2n

√
nz2
}
>

c2nε
√
n

4

)
.

Define A′
n = {(t, u) : t = L(x), u = (L(x) − L(x − 2cnz))/(2cn), (x, z) ∈ An}.

Then

P

(
sup

(x,z)∈An

Yn(x, z) > 0

)

≤ P

(
sup

(t,u)∈A′

n

{
Bn(t− 2cnu)−Bn(t)−

c2nε
√
nu2

||L′||2∞

}
>

c2nε
√
n

4

)
.

Now, denote by kn the integer part of c−1
n and for all j = 0, 1, . . . , kn, let

tj = L(2cn) + j(L(1)− L(2cn))/kn. If for some (t, u) ∈ A′
n, one has

Bn(t− 2cnu)−Bn(t)−
c2nε

√
nu2

||L′||2∞
>

c2nε
√
n

4
,

then, for j = 1, 2, . . . , kn, such that t ∈ [tj−1, tj], one either has

Bn(tj − 2cnu)−Bn(tj)−
c2nε

√
nu2

||L′||2∞
> 0,



2496 C. Durot and H.P. Lopuhaä

or

Bn(t− 2cnu)−Bn(tj − 2cnu)−Bn(t) +Bn(tj) >
c2nε

√
n

4
.

Note that

|Bn(t)−Bn(tj)| ≤ sup
t∈[L(0),L(1)]

sup
|t−y|≤k−1

n

|Bn(t)−Bn(y)|.

Furthermore, for (t, u) ∈ A′
n we have t− 2cnu = L(x− 2cnz) ∈ J = [L(0), L(1)],

so that

|Bn(t− 2cnu)−Bn(tj − 2cnu)| ≤ sup
t∈J

sup
|t−y|≤k−1

n

|Bn(t)−Bn(y)|.

Hence, from the triangle inequality it follows that

sup
t∈[tj−1,tj]

sup
u≥a inft L′(t)

{
Bn(t− 2cnu)−Bn(tj − 2cnu)−Bn(t) +Bn(tj)

}

≤ 2 sup
t∈J

sup
|t−y|≤k−1

n

|Bn(t)−Bn(y)| .

We conclude that

P

(
sup

(x,z)∈An

Yn(x, z) > 0

)

≤ P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(x)−Bn(y)| >
c2nε

√
n

4

)

+

kn∑

j=1

P

(
sup

u≥a infs L′(s)

{
Bn(tj − 2cnu)−Bn(tj)−

c2nε
√
nu2

||L′||2∞

}
> 0

)
.

With Lemma 5.1, we have

P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(t)−Bn(y)| >
c2nε

√
n

4

)

≤ K1kn exp

(
−K2ε

2n

16
c4nk

τ
n

)
≤ K1

(
n

c0 logn

)1/(4−τ)

n−K2ε
22−4−τc0 ,

by definition of cn and kn, since kn ≤ c−1
n and kn ≥ c−1

n /2 for sufficiently large n.
Hence, there exist positive numbersK1 and K2 that depend only on f , L and C0

such that

P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(t)−Bn(y)| >
c2nε

√
n

4

)
≤ K1n

−K2c0 ,
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for all n, provided c0 ≥ C0 for some sufficiently large C0. Furthermore, with (A3)
we have

kn∑

j=1

P

(
sup

u≥a inft L′(t)

{
Bn(tj − 2cnu)−Bn(tj)−

c2nε
√
nu2

||L′||2∞

}
> 0

)

≤
kn∑

j=1

P

(
sup

z≥2cna inft L′(t)

{
Bn(tj − z)−Bn(tj)−

ε
√
nz2

4||L′||2∞

}
> 0

)

≤
kn∑

j=1

K1 exp

(
− K2ε

2n

16||L′||4∞

(
2cna inf

t
L′(t)

)4−τ
)

≤ K1

(
n

c0 logn

)1/(4−τ)

n−K2ε
2c0(2a inft L

′(t))4−τ/(16||L′||4
∞

),

by definition of cn and kn. Renaming K1 and K2, the right hand term in the
previous display is bounded from above by K1n

−K2c0 for all n, provided c0 ≥ C0

for some sufficiently large C0, where K1 and K2 depend only on f , L and C0.
We conclude that there exist K1,K2 such that

P

(
sup

(x,z)∈An

Yn(x, z) > 0

)
≤ K1n

−K2c0 ,

for all n, provided c0 is sufficiently large. Using (26), we conclude that

P1,2 ≤ K1n
−K2c0 + P

(
sup

x∈[2cn,1]

sup
z∈[1,a]

Yn(x, z) > 0

)
. (28)

Next, we consider the case z ∈ [1, a] and establish an upper bound for the
probability on the right hand side of (28). Since cn tends to zero as n → ∞
and f ′ is uniformly continuous on [0, 1], we have

F (x− 2cnz)− F (x) + 2cnαxz = 2c2n|f ′(x)|z(1 − z) + o(c2n),

where 2c2n|f ′(x)|z(1 − z) ≤ 0 and o(c2n) is uniform in z ∈ [1, a] and x ∈ [2cn, 1].
Therefore,

F (x− 2cnz)− F (x) + 2cnαxz + tx ≤ −c2n|f ′(x)|/8, (29)

for all z ∈ [1, a] and x ∈ [2cn, 1] provided that n is sufficiently large. With
MB

n = FB
n − F , it follows from (28) that

P1,2 ≤ K1n
−K2c0

+ P

(
sup

x∈[2cn,1]

sup
z∈[1,a]

(
MB

n (x − 2cnz)−MB
n (x)

)
>

c2n
8

inf
t∈[0,1]

|f ′(t)|
)
.
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Repeating the same arguments as above yields P1,2 ≤ K1n
−K2c0 , for some

positive K1,K2 that depend only on f , L and C0, for all n, provided that
c0 ≥ C0 for some sufficiently large C0.

We have already proved that P1 ≤ P1,1 + P1,2, where P1,1 satisfies (25), so
from (24), we derive that for some positive K1 and K2 we have

P (x̃i > x for some x ∈ [2cn, 1]) ≤ P2 +K1n
−K2c0 .

To deal with P2, one can write P2 ≤ P2,1 + P2,2, where

P2,1 = P
(
∃x ∈ [2cn, 1] : FB

n (x− 2cn)− FB
n (x− cn) > −cnαx + tx

)

and P2,2 is the probability that there exist x ∈ [2cn, 1] and z ∈ [x, (x+2cn)∧1],
such that

FB
n (z)− FB

n (x − 2cn) > (z − x+ 2cn)αx − tx,

where we recall that αx = f(x) + cn|f ′(x)| and tx = c2nf
′(x)/4. One can then

conclude, using similar arguments as above, that there exist positive numbersK1

and K2 such that P2 ≤ K1n
−K2c0 , for all n, provided that c0 is sufficiently large,

whence (22). This concludes the proof of Lemma 2.1. �

Proof of Theorem 2.1. Recall that we only need to prove the theorem for
the case [a, b] = [0, 1]. In the sequel, for all intervals I ⊂ R, we denote by CMI

the operator that maps a bounded function h : I → R into the least concave
majorant of h on I. First note that for all x ∈ [0, 1], we have

F̂ (B,x)
n,cn (x)− FB

n (x) = (CMIn(x)T
(B,x)
n )(0),

where In(x) = [−((c−1
n x) ∧ 2), (c−1

n (1− x)) ∧ 2] and

T (B,x)
n (η) = FB

n (x+ cnη)− FB
n (x)

for all η ∈ In(x). With MB
n = FB

n − F , we can write

T (B,x)
n (η) = MB

n (x + cnη)−MB
n (x) + F (x+ cnη)− F (x). (30)

Since f ′ is bounded and |η| ≤ 2, for all η ∈ In(x), it follows from Taylor’s
expansion that

T (B,x)
n (η) = MB

n (x+ cnη)−MB
n (x) + Y (B,x)

n (η) +O(c2n), (31)

where Y
(B,x)
n (η) = cnηf(x), and where the big O-term is uniform in η ∈ In(x)

and x ∈ [0, 1]. Because the process Y
(B,x)
n is linear, its least concave majorant

on In(x) is Y
(B,x)
n itself. Using that the supremum distance between the least

concave majorants of processes is less than or equal to the supremum distance
between the processes themselves, we conclude from (31) that for all x ∈ [0, 1],

|F̂ (B,x)
n,cn (x) − FB

n (x)| = |(CMIn(x)T
(B,x)
n )(0)|

≤ |Y (B,x)
n (0)|+ |(CMIn(x)T

(B,x)
n )(0)− Y (B,x)

n (0)|
≤ sup

η∈In(x)

|T (B,x)
n (η)− Y (B,x)

n (η)|

≤ sup
η∈In(x)

∣∣MB
n (x+ cnη)−MB

n (x)
∣∣ +O(c2n).
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Hence, for A > 0 sufficiently large we have

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x)− FB

n (x)| > Ac2n

)

≤ P

(
sup

x∈[0,1]

sup
η∈In(x)

∣∣MB
n (x+ cnη)−MB

n (x)
∣∣ > Ac2n/2

)

≤ P

(
sup

x∈[0,1]

sup
η∈In(x)

|Bn ◦ L(x+ cnη)−Bn ◦ L(x)| > Ac2n
√
n/2

)

≤ P

(
sup

x∈[L(0),L(1)]

sup
|x−y|≤2cn||L′||∞

|Bn(x)−Bn(y)| > Ac2n
√
n/2

)
,

since |η| ≤ 2 for all η ∈ In(x). We obtain from Lemma 5.1 that for A > 0
sufficiently large,

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x)− FB

n (x)| > Ac2n

)

≤ K1

2cn||L′||∞
exp

(
−K2A

22−2−τ ||L′||−τ
∞ nc4−τ

n

)

≤ K1

2||L′||∞

(
n

c0 logn

)1/(4−τ)

n−K2A
22−2−τ ||L′||−τ

∞
c0 .

(32)

The upper bound tends to zero as n → ∞ provided that A is sufficiently large,
whence

sup
x∈[0,1]

|F̂ (B,x)
n,cn (x)− FB

n (x)| = Op(c
2
n).

This completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Write

F̂n − Fn = (F̂n − F̂B
n ) + (FB

n − Fn) + (F̂B
n − FB

n ).

Since the supremum distance between least concave majorant processes is less
than or equal to the supremum distance between the processes themselves, the
triangle inequality yields

sup
x∈[a,b]

|F̂n(x)−Fn(x)| ≤ 2 sup
x∈[a,b]

|Fn(x)−FB
n (x)|+ sup

x∈[a,b]

|F̂B
n (x)−FB

n (x)|. (33)

Theorem 2.2 now follows from assumption (2) and Theorem 2.1. �

Proof of Theorem 2.3. Recall that we only have to prove the theorem for
the case [a, b] = [0, 1]. In the sequel, we use the same notation as in Lemma 2.1
and consider an arbitrary r ≥ 1. It follows from Fubini’s Theorem that for any
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A0 > 0 we have

E

[
sup

x∈[0,1]

|F̂B
n (x) − FB

n (x)|r
]

=

∫ ∞

0

P

(
sup

x∈[0,1]

|F̂B
n (x) − FB

n (x)|r > u

)
du

≤
(
A0c

2
n

)r
+

∫ ∞

A0c2n

P

(
sup

x∈[0,1]

|F̂B
n (x)− FB

n (x)| > v

)
rvr−1 dv,

where we used the fact that a probability is smaller than or equal to one, and
we performed a change of variable v = u1/r. From the triangle inequality, it
follows that

E

[
sup

x∈[0,1]

|F̂B
n (x) − FB

n (x)|r
]
≤
(
A0c

2
n

)r
+ In1 + In2, (34)

where

In1 =

∫ ∞

0

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x)− F̂B

n (x)| > v

2

)
rvr−1 dv

and

In2 =

∫ ∞

A0c2n

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x) − FB

n (x)| > v

2

)
rvr−1 dv.

First, consider In1. It follows from Lemma 2.1 that there exist positive K1

and K2 such that for all v > 0,

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x) − F̂B

n (x)| > v

2

)
≤ K1n

−K2c0 . (35)

Moreover, similar to (33), the triangle inequality yields

sup
x∈[0,1]

|F̂ (B,x)
n,cn (x)− F̂B

n (x)| ≤ sup
x∈[0,1]

|F̂ (B,x)
n,cn (x) − F (x)|+ sup

x∈[0,1]

|F (x)− F̂B
n (x)|

≤ 2 sup
x∈[0,1]

|FB
n (x) − F (x)|.

By definition, FB
n − F = n−1/2Bn ◦ L, so together with (5) we derive that for

all v > 0,

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x) − F̂B

n (x)| > v

2

)
≤ P

(
sup

x∈[L(0),L(1)]

|Bn(x)| >
v
√
n

4

)

≤ K1 exp(−K2nv
2/16).

(36)

Note that without loss of generality, possibly enlarging K1 and diminishing K2,
we can choose K1 and K2 to be the same in (35) and (36). Using the bound (35)
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for v ≤ n and the bound (36) for v > n, we obtain

In1 ≤
∫ n

0

K1n
−K2c0rvr−1 dv +

∫ ∞

n

K1 exp(−K2nv
2/16)rvr−1 dv.

Consider a number q with

r − 3q < −2r/(4− τ) (37)

and let K3 = qq exp(−q), so that xq exp(−x) ≤ K3 for all x ∈ [0,∞). Then, we
arrive at

In1 ≤ K1n
−K2c0+r +K1K3

∫ ∞

n

(K2nv
2/16)−qrvr−1 dv

≤ K1n
−K2c0+r +K1K3 (K2n/16)

−q rnr−2q

2q − r
,

(38)

since r − 2q < 0 for all q that satisfy (37). Choose c0 sufficiently large so that
−K2c0 + r < −2r/(4− τ). Then from (37) and (38), we conclude that

In1 = o

(
logn

n

)2r/(4−τ)

. (39)

Next, consider In2. Using a change of variable, we have

In2 =
(
2c2n
)r
∫ ∞

A0/2

P

(
sup

x∈[0,1]

|F̂ (B,x)
n,cn (x) − FB

n (x)| > c2nv

)
rvr−1 dv.

Then we derive from (32), that for sufficiently large A0,

In2 ≤
(
2c2n
)r K1

2||L′||∞

∫ ∞

A0/2

(
n

c0 logn

)1/(4−τ)

n−K2v
22−2−τ ||L′||−τ

∞
c0rvr−1 dv.

Let q > 0 with (37) and let K3 = qq exp(−q). Then, similar to (38), the integral
in the previous display is bounded from above by

K3

∫ ∞

A0/2

(c0 log n)
−1/(4−τ)

[(
K2v

22−2−τ ||L′||−τ
∞ c0 −

1

4− τ

)
log n

]−q

rvr−1 dv.

Choosing A0 sufficiently large, so that

K2(A0/2)
22−2−τ ||L′||−τ

∞ c0 >
2

4− τ
,

this is bounded from above by

K3

∫ ∞

A0/2

(c0 logn)
−1/(4−τ)

[
K2v

22−3−τ ||L′||−τ
∞ c0 logn

]−q
rvr−1 dv.

Hence, In2 is bounded by

(
2c2n
)r K1K3

2||L′||∞
(c0 logn)

−1/(4−τ)
[
K22

−3−τ ||L′||−τ
∞ c0 log n

]−q r(A0/2)
r−2q

2q − r
,
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since r − 2q < 0 for all q with (37). We conclude that for A0 sufficiently large,

In2 = o

(
logn

n

)2r/(4−τ)

(40)

by definition of cn. Combining (34), (39) and (40) completes the proof of The-
orem 2.3. �

Proof of Theorem 2.4. By convexity, we have (a + b)r ≤ 2r−1(ar + br) for
all positive numbers a, b and therefore, (33) yields

E

[
sup

x∈[a,b]

|F̂n(x) − Fn(x)|r
]

≤ 22r−1
E

[
sup

x∈[a,b]

|FB
n (x)− Fn(x)|r

]
+ 2r−1

E

[
sup

x∈[a,b]

|F̂B
n (x) − FB

n (x)|r
]
.

Theorem 2.4 then follows from (6) combined with Theorem 2.3. �

5.2. Proofs for Subsection 2.3

Proof of Theorem 2.5. In the sequel, we use the same notation as in Lem-
ma 2.1. We first prove that

sup
|x−x0|≤εn

|F̂B
n (x) − FB

n (x)| = Op

(
(ετ/2n n−1/2) ∧

(
logn

n

)2/(4−τ)
)
. (41)

It follows from Lemma 2.1 that with c0 sufficiently large,

sup
|x−x0|≤εn

|F̂B
n (x) − F̂ (B,x)

n,cn (x)| = Op(ε
τ/2
n n−1/2),

so the triangular inequality yields

sup
|x−x0|≤εn

|F̂B
n (x) − FB

n (x)|

≤ sup
|x−x0|≤εn

|F̂ (B,x)
n,cn (x) − FB

n (x0)− F (x) + F (x0)|

+ sup
|x−x0|≤εn

|FB
n (x)− FB

n (x0)− F (x) + F (x0)|+Op(ε
τ/2
n n−1/2).

(42)

By definition, with n sufficiently large and x ∈ [x0 − εn, x0 + εn], F̂
(B,x)
n,cn is the

least concave majorant of the restriction of FB
n to In(x) = [x−2cn, x+2cn]∩[0, 1]

so by Marshall’s lemma,

sup
η∈In(x)

|F̂ (B,x)
n,cn (η) − h(η)| ≤ sup

η∈In(x)

|FB
n (η)− h(η)|
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for all concave functions h : In(x) → R. The function η 7→ FB
n (x0)+F (η)−F (x0)

is concave on its domain, so Marshall’s lemma ensures that for all x ∈ [x0 −
εn, x0 + εn],

|F̂ (B,x)
n,cn (x)−FB

n (x0)−F (x)+F (x0)| ≤ sup
η∈In(x)

|FB
n (η)−FB

n (x0)−F (η)+F (x0)|.

Setting δn = 2cn + εn, we conclude from (42) that with MB
n = FB

n − F ,

sup
|x−x0|≤εn

|F̂B
n (x) − FB

n (x)|

≤ 2 sup
|x−x0|≤δn

|MB
n (x) −MB

n (x0)|+Op(ε
τ/2
n n−1/2).

(43)

Consider the first term on the right hand side. With y0 = L(x0) write

n1/2 sup
|x−x0|≤δn

|MB
n (x)−MB

n (x0)| = sup
|x−x0|≤δn

|Bn(L(x))−Bn(L(x0))|

≤ sup
|y−y0|≤δn‖L′‖∞

|Bn(y)−Bn(y0)|,
(44)

using that the derivative L′ is bounded. It follows from (A2) that for all A > 0,

P

(
sup

|y−y0|≤δn‖L′‖∞

|Bn(y)−Bn(y0)| > Aδτ/2n

)
≤ K1 exp(−K2A

2‖L′‖−τ
∞ ),

which tends to zero as A → ∞. Combining this with the assumption that

δn = 2cn + εn ≤ (2c
1/(4−τ)
0 + 1)εn yields

sup
|y−y0|≤δn‖L′‖∞

|Bn(y)−Bn(y0)| = Op(δ
τ/2
n ) = Op(ε

τ/2
n ). (45)

Combining this with (44) and (43) then yields

sup
|x−x0|≤εn

|F̂B
n (x)− FB

n (x)| = Op(ε
τ/2
n n−1/2).

Equation (41) now follows from the previous display combined with Theo-
rem 2.1. Similar to (33), we obtain

sup
|x−x0|≤εn

|F̂n(x)− Fn(x)| ≤ 2 sup
x∈[a,b]

|Fn(x) − FB
n (x)|

+ sup
|x−x0|≤εn

|F̂B
n (x) − FB

n (x)|.
(46)

Hence, the theorem follows from (2) and (41). �

Proof of Theorem 2.6. Combining (2), with γn = O(n−2/(4−τ)), and (46),
with εn replaced by 0, yields

|F̂n(x0)− Fn(x0)| ≤ Op(n
−2/(4−τ)) + |F̂B

n (x0)− FB
n (x0)|.
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Therefore, it suffices to show that

F̂B
n (x0)− FB

n (x0) = Op(n
−2/(4−τ)). (47)

The proof of this is along the lines of the proof of Lemma 2.1, except that we
now take

cn = (c0/n)
1/(4−τ), (48)

for some positive number c0. Without loss of generality we assume that [a, b] =
[0, 1]. Define

x̃0i = inf
{
u ≥ (x0 − 2cn) ∨ 0, such that F̂B

n (u) = F̂ (B,x0)
n,cn (u)

}
,

with the convention that the infimum of an empty set is (x0 + 2cn) ∧ 1, and

x̃0s = sup
{
u ≤ (x0 + 2cn) ∧ 1, such that F̂B

n (u) = F̂ (B,x0)
n,cn (u)

}
,

with the convention that the supremum of an empty set is (x0−2cn)∨0. Arguing
as in the proof of Lemma 2.1, we obtain that

P(F̂B
n (x0) 6= F̂ (B,x0)

n,cn (x0)) ≤ P(x̃0i > x0) + P(x̃0s < x0).

Consider P(x̃0i > x0). Note that if x0 ≤ 2cn, then F̂
(B,x0)
n,cn (0) = FB

n (0) = F̂B
n (0),

so that x̃0i = 0 and hence, P(x̃0i > x0) = 0. Next, consider P(x̃0i > x0), for
x0 ∈ [2cn, 1]. Let αx = f(x0) + cn|f ′(x0)| and tx = c2nf

′(x0)/4. Similar to the
proof of Lemma 2.1, we have P (x̃0i > x0) ≤ P1 + P2, where

P1 = P

(
∃0 ≤ y ≤ x0 − 2cn : FB

n (y)− FB
n (x0 − cn) > (y − x0 + cn)αx

)

and

P2 = P

(
∃z ∈ [x0, (x0 + 2cn) ∧ 1] : FB

n (z)− FB
n (x0 − cn) > (z − x0 + cn)αx

)
.

Furthermore, P1 ≤ P1,1 + P1,2 where, with ε = inft |f ′(t)| and K1,K2 as in
Assumption (A2), we have for sufficiently large n

P1,1 = P
(
FB
n (x0)− FB

n (x0 − cn) > cnαx + tx
)

≤ P

(
MB

n (x0)−MB
n (x0 − cn) >

c2n
8

inf
t∈[0,1]

|f ′(t)|
)

≤ P

(
sup

|L(x0)−y|≤cn||L′||∞

(Bn(L(x0))−Bn(y)) >
c2n
√
n

8
ε

)

≤ K1 exp

(
− K2ε

2

64||L′||τ∞
nc4−τ

n

)

and

P1,2 = P
(
∃0 ≤ y ≤ x0 − 2cn : FB

n (x0)− FB
n (y) < (x0 − y)αx + tx

)
.
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Similar to the proof of Lemma 2.1, for z ∈ [1, x0/(2cn)], define

Yn(x0, z) = FB
n (x0 − 2cnz)− FB

n (x0) + 2cnαxz + tx,

so that P1,2 = P (∃z ∈ [1, x0/(2cn)] : Yn(x0, z) > 0). With a such that aε >
2 supt |f ′(t)|, using (27) in the case z ∈ [a, x0/(2cn)] and (29) in the case z ∈ [1, a]
we arrive at

P1,2 ≤ P

(
sup

z∈[a,x0/(2cn)]

{
MB

n (x0 − 2cnz)−MB
n (x0)− εc2nz

2
}
> 0

)

+ P

(
sup

z∈[1,a]

(
MB

n (x0 − 2cnz)−MB
n (x0)

)
>

c2n
8

inf
t∈[0,1]

|f ′(t)|
)

≤ K1 exp
(
−K2nc

4−τ
n

)
= K1 exp (−K2c0) ,

for some positive K1,K2 that depend only on f and L. For the last inequality,
we used both assumptions (A2) and (A3). We used the definition (48) for the
last equality. We conclude that P1 tends to zero as c0 → ∞. Similarly, one can
obtain that P2 and P(x̃0s < x0) converge to zero, as c0 → ∞. Therefore, for all
ε > 0 there exists C0 > 0 such that

P

(
F̂B
n (x0) 6= F̂ (B,x0)

n,cn (x0)
)
≤ ε.

provided that c0 ≥ C0. Hence, to prove (47), it now suffices to prove that

F̂ (B,x0)
n,cn (x0)− FB

n (x0) = Op(n
−2/(4−τ)), (49)

for arbitrary c0. To this end, first note that

F̂ (B,x0)
n,cn (x0)− FB

n (x0) = (CMInT
(B,x0)
n )(0), (50)

where In = [−((c−1
n x0)∧2, (c−1

n (1−x0))∧2], T
(B,x0)
n is taken from (30), and for

all intervals I ⊂ R, CMI denotes the operator that maps a bounded function
h : I → R into the least concave majorant of h on I. Using (44) and (45) with δn
replaced by 2cn, we conclude that

T (B,x0)
n (η) = Op(n

−1/2cτ/2n ) + F (x0 + cnη)− F (x0)

where the big Op-term is uniform in η ∈ In. Next, by Taylor expansion we have

T (B,x0)
n (η) = Op(n

−1/2cτ/2n ) +O(c2n) + cnηf(x0) = Op(c
2
n) + cnηf(x0),

by definition (48) of cn, where the big Op-term is uniform in η ∈ In. The
supremum distance between the least concave majorants of processes is less
than or equal to the supremum distance between the processes themselves, so
with Yn(η) = cnηf(x0), we have

(CMInT
(B,x0)
n )(0) = Op(c

2
n) + (CMInYn)(0).

Since the process Yn is linear, we have CMInYn = Yn and therefore,
(CMInYn)(0) = Yn(0) = 0. We then conclude from (50) that

F̂ (B,x0)
n,cn (x0)− FB

n (x0) = Op(c
2
n).

This completes the proof of (49) by definition of cn. �
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5.3. Proofs for Subsection 3.1

Proof of Corollary 3.1. According to Theorems 2.2 and 2.4, it suffices to
prove that Bn satisfies (A2), (A3) and (5) with τ = 1. Note that we can write

Bn(t) = Wn(t)− ξnt, for t ∈ [a, b], (51)

where Wn is Brownian motion and ξn ≡ 0, if Bn is Brownian motion, and
ξn ∼ N(0, 1) independent of Bn, if Bn is Brownian bridge. Therefore, for all
fixed x and all u ∈ (0, 1] and v > 0 we have

P

(
sup

|x−y|≤u

|Bn(x) −Bn(y)| > v

)
≤ P

(
sup

|x−y|≤u

|Wn(x) −Wn(y)| > v/2

)

+ P (u|ξn| > v/2) .

Using change of origin and scaling properties of Brownian motion, since u ≤ 1
we obtain

P

(
sup

|x−y|≤u

|Bn(x) −Bn(y)| > v

)
≤ P

(
√
u sup

|x|≤1

|Wn(x)| > v/2

)

+ P
(√

u|ξn| > v/2
)
.

By Doob’s inequality (see e.g. Proposition 1.8 in [17]), the first probability
on the right hand side is bounded by 4 exp(−v2/(8u)). Moreover, the second
probability on the right hand side is bounded by exp(−v2/(8u)), whence

P

(
sup

|x−y|≤u

|Bn(x) −Bn(y)| > v

)
≤ 5 exp(−v2/(8u)).

This proves that Bn satisfies (A2) with K1 = 5, K2 = 1/8 and τ = 1. We
obtain (5) from (A2) for the special case of y = 0 and u = L(b) − L(a), using
that Bn(0) = 0 almost surely.

Now, consider (A3). For all u ∈ (0, 1], v > 0, and all x ∈ I we have

P

(
sup
z≥u

{
Bn(x− z)−Bn(x) − vz2

}
> 0

)

≤ P

(
sup
z≥u

{
Wn(x− z)−Wn(x)−

vz2

2

}
> 0

)
+ P

(
sup
z≥u

{
ξnz −

vz2

2

}
> 0

)
,

where Wn and ξn are taken from (51). Changing origin in the Brownian motion
yields

P

(
sup
z≥u

{
Bn(x − z)−Bn(x)− vz2

}
> 0

)

≤ P

(
sup
z≥u

{
Wn(z)−

vz2

2

}
> 0

)
+ P

(
sup
z≥u

{
ξnz −

vz2

2

}
> 0

)
.
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By (3.3) in [7], the first probability on the right hand side is bounded by
exp(−v2u3/8). Moreover,

P

(
sup
z≥u

{
ξnz −

vz2

2

}
> 0

)
≤ P (|ξn| > vu/2) ≤ e−(vu)2/8 ≤ e−v2u3/8,

since u ≤ 1. Therefore,

P

(
sup
z≥u

{
Bn(x− z)−Bn(x)− vz2

}
> 0

)
≤ 2 exp(−v2u3/8),

which proves that Bn satisfies (A3) with K1 = 2, K2 = 1/8 and τ = 1. This
concludes the proof of Corollary 3.1. �

Proof of Corollary 3.2. Similar to Theorem 5(ii) in [5], it can be proved
that if E|ǫi|3 < ∞, then

P

{
n2/3 sup

t∈[a,b]

∣∣∣Fn(t)− E(Fn(t)) − n−1/2Bn ◦ Ln(t)
∣∣∣ > x

}
≤ Cx−3, (52)

for all x > 0, with Bn a Brownian motion and

Ln(t) =
E(ǫi)

2

n

n∑

i=1

1(ti ≤ t).

This implies that

sup
t∈[a,b]

|Fn(t)− E(Fn(t))− n−1/2Bn ◦ Ln(t)| = Op(n
−2/3).

With (11) and (A1) we have

sup
t∈[a,b]

|F (t)− E(Fn(t))| = O(n−2/3)

and therefore,

sup
t∈[a,b]

|Fn(t)− F (t)− n−1/2Bn ◦ Ln(t)| = Op(n
−2/3).

Moreover, with (11) and L(t) = (t− a)E(ǫi)
2/(b− a), we have

sup
t∈[a,b]

|Ln(t)− L(t)| ≤ Mn−1/3,

for some M > 0. Since the Brownian motion Bn satisfies (A2) with τ = 1, with
Lemma 5.1 we have

P

(
sup

t∈[a,b]

|Bn ◦ Ln(t)−Bn ◦ L(t)| > v

)

≤ P

(
sup

x∈[L(a),L(b)]

sup
|x−y|≤Mn−1/3

|Bn(x) −Bn(y)| > v

)

≤ K1n
1/3M−1 exp

(
−K2v

2n1/3/M
)
.
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It follows that

n−1/2 sup
t∈[a,b]

|Bn ◦ Ln(t)−Bn ◦ L(t)| = Op(n
−2/3(logn)1/2).

Hence, (2) holds with γn = O(n−2/3(log n)1/2) and L(t) = (t− a)E(ǫ2i )/(b− a),
and Corollary 3.2 follows from Corollary 3.1. �

Proof of Corollary 3.3. From the proof of Theorem 6 in [5], it can be seen
that, due to the Hungarian embedding, (2) holds with L = F , Bn a Brownian
bridge, and γn = O(n−2/3). Therefore, Corollary 3.3 follows from Corollary 3.1.

�

Proof of Corollary 3.4. Similar to Theorem 3 in [5], it can be proved that (2)
holds with Bn a Brownian motion,

L(t) =

∫ t

0

f(u)

(1 −G(u))(1−H(u))
du, t ∈ [0, 1]

and γn = O(n−2/3). Therefore, Corollary 3.4 follows from Corollary 3.1. �

5.4. Proof of Corollary 3.5

Let FB
n = F + n−1/2Bn ◦ L, with L and Bn taken from (2). Define

SB
n (t) = S(t) + n−1/2B̃n ◦ L(t) = FB

n (b)− FB
n (t),

where B̃n(t) = Bn(L(b))−Bn(L(t)). Furthermore, let

B̃H
n (t) =

∫ t

a

B̃n ◦ L(x) dx, t ∈ [a, b],

and define

HB
n (t) =

∫ t

a

SB
n (x) dx = H(t) + n−1/2B̃H

n (t), t ∈ [a, b].

Assumption (2) with γn = O(n−1 logn) ensures that

sup
t∈[a,b]

|Hn(t)−HB
n (t)| ≤ (b− a) sup

t∈[a,b]

|Sn(t)− SB
n (t)|

≤ (b− a)

(
|Fn(b)− FB

n (b)|+ sup
t∈[a,b]

|Fn(t)− FB
n (t)|

)

≤ 2(b− a) sup
t∈[a,b]

|Fn(t)− FB
n (t)|

= Op

(
logn

n

)
,
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which means that Assumption (2) also holds with γn = n−1 log n, and Fn, F,Bn

replaced by Hn, H, B̃H
n , respectively, and L(t) = t. Clearly H(a) = 0 and, since

f = −S′ satisfies (A5), H is twice continuously differentiable with a decreasing
first derivative S that satisfies

0 < inf
t∈[a,b]

|S′(t)| ≤ sup
t∈[a,b]

|S′(t)| < ∞.

We prove below that both (A2) and (A3) hold with τ = 2, L(t) = t, and Bn

replaced by B̃H
n . Then, Corollary 3.5 immediately follows from Theorem 2.2.

By definition of B̃H
n , for all u > 0, v > 0 and x ∈ [a, b] we have

sup
|x−y|≤u

|B̃H
n (x)− B̃H

n (y)| ≤ sup
|x−y|≤u

∫ x∨y

x∧y

|Bn ◦ L(b)−Bn ◦ L(t)| dt

≤ 2u sup
t∈[L(a),L(b)]

|Bn(t)|.

Hence,

P

(
sup

|x−y|≤u

|B̃H
n (x)− B̃H

n (y)| > v

)

≤ P

(
u sup

t∈[L(a),L(b)]

|Wn(t)| > v/4

)
+ P (u‖L‖∞|ξn| > v/4)

where Wn and ξn are taken from (51), and where ‖L‖∞ = supt∈[a,b] |L(t)| < ∞,
by assumption. Therefore,

P

(
sup

|x−y|≤u

|B̃H
n (x)− B̃H

n (y)| > v

)

≤ P

(
u sup

t∈[L(a),L(b)]

|Wn(t)| > v/4

)
+ exp(−v2u−2‖L‖−2

∞ /32).

By symmetry and scaling properties of Brownian motion, the first probability
on the right hand side satisfies

P

(
u sup

t∈[L(a),L(b)]

|Wn(t)| > v/4

)
≤ 2P

(
u
√
‖L‖∞ sup

t∈[0,1]

|Wn(t)| > v/4

)

≤ 4P

(
u
√
‖L‖∞ sup

t∈[0,1]

Wn(t) > v/4

)
.

By Doob’s inequality (see e.g. Proposition 1.8 in [17]), this is bounded by
4 exp(−v2u−2‖L‖−1

∞ /32), whence

P

(
sup

|x−y|≤u

|B̃H
n (x)− B̃H

n (y)| > v

)
≤ 5 exp

(
−v2u−2(‖L‖−2

∞ ∧ 1)/32
)
.
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This proves that (A2) holds with Bn replaced by B̃H
n , τ = 2, K1 = 5 and

K2 = (‖L‖−2
∞ ∧ 1)/32.

Next, consider (A3). By definition of B̃H
n , for all u > 0, v > 0 and x ∈ [a, b]

we have

P

(
sup
z≥u

{
B̃H

n (x− z)− B̃H
n (x)− vz2

}
> 0

)

≤ P

(
sup
z≥u

{
2z sup

t∈[L(a),L(b)]

|Bn(t)| − vz2

}
> 0

)

≤ P

(
sup

t∈[L(a),L(b)]

|Bn(t)| > vu/2

)
.

Similar arguments as above yield that (A3) holds true with Bn replaced by B̃H
n ,

τ = 2, K1 = 5 and K2 = (‖L‖−2
∞ ∧ 1)/32. This completes the proof of Corol-

lary 3.5. �

5.5. Proofs for Section 4

Proof of Lemma 4.1. Let p1, . . . , pm be the jump sizes of f̂n at the points
of jump τ1 < · · · < τm ∈ (a, b]. Note that f̂n(x) = f̂n(b), for all x ∈ (τm, b], and
that for i = 1, 2, . . . ,m,

f̂n(t) = f̂n(τi) = f̂n(b) +

m∑

j=i

pj ,

for all t ∈ (τi−1, τi], where τ0 = a. Therefore, when we define Khn(t) =
h−1
n K(t/hn), for t ∈ R, then for t ∈ [a+ hn, b− hn], we can write

f̂ns(t) =
1

hn

∫ b

a

K

(
t− x

hn

)
f̂n(x) dx.

=

m∑

i=1



f̂n(b) +

m∑

j=i

pj





∫ τi

τi−1

Khn(t− x) dx+ f̂n(b)

∫ b

τm

Khn(t− x) dx,

This means that for all t ∈ [a+ hn, b− hn],

f̂ns(t) =
m∑

j=1

pj

∫ τj

a

Khn(t− x) dx + f̂n(b)

∫ b

a

Khn(t− x) dx

=

m∑

j=1

pj

∫ (t−a)/hn

(t−τj)/hn

K(u) du+ f̂n(b)

∫ (t−a)/hn

(t−b)/hn

K(u) du.

Using that K is supported on [−1, 1], together with the fact that (t−a)/hn ≥ 1
and (t − b)/hn ≤ −1, for all t ∈ [a + hn, b − hn], we obtain (20). Because

K ≥ 0, we conclude that f̂ns is non-increasing on [a+ hn, b− hn]. In particular,

we have f̂ ′
ns(a + hn) ≤ 0 and f̂ ′

ns(b − hn) ≤ 0, so it immediately follows from

definition (19) that f̂ns is also non-increasing on the intervals [a, a + hn] and
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[b − hn, b]. Since f̂ns is continuous, we conclude that f̂ns is non-increasing on
the whole interval [a, b]. �

Proof of Lemma 4.2. Denoting f̂
(0)
ns = f̂ns and f̂

(1)
ns = f̂ ′

ns, for l = 0, 1 we
have

sup
t∈[a+hn,b−hn]

∣∣∣f̂ (l)
ns (t)− f̃ (l)

n (t)
∣∣∣

=

∣∣∣∣
1

h1+l
n

∫
(F̂n(t− uhn)− Fn(t− uhn))K

(1+l)(u) du

∣∣∣∣

≤ 1

h1+l
n

sup
s∈[a,b]

|F̂n(s)− Fn(s)|
∫

|K(1+l)|(u)| du

= Op

(
h−(1+l)
n n−2/3(log n)2/3

)
,

(53)

where we use Corollary 3.1 in the last equality. On [a, a + hn] we have by
definition (19),

sup
t∈[a,a+hn]

∣∣∣f̂ns(t)− f̃n(t)
∣∣∣

≤ |f̂ns(a+ hn)− f̃n(a+ hn)|+ hn|f̂ ′
ns(a+ hn)− f̃ ′

n(a+ hn)|

≤ Op

(
h−1
n n−2/3(logn)2/3

)
,

where we used (53) with l = 0, 1 in the last inequality. Combining this with a
similar argument on [b−hn, b], together with an application of (53) for l = 0 on
[a+hn, b− hn], completes the proof of the lemma for l = 0. Similarly, for l = 1,

sup
t∈[a,a+hn]

∣∣∣f̂ ′
ns(t)− f̃ ′

n(t)
∣∣∣ =

∣∣∣f̂ ′
ns(a+ hn)− f̃ ′

n(a+ hn)
∣∣∣

= Op

(
h−2
n n−2/3(logn)2/3

)
.

Using a similar argument on [b − hn, b], together with applying (53) for l = 1
on [a+ hn, b− hn], completes the proof for l = 1. �
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