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Abstract: We propose a nonparametric approach to link prediction in
large-scale dynamic networks. Our model uses graph-based features of pairs
of nodes as well as those of their local neighborhoods to predict whether
those nodes will be linked at each time step. The model allows for different
types of evolution in different parts of the graph (e.g, growing or shrinking
communities). We focus on large-scale graphs and present an implementa-
tion of our model that makes use of locality-sensitive hashing to allow it to
be scaled to large problems. Experiments with simulated data as well as five
real-world dynamic graphs show that we outperform the state of the art,
especially when sharp fluctuations or nonlinearities are present. We also
establish theoretical properties of our estimator, in particular consistency
and weak convergence, the latter making use of an elaboration of Stein’s
method for dependency graphs.
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1. Introduction

Many real-world problem domains generate data in the form of graphs or net-
works. Examples include social networks (e.g., Facebook), recommendation ser-
vices (e.g., Netflix or Last.fm), biochemical networks, citation graphs and market
analysis. The inferential problem in these settings is often one of link prediction.
This problem can be formulated in a static setting where one assumes that a
fixed but unknown graph is partially observed, and one wishes to assess whether
a pair of nodes that are not known to be linked are in fact linked, given an ob-
served linkage pattern among other nodes. Many real-world graphs are often
best modeled, however, as dynamic entities, where links can arise and disappear
over time. In the dynamic setting the link prediction problem involves assessing
whether two nodes will be linked at time t given the linkage patterns at all
previous times.

Real-world graphs of current interest are often very large, involving many
hundreds of thousands or millions of nodes. The dynamic setting involves se-
quences of such graphs. Given the large-scale nature of these data structures,
inferential methodology that may be feasible on smaller graphs of hundreds of
nodes, such as Markov random fields and other graphical models, are generally
infeasible for real-world link prediction problems, and practical approaches to
such problems generally involve simple heuristics, such as estimating a prob-
ability of a link being present as a simple function of the last time a pair of
nodes formed a link, or the number of common neighbors between a pair of
nodes [14, 18, 27, 31]. While these heuristics do respect the computational im-
perative, and are often useful in practice, there has been little in the way of
statistical analysis to provide a sound foundation for their use and to assess
the quality of the inferences that they provide. This is particularly true in the
dynamic setting, where link prediction is often approached by specifying various
measures of connectivity in a static graph and extending these measures in an
ad hoc manner to sequences of graphs.

In this paper, we develop a nonparametric methodology for link prediction
in large-scale dynamic networks. Our methodology is a relatively simple kernel-
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based approach, one that aims to retain the virtues of the simple heuristic
methods, both in their favorable computational scaling and in the relatively
weak assumptions that they appear to make on the graph generation process. As
compared to existing heuristic approaches, however, our kernel-based approach
allows us to provide a formal inferential treatment of link prediction—we estab-
lish consistency and weak convergence of our estimator. On the computational
front, while a naive implementation of a kernel method would have poor scaling
(due to the need to compare query points to every point in a training set), we
show that our kernel-based approach is amenable to locality sensitive hashing
(LSH) [15], which provides a fast and scalable implementation of the estimator.

Our approach is in the spirit of the nonparametric autoregressive time series
models [19]. In these models the evolution of a sequence xt of continuous uni-
variate random variables is modeled by taking the conditional expectation of xt

to be a function of a moving window (xt−1, . . . , xt−p), and estimating this func-
tion via kernel regression. It is also possible to consider multivariate extensions
of such models. While it would be possible in principle to apply such models to
our problem by encoding graphs as vectors, in practice the large-scale graphs
that are our focus would generate high-dimensional vector representations that
would be fatal to naive kernel regression. Instead, we think of the graphs as
providing a “spatial” dimension that is orthogonal to the time axis. In addition
to imposing the conditional independence assumption implicit in the use of a
moving window, we make the additional assumption that the linkage behavior
of any node i is independent of the rest of the graph given its “local neighbor-
hood”; in effect, local neighborhoods are to the spatial dimension what moving
windows are to the time dimension.

Thus we model the out-edges of i at time t as a function of the local neigh-
borhood of i over a moving window of time, resulting in a much more tractable
problem. As a byproduct, this also allows for different evolutions for different re-
gions to exist in the same graph; e.g., regions of slow versus fast change in links,
assortative versus disassortative regions (where high-degree nodes are more/less
likely to connect to other high-degree nodes), densifying versus sparsifying re-
gions, and so on.

As a brief summary, our contributions are as follows:
(1) Nonparametric problem formulation: We offer, to our knowledge, the first

nonparametric model for link prediction in dynamic networks. The model is pow-
erful enough to accommodate different regions with different dynamics, which
is not accommodated in existing heuristic approaches. It also allows covariates
to be incorporated (such as demographic data about a node).

(2) Consistency and weak convergence of the estimator: We prove consistency
of our estimator using notions of strong mixing in Markov chains. To establish
weak convergence we show how to adapt Stein’s method to our setting, going
beyond the dependency graph formulation of Stein’s method [26] to allow long-
range weak dependence instead of marginal independence.

(3) Fast implementation via LSH: Nonparametric methods such as kernel re-
gression require computing kernel similarities between a query and all members
of the training set. A naive implementation would lead to computation linear
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in the training set size, which is generally infeasible for large-scale networks. In
order to mitigate this issue, we adapt the locality sensitive hashing algorithm
of Indyk and Motwani [15] to our particular kernel function.

(4) Empirical improvements over previous methods: We demonstrate the em-
pirical effectiveness of our method on link prediction tasks on both simulated and
real networks. On graphs with nonlinear linkage patterns (e.g., seasonal trends),
we outperform all of the state-of-the-art heuristic measures for static and dy-
namic graphs. This result is obtained in particular on a real-world sensor network
graph. On other real-world datasets with smoother and simpler evolution, we
perform as well as the best competitor. Finally, we compare our LSH-based ker-
nel regression to exact kernel regression, and show that the LSH-based approach
yields almost identical accuracy at a fraction of the computational cost.

The rest of the paper is organized as follows. We present the model and
the estimator in Section 2. Our LSH implementation is described in Section 3.
Section 4 provides an experimental evaluation of our method. We provide an
analysis of consistency in 5. In Section 6 we discuss our adaptation of Stein’s
method which we use to establish weak convergence of our estimator in Sec-
tion 7. We provide a discussion of related work in Section 8 and we present our
conclusions in Section 9.

2. The model and the estimator

We begin by introducing some notation. Consider a sequence of directed graphs,
G = {G1, G2, . . . , Gt}. Define the indicator Yt(i, j) which equals 1 if the edge i→
j exists at time t, and 0 otherwise. LetNt(i) denote the local neighborhood of node
i in Gt; in our experiments, we define it to be the set of nodes within two hops of
i and all edges between the nodes in that set (the reasoning behind this choice
is explained later in Section 4.4). Note that the neighborhoods of nearby nodes

can overlap. For any integer p> 1, let ~Nt,p(i) = {Nt(i), . . . , Nt−p+1(i)}; this rep-
resents the local neighborhood of i along both spatial and temporal dimensions.

2.1. The model

Our model is as follows:

Yt+1(i, j)|G ∼ Bernoulli(g(ψt(i, j)))

ψt(i, j) = {st (i, j) , dt (i)},
where 0 ≤ g(·) ≤ 1 is a function of two sets of features: those specific to the pair
of nodes (i, j) under consideration—{st (i, j)}—and those for the local neighbor-
hood of the endpoint i—{dt (i)}. We require that st (i, j) and dt (i) be functions

of ~Nt,p−1(i) and ~Nt,p(i) respectively, so that ψt(i, j) is a function of ~Nt,p(i).

Thus, Yt+1(i, j) is assumed to be independent of G given ~Nt,p(i), limiting the
dimensionality of the problem.

We make two observations here. First, the graphs are directed and ψt(i, j)
depends on dt (i) but not on dt (j). The intuition underlying this choice is that
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node i forms edges based on the behavior it observes in its neighborhood, and
this is most easily expressed via directed graphs and egocentric neighborhoods
around node i. Second, two pairs of nodes (i, j) and (i′, j′) that are close to each
other in terms of graph distance are likely to have overlapping neighborhoods,
and hence a higher probability of sharing neighborhood-specific features. Thus,
link prediction probabilities for pairs of nodes from the same region are likely
to be similar. Such a property is motivated by the intuition that each node
at a particular time belongs to some community, and nodes within the same
community evolve similarly, but different communities might evolve differently
or be in different stages of the same evolutionary pattern (e.g., one community
is in the growth part of its life-cycle, while another is towards the tail end of the
same life-cycle). Thus, the neighborhood around each node encapsulates this
local community without requiring explicit community detection.

Pair-specific features. We assume that the pair-specific features st (i, j)
come from a finite ordered set S; if not, they are discretized into such a set.
For example, for any node j ∈ ~Nt,p−1(i) that was within two hops of i in the
last p−1 timesteps, one may let st (i, j) record the number of common neighbors
between i and j at time t, and the last time the i → j link appeared, up to
a maximum of p − 1 timesteps ago (lastlink); note that both are functions of
~Nt,p−1(i). Details of the features used in our experiments are provided later in
Section 4.1.

Neighborhood-specific features. Let dt (i) = {ηi,t (s) , η+
i,t (s) ; ∀s ∈ S},

where ηi,t (s) are the number of node pairs in Nt−1(i) with pair-specific feature
vector s, and η+

i,t (s) the number of such pairs which were also linked by an edge
in the next timestep t. In a nutshell, dt (i) tells us the chances of an edge being
created in t given its features in t − 1, averaged over the whole neighborhood
Nt−1(i)—in other words, it captures the change of the neighborhood around i
over one timestep. Note also that since ηi,t (s) uses pair-specific feature vectors
(which can look back p− 1 timesteps) from Nt−1(i), it is a function of Nt(i), as
is dt (i).

One can think of dt (i) as a contingency table indexed by the features s.
Contingency tables are widely referred to as “datacubes” in the database com-
munity, and we will adopt this terminology, referring to dt (i) as a datacube, and
a feature vector s as the “cell” s in the datacube with contents (ηi,t (s) , η+

i,t (s)).
Finiteness of S is necessary to ensure that datacubes are finite-dimensional,
which allows us to index them and quickly find nearest-neighbor datacubes.

2.2. The estimator

Our estimator of the function g(·) at time T is:

g̃T (ψT (i, j)) =

∑
i′,j′,t′

Γ(ψT (i, j), ψt′(i′, j′)) · Yt′+1(i′, j′)

∑
i′,j′,t′

Γ(ψT (i, j), ψt′(i′, j′))
, (2.1)
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Γ(ψT (i, j), ψt′(i′, j′)) = K(dt (i) , dt′ (i′)) · ξ(st (i, j) , st′ (i′, j′)). (2.2)

Here, the kernel function Γ(ψT (i, j), ψt′(i′, j′)) is further factored into a pair-
specific part ξ(st (i, j) , st′ (i′, j′)) and a neighborhood-specific part K(dt (i) ,
dt′ (i′)). We discuss these next.

Pair-specific factor. Let dist(s, s′) denote the L1 distance between features
s and s′, and let n(s) denote the set of features at L1 distance 1 from feature s.
We define ξ(st (i, j) , st′ (i′, j′)) as

ξ(st (i, j) , st′ (i′, j′))

:=
I{st′ (i′, j′) = st (i, j)} + ζT I{dist(st (i, j) , st′ (i′, j′)) = 1}

1 + ζT |n(st (i, j))| , (2.3)

where ζT is a bandwidth parameter which we will require to be O(T−(1/2+ǫ))
for some ǫ > 0 in order to obtain consistency and distributional convergence.
Note that ξ(st (i, j) , st′ (i′, j′)) → I{st′ (i′, j′) = st (i, j)} as ζT → 0. This factor
can also be extended to features at L1 distance two and so forth, while weighing
those terms by powers of ζT .

Plugging in the definition of the kernel in Equation 2.1, we obtain the follow-
ing interpretation of the estimator:

g̃T (ψT (i, j)) =

∑
i′,t′

K(dt(i),dt′(i′))

(
η+

i′,t′+1
(st(i,j))+ζT

∑
s∈n(st(i,j))

η+

i′,t′+1
(s)

)

∑
i′,t′

K(dt(i),dt′ (i′))

(
ηi′,t′+1(st(i,j))+ζT

∑
s∈n(st(i,j))

ηi′,t′+1(s)

) . (2.4)

Useful intuition can be obtained by considering the case ζT = 0. Here, given the
query pair (i, j) at time t, we look inside cells for the query feature s = st (i, j) in
all neighborhood datacubes, compute the average η+

i′,t′ (s) and ηi′,t′ (s) in these
cells after accounting for the similarities of the datacubes to the query neigh-
borhood datacube, and use their quotient as the estimate of linkage probability.
Letting ζT > 0 provides an estimator that deals more effectively with sparsity
by computing weighted averages of η+

i′,t′ (s) and ηi′,t′ (s) over features s that are
“close” to st (i, j).

Thus, the probability estimates are derived from historical instances where
(a) the feature vector of the historical node pair matches the query, and (b) the
local neighborhood is similar as well.

Neighborhood-specific factor. Now, we need a measure of the similarity
K(dt (i) , dt′ (i′)) between neighborhoods, with the goal of treating two neigh-
borhoods as similar if they have similar probabilities of generating links between
node pairs with feature vector s, for any s ∈ S. To this end we could simply
compare point estimates η+

. (s)/η.(s), but we also wish to account for the vari-
ance in these estimates. We achieve this by defining a similarity measure that
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has a Bayesian flavor:

K(dt (i) , dt′ (i′)) = e−D(dt(i),dt′(i′))/bT (0 < bT < 1) (2.5)

D(dt (i) , dt′ (i′)) =
∑

s∈S

TV(X,Y )

X ∼ B
(
η+

i,t (s) , ηi,t (s) − η+
i,t (s)

)

Y ∼ B
(
η+

i′,t′ (s) , ηi′,t′ (s) − η+
i′,t′ (s)

)
,

where TV(X,Y ) denotes the total variation distance between the distributions
of X and Y , B is the beta distribution and bT ∈ (0, 1) is a bandwidth parameter.
We will require bT = O(T−(1/2+θ)) for some θ > 0 to obtain appropriate rates
when we study the consistency and distributional convergence of our estimator.

Thus, K(dt (i) , dt′ (i′)) is a discrete analog of a continuous kernel function
(similar functions can be found in Aitchison and Aitken [2] and Wang and van
Ryzin [33]). As is the case with continuous kernel functions, it has the property
that as the bandwidth parameter bT → 0, it is equal to one if and only if
dt (i) = dt′ (i′), and zero otherwise.

Remarks. To better understand our choice of estimator, consider by way of
contrast a simple estimator that computes the fraction of pairs for which the
feature lastlink was equal to k at time t′ and which formed an edge at time t′ +1
(for k = 1, 2, . . .). This approach suffers from two key problems that make it
perform poorly on real-world graphs. First, it does not allow for local variations
in the link-formation fractions, as would be expected for communities evolving
differently within the same graph. We address this problem by maintaining a
separate datacube for each local neighborhood. The second, more subtle, prob-
lem is the implicit assumption of stationarity—a node’s link-formation prob-
abilities are assumed to be time-invariant functions of the datacube features.
This assumption does not allow for seasonal changes in linkage patterns, or for
a transition from slow to fast growth, etc. Our model addresses this issue by
finding historical neighborhoods from some previous time t′ with datacubes sim-
ilar to the query datacube, and uses their evolution from t′ to t′ + 1 to predict
link formation in the next time step for the current neighborhood. This helps
us learn nonlinear trends.

Our estimator also has the virtue that it combats sparsity by aggregating
data across similarly-evolving communities even if they are separated by graph
distance and time. That said, sparsity remains a serious issue, and we provide
a further discussion of sparsity in the following section.

Finally, note that we build the datacube so as to encode the recent change
of a neighborhood, and not just the distribution of features in the neighbor-
hood. Thus, for example, two neighborhoods may have the same datacube if
the fraction of lastlink = 1 node pairs that formed an edge in the next timestep
is the same in both neighborhoods, and not if they both merely had the same
number of lastlink = 1 pairs. Thus, it is the change in link structure that drives
the estimation of linkage probabilities. Moreover, two neighboring nodes may
end up having very similar datacubes, and will end up forming links in a similar
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way, whereas very different datacubes will reflect the variations in link formation
patterns among different communities.

2.3. Sparsity

If the graphs are sparse, or the time series short, the estimator may be unreliable
in practice. There are two main reasons for this, which we discuss next.

First, a node i can have zero degree and hence an empty neighborhood. To
cope with this issue, we consider the union of two-hop neighborhoods over the
last p − 1 timesteps (instead of just the current timestep) in constructing all
pair-specific features. This reduces sparsity while retaining the property that
the feature vector ψt(i, j) is a function of the spatio-temporally bounded neigh-

borhood ~Nt,p(i).
Second, and more problematically, the η.(s) and η+

. (s) values obtained from
kernel regression can be small, yielding an estimated linkage probability η+

. (s)/
η.(s) that is unreliable numerically. We offer a threefold solution to this problem:

• Using similar features: The inner kernel ξ (Equation 2.3) combines η.(s)
and η+

. (s) with a weighted average of the corresponding values for any s′

that are “close” to s, the weights encoding the similarity between s′ and s.
Our estimator (Eq. 2.3) already does this for feature pairs within an L1

distance of 1).
• Accounting for uncertainty in ranking: In determining a final ranking, in-

stead of using η+
. (s)/η.(s) directly, we use the lower end of the 95% Wilson

score interval [34]. The node pairs that are ranked highest according to
this “Wilson score” are those that have high estimated linkage probability
η+

. (s)/η.(s) and η.(s) is high (implying a reliable estimate).
• Smoothing via a prior: We use a “backoff” smoothing procedure for the

Wilson scores, in which the raw scores are smoothed against the scores
obtained from a “prior” datacube, which is the average of all histori-
cal datacubes. The degree of smoothing depends on η.(s). This can be
thought of as a simple hierarchical model, where the lower level (set of
individual datacubes) smooths its estimates using the higher level (the
prior datacube).

3. Fast search using LSH

A naive implementation of the nonparametric estimator in Equation (2.4) com-
putes kernel similarity between the query datacube and all n datacubes for each
of the T timesteps for each prediction, which can be infeasibly slow for large
graphs. To obtain a more computationally tractable estimator, we consider only
the top-r closest neighborhoods (in terms of the largest kernel similarities). The
value of r is a parameter of the algorithm; for our experiments we use r = 20.
What is needed to make this practical is a fast method (one that runs in sub-
linear time) to quickly find the top-r closest neighborhoods.

We achieve this by using locality sensitive hashing (LSH) [15]. Hashing is
often used in databases for fast “table-lookups” or retrieving matching items
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from a large database. The key component is a hash function that maps a given
“key” or object to a certain hash value. In order to search for a particular key,
we compute the hash value and do a table lookup with this value. The concept
of “locality sensitive” hashing refers to hash functions having the property that,
with high probability, two “similar” data items are hashed to the same value.
This facilitates approximate nearest neighbor search, and is suitable for high-
dimensional spaces, where traditional nearest neighbor search techniques are
often infeasible.

The standard LSH method operates on bit sequences, and maps sequences
with small Hamming distance to the same hash bucket. In our setting, we must
hash datacubes, and use the total variation distance metric. We make use of
the fact that total variation distance between discrete distributions is half the
L1 distance between the corresponding probability mass functions. If we could
approximate the probability distributions in each datacube cell with bit se-
quences, then the L1 distance would just be the Hamming distance between
these sequences, making our setting amenable to the use of standard LSH. We
achieve this with three steps:

Conversion to bit sequence The key idea is to approximate the linkage prob-
ability distribution by discretization. We first discretize the range [0, 1]
(since we deal with probabilities) into B1 buckets. For each bucket we
compute the probability mass p falling inside it. This p is encoded using
B2 bits by setting the first ⌊pB2⌋ bits to 1, and the others to 0. In this
way the entire distribution (i.e., one cell) is represented by B1B2 bits. As a
result the entire datacube can now be stored in |S|B1B2 bits. However, in
all our experiments, datacubes were very sparse with only M ≪ |S| cells
ever being non-empty (usually, 10–50); thus, we use only MB1B2 bits in
practice. The Hamming distance between two pairs of MB1B2 bit vectors
yields the total variation distance between datacubes (modulo a constant
factor).

Distances via LSH We create a hash function by picking a uniformly random
sample of k bits out of MB1B2. For each hash function, a hash table is
created to store all datacubes whose hashes are identical in these k bits. We
use ℓ such hash functions. A query datacube is first hashed using each of
these ℓ functions. Then we create a candidate set containing O(max(ℓ, r))
of distinct datacubes sharing any of these ℓ hashes. The total variation
distance of these candidates to the query datacube is computed explicitly,
yielding the closest matching historical datacubes.

Picking k The number of bits k is crucial in balancing accuracy versus query
time: while a large k hashes all datacubes to their own hash bucket, return-
ing a few or no matches to the query, a small k bunches many datacubes
into the same bucket, decreasing the probability of finding the ‘true’ near
neighbors. In the spirit of Indyk and Motwani [15], we do a binary search
to find the k for which the average hash-bucket size over a query workload
is just enough to provide the desired top-20 matches. We evaluate the
accuracy of this approach in Section 4.
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We conclude this section with two additional points. First, we never create the
entire bit representation of MB1B2 bits explicitly; only the hashes need to be
computed, taking O(kℓ) time. Second, the main cost in the algorithm is in
creating the hash table, which needs to be done once as a preprocessing step.
Query processing is extremely fast and sublinear, since the candidate set is much
smaller than the size of the training set.

4. Experiments

We start by introducing several baseline algorithms, and our evaluation metric.
These baselines were picked carefully from previous work as being those that
have yielded state-of-the-art performance in a range of link prediction tasks. In
our first set of experiments we use simulated data to compare the performance
of our algorithm to these baselines, focusing on situations involving seasonal-
ity in link formation. Second, we study the performance of our algorithm and
the baselines on several real-world graphs: a sensor network, two co-authorship
graphs, and a graph of Facebook employees. Finally, we investigate the compu-
tational scaling of our approach, comparing the improvement in runtime of the
LSH-based algorithm to an exact algorithm, and investigating the effect of the
LSH bit-size k on accuracy.

4.1. Experimental setup

We compare our nonparametric network inference algorithm (NNI) to the fol-
lowing baselines which, although quite naive, have proved difficult to beat in
practice [18, 31]:

LL: ranks pairs using ascending order of last time of linkage [31].
CN (last timestep): ranks pairs using descending order of the number of com-

mon neighbors [18].
AA (last timestep): ranks pairs using descending order of the Adamic-Adar

score [1], a weighted variant of common neighbors which it has been shown
to outperform [18].

Katz (last timestep): extends CN to paths with length greater than two, but
with longer paths getting exponentially smaller weights [16].

CN-all, AA-all, Katz-all: CN, AA, and Katz computed on the union of all graphs
until the last timestep.

For NNI, we only predict on pairs which are in the neighborhood (generated by
the union of two-hop neighborhoods of the last p timesteps) of each other. We de-
liberately used a simple feature set for NNI, setting st (i, j) = {cnt(i, j), ℓℓt(i, j)}
(i.e., common neighbors and last-link) and not using any external “meta-data”
(e.g., stock sectors, university affiliations, etc.). All feature values were binned
logarithmically in order to combat sparsity in the tails of the feature distribu-
tions. Strictly speaking, our feature ℓt(i, j) should be capped at p. However,
since the heuristic LL uses no such capping, for fairness, we used the uncapped
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“last time a link appeared” as the feature ℓt(i, j) for the pairs we predict on.
The bandwidth bT was picked by cross-validation.

For any graph sequence (G1, . . . , GT ), we test link prediction accuracy on
GT for a subset S>0 of nodes with non-zero degree in GT . Each algorithm is
provided training data up to and including timestep T −1, and must output, for
each node i ∈ S>0, a ranked list of nodes in descending order of probability of
linking with i in GT . For purposes of efficiency, we only require a ranking on the
nodes that have ever been within two hops of i (call these the candidate pairs);
all algorithms under consideration predict the absence of a link for nodes outside
this subset. We compute the AUC score for predicted scores for all candidate
pairs against their actual edges formed in GT .

4.2. Simulations

In this section we compare NNI to the baseline algorithms using simulated data,
focusing on seasonal patterns as an example of the kind of nonlinear behavior
that may be difficult to capture with the heuristic methods. We simulated a
model of Hoff et al [12] that posits an independently drawn “feature vector” for
each node. Time moves over a repeating sequence of seasons, with a different
set of features being “active” in each. Nodes with these features are more likely
to be linked in that season, though noisy links also exist. The user features also
change smoothly over time, to reflect changing user preferences.

Graph generation specifics. We generate feature vectors ui,t ∈ R
6 for node

i at time t. Node pair {i, j} has a link at time t if uT
i,tLtuj,t > 1, where Lt is

a matrix governing feature interactions. We define ui,t and Lt to model feature
evolution and seasonal patterns, as follows.

Feature evolution: For every node i we generate a two feature vectors ai, bi ∼
N (06, I6×6), representing its features at the start (t = 1) and end (t = T ) of
the simulation. At time t ∈ {1 . . . T }, the node’s features are given by ui,t =

(ctai + (1 − ct)bi)/
√
c2

t + (1 − ct)2, where ct = T −t
T −1 . The normalization ensures

identical variance of features at any timestep.

Seasonal patterns: We simulate a repeating cycle of three “seasons”, with differ-
ent features being important in different seasons. In particular, the six-dimen-
sional feature vector is split into three groups of two features each, and in season
j = t mod 3, we define

Bk,ℓ =

{
µ for k, ℓ ∈ {2j + 1, 2j + 2},
0 otherwise

Lt = B + σ
R+RT

2
where R ∼ N(0, 1)6×6,

where µ represents the signal and σ represents the noise. This feature interaction
matrix Lt is then used to form links between node pairs, as mentioned above.
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Fig 1. Simulated graphs: Effect of noise.

Results. We generated 100-node graphs over 20 timesteps using 3 seasons,
and plotted AUC averaged over 10 random runs for several noise-to-signal ratios
(Fig. 1). NNI consistently outperformed all other baselines by a large margin.
Clearly, seasonal graphs have nonlinear linkage patterns: the best predictor of
links at time T are the links at times T − 3, T − 6, etc., and NNI is able to
learn this pattern. By contrast, CN, AA, and Katz are biased towards predicting
links between pairs which are linked (or have short paths connecting them) at
the previous timestep T − 1; this implicit smoothness assumption makes them
perform poorly; indeed, they behaved essentially as poorly as a random predictor
(an AUC of 0.5).

Baselines LL, CN-all, AA-all and Katz-all use information from the union of
all graphs until time T −1. Since the off-seasonal noise edges are not sufficiently
large to form communities, most of the new edges come from communities of
nodes created in season. This is why CN-all, AA-all and Katz-all outperform their
“last-timestep” counterparts. As for LL, since links are more likely to come from
the last seasons, it performed well, although poorly compared to NNI. Also note
that the changing user features forces the community structures to change slowly
over time; in our experiments, CN-all performed worse than it would were there
was no change in the user features, since the communities stayed the same.

Table 1 summarizes the average AUC scores for graphs with seasonality, and
also presents results for stationary data. In both cases, the noise was set to the
smallest value in Fig. 1. For the stationary data, links formed in the last few
timesteps of the training data are good predictors of future links, and so LL, CN,
AA and Katz all performed very well. Interestingly, CN-all, AA-all and Katz-all

were worse than their “last time-step” variants, presumably owing to the slow
movement of the user features. As for NNI, it performed slightly better than
all other methods for the stationary data, in addition to showing substantial
improvements over the other methods for the seasonal networks.
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Table 1

Average AUC for T = 20 timesteps

Seasonal Stationary

NNI .91 ± .01 0.99 ± .005

LL .77 ± .03 0.97 ± .006
CN .51 ± .02 0.97 ± .01
AA .51 ± .02 0.95 ± .02

Katz .50 ± .02 0.97 ± .01
CN-all .71 ± .03 0.86 ± .03
AA-all .65 ± .04 0.71 ± .04

Katz-all .71 ± .03 0.87 ± .03

Fig 2. AUC scores for a periodic sensor network.

4.3. Real-world graphs

We begin by presenting results on a 24-node sensor network where each edge
represents the successful transmission of a message1. We considered up to 82
consecutive measurements. These networks exhibit clear periodicity; in partic-
ular, a different set of sensors turn on and communicate during four different
periods. Fig. 2 shows our results for these four periods averaged over several cy-
cles. The maximum standard deviation, averaged over the periods, was .07. We
do not show results for CN, AA and Katz, as they all performed no better than a
random predictor. NNI significantly outperformed the baselines, confirming the
results from the simulation experiments for seasonal graphs.

We also present results on three dynamic co-authorship graphs: the Physics
“HepTh” community (n = 14, 737 nodes, e = 31, 189 total edges, and T = 8
timesteps), NIPS (n = 2, 865, e = 5, 247, T = 9), and authors of papers on
Citeseer (n = 20, 912, e = 45, 672, T = 11) with “machine learning” in their
abstracts. Each timestep considers 1–2 years of papers (so that the median
degree at any timestep is at least 1). Finally we also considered a dynamic
undirected network of Facebook employees over several weeks, where the nodes
represent employees and edges are formed if one employee mentions another in a
post. The network contains above five thousand nodes, and above 100,000 edges
in total.

1http://www.select.cs.cmu.edu/data

http://www.select.cs.cmu.edu/data
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Table 2

Average AUC for co-authorship and Facebook graphs

NIPS HepTh Citeseer Facebook
NNI .87 .89 .89 .82
LL .84 .87 .90 .81
CN .74 .76 .69 .70
AA .84 .87 .90 .71

Katz .75 .83 .83 .78
CN-all .56 .62 .70 .87

AA-all .77 .83 .83 .89

Katz-all .67 .71 .81 .89

Table 2 shows the average AUC for all algorithms for the co-authorship graphs
and the Facebook graph. For the co-authorship graphs, we do not expect to
see seasonal variation, and we expect a relatively simple model to be effective;
authors will tend to keep working with a similar set of co-authors over time. For
such graphs, Tylenda et al. [31] have shown that LL is the best heuristic, and we
replicate that result here. Our kernel-based approach, NNI, also performs well on
these graphs, slightly outperforming LL. For the Facebook graph, employees in
the same research group tend to post more messages mentioning each other, and
hence algorithms working on all edges seen so far should intuitively pick up this
community structure. This is indeed reflected in the AUC scores. CN-all, AA-

all and Katz-all perform the best. These algorithms outperform NNI, primarily
because they count paths through edges that exist in different timesteps, which
is not allowed in our model.

In summary, for graphs having a seasonal trend, NNI is the best method by
a large margin. For the co-authorship graphs, NNI remains the best algorithm,
although LL is also effective. For the correlation graph, Katz-all is the best
algorithm, but its performance is quite poor on the co-authorship graphs and
the seasonal graphs. Overall, the performance of NNI dominates that of the
other algorithms.

4.4. Model parameter selection

Here, we discuss our reasoning behind the selection of two model parameters:
the size of the local neighborhood Nt(i), and the temporal window length p.

Local neighborhood size: As mentioned in the beginning of Section 2, we define
the local neighborhood of node i to be the set of nodes within two hops of i
and all edges between them. Two is the minimum number of hops such that all
common neighbors of the immediate neighbors of the central “ego” node i are
included in the neighborhood of u. Since common neighbors is one of the best-
performing baseline heuristics, the local neighborhood should subsume at least
two hops. On the other hand, neighborhood sizes tend to grow exponentially
with the number of hops [4], so significant computational resources would be
required for more hops. Hence, we were led fairly decisively to the use of two
hops.
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Fig 3. Time and accuracy using LSH.

Length of temporal window: Recall that we model link formation using features
derived from a node’s local neighborhood over a time window of length p. The-
oretically, for periodic data, the model learns the seasonal trend correctly as
long as p is at least the period, since the local spatio-temporal neighborhood
Nt,p(i)(i) can then accurately identify the current “season”. In order to verify
this, we repeated the simulation experiment of Section 4.2 with N = 100 nodes,
µ = 0.5 (signal), σ = 0.05 (noise), a period of 3 (“seasons”), T = 20 timesteps,
and varying the temporal window size p ∈ {2, . . . , 7}. For p = 2, our model
achieves an AUC score around 58% which is slightly better than random. For
p ≥ 3 (i.e., at least the periodicity of the data), the score is around 92%. This
shows the robustness of the algorithm with respect the parameter p. In gen-
eral one may wish to select this parameter via cross- validation, although the
computational burden could be considerable.

4.5. Evaluation of LSH

We have found the use of LSH to be essential in our experimental work. In this
section we provide quantitative support for this assertion.

Exact search vs. LSH. In Fig. 3(a) we plot the time taken to perform top-20
nearest neighbor search for a query datacube using simulated data. We fixed the
number of nodes at 100, and increased the number of timesteps. As expected,
the exact search time increases linearly with the total number of datacubes,
whereas LSH searches in nearly constant time. Also, the AUC score of NNI with
LSH is within 0.4% of that of the exact algorithm on average, implying minimal
loss of accuracy from LSH.

In our experiments with real-world graphs, the query time per datacube using
LSH was quite small: 0.3s for Citeseer, 0.4s for NIPS, 0.6s for HepTh, and 1.9s
for Facebook. Exact search was infeasible for these large-scale graphs.

Number of Bits in Hashing. Fig. 3(b) shows the effectiveness of our adaptive
scheme to select the number of hash bits (Section 3). For these experiments,
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we turned off the smoothing based on the prior datacube. As k increases, the
accuracy goes down to 50%, as a result of the fact that NNI fails to find any
matches of the query datacube. Our adaptive scheme finds k ∼ 170, which yields
the highest accuracy. Note also that larger k translates to fewer entries per hash
bucket and hence faster searches, and thus our adaptive choice of k yields the
fastest runtime performance as well.

5. Consistency of kernel estimator

We will now prove the consistency of g̃ (this section), and its asymptotic distri-
bution (Sections 6 and 7) as T → ∞. We note that the experiments in Section 4
demonstrated the accuracy of the estimator g̃ (Eq. (2.4)) in many settings, in-
cluding for small T (T = 20 in our simulations); hence, asymptotics should be
seen as providing a better understanding of our method rather than being a
necessary condition for its applicability.

Recall that our model is:

Yt+1(i, j)|G ∼ Bernoulli(g(ψt(i, j))), (5.1)

where ψT (i, j) equals {st (i, j) , dt (i)}. Assume that all graphs have n nodes
(n is finite). For a fixed node q ∈ {1, . . . , n}, let Q represent the query datacube
dT (q). We want to study the consistency of predictions for timestep T + 1.

First, we provide some basic intuition for our results. The fact that edge
probabilities depend on the feature vector ψt(i, j), which itself is a function

of the spatio-temporally bounded neighborhood ~Nt,p(i), means that the graph
evolution process is Markovian; the graph at any timestep depends only on the
previous p+ 1 graphs. This Markov Chain must eventually enter a closed com-
munication class, and every state in that class will eventually be seen infinitely
often. Thus, as T → ∞, the graph at T + 1 can be inferred from previous oc-
currences of the state at T , of which infinitely many instances will have been
observed. The following proofs account for all the details: time spent in tran-
sient states, possible periodicity in the final communication class, proper choice
of bandwidth parameters for the kernel, etc. Note that the g(.) function is not
learnt for all possible features ψt(i, j), but only for those that appear in the
communication class; however, this is enough to make predictions.

Rather than studying g̃ directly, it proves to be simpler to study a slightly dif-
ferent estimator which we show (in Lemma 5.1) to be asymptotically equivalent

to g̃. Define ĝT (s,Q), ĥT (s,Q) and f̂T (s,Q) as follows:

ĝT (s,Q) =
ĥT (s,Q)

f̂T (s,Q)
(where s = sT (q, q′)) (5.2)

ĥT (s,Q) =
1

n(T − p)

T −1∑

t=p

n∑

i=1

KbT
(dt (i) , Q)η+

i,t+1 (s)

f̂T (s,Q) =
1

n(T − p)

T −1∑

t=p

n∑

i=1

KbT
(dt (i) , Q)ηi,t+1 (s) .
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Lemma 5.1. Define g̃T (.) as in Equation 2.1, and ĝT (.) as in Equation 5.2.
We have:

|g̃T (s,Q) − ĝT (s,Q)| = O(ζT )

Proof. Recall that n(s) denotes the set of features at L1 distance 1 from s. Let
k := |n(s)|. We have:

g̃T (s,Q) =
ĥT (s,Q) + CT

f̂T (s,Q) +DT

,

where by virtue of the finiteness of number of features, η and η+, we have:

CT := ζT

∑

i,t

KbT
(dt (i) , Q)

∑

s′∈n(s)

η+
it+1(s′) = O(ζT ).

Similarly, DT = O(ζT ). Also, note that both CT and DT are non-negative. Thus
we have:

|g̃T (s,Q) − ĝT (s,Q)| =

∣∣∣∣∣
CT f̂T (s,Q) −DT ĥT (s,Q)

(f̂T (s,Q) +DT )f̂T (s,Q)

∣∣∣∣∣ = O(ζT ),

where the last step follows because both ĥT and f̂T are bounded and f̂T tends
to some positive constant with probability tending to one as T → ∞ (as shown
in Theorem 5.2).

The estimator ĝT is defined only when f̂T > 0, which holds with probability
tending to one as will be shown in the next theorem. The kernel was defined
earlier as KbT

(dt (i) , Q) = e−D(dt(i),Q)/bT , where the bandwidth bT tends to 0
as T → ∞, and D(·) is the distance function defined in Eq. (2.5). This has the
following property:

lim
bT →0

KbT
(dt (i) , Q) =

{
1 if dt (i) = Q

0 otherwise.
(5.3)

From now on, we will drop the arguments s and Q and instead write g, ĝT ,
f̂T and ĥT for simplicity. Our graph evolution model is Markovian; assuming
each “state” to represent p+ 1 consecutive graphs, the next graph (and hence
the next state) is a function only of the current state. The state space is also
finite, since each graph has bounded size. Thus, the state space S may be parti-
tioned into a set of transient states and

⋃
i Ci, where Ci is an irreducible closed

communication class, and there exists at least one Ci [9].
The Markov chain must eventually enter one of the (finitely many) commu-

nication classes. We will denote the time of entering some communication class
by T1, and the event by ET1 . We remind the reader that using simple arguments
for finite state space Markov chains, it can be shown that the tail probability of
T1 decays geometrically (see [9]), leading to the finiteness of the first and second
moments. Also let SC denote the event ST ∈ C, where St denotes the state of
the Markov chain at time t. Thus ET1 ∩ SC is the event that the chain enters
class C at time T1 and remains there henceforth.
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Theorem 5.2 (Consistency). Let bT = o(1) as T → ∞. For two fixed nodes
q, q′ ∈ {1, . . . , n}, ĝT (s(q, q′), dT (q)) is well-defined with probability tending to
one as T → ∞. Also, ĝT (s(q, q′), dT (q)) is a consistent estimator of g(s(q, q′),

dT (q)), i.e., ĝT (s(q, q′), dT (q))
P−→ g(s(q, q′), dT (q)) as T → ∞.

Proof. First, note that our query datacube is obtained at time T , and we are
interested in the asymptotic behavior of the chain as T → ∞. Since our Markov
chain has a finite state space, the query datacube belongs to some closed com-
munication class C with probability tending to one. Thus, as T → ∞, the
estimator’s distribution is governed by that communication class. We prove our
result in two parts; first we show that the convergence statement holds condi-
tioned on SC , for any communication class C; i.e., P (|ĝT − g| ≥ ǫ|SC) → 0 as
T → ∞. Next, we have

P (|ĝT − g| ≥ ǫ) ≤
∑

C

P (|ĝT − g| ≥ ǫ|SC)P (SC) + P (T1 > T ),

which implies lim supT →∞ P (|ĝT − g| ≥ ǫ) = 0, given the tail bound on T1

and the fact that the first term is a sum over a finite number of terms, each
converging to zero as T → ∞. In what follows, we will give a proof of statistical
consistency conditioned on SC for any communication class C.

Define BT (s,Q,C) = E[ĥT |SC ]/E[f̂T |SC ] − g. We have:

ĝT − g = ([ĥT − gf̂T ] − E[ĥT − gf̂T |SC ])
/
f̂T +BTE[f̂T |SC ]/f̂T . (5.4)

Lemma 5.3 shows that E[f̂T |SC ] → Rc, Rc being a positive deterministic func-
tion of class C. Thus, BT is asymptotically well defined. Also Lemma 5.9 shows
that var(f̂T |SC) tends to 0 as T → ∞. This along with Lemma 5.3 shows that,

conditioned on SC , f̂T
P→ Rc, thus also proving that ĝT is asymptotically well

defined for C.
Next, we will define the following:

ĥT (t) :=
1

n

n∑

i=1

KbT
(dt (i) , Q)η+

i,t+1 (s) ,

f̂T (t) :=
1

n

n∑

i=1

KbT
(dt (i) , Q)ηi,t+1 (s) . (5.5)

Note that ĥT and f̂T (Equation 5.2) equals
∑

t ĥT (t)/(T − p) and
∑

t f̂T (t)/
(T − p) respectively. Also let

qt := ĥT (t) − E[ĥT (t)|SC ] − g(f̂T (t) − E[f̂T (t)|SC ]). (5.6)

Thus qt is a bounded deterministic function of the state at time t. In Lemma 5.9
we prove that var(

∑
t qt/

√
T |SC) → σc for some non-negative constant σc, as

T → ∞. Thus we have, var(
∑

t qt/T |SC) → 0, as T → ∞. Since E[qt|SC ] = 0,

we have
∑

t qt/T ∼ ([ĥT − gf̂T ] − E[ĥT − gf̂T |SC ])
qm→ 0 conditioned on SC .
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Since convergence in quadratic mean implies convergence in probability, we
have:

(f̂T , [ĥT − gf̂T ] − E[ĥT − gf̂T |SC ])
P→ (Rc, 0) conditioned on SC .

Using the continuous mapping theorem on f(X,Y ) = Y/X and the fact that

BT = o(1) (Lemma 5.4) we have that, for any C such that ST ∈ C, ĝT
P→ g.

The proof of the following lemma is deferred to the Appendix.

Lemma 5.3. As T → ∞, for some Rc > 0 (a deterministic function of class C),

E[f̂T (s,Q)|ET1 , SC ] → Rc, E[f̂T (s,Q)|SC ] → Rc.

The following smoothness condition on g is introduced to ensure appropriate
rates of convergence of the bias terms BT .

Assumption 1. The function g satisfies the following smoothness condition
with respect to the distance metric D: |g(s, dt (i)) − g(s, dt′(j))| = O(D(dt (i) ,
dt′(j))).

Lemma 5.4. Define BT (s,Q,C) = (E[ĥT (s,Q)|SC ] − gE[f̂T (s,Q)|SC ])/

E[f̂T (s,Q)|SC ]. If Assumption 1 holds, then we have BT = O(bT ). Since bT → 0
as T → ∞, this implies BT = o(1).

Proof Sketch. For t ∈ [p, T − 2], i ∈ [1, N ] and s = sT (q, q′), the numerator of
BT is an average of the terms:

At := E
[
KbT

(dt (i) , Q)η+
i,t+1 (s) |SC

]
− E [KbT

(dt (i) , Q)ηi,t+1 (s) |SC ] g(s,Q).

Using a further conditioning step on ET1 , we can show that the numerator of
BT can be upper bounded as:
∣∣∣∣
∑

t

At/T

∣∣∣∣ ≤
∑

t

|E[KbT
(dt (i) , Q)ηi,t+1 (s) (g(s, dt (i)) − g(s,Q))|SC ]|/T + o(1).

We now analyze each term in the average; i.e., terms of the form:

E [KbT
(dt (i) , Q)ηi,t+1 (s) · (g(s, dt (i)) − g(s,Q)) |SC ] .

This expectation is computed over all possible configurations of the neighbor-
hoods Nt(i) and Nt+1(i). Since our neighborhood sizes are bounded (because n
is bounded), the expectation is a sum over a finite number of terms.

We now use the smoothness assumption on g. Using |g(s, dt (i)) − g(s,Q)| =
O(D(dt (i) , Q)) and that ηi,t+1 (s) is finite for all T and Lemma 5.3, we have:

BT = O
(
E[D(dt (i) , Q)e−D(dt(i),Q)/bT |SC ]

)
= O(bT ),

which holds because for non-negative x, we have xe−x/bT ≤ bT /e.

We now show that the variance of f̂T and ĥT converge to zero. In order to
upper bound the growth of variance terms, we make use of strong mixing. For a
Markov chain St, define the strong mixing coefficients α(k)

.
= sup|t−t′|≥k{|P (A∩
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B) − P (A)P (B)| : A ∈ F≤t, B ∈ F≥t′}, where F≤t and F≥t′ are the sigma
algebras generated by events in

⋃
i≤t Si and

⋃
i≥t′ Si respectively. Intuitively,

small values of α(k) imply that states that are k apart in the Markov chain
are almost independent. For bounded A and B, this also limits their covariance:
|cov(A,B)| ≤ cα(k) for some constant c [6]. Instead of proving that the variance

of ĥT or f̂T converges to zero, we will prove that the variance divided by T
converges to a non-negative constant. This is a stronger result that we will find
useful in proving weak convergence in section 7.

We introduce some notation that will be used in stating the next few results.
Let qt denote a bounded deterministic function of the state of a finite state space
Markov chain at time t. Also define UT :=

∑
t qt/

√
T . Recall that our Markov

chain will eventually hit one of the finitely many closed communication classes.
Earlier we used SC to define the event {ST ∈ C}, by T1 the time of entering
some communication class, and the event by ET1 . We will denote the event of
entering class C at time T1 by ET1 ∩ SC . If C is aperiodic, then once inside C,
the Markov chain gets arbitrarily close to the stationary distribution of C after
some constant time M ; we state this more formally in the following lemma,
whose proof is deferred to the Appendix.

Lemma 5.5. Consider an irreducible and aperiodic finite state Markov chain
with probability transition matrix P , initial distribution π0 and stationary dis-
tribution π. Let Xt be a random variable (with finite support) that is condi-
tionally independent of all other states, given the state at time t. The expec-
tation of Xt under the distribution at time t is denoted by E[Xt|π0]. Let µ
denote the expectation of X∞ (i.e., the expectation with respect to π). There
exists a constant λ ∈ (0, 1), and a constant M such that, for all t > M ,
maxx∈S

∑
y∈S |P t(x, y) − π(y)| = O(λt), and |E[Xt|π0] − µ| = O(λt).

Our estimators are weighted sums of 1, . . . , T variables; for T1 ≤ T , we
will break this sum up into three parts, indexed by 1, . . . , T1 − 1, followed by
T1, . . . , T1+M−1, and finally T1+M, . . . , T , where M is a constant. For T1 > T ,
we will use the fact that T1 has bounded first and second moments. Since we are
interested in the behavior of the sum unconditionally, our analysis will consist
of two steps of nested conditioning, the outer one obtained by conditioning on
SC , which in turn is obtained by analyzing the sum conditioned on ET1 ∩ SC .
For ease of exposition we will assume C to be aperiodic. The more general case
of cyclo-stationarity, which is similar in principle, is discussed in remark 5.10.

Lemma 5.6. var(UT |SC) → σc as T → ∞, for some constant σc ≥ 0.

Proof. We have var(UT |SC) = E[var(UT |ET1 , SC)|SC ] + var(E[UT |ET1 , SC ]|SC).
We prove that the first part converges to a non-negative constant σc (a deter-
ministic function of C) (Lemma 5.7), and the second is asymptotically o(1)
(Lemma 5.8).

Lemma 5.7. For any finite integer k, we have

var

( ∑

t≥T1+M

qt|ET1 , T1 = k, SC

)
/T → σc for some σc ≥ 0 (5.7)
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var

(∑

t

qt|ET1 , T1 = k, SC

)
/T → σc for some σc ≥ 0. (5.8)

For a Markov chain with a finite state space, we also have E[var(UT |ET1 ,
SC)|SC ] → σc for some σc ≥ 0.

Proof Sketch. For ease of exposition, for the proof sketch we assume there is only
one communication class, which is aperiodic. Recall that T1 is the time to hit the
communication class. Once inside the communication class, irreducibility and
aperiodicity implies geometric ergodicity (Lemma 5.5), which implies absolute
regularity which in turn implies strong mixing with exponential decay [3]: α(k) ∼
e−βk for some β > 0. We can prove that for finite T1, var(

∑
t qt|ET1 , T1 =

k, SC)/T = var(
∑

t≥T1+M qt|ET1 , T1 = k, SC)/T + o(1). So we focus on proving
Equation 5.7. Denote

∑
t≥T1+M qt by P .

Recall that for our Markov chain, St involves p+1 graphs (Gt−p+1, . . . , Gt+1).
Since qt is a function of St, it also depends on p+ 1 graphs. Hence, the distance
dist(t, t′) between two sigma-algebras F≤t and F>t′ is defined as max(t′ − t −
(p+ 1), 0). Now we can write var(P |ET1 , SC) as

var(P |ET1 , SC) = 2
∑

t≥T1+M

T −t∑

dist(t,t′)=0

cov(qt, qt′ |ET1 , SC).

Since the number of states at distance 0 is O(p+1), and at distance ≥ 1 is O(1),
for constants {ck, k ≥ 0} we have,

T −t∑

dist(t,t′)=0

|cov(qt, qt′ |ET1 , SC)| ≤
∞∑

k=0

ckα(k) = O

(∑

k

e−βk

)
= O(1).

This shows that the above sum converges to some constant at. Since t ≥ T1 +M ,
the chain will get arbitrarily close to stationarity, and at → σc for some constant
σc. Thus var(P |ET1 , SC)/T is asymptotically equivalent to

∑
t at/T , which also

converges to σc as T → ∞. Since, for all T , var(P |ET1 , SC)/T is non-negative,
σc is also non-negative. This proves Equation 5.7. Thus Equation 5.8 is proved,
and also, since T1 has finite first and second moments for a finite state space
Markov chain, E[var(

∑
t qt|ET1 , SC)|SC ]/T converges to σc, as T → ∞.

It remains to analyze var(E[UT |ET1 , SC ]|SC) in the variance decomposition.
Using Lemma 5.5 we can prove that |E[UT − µc|SC , ET1 ]| approaches zero at
a geometric rate as T → ∞, where µc denotes the expectation of qt under the
stationary distribution in communication class C. This implies the following
lemma, which is proved in the Appendix.

Lemma 5.8. var(E[UT |ET1 , SC ]|SC) = o(1).

Lemma 5.9. var(ĥT |SC) and var(f̂T |SC) tend to 0 as T → ∞.

Proof. The result follows by applying Lemma 5.6 with qt(.) equal to
∑

iKbT
(dt(i),

Q)η+
i,t+1 (s) /n and

∑
iKbT

(dt (i) , Q)ηi,t+1 (s) /n respectively.
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Remark 5.10. Recall that Lemma 5.7 was obtained under the assumption that
C is aperiodic. The case of periodic C implies cyclo-stationarity; i.e., the chain
St+kd approaches stationarity as k → ∞. Hence, for periodic C (with period d)
we consider M′, which is a Markov chain where each transition corresponds to
d transitions of the original chain. Now, M′ is irreducible and aperiodic (since
C was irreducible and had period d). A state S′

t in M′ started at S1 simply

corresponds to the old state Std+1 in M. Now, 1/
√
T
∑T

t=1 qt can be written

as 1/
√
T
∑⌊T/d⌋

t=1 q′
t + oP (1), where q′

i :=
∑(i+1)d

j=id+1 qj is the sum of d consecu-
tive random variables. Since, q′

t is independent of all other q′s conditioned on
S′

t, S
′
t+1, we have:

cov(q′
t, q

′
t+k) = E[E[q′

tq
′
t+k|S′

t+1, S
′
t+k]] − E[q′

t]E[q′
t+k] (5.9)

= E[E[q′
t|S′

t+1]E[q′
t+k|S′

t+k]] − E[E[q′
t|S′

t+1]]E[E[q′
t+k|S′

t+k]]

= cov(E[q′
t|S′

t+1], E[q′
t+k|S′

t+k]) = O(α(k − 1)).

The last step uses the fact that the q′
t are bounded. Now, E[var(1/√

T
∑⌊T/d⌋

t=1 q′
t|ET1 , SC)] can again be shown to converge to some non-negative

constant using a slight modification of the argument in Lemma 5.7. The oP (1)

remainder of 1/
√
T
∑T

t=1 qt can be shown to be negligible via a simple appli-
cation of the Cauchy-Schwartz inequality. A detailed proof of Lemma 5.7 using
this idea can be found in the Appendix.

As for E[UT |ET1 , SC ] in the cyclic case, we simply have to apply Lemma 5.5
for each of the d cyclic classes. For the ith cyclic class, qT1+kd+i is independent
of all states (in that cyclic class) given ST1+kd+i. Hence there exists Mi, and
λi ∈ (0, 1), such that for all k with kd + i > Mi, |E[qT1+kd+i|ET1 , SC ] − µi| =
O(λk

i ), thus proving Lemma 5.5 for a periodic C. This again proves Lemma 5.8
for the case where C is periodic.

6. Stein’s method for graphical data

Our estimators, and indeed many kernel estimators, involve weighted sums of
dependent variables. While their distributional convergence can be studied using
existing results on ergodic Markov chains, we take a different approach, based
on an adaptation of Stein’s method to the setting of graphs.

We begin with a brief introduction to Stein’s method. The method reposes
on the following key lemma [5], which provides a characterization of the normal
distribution:

Lemma 6.1 (Stein’s Lemma). If W has a standard normal distribution, then

Ef ′(W ) = E[Wf(W )], (6.1)

for all absolutely continuous functions f : R → R with E|f ′(Z)| < ∞. Con-
versely, if Equation 6.1 holds for all bounded, continuous and piecewise contin-
uously differentiable functions f with E|f ′(Z)| < ∞, then W has a standard
normal distribution.
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Recall that the Wasserstein distance between a mean zero, unit variance ran-
dom variable W and a standard normal variate Z is defined as suph∈H |Eh(X)−
Eh(Z)|, where H := {h : |h(x) − h(y)| ≤ |x − y|}. Weak convergence of W to
Z can be established by showing that the Wasserstein distance converges to

zero. Now, Stein’s Lemma (6.1) shows that W
d
= Z if |Ef ′(W ) − E[Wf(W )]|

equals zero for appropriate choices of f . This key observation leads to the Stein
Equation:

f ′(W ) −Wf(W ) = h(W ) − E[h(Z)]. (6.2)

It can be shown that the solution to the Stein Equation, for h ∈ H, satisfies
‖f‖ ≤ 2, ‖f ′‖ ≤ 2, ‖f ′′‖ ≤

√
2/π [5]. Thus, instead of dealing with E[h(W )] −

E[h(Z)] we need to show that |E[f ′(W ) − Wf(W )]| is small (where f satisfies
the aforementioned conditions); this is an easier quantity to analyze.

The existing application of Stein’s method to sums of weakly dependent ran-
dom variables has focused on marginal-independence structures that can be
captured by a bounded-degree dependency graph [26]. In this section, we relax
the requirement of marginal independence by allowing arbitrary dependency
structures among the summed variables as long as certain conditions on strong
mixing coefficients α(k) hold. (See also Sunklodas [30] for a similar approach to
ours for chain-structured dependencies; he obtains a slightly tighter bound than
ours at the expense of a more complex proof.)

Our approach proceeds by bounding the Wasserstein distance between the
(appropriately scaled and centered) sum W of the dependent variables and a
standard normal variate Z in terms of α(k) and the degree of dependence of
the random variables. We then show that this bound tends to zero for our
estimators, demonstrating convergence to a normal distribution and yielding a
rate of convergence as a by-product. We note that although we use this to prove
normal convergence for a cyclo-stationary Markov chain, it can potentially be
used for more general dependence structures, as long as suitable strong mixing
properties are available.

We let T denote the total number of variables in our model. Let Yi, {i =
1, . . . T} be bounded, (|Yi| ≤ B), mean-zero random variables. Let σT

2 denote

the variance of
∑T

i Yi; assume 0 < σT < ∞ for all T . Define Xi = Yi/σT , where

|Xi| ≤ B/σT . Let W :=
∑T

i Xi, and γT = T/σT . We will assume that the index
set underlying the random variables {Xi} is endowed with a distance metric,
dist(i, j). This can be the geodesic distance if the variables are connected via a
graph structure or the absolute difference in time indices in a time series model,
etc. Let Nm(i) denote the set of nodes at distance m from node i; similarly let
N≤k(i) and N>k(i) respectively denote the set of nodes within distance k and
at a distance greater than k from node i. Now, let |N≤k| denote maxi |N≤k(i)|.

We need a notion of strong mixing in a network setting. Define the strong
mixing coefficients α(k)

.
= supXi,Xj

{|P (A ∩B) − P (A)P (B)| : A ∈ F(Xi), B ∈
F(Xj), dist(i, j) ≥ k}, where F(X) is the sigma algebra generated by the ran-
dom variable X . A similar proposal for strong mixing in random fields can be
found in [22]. Let τk denote the tail sum

∑
m>k |Nm|α(m). We are now ready

to state the main result.
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Lemma 6.2. The Wasserstein distance dW (W,Z) between W and the standard
normal random variable Z is upper bounded as follows:

dW (W,Z) ≤ min
k≤T

(
c1B

3γT

( |N≤k|
σT

)2

+ c2BγTα(k) (6.3)

+ B2

√

c3

(
γT τk

σT

)2

+ c4γT

( |N≤k|
σT

)3

+ c5γT
τk

σT

( |N≤k|
γT

)2

 ,

where c1, c2, c3, c4, c5 are constants.

Proof sketch. We will give a brief proof sketch here, and provide the full proof
in the Appendix. We want to bound |E[f ′(W ) −Wf(W )]|. We shall repeatedly
break up W into two parts: Wi =

∑
j∈N>k(i) Xj being the contribution from

all nodes with distance more than k from some node i, and the remainder from
nodes “close to” i. In classical analysis of dependency graphs, Xi and Wi are
independent; in contrast, in our case we only have cov(Xi,Wi) = O(α(k)).
Here, k is a parameter that shall be picked later to optimize the bound. Since
W =

∑T
i=1 Xi,

|E[f ′(W ) −Wf(W )]| ≤
∣∣∣∣E
[
f ′(W )

(
1 +

∑

i

Xi(Wi −W )

)]∣∣∣∣
︸ ︷︷ ︸

(A1)

+

∣∣∣∣E
[∑

i

Xi(Wi − W )f ′(W ) +
∑

i

Xif(W )

]∣∣∣∣
︸ ︷︷ ︸

(A2)

.

Using Taylor expansion the term (A2) can be further bounded by

(A2) ≤ ‖f ′′‖
2

E

∣∣∣∣
∑

i

Xi(Wi −W )2

∣∣∣∣+

∣∣∣∣E
[∑

i

Xif(Wi)

]∣∣∣∣.

The first term of this result again can be bounded using the AM-GM inequality

by c1B
3 T |N≤k|2

σT 3 , where c1 is a constant. Recall that |N≤k| upper bounds the

size of the neighborhood of k hops. The second part of (A2) now is bounded by

c2B
T α(k)

σT
, using the usual relationship between covariances and strong mixing

coefficients. Thus the overall bound on (A2) is as follows:

(A2) ≤ c1B
3T |N≤k|2

σT
3

+ c2B
Tα(k)

σT
.

Now we need to bound (A1). Denote PT =
∑

iXi(Wi − W ). Note that if
Xi and Wi were independent, we would have E[PT ] = −E(W 2) = −1, since W
is centered and scaled appropriately. For us however E[PT ] does not equal −1;
instead it becomes smaller as we increase k. We thus bound (A1) as follows:

(A1) ≤ ‖f ′‖
√
E[1 + PT ]2 ≤ ‖f ′‖

√
(1 + E[PT ])2 + var(PT ).
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Now note that |1 + E[PT ]| = |E[
∑

iXiWi]|. Since E[Xi] = 0,

∣∣∣∣E
[∑

i

XiWi

]∣∣∣∣ =

∣∣∣∣
∑

i

∑

j∈N>k(i)

cov(Xi, Xj)

∣∣∣∣ ≤ c′′B2/σT
2
∑

i

∑

m>k

α(m)|Nm|,

using the fact that N>k(i) =
⋃

m>k Nm(i), and for all j ∈ Nm(i), cov(Xi, Xj) =
O(α(m)/σT

2). We upper bound |1 + E[PT ]| by c′′B2Tτk/σT
2. Using similar

arguments (see Appendix) we upper bound var(PT ) by 8B4T |N≤k|3/σT
4 +

16B4T |N≤k|2τk/σT
4.

Putting the pieces together and using γT = T/σT we see that

dW (W,Z) ≤ (A2) + ‖f ′‖
√

(1 + E[PT ])2 + var(PT )

≤ c1B
3γT

( |N≤k|
σT

)2

+ c2BγTα(k)

+B2

√

c3

(
γT τk

σT

)2

+ c4γT

( |N≤k|
σT

)3

+ c5γT
τk

σT

( |N≤k|
σT

)2

.

The result is obtained by optimizing the upper bound over k ≤ T .

Next, we present a sufficient condition for the Wasserstein distance to vanish
asymptotically, implying convergence of W to a standard normal.

Lemma 6.3. W → N (0, 1) as T → ∞ if the following conditions hold:

1. γT → ∞.
2. There exists a sequence k(T ) → ∞ such that the following are satisfied:

(a) γTα(k(T )) → 0

(b) γT
τk(T )

σT
→ 0

(c) γT (
|N≤k(T )|

σT
)2 → 0.

Proof. The above conditions imply that α(k(T )) → 0,
τk(T )

σT
→ 0, and

(
|N≤k(T )|

σT
)2 → 0 (and thus

|N≤k(T )|

σT
→ 0 as well) as T → ∞. Hence the prod-

uct of two vanishing sequences, γT (
|N≤k(T )|

σT
)2 × |N≤k(T )|

σT
, also vanishes. Similarly

(γT
τk

σT
)(

|N≤k(T )|

σT
)2 also vanishes as T → ∞. Thus, all terms on the right hand

side of Eq. (6.3) vanish, thus proving W
d→ N (0, 1).

7. Weak convergence of our estimator

In this section we bring together the results from the previous two sections to
establish weak convergence of our estimator.

Recall that our estimator g̃T is defined in Equation 2.4. Recall also the def-
initions of ĥT (t), f̂T (t) and qt from Equations 5.5 and 5.6. From Lemma 5.1
we have |

√
T (g̃T − ĝT )| = O(

√
TζT ), where ζT denotes the bandwidth for the
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pair-specific kernel function (see Equation 2.3). Hence, with ζT = T−(1/2+ǫ) for

some ǫ > 0, we see that
√
T (g̃T − ĝT )

a.s.→ 0. We will show (in Proposition 7.1)
that under suitable conditions

√
T (ĝT − g) converges to a mean-zero normal

distribution. Hence, we also have the same normal distribution as the limit of√
T (g̃T − g) under the same conditions.

Proposition 7.1. Let Assumption 1 hold. If σc > 0, and bT = T−(1/2+θ) for
some θ > 0, then:

Conditioned on SC ,
√
T (ĝT − g)

d→ N (0, σ2
c/R

2
c) As T → ∞.

where ST is the state of the Markov chain at time T .

Proof. From Equation 5.4 we see that
√
T (ĝT − g) equals (

∑
t qt/

√
T )/f̂T +

(E[f̂T |SC ]/f̂T )/
√
TBT . Using the following lemma (Lemma 7.2) we know that

the numerator of the first term converges to a N (0, σ2
c ) distribution. Using

Lemmas 5.9 and 5.3 we have f̂T
P→ Rc for a positive constant Rc, conditioned

on SC . Hence using Slutsky’s lemma the first part converges conditionally to
N (0, σ2

c/R
2
c). Also, E[f̂T |SC ]/f̂T converges to one in probability conditioned on

SC . Finally, invoking Lemma 5.3 and Lemma 5.4 we see that since BT = O(bT ),
for bT ∼ T−(1/2+θ), the second part is oP (1). Now, Slutsky’s lemma and the
continuous mapping theorem yield the statement of the proposition.

Lemma 7.2. Under Assumption 1 and assuming σc > 0,

Conditioned on SC ,
∑

t

qt/
√
T

d→ N (0, σ2
c ) As T → ∞.

Proof Sketch. We prove this in two steps. First we show that conditioned on
ET1∩SC , a related quantity

∑
t≥T1+M pt/

√
T converges to N (0, σ2

c ) (Lemma 7.3).
This along with a geometric bound on the tail probability of T1 for finite
state space Markov chains concludes the proof. We defer the details to the
Appendix.

Lemma 7.3. Define pt := [ĥT (t) − gf̂T (t)] −E[ĥT (t) − gf̂T (t)|ET1 , SC ]. Under
Assumption 1 and assuming σc > 0, for any finite T1, we have:

∑

t≥T1+M

pt/
√
T

d→ N (0, σ2
c ) conditioned on ET1 ∩ SC as T → ∞.

Proof Sketch. First we prove that, for a sequence k(T ) = c logT for a properly
chosen c, the conditions in Lemma 6.3 are satisfied for

WT :=

( ∑

t≥T1+M

pt

)/√√√√var

( ∑

t≥T1+M

pt|ET1 , SC

)
.

We also show that for this value of k, the upper bound on the Wasserstein
distance in Lemma 6.2 is O(log2(T )/T ). Now Lemma 6.1 gives:

WT
d→ N (0, 1) conditioned on ET1 ∩ SC .
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However, for finite values of T1, var(
∑

t≥T1+M pt|ET1 , SC)/T → σ2
c (Lemma 5.7

and Equation 5.7). Thus, the additional assumption of σc > 0 proves the result.
The details are deferred to the Appendix.

Remark 7.4. Proposition 7.1 shows that, under some weak assumptions, WT

converges to a standard normal distribution conditioned on SC . Since there are
a finite number of closed communication classes, unconditionally WT converges
to a mixture of zero-mean Gaussians, the mixture proportions being determined
by the probability of reaching the communication classes from the start state.

Remark 7.5. We have established weak convergence for the case where C is
aperiodic. However, as in Remark 5.10, we can consider M′, which is a Markov
chain where each transition corresponds to d transitions of the original chain.

Again, any sum of the form
∑T

t=1 qt/
√
T can be written as 1/

√
d(
∑⌊T/d⌋

t=1 q′
t/√

T/d + oP (1)). q′
t now denotes the sum of the d consecutive qt’s. For q′

i :=∑(i+1)d
j=id+1 qj , we have cov(q′

t, q
′
t+k) = O(α(k − 1)) using Equation 5.9. Thus the

first sum again brings us to the irreducible aperiodic setting (with a slightly
modified distance function), and hence normal convergence can be established.

8. Related work

Existing work on link prediction in dynamic networks can be broadly divided
into two categories: link prediction based on generative models and link predic-
tion based on structural features.

A substantial amount of work has gone into the development of generative
models of graph structure based on the formalism of Markov random fields, log-
linear models or other graphical models [8, 10, 17, 28, 13, 29, 32]. For example,
Hanneke and Xing [10] present a dynamic loglinear model based on evolution
statistics such as “edge stability,” “reciprocity” and “transitivity.” Fu et al. [8]
propose an extension of the mixed membership block model to allow a linear
Gaussian trend in the model parameters. Zhou et al. [35] present a nonparamet-
ric approach to estimating a time-varying Gaussian graphical model where the
covariance matrix changes smoothly over time. The discrete analog of this is con-
sidered in [17], where the goal is to learn the latent structures of evolving graphs
from a time series of node attributes. The static model of Raftery et al. [24] is
extended by Sarkar and Moore [28] by allowing smooth transitions in latent
space. All of these models have the virtue of a clean probabilistic formulation
such that link prediction can be cast in terms of Bayesian posterior inference.
Obtaining this posterior is, however, often infeasible in large-scale graphs. More-
over, these models often make strong model assumptions, not only for the graph
structure but also for the network dynamics, which is often modeled as linear.

Alternatives to generative models generally revolve around the definition of
various static features that aim to capture structural properties of graphs. These
are extended to the dynamic setting via heuristics or via autoregressive model-
ing. For example, Huang and Lin [14] propose a linear autoregressive model for
link prediction and investigate simple combinations of static graph-based simi-
larity measures (e.g., Katz, common neighbors) with their autoregressive model
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to capture transitive similarities in networks. A similar parametric approach can
be found in Richard et al. [25], where a vector autoregressive model was used
for link prediction in dynamic graphs. The authors assume a low rank structure
of the graph adjacency matrices and propose proximal methods for inference.

Tylenda et al. [31] examine simple temporal extensions of existing static mea-
sures. As we have noted earlier, these methods have the virtue of being applica-
ble to large-scale graphs. They also tend to yield surprisingly good performance.
Our work falls into this general category, while going beyond existing work by
providing a formal statistical treatment of link prediction as a nonparametric
estimation problem.

We conclude this section with a brief discussion on relevant research on non-
parametric bootstrap estimators in strong mixing random fields and Markov
processes. While these works are not relevant to the link prediction aspect of
our work, they are similar because the estimation uses local resampling methods
thereby retaining the dependency structure of the data. In the context of strong
mixing random fields Politis and Romano [23] consider a blocks of blocks re-
sampling method for estimating asymptotically accurate confidence intervals for
parameters of the joint distribution of the random field. Nonparametric boot-
strap algorithms have also been applied successfully to the area of computer
vision. E. and J. [7] show that one such heuristic algorithm for texture synthesis
can be formally framed as a resampling technique for stationary random fields,
and prove consistency properties of it under broad conditions. In the context
of stochastic processes with an autoregressive structure, Paparoditis and Dim-
itris [20] present the “local bootstrap” algorithm, which implicitly estimates the
distribution of the one-step transition in the underlying Markov process and
generates the bootstrap replicates using this estimated distribution.

9. Conclusions

In this paper we proposed a nonparametric model (NNI) for link prediction in
dynamic networks, and showed that it performs as well as the state of the art for
several real-world graphs, and exhibits important advantages over them in the
presence of nonlinearities such as seasonality patterns. NNI also allows us to in-
corporate features external to graph topology into the link prediction algorithm,
and its asymptotic convergence to the true link probability is guaranteed under
our fairly general model assumptions. In addition, we show how to make NNI

computationally tractable via the use of locality sensitive hashing. Together,
these make NNI a useful tool for link prediction in dynamic networks.

Appendix

A.1. Statement and proofs of results from Section 5

Lemma 5.3. As T → ∞, for some Rc > 0 (a deterministic function of class C),

E[f̂T (s,Q)|ET1 , SC ] → Rc, E[f̂T (s,Q)|SC ] → Rc.
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Proof. Let ǫ denote the minimum distance between two datacubes that are not
identical; since the set of all possible datacubes is finite, ǫ> 0.E[f̂T (s,Q)|ET1 , SC ]
is an average of terms E[KbT

(dt (i) , Q)ηi,t+1 (s) |ET1 , SC ], over i ∈ {1, . . . , n}
and t ∈ {p, . . . , T − 1}. Now,

E[KbT
(dt (i) , Q)ηi,t+1 (s) |ET1 , SC ] = E

[
e−D(dt(i),Q)/bT ηi,t+1 (s) |ET1 , SC

]
.

Writing the expectation in terms of a sum over all possible datacubes, and
noting that everything is bounded, gives the following:

E
[
e−D(dt(i),Q)/bT ηi,t+1 (s) |ET1 , SC

]

= E[ηi,t+1 (s) |dt (i) = Q, ET1 , SC ]P (dt (i) = Q|ET1 , SC) +O(e−ǫ/bT ).

Recalling that E[f̂T (s,Q)|ET1 , SC ] was an average of the above terms, we see
that it equals:

1

n(T − p)

∑

t,i

E[ηi,t+1 (s) |dt (i) =Q, ET1 , SC ] · P (dt (i) =Q|ET1 , SC) +O(e−ǫ/bT ).

(5.1)

We will now show that the above average converges to g(s,Q)R for some R > 0.
The second term in the RHS in eq. (5.1) converges to zero, since bT → 0 as T →
∞. For the numerator of the first term we have, E[ηi,t+1 (s) |dt (i) = Q, ET1 , SC ]·
P (dt (i) = Q|ET1 , SC) =

∑
η ηP (ηi,t+1 (s) = η, dt (i) = Q|ET1 , SC). Both dt (i)

and ηi,t+1 (s) are fully determined given the current state St of the Markov
chain. Using IS(X) to denote an indicator ofX in state S, we have P (ηi,t+1 (s) =
η, dt (i) = Q|ET1 , SC) =

∑
S IS(ηi,t+1 (s) = η, dt (i) = Q)P (St = S|ET1 , SC). As

a result of this, the first term in the R.H.S of eq (5.1) becomes an average of the
form 1

T

∑
t

∑
S ξ(S)P (St = S|ET1 , SC), where ξ(S) = 1

n

∑
i,η ηIS(ηi,t+1 (s) =

η, dt (i) = Q). Since we have a finite state-space and ξ(S) is bounded, we can

rewrite the above expression as
∑

S ξ(S)

∑
t

P (St=S|ET1 ,SC)

T .
Now, recall that the query datacube at T is a function of the state ST ,

which belongs to a closed irreducible set C with probability 1. Due to station-
arity (or cyclic stationarity with a finite cycle length) the average

∑
t P (St =

S|ET1 , SC)/T converges to some constant R(S) (constant because it is a function
of the finite state space). For the special case of S = ST , we have the following:
(a) ST ∈ C, so R(ST ) > 0, and (b) ST contains at least one pair of nodes with
the feature vector s (since we are attempting link prediction for such a pair),
so there exists some η > 0 for which IST

(η,Q) = 1. Together, these imply that∑
S ξ(S) (

∑
t P (St = S|ET1 , SC)/T ) converges to some Rc > 0, where Rc is a

deterministic function of communication class C.
Noting that E[f̂T (s,Q)|SC ] = E[E[f̂T (s,Q)|ET1 , SC ]|SC ], and the fact that

f̂T is bounded we invoke the Dominated Convergence Theorem and see that
E[f̂T (s,Q)|SC ] → Rc as well, thus completing the proof of the theorem.
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Lemma 5.4. Define BT (s,Q,C) = (E[ĥT (s,Q)|SC ] − gE[f̂T (s,Q)|SC ])/

E[f̂T (s,Q)|SC ]. If Assumption 1 holds, then, we have BT = O(bT ). Since
bT → 0 as T → ∞, this implies BT = o(1).

Proof. For t ∈ [p, T − 2]; i ∈ [1, N ]; s = sT (q, q′), the numerator of BT is an
average of the terms:

At := E
[
KbT

(dt (i) , Q)η+
i,t+1 (s) |SC

]
− E [KbT

(dt (i) , Q)ηi,t+1 (s) |SC ] g(s,Q).

Taking expectations w.r.t. dt (i), and denotingKbT
(dt (i) , Q) by γ, the first term

becomes:

E
[
γη+

i,t+1 (s) |SC

]
= E

[
γE
[
η+

i,t+1 (s) |dt (i) , SC

]
|SC

]
.

Now note thatE
[
η+

i,t+1 (s) |dt (i) , SC

]
= E[E[η+

i,t+1 (s) |dt (i) , ET1 , SC ]|SC ]. Con-

ditioning on ET1 makes η+
i,t+1 (s) conditionally independent of SC given dt (i)

if t > T1. Also, for t ≥ T1, E
[
η+

i,t+1 (s) |dt (i) , ET1 , SC

]
= ηi,t+1 (s) · g(s, dt (i)),

as can be seen by summing Eq. 2.3 over all pairs (i, j) in a neighborhood with
identical st (i, j), and then taking expectations2. This along with the fact that
γη+

i,t+1 (s) is bounded leads to:

E[η+
i,t+1 (s) |dt (i) , ET1 , SC ] ≤ ηi,t+1 (s) g(s, dt (i))1[T1 ≤ t] + c1[T1 > t]

≤ ηi,t+1 (s) g(s, dt (i)) + c1[T1 > t].

Thus the numerator of BT can be upper bounded as:

∣∣∣∣
∑

t

At/T

∣∣∣∣ ≤
∑

t

|E[γηi,t+1 (s) (g(s, dt (i)) − g(s,Q))|SC ]|/T + c′
∑

t

P [T1 > t]/T.

The second part is simply O(E[T1]/T ) and o(1). Thus, the numerator of BT

becomes an average of the terms of the following form:

E [KbT
(dt (i) , Q)ηi,t+1 (s) · (g(s, dt (i)) − g(s,Q)) |SC ] .

This expectation is over all possible configurations of the neighborhoodsNt(i)
and Nt+1(i). Since our neighborhood sizes are bounded (because n is bounded),
the expectation is a sum over a finite number of terms.

We now use the smoothness assumption on g. Using |g(s, dt (i)) − g(s,Q)| =
O(D(dt (i) , Q)) and that ηi,t+1 (s) is finite for all T and Lemma 5.3, we have:

BT = O
(
E[D(dt (i) , Q)e−D(dt(i),Q)/bT |SC ]

)
= O(bT ).

The last equation holds since for non-negative x, xe−x/bT ≤ bT /e.

2Note that the conditioning on ET1 is crucial here.
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Lemma 5.5. Consider an irreducible and aperiodic finite state Markov chain
with probability transition matrix P , starting distribution π0 and stationary dis-
tribution π. Let Xt be a deterministic function (with finite support) of the state
at time t. The expectation of X under the distribution at time t is denoted
by E[Xt|π0]. Let µ denote the expectation of X∞ (i.e. under distribution π).
There exists a constant λ ∈ (0, 1), and a constant M such that, ∀t > M ,
maxx∈S

∑
y∈S |P t(x, y) − π(y)| = O(λt), and |E[Xt|π0] − µ| = O(λt).

Proof. Using the same line of reasoning as [11], we first prove the above for
maxx

∑
y∈S |P t(x, y)−π(y)|. Here |S| denotes the state space and P the |S|×|S|

probability transition matrix associated with the Markov chain. Denote by Π the
matrix 1πT , where 1 denotes the column vector of all ones. Note that since PΠ =
Π and ΠP = Π, we have P t − Π = (P − Π)t. For a finite state space irreducible
and aperiodic Markov chain, |P t(x, y) − Π(x, y)| → 0, as t → ∞. Hence for
some positive δ < 1, we can find an M s.t. ∀t > M ,

∑
y |P t(x, y) − Π(x, y)| ≤ δ,

∀x ∈ S. Since maxx

∑
y |P t(x, y) − Π(x, y)| = ||P t − Π||∞, using matrix norm

inequalities we have for t = kM + ℓ, where ℓ < M and t > M ,

|P t − Π|∞ ≤ ||PM − Π||k∞||P ℓ − Π||∞ = O(δk),

since maxℓ≤M ||P ℓ − Π||∞ is a constant. However, δk = δk+1/δ = O(λt), where
λ = δ1/M < 1. Now for t > M and λ < 1, we have:

max
x

|P t(x, y) − π(y)| = O(λt).

First consider π0 to be an atom at a state x0 ∈ S. Since |E(Xt|X0) − µ| ≤∑
x∈S |x||P (x0, x) − π(x)|, using that Xt is bounded we have the main result.

The result can be easily extended to the more general case where π0 is a convex
combination of atoms at x ∈ S.

Lemma 5.7. For any finite integer k, we have

var

( ∑

t≥T1+M

qt|ET1 , T1 = k, SC

)
/T → σc for some σc ≥ 0 (5.7)

var

(∑

t

qt|ET1 , T1 = k, SC

)
/T → σc for some σc ≥ 0. (5.8)

For a finite state space Markov chain, we also have E[var(UT |ET1 , SC)|SC ] → σc

for some σc ≥ 0.

Proof. Let C have (finite) period d; the period is finite from the finiteness of the
Markov chain, and is typically very small (e.g., d = 1 if 0 < g(.) < 1 everywhere).
Let M′ be a Markov chain where each transition corresponds to d transitions of
the original chain. Now, M′ is irreducible and aperiodic (since C was irreducible
and had period d). Thus, ∃M,λ ∈ (0, 1) s.t. ∀t ≥ M , it is geometrically ergodic
with rate λ (Lemma 5.5), which implies in turn that for t ≥ M , M′ is strongly
mixing with exponential drop-off [21] for large k: α(k) ∼ e−βk for some β > 0.
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Thus, distant states are almost independent, and we use this to bound the
covariances of the qit, as follows. Also define qt =

∑
i qit/n.

For the first term, we have:

(1/T )var

[
T∑

t=1

qt|ET1 , SC

]

= (1/T )
∑

t<T1,t′<T1

cov(qt, qt′ |ET1 , SC)

︸ ︷︷ ︸
(P0)

+ (1/T )
∑

t≥T1

var(qt|ET1 , SC)

︸ ︷︷ ︸
(P1)

+ (2/T )
∑

t<T1,t′≥T1

cov(qt, qt′ |ET1 , SC)

︸ ︷︷ ︸
(P2)

.

First, note that P0 = O(T 2
1 /T ). We now focus on P1. Let U :=

∑
T1≤t<T1+M qt,

and V :=
∑

t≥T1+M qt. Thus,

var

( ∑

t≥T1

qt|ET1 , SC

)
= var(U |ET1 , SC) + var(V |ET1 , SC) + cov(U, V |ET1 , SC).

var(U |ET1 , SC) = O(M2), as for var(V |ET1 , SC), we have:

var(V |ET1 , SC) = (2/T )
∑

t≥T1+M

∑

t′≥t

cov(qt, qt′ |ET1 , SC)

︸ ︷︷ ︸
At

.

Recall that for our Markov chain, St involves p+ 1 graphs (Gt−p+1, . . . , Gt+1).
Since qt is a function of St, it also depends on p+ 1 graphs. Hence, the distance
dist(t, t′) between two sigma-algebras F≤t and F>t′ is defined as max(⌈(t′ −
t− (p+ 1))/d⌉, 0) . Thus, the total number of states at distance k is O(1). Let
Rt = ⌊(T − t)/d⌋. Rather importantly, note that we will use basic conditional
independence results from Markov chains. For example E[XtXt+2d|Xt+d] =
E[Xt|Xt+d]E[Xt+2d|Xt+d]. Unfortunately, conditioned on ET1 ∩ SC this may
not be true. However, if t ≥ T1, we can safely use the conditional independence,
which is definitely true for At.

For notational convenience we will denote by covc and Ec covariance and
expectation conditioned on ET1 ∩ SC . Then,

At =
∑

t≤t′<t+(Rt−1)d

covc(qt, qt′) +
∑

t+Rtd≤t′≤T

covc(qt, qt′)

=

Rt−1∑

r=0

d−1∑

ℓ=0

covc(qt, qt+rd+ℓ) +
∑

t+Rtd≤t′≤T

covc(qt, qt′)

=
∑

r

(Ec[qtutr] − Ec[qt]Ec[utr]) + (Ec[qtutRt
] − Ec[qt]Ec[utRt

])
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(
letting utr =

d−1∑

ℓ=0

qt+rd+ℓ and utRt
=

T∑

t′≥t+Rtd

qt+rd+ℓ

)

=
∑

r

(
Ec[Ec[qtutr | S′

t+rd]] − Ec[qt]Ec[utr]
)

+
(
Ec[Ec[qtutRt

| S′
t+Rtd]] − Ec[qt]Ec[utRt

]
)

=
∑

r

(
Ec[Ec[qt | S′

t+rd]Ec[utr | S′
t+rd]] − Ec[qt]Ec[Ec[utr | S′

t+rd]]
)

+
(
Ec[Ec[qtutRt

| S′
t+Rtd]] − Ec[qt]Ec[utRt

]
)

By Markov property

=
∑

r

(
Ec[Ec[qt | S′

t+rd]p(S′
t+rd)] − Ec[qt]Ec[p(S′

t+rd)]
)

+
(
Ec[Ec[qt | S′

t+Rtd]p(S′
t+Rtd)] − Ec[qt]Ec[p(S′

t+Rtd)]
)

Ec[utr | S′
t+rd] is denoted as a function p(.)

=
∑

r

(
Ec[Ec[qtp(S

′
t+rd) | S′

t+rd]] − Ec[qt]Ec[p(S′
t+rd)]

)

+
(
Ec[Ec[qtp(S

′
t+Rtd) | S′

t+Rtd]] − Ec[qt]Ec[p(S′
t+Rtd)]

)

=
∑

r

(
Ec[qtp(S

′
t+rd)] − Ec[qt]Ec[p(S′

t+rd)]
)

+
(
Ec[qtp(S

′
t+Rtd)] − Ec[qt]Ec[p(S′

t+Rtd)]
)

= Bt + covc(qt, p(S
′
t+Rtd)) where Bt =

∑

r

covc(qt, p(S
′
t+rd)).

Recall that we were originally interested in
∑

t>T1
At/T . Let us first consider

1/T
∑

t cov(qt, p(S
′
t+Rtd)|ET1 , SC). By virtue of geometric ergodicity cov(qt,

p(S′
t+Rtd)|ET1 , SC) = O

(
e−βRt

)
, where Rt = ⌊(T − t)/d⌋. Thus we have:

∑

t

|cov(qt, p(S
′
t+Rtd)|ET1 , SC)| = O

(
∑

t

e−β⌊(T −t)/d⌋

)
= O

(
eβ

1 − e−β/d

)
.

Using elementary arguments from real analysis we see that
∑

t cov(qt,
p(S′

t+Rtd)|ET1 , SC) converges to some finite number. Hence after dividing by
T it contributes a o(1) term to the expression

∑
t At/T . For this reason we will

now concentrate on
∑

t>T1
Bt/T term. First note that the sequence Bt is upper

bounded by the following,

Bt ≤
∑

r

|cov(qt, p(S
′
t+rd)|ET1 , SC)| Also t > T1, and we have conditioned

on ET1 , SC

≤ O

(∑

r

e−βr

)
= O(1) Since all qt are bounded.

We again see that Bt also converges to some constant ct, thus making P2 asymp-
totically equivalent to: 1

T

∑d−1
ℓ=0

∑Rt−1
r=0 cT1+rd+ℓ. However, for all T1 ≤ T , if the

chain is cyclo-stationary, then after a finite time, for any ℓ ∈ {0, . . . , d − 1},
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cT1+rd+ℓ approaches the same constant cℓ, ∀r. Therefore, for all T1 ≤ T we have

limR→∞

∑R−1
r=0 cT1+rd+ℓ/R = cℓ, where cℓ is a constant w.r.t T . This leads to:

var(V |ET1 , SC) → 1/d

d−1∑

ℓ=0

cℓ as T → ∞.

Since the P1 is a variance term, it is non-negative for all T , and hence σc =
1/d

∑d−1
ℓ=0 cℓ must be non-negative as well, thus proving Equation 5.7. Using the

Cauchy Schwartz inequality,

cov(U, V |ET1 , SC)/T = O(
√

(var(U |ET1 , SC)/T )(var(V |ET1 , SC)/T )) = o(1).

Thus P1 → σc as T → ∞ for some non-negative constant σc.
Another use of the Cauchy Schwartz argument from before, along with the

convergence result on P1 lets us upper bound P2 by O(T1/
√
T ).

Thus, for finite k, putting all the bounds (i.e. on P0, P1, and P2) together, we
have var(

∑
t qt|ET1 , SC , T1 = k)/T → σc, for some σc ≥ 0, proving Equation 5.8.

Also, since T1 has finite first and second moments for a finite space Markov chain,
we have E[var(

∑
t qt|ET1 , SC)|SC ]/T → σc.

We remind the reader that using simple arguments for finite state space
Markov chains, it can be shown that T1’s tail probability is geometrically de-
caying, leading to the finiteness of the first and second moments.

Lemma 5.8. var(E[UT |ET1 , SC ]|SC) = o(1).

Proof. Recall that UT :=
∑

t qt/
√
T . Let µc denotes the expectation of qt un-

der the stationary distribution in communication class C (it is a deterministic
function of class C). Since var(E[qt|ET1 , SC ]|SC) = var(E[qt|ET1 , SC ] − µc|SC),
we will simply upper bound E[UT − µc|ET1 , SC ]. Lemma 5.5 shows that: ∃M ,
and λ ∈ (0, 1) such that, ∀t > T1 +M , |E[qt|ET1 , SC ] − µc| = O(λt−T1 ). Thus,

|E[UT − µc|SC , ET1 ]| ≤ c(T1 +M)√
T

+

∑
t>T1+M λt−T1

√
T

= O

(
T1 +M√

T

)
(5.9)

Thus, var(E[UT |ET1 , SC ]) = O
(
E[(T1 +M)2]/T

)
= o(1), since T1 has finite

second moment.

A.2. Statement and proofs of results from Section 6

Lemma 6.2. The Wasserstein distance dW (W,Z) between W and the standard
normal random variable Z is upper bounded as follows:

dW (W,Z) ≤ min
k≤T

(
c1B

3γT

( |N≤k|
σT

)2

+ c2BγTα(k)

+ B2

√

c3

(
γT τk

σT

)2

+ c4γT

( |N≤k|
σT

)3

+ c5γT
τk

σT

( |N≤k|
γT

)2

 ,

where c1, c2, c3, c4, c5 are constants.



2056 P. Sarkar et al.

Proof. We define the following sets:

Nm(i) := {j : dist(i, j) = m}, N≤k(i) :=
⋃

m≤k

Nm(i), N>k(i) :=
⋃

m>k

Nm(i).

We also define the following upper bounds on the sizes of these sets:

|Nm| := max
i

|Nm(i)|, |N≤k| := max
i

|N≤k(i)|, |N>k| := max
i

|N>k(i)|.

Before beginning, we recall two facts.
(1) Bounded covariance via strong mixing: For two random variables X and

Y that are more than distance k away, we have

|E[XY ] − E[X ]E[Y ]| ≤ 4‖X‖∞‖Y ‖∞α(k).

(2) Bounds on Wasserstein distance: For the set of functions F = {f | ‖f‖,
‖f ′′‖ ≤ 2, ‖f ′‖ ≤

√
2/π},

dW (W,Z) ≤ sup
f∈F

|E[f ′(W ) −Wf(W )]|,

where dW (.) is the Wasserstein distance and Z has the standard normal distri-
bution.

In the following, we shall bound |E[f ′(W ) − Wf(W )]|. We shall repeatedly
break up W into two parts: Wi =

∑
j∈N>k(i) Xj being the contribution from all

nodes within a distance k of some node i, and the remainder from nodes “far
away” from i. Here, k is a parameter that shall be picked later. We can bound
|E[f ′(W ) −Wf(W )]| as follows:

|E[f ′(W ) −Wf(W )]| =

∣∣∣∣E
[
f ′(W ) −

∑

i

Xif(W )

]∣∣∣∣ (6.10)

≤
∣∣∣∣E
[
f ′(W )

(
1 +

∑

i

Xi(Wi −W )

)]∣∣∣∣

+

∣∣∣∣E
[∑

i

Xi(Wi −W )f ′(W ) +
∑

i

Xif(W )

]∣∣∣∣.

The second part in eq. 6.10 can be further bounded above as follows,

∣∣∣∣∣E
[∑

i

Xi(Wi −W )f ′(W ) +
∑

i

Xif(W )

]∣∣∣∣∣ (6.11)

≤ E

∣∣∣∣∣
∑

i

Xi(Wi −W )f ′(W ) −
∑

i

Xi(f(Wi) − f(W ))

∣∣∣∣∣+

∣∣∣∣∣E
[∑

i

Xif(Wi)

]∣∣∣∣∣

≤ 1

2
E

∣∣∣∣∣
∑

i

Xi(W −Wi)
2f ′′(W ∗

i )

∣∣∣∣∣+

∣∣∣∣∣E
[∑

i

Xif(Wi)

]∣∣∣∣∣
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≤ ‖f ′′‖
2

E

∣∣∣∣∣
∑

i

Xi(Wi −W )2

∣∣∣∣∣+

∣∣∣∣∣E
[∑

i

Xif(Wi)

]∣∣∣∣∣ ,

where the second inequality follows from Taylor expansion with W ∗
i being some

value between W and Wi.
First, note that:

‖f ′′‖E
∣∣∣∣∣
∑

i

Xi(Wi −W )2

∣∣∣∣∣ = ‖f ′′‖E

∣∣∣∣∣∣

∑

i

∑

j1,j2∈N≤k(i)

XiXj1Xj2

∣∣∣∣∣∣

≤ ‖f ′′‖
∑

i

∑

j1,j2∈N≤k(i)

E|XiXj1Xj2|

≤ ‖f ′′‖
∑

i

∑

j1,j2∈N≤k(i)

E|X3
i | + E|X3

j1| + E|X3
j2|

3

≤ 2c1B
3T |N≤k|2

σT
3

(The factor 2 is added for later ease of notation). As for the second term in
eq. 6.11 we have:

∣∣∣∣∣E
[∑

i

Xif(Wi)

]∣∣∣∣∣ ≤
∑

i

|E[Xif(Wi) − E[Xi]E[f(Wi)]]| (because E[Xi] = 0)

=
∑

i

|cov(Xi, f(Wi))| ≤ 4‖f‖BTα(k)

σT
= c2B

Tα(k)

σT
.

Thus, we obtain a bound for both terms in eq. 6.11, and hence a bound for
the second term of eq. 6.10. We will now bound the first term in eq. 6.10. Let
PT =

∑
iXi(Wi −W ). Denote by τk the tail sum

∑
m>k |Nm|α(m). Recall that

E[Xi] = 0 and E[W 2] = 1. Thus,

∣∣∣∣∣E
[
f ′(W )

(
1 +

∑

i

Xi(Wi −W )

)]∣∣∣∣∣ ≤ E |f ′(W ) (1 + PT )| ≤ ‖f ′‖
√
E [1 + PT ]

2

≤ ‖f ′‖
√
E[(1 + E[PT ]) + (PT − E[PT ])]2

≤
√

2/π
√

(1 + E[PT ])2 + var(PT ).

Now,

|E[PT ] + 1| =

∣∣∣∣E
[∑

i

XiWi

]∣∣∣∣ =

∣∣∣∣
∑

i

E

[
Xi

∑

j∈N>k(i)

Xj

]∣∣∣∣

=

∣∣∣∣
∑

i

∑

m>k

∑

j∈Nm(i)

E[XiXj ]

∣∣∣∣
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=

∣∣∣∣
∑

i

∑

m>k

∑

j∈Nm(i)

(E[XiXj ] − E[Xi]E[Xj ])

∣∣∣∣

≤
∑

i

∑

m>k

c′′B2

σT
2
α(m)|Nm| ≤ c′′B2 Tτk

σT
2
.

Next, we look at the var(PT ) term:

var(PT ) = (E[P 2
T ] − E[PT ]2) (6.12)

= E







∑

i
j∈N≤k(i)

XiXj




2
− E[PT ]2

= E




∑

i,j
s∈N≤k(i)

t∈N≤k(j)

XiXjXsXt




︸ ︷︷ ︸
(A)

−E[PT ]2.

The first term (i.e., term (A)) in eq. 6.12 can be broken into two parts, one such
that the minimum distance between any node in {i, s} and any node in pair
{j, t} is ≤ k (denote this by set F≤k), and one where its greater than k (denote
this by set F>k). Formally, we define the following terms:

Fm = {(i, j, s, t) : s ∈ N≤k(i), t ∈ N≤k(j), min
a,b∈{i,j,s,t}

dist(a, b) = m}

F≤k =
⋃

m≤k

Fm, F>k =
⋃

m>k

Fm, |Fm| = max
i

|Fm(i)|, |F≤k| = max
i

|F≤k(i)|.

Consider the term |F≤k|. Given i, s can be picked in at most |N≤k| ways. Now,
either j or t or both must be within distance k of i or s. Thus, given i and
s, j (or t) can be picked in at most 2|N≤k| ways, and then t (or j) can be
picked in another |N≤k| ways. Hence, |F≤k| ≤ 4T |N≤k|3. By a similar argument,
|Fm| ≤ 4T |N≤k|2|Nm|.

Now, we have:

(A) =
∑

F≤k

E[XiXjXsXt] +
∑

F>k

E[XiXjXsXt]

=
∑

F≤k

E[XiXjXsXt] +
∑

F>k

E[XiXs]E[XjXt]

+
∑

F>k

(E[XiXjXsXt] − E[XiXs][XjXt])
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≤
∑

F≤k

E[XiXjXsXt]

︸ ︷︷ ︸
(B0)

+
∑

F>k

E[XiXs]E[XjXt]

︸ ︷︷ ︸
(B1)

+ 4
∑

m>k

∑

Fm

B4

σT
4
α(m)

︸ ︷︷ ︸
(B2)

.

(B0) =
∑

F≤k

E[XiXjXsXt] ≤
∑

F≤k

E[X4
i ] + E[X4

j ] + E[X4
s ] + E[X4

t ]

4

≤ B4

σT
4

∑

F≤k

1 ≤ 4B4T |N≤k|3
σT

4
.

(B1) =
∑

F>k

E[XiXs]E[XjXt]

=
∑

F>k

⋃
F≤k

E[XiXs]E[XjXt] −
∑

F≤k

E[XiXs]E[XjXt]

≤
(∑

i

E[Xi(W −Wi)]

)2

+
∑

F≤k

E[X4
i ] + E[X4

s ] + E[X4
j ] + E[X4

t ]

4

≤ (E[PT ])2 + 4B4T |N≤k|3
σT

4
.

(B2) ≤ 4B4

σT
4

∑

m>k

|Fm|α(m) ≤ 16B4T |N≤k|2
σT

4

∑

m>k

|Nm|α(m) ≤ 16B4T |N≤k|2
σT

4
τk.

The last equation simply uses a number of applications of the fact that the
geometric mean is less than the arithmetic mean, and Jensen’s inequality. Plug-
ging these into Equation 6.12, we have:

var(PT ) = (B0) + (B1) + (B2) − E[PT ]2

≤ 4B4T |N≤k|2
σT

4
+ 4B4T |N≤k|3

σT
4

+ 16B4T |N≤k|2
σT

4
τk

≤ 8B4T |N≤k|3
σT

4
+ 16B4T |N≤k|2

σT
4

τk.

Combining these steps, and recalling that γT = T/σT , we finally obtain the
following form for Eq. 6.10:

dW (W,Z) ≤ c1B
3 T |N≤k|2

σT
3

+ c2B
Tα(k)

σT

+ ‖f ′‖
√

c′′2B4
T 2τ2

k

σT
4

+ 8B4
T |N≤k|3
σT

4
+ 16B4

T |N≤k|2
σT

4
τk

≤ c1B
3γT

( |N≤k|
σT

)2

+ c2BγTα(k)
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+B2

√

c3

(
γT τk

σT

)2

+ c4γT

( |N≤k|
σT

)3

+ c5γT

( |N≤k|
σT

)2
τk

σT
.

A.3. Statement and proofs of results from Section 7

We will start by reminding the reader some of the definitions. Define the fol-
lowing:

ĥT (t) :=
1

n

n∑

i=1

KbT
(dt (i) , Q)η+

i,t+1 (s)

f̂T (t) :=
1

n

n∑

i=1

KbT
(dt (i) , Q)ηi,t+1 (s)

qt := ĥT (t) − E[ĥT (t)|SC ] − g(f̂T (t) − E[f̂T (t)|SC ])

pt := [ĥT (t) − gf̂T (t)] − E[ĥT (t) − gf̂T (t)|ET1 , SC ].

We define: σ2
T (T1, C) := var(

∑
t qt|ET1 , SC), and σ2

T (C) := var(
∑

t qt|SC).
Also, σ2

T (T1, C) := var(
∑

t qt|ET1 , SC).

Lemma 7.2. Under Assumption 1 and assuming σc > 0,

Conditioned on SC ,
∑

t

qt/
√
T

d→ N (0, σ2
c ) As T → ∞.

Proof. Using our distributional convergence results conditioned on ET1 ∩SC , we
have shown that
∑

t≥T1+M

pt/
√
T

d→ N (0, σ2
c ) Conditioned on ET1 ∩ SC , when T1 has a finite value.

Denote by Vt := ĥT (t) − gf̂T (t). We have,

∣∣∣∣
∑

t

qt/
√
T −

∑

t≥T1+M

pt/
√
T

∣∣∣∣ (7.13)

≤
∣∣∣∣
∑

t<T1+M

qt/
√
T

∣∣∣∣+
∑

t≥T1+M

|E[Vt|ET1 , SC ] − E[Vt|SC ]| /
√
T

≤ c(T1 +M)/
√
T + c′

∑

t≥T1+M

λt−T1/
√
T

= c′′(T1 +M)/
√
T Using Lemma 5.5.

where c, c′ and c′′ are positive constants. Let Fk(x) denote the c.d.f of∑
t≥T1+M pt/

√
T , i.e. Fk(x) = P (

∑
t≥k+M pt/

√
T ≤ x|ET1 , SC , T1 = k). Lem-

ma 7.3 tells us that, for finite k and ∀x ∈ R, Fk(x) → Φ0,σ2
c
(x); Φ0,σ2

c
(x) being
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the c.d.f of a normal distribution with mean zero, and standard deviation σc.
Now, using Equation 7.13 we have the following simple argument:

P

(∑

t

qt/
√
T ≤ x|SC

)

≤
∑

k

P

( ∑

t≥k+M

pt/
√
T ≤ x+ c′′(k +M)/

√
T |ET1 , SC , T1 = k

)
P (T1 = k|SC)

≤
∑

k≤K

Fk(x+ c′′(k +M)/
√
T )P (T1 = k|SC) + P (T1 > K) For any finite K

→ lim sup
T →∞

P

(∑

t

qt/
√
T ≤ x|SC

)
≤ Φ0,σ2

c
(x)P (T1 ≤ K) + P (T1 > K).

In the last step, the exchange of limit and expectation is valid by virtue of the
Dominated Convergence Theorem. Now taking K → ∞ (which minimizes the
upper bound on the lim sup) and using the geometric bound on tail probability
of T1 in finite state space Markov chains, we have:

lim sup
T →∞

P

(∑

t

qt/
√
T ≤ x|SC

)
≤ Φ0,σ2

c
(x).

An identical argument on P (
∑

t qt/
√
T > x|SC) gives the following equation.

lim inf
T →∞

P

(∑

t

qt/
√
T ≤ x|SC

)
≥ Φ0,σ2

c
(x).

Thus we show that ∀x ∈ R, as

T → ∞ P

(∑

t

qt/
√
T ≤ x|SC

)
→ Φ0,σ2

c
(x),

which in turn proves our result.

Lemma 7.3. Define pt := [ĥT (t) − gf̂T (t)] −E[ĥT (t) − gf̂T (t)|ET1 , SC ]. Under
Assumption 1 and assuming σc > 0, for any finite T1, we have:

∑

t≥T1+M

pt/
√
T

d→ N (0, σ2
c ) conditioned on ET1 ∩ SC as T → ∞.

Proof. If we can show that the conditions in Lemma 6.3 are satisfied for

WT :=

( ∑

t≥T1+M

pt

)/√√√√var

( ∑

t≥T1+M

pt|ET1 , SC

)
,

then using Lemma 6.1 we will have:

WT
d→ N (0, 1) conditioned on ET1 ∩ SC .
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However, for any finite value of T1, var(
∑

t≥T1+M pt|ET1 , SC)/T → σ2
c (see

Lemma 5.7, eq. 5.7). Thus, with the additional assumption of σc > 0, the result
is proved.

Now we will show that, conditioned on ET1 ∩ SC , the conditions in Lemma 6.3
are satisfied for WT , and thus the Wasserstein distance in Lemma 6.2 can be
upper bounded by O(T−1/2 log2(T )).

First note that pt is bounded and E[pt|ET1 , SC ] = 0. Thus pt corresponds
to Yt in Lemma 6.2. Since pt is a function of St, it involves p + 1 graphs
(Gt−p+1, . . . , Gt+1). The distance dist(i, j) is defined as max(|i− j| − (p+ 1), 0).
Thus |Nm| equals 2 for m > 0, and 2(p + 1) otherwise; hence |Nm| = O(1).
Also, |N≤k| = O(k). Denote by σT (T1, C) the standard deviation of

∑
t≥T1

pt

conditioned on SC ∩ ET1 . Let us now examine the conditions in Lemma 6.3.

Condition 1 γT → ∞ We have γT = T/σT (T1, C) →
√
T/σc → ∞, where

the limits follow from Lemma 5.7 and the σc > 0 assumption.

Condition 2 Let k(T ) = logT/β. We will show that this satisfies conditions
2a, 2b, and 2c.

2a: γTα(k(T )) → 0

Plugging in the value of k(T ), and using Lemma 5.7 we see that:

γTα(k(T )) = O
(
Te−βk(T )

/
σT (T1, C)

)
= O(T−1/2).

2b: γT τk(T )

/
σT (T1, C) → 0

Using Lemma 5.7 we see that:

γT τk(T )

/
σT (T1, C) = (T/σT (T1, C)2)τk(T ) = O(τk(T ))

= O

( ∑

m>k(T )

|Nm|α(m)

)

= O

(
e−βk(T )

∑

t>0

e−βt

)
Using |Nm| = O(1) and α(k) = O(e−βk).

= O(e−βk(T )) = O(T−1) Using k(T ) = logT/β.

2c: γT

(
|N≤k(T )|

σT (T1,C)

)2

→ 0

Again, using Lemma 5.7 gives us:

γT

( |N≤k(T )|
σT (T1, C)

)2

= T/σT (T1, C)2 |N≤k(T )|2
/√

T

= O( |N≤k(T )|2
/√

T )

= O(k(T )2
/√

T ) = O((log T )2/T 1/2) Using k(T ) = logT/β.
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Now the upper bound on Wasserstein distance (Lemma 6.2) becomes
O(log(T )2/T ) by using k = log(T )/T and the expressions derived before as
part of the second condition.
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