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Abstract: The AneuRisk65 data are analysed using methodology from
statistical shape analysis. The internal carotid arteries are aligned using
translation and rotation in three dimensions, together with shifts of the
abscissa coordinate. Spline interpolation and weighted Procrustes methods
are used to estimate the mean size-and-shapes in each of the six groups.
Differences in torsion and curvature of the group means are highlighted,
and permutation and bootstrap tests confirm there is weak evidence for
differences in shape between the upper aneurysm group compared to the
others. Finally shape variability, analysis of mean radii and classification
are explored.
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1. Introduction

The AneuRisk65 dataset (Sangalli et al., 2014) consists of various measurements
derived from a dataset of 65 arteries, with the centerlines displayed in Figure 1.
The six groups are: Upper Aneurysm Left (UL – Black), Lower Aneurysm Left
(LL – Red), No Aneurysm Left (Green), Upper Aneurysm Right (UR – Blue),

∗Main article 10.1214/14-EJS938.
†To whom correspondence should be addressed.

1905

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/14-EJS938B
mailto:chengwen1985@gmail.com
mailto:ian.dryden@nottingham.ac.uk
mailto:hitchcock@stat.sc.edu
mailto:huiling.le@nottingham.ac.uk
http://dx.doi.org/10.1214/14-EJS938


1906 W. Cheng et al.

Fig 1. The six groups of arteries. The groups are UL (Black), LL (Red), NL (Green), UR
(Blue), LR (Cyan), NR (Pink).

Lower Aneurysm Right (LR – Cyan), No Aneurysm Right (NR – Pink). These
data have not been reflected at this stage, but rather these are the raw data.
It is of interest to examine the shape differences in the groups of arteries. From
Figure 1 we clearly see that the artery centerlines are quite variable in length,
and they are quite variable in shape. The Lower groups appear longer than
the Upper and No groups. Also, the NL and NR sample sizes are particularly
small, and we shall combine the Lower and No groups in some of our analysis,
in comparison with the Upper groups (which constitute the more dangerous
aneurysms).

2. Procrustes registration

Given that the artery centerlines are different lengths we need to consider care-
fully how to register the curves. The size-and-shapes of the arteries are invariant
under rotation and translation (Kendall, 1989; Le, 1995), and we match the 3D
curves by translation, rotation and a shift in the abscissa. The matching pro-
cedure is carried out using Procrustes analysis with the shapes package in R
(Dryden, 2013), although some adaptation is required because the arteries are of
different lengths. The method of ordinary Procrustes analysis involves register-
ing two sets of points by translation and rotation (and possibly scale) in order to
minimize the sum of square Euclidean distances between the point sets (Dryden
and Mardia, 1998, p.84). The extension to matching more than two objects is
carried out using generalized Procrustes analysis (Gower, 1975; Goodall, 1991;
Dryden and Mardia, 1998), where a mean object is estimated and simultane-
ously each individual is translated, rotated (and possibly rescaled) to match as
closely as possible to the mean. Investigating the mean shape difference between
two groups is carried out using multivariate analysis in an appropriate tangent
space (Dryden and Mardia, 1998), e.g. using hypothesis tests.

We use 3D x-y-z co-ordinates of the centerline interpolated from the abscissa
values 0, 1, . . . , nt using three cubic splines. Initially we use nt = 111, which is
the length of the longest artery. For shorter arteries we carry out extrapolation
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Fig 2. Two extrapolated arteries (red) matched by ordinary Procrustes analysis (green).

using cubic splines, which is then nearly zero weighted in the subsequent analy-
sis. The registration of the arteries is then carried out using weighted Procrustes
analysis on the k = nt + 1 points.

Consider two configurations X and µ of k ≥ 3 points in R
3 that have been

centered, i.e. 1TkX = 0 = 1Tk µ. The standard situation of unweighted ordinary
Procrustes matching is given by rotating and translating X to µ to minimize
the squared Euclidean distance, i.e. minimize

D2(X,µ) = ‖µ−XΓ− 1pγ
T‖2,

over rotations Γ ∈ SO(3) and translations γ ∈ R
3 (Dryden and Mardia, 1998).

The solution is γ̂ = 0, Γ̂ = UWT where

µTX = WΛUT, U,W ∈ SO(3)

with Λ a diagonal 3×3 matrix, and the solution is unique if X is non-degenerate
with respect to µ (see Kent and Mardia, 2001). Note that SO(3) denotes the
set of 3 × 3 rotation matrices. The size-and-shape space tangent co-ordinates
are given by

V = XΓ̂− µ,

e.g. see Dryden et al. (2007). In Figure 2 we see two arteries (with extrapolated
values) matched by ordinary Procrustes analysis.

However, the extrapolated values could lead to problems with ordinary Pro-
crustes matching, in that the extrapolated values may have an undue influ-
ence on the registration. Instead the extrapolated part can be given negli-
gible weight in a weighted Procrustes analysis, where we replace ‖X‖ with
‖X‖Σ =

√

tr(XTΣ−1X). For example, if Σ is a diagonal matrix then the diag-
onal elements of Σ−1 are the weights.

Given a sample of arteries we match them together and estimate a group
mean size-and-shape as follows.

1. Carry out non-weighted generalized Procrustes analysis (with translation
and rotation but not scale) on the interpolated and extrapolated curves,
and obtain the estimated mean size-and-shape µ̂template.
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Fig 3. Weighted Procrustes analysis: Black/Blue UL/UR, Red/Cyan LL/LR, Green/Pink
NL/NR (Reflected data).

2. Choose the estimated shift in abscissa to minimize the Procrustes distance
to µ̂template.

3. Match each individual using weighted ordinary Procrustes to µ̂template,
with weight close to zero if the point is extrapolated, and weight 1 if
interpolated.

4. Compute the weighted mean µ̂ by averaging the weighted Procrustes reg-
istered data over only the specimens which have interpolated but not ex-
trapolated values for a given abscissa.

In order to compare the left and right internal carotid arteries it is useful
to consider reflections (e.g. reflect the left arteries), which makes the groups
more similar in shape and easier to compare. We carry out the above weighted
Procrustes procedure on the reflected data and the results are displayed in
Figure 3.

In Figure 4 we see the group means plotted for each of the six groups. The
display is such that a small sphere is drawn at the interpolated mean centerline
at integer abscissa values, with radius proportional to the number of specimens
that contribute to that average point. Clearly at the lower points there are fewer
data points in the mean calculation, and hence these parts of the curves will be
estimated less reliably.

3. Shape differences

In order to describe the differences in the shapes of 3D curves it is helpful to
consider the curvature and torsion of the curve. Given a curve {x(t), y(t), z(t)}
the torsion function is given by τ(t) = τ1(t)/τ2(t), where

τ1 = x′′′(y′z′′ − y′′z′) + y′′′(x′′z′ − x′z′′) + z′′′(x′y′′ − x′′y′)

τ2 = (y′z′′ − y′′z′)2 + (x′′z′ − x′z′′)2 + (x′y′′ − x′′y′)2
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Fig 4. Group means: Black/Blue UL/UR, Red/Cyan LL/LR, Green/Pink NL/NR (Reflected
data).

and the curvature function is κ =
√
τ2/‖(x′, y′, z′)‖3/2. In Figure 5 we see the

estimated curvature and torsion for the group means. Note that the amount of
smoothing required can be large given that third derivatives need to be esti-
mated, which in turn may bias the estimation.

There are some interesting differences between the groups, and it is also
helpful to consider another view of the means in Figure 6 to aid explanation.
Some of the main feature in the size-and-shape estimates are:

1. There are three bumps of high curvature, and the highest curvatures are
in the NL and NR groups.

2. Groups means UL and UR stay closer to a plane (lower torsion)
3. Group means LL/LR and NL/NR are more twisted, leaving a plane (higher

torsion).
4. Group means LL and LR leave a plane on different sides between the

bumps 1 and 2 of high curvature (i.e. different signs for torsion), which
can be seen in Figure 6.

Fig 5. Estimated torsion and curvature of the group means: Black/Blue UL/UR, Red/Cyan
LL/LR, Green/Pink NL/NR (Reflected data). The x-axis is the abscissa value.
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Fig 6. Mean size-and-shapes: Black/Blue UL/UR, Red/Cyan LL/LR, Green/Pink NL/NR
(Reflected data).

5. Groups means NL and NR leave a plane on different sides between the
bumps 2 and 3 of high curvature. (i.e. different signs for torsion), which
can be seen in Figure 6.

These observations may be helpful in understanding the differences between
the artery shapes for the more dangerous Upper aneurysm and less dangerous
Lower/No groups. In order to examine whether these observations are statisti-
cally significant we consider a hypothesis test for mean shape difference. Given
that there are particularly low sample sizes in the No groups, and that we expect
them to have some more similarity with the Lower group, we pool the Lower/No
groups. We consider just up to length 27 on each artery for this test as all curves
are at least length 27. We carry out a permutation and bootstrap test for mean
shape difference between the two groups (U vs L/N), based on non-weighted
Procrustes matching and include scale invariance. The permutation test involves
pooling the data, randomly assigning individuals to group 1 or group 2, and then
evaluating the Goodall test statistic (Dryden and Mardia, 1998, p. 162) for each
permutation. The p-value of the test is the proportion of random permutations
with test statistic values more extreme than that calculated from the data. For
the bootstrap test the sample means are first parallel transported to be coinci-
dent, and then samples are taken with replacement from each of these translated
groups. The p-value is the proportion of bootstrap test statistic values more ex-
treme than the observed statistic. See Amaral et al. (2007) for a more in-depth
discussion of permutation and bootstrap tests for shape data. The permutation
test gave p-value = 0.079 (1000 permutations) and a bootstrap test gave p-value
= 0.068 (1000 resamples) using the testmeanshapes command in the shapes

package in R (Dryden, 2013). Hence, there is weak evidence of a difference in
shape between the Upper and Lower/No groups.

We also investigated shape variability, this time on the non-reflected data,
and the PC loadings are given graphically in Figure 7. In this analysis we con-
sider up to length 40. The clearest feature here is that PC2 displays the right-
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Fig 7. Left: PCA loadings for the non-reflected data: PCA Black PC1, Red PC2, Green PC3.
The overall mean is displayed with vectors drawn to the mean +3 s.d. along each PC. Right:
PC scores for the individual curves: Black/Blue UL/UR, Red/Cyan LL/LR, Green/Pink
NL/NR.

handed/left-handed asymmetry. PC1 and PC3 reflect the size and shape of the
first bend in the artery.

The data also contain further measurements as shown in Figure 8, including
the maximum inscribed sphere radius along the curve. If we consider an unbal-
anced one-way ANOVA then for the mean radii along curve the Upper group
significantly larger than Lower (p = 0.027) and No (p = 0.074) groups. The s.d.
of radii along curve is not significantly different between the groups. However,
for the length of curve the Lower group is longer on average than Upper and
No groups (p < 0.01). The difference in the lengths, though, is not deemed of

Fig 8. Plots of the mean radius, s.d. of the radius, and length for each of the arteries by
group (1: UL, 2: LL, 3: NL, 4: UR, 5: LR, 6: NR).
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practical importance, as the position of the image capture equipment is often
determined by the position of the aneurysm. We also explored classification of
the artery shapes using weighted Procrustes distance to the Upper, Lower and
No estimated group means. It is important to make sure that factors that de-
pend on the length of centerline are not included, as this will give a method an
unfair advantage given the significant difference in lengths between the groups.
Using leave-one-out classification we obtained 67.7% correct classification in
comparing Upper versus a combined Lower/No group using only the centerline
information.

Finally, it is important in any alignment problem to specify what invariances
are required. We have chosen to keep the original geometry of the artery intact
and only align by shifting the abscissa, as well as translation and rotation. One
could have chosen to match up the bumps and features using non-linear warping,
e.g. using the method of Srivastava et al. (2011). Such a procedure should give
complementary analysis through analysing the warps jointly with the shapes.
However, in this particular application it does seem valuable to be able to explain
the shape differences between the groups using torsion and curvature without
non-linear warping of the abscissa.
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