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Abstract: In this paper, we consider the so-called Shape Invariant Model
that is used to model a function f0 submitted to a random translation
of law g0 in a white noise. This model is of interest when the law of the
deformations is unknown. Our objective is to recover the law of the process
Pf0,g0 as well as f0 and g0. To do this, we adopt a Bayesian point of view
and find priors on f and g so that the posterior distribution concentrates at
a polynomial rate around Pf0,g0 when n goes to +∞. We then derive results
on the identifiability of the SIM, as well as results on the functional objects
themselves. We intensively use Bayesian non-parametric tools coupled with
mixture models, which may be of independent interest in model selection
from a frequentist point of view.
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1. Introduction

This study deals with the so-called Shape Invariant Model (SIM), that describes
a statistical process involving a random geometric deformation of a shape. This
type of geometric deformation of a common shape corresponds to a particular
case of Grenander’s General Pattern Theory [GM07]. This model may be ap-
plicable to a number of fields such as image processing [AGP91, PMRC10] and
medicine [Big13]. It is also used in genetics when dealing with delayed activation
curves of genes when drugs are administrated to patients, and in Chip-Seq es-
timations when translations in protein fixation yield randomly shifted counting
processes ([MMW07] and [BGKM13]). It is found in econometrics as well when
dealing with Engel curves [BCK07] and in landmark registration.

This model has received considerable attention in the statistical community,
and most studies in this field focus on the estimation of an unknown functional
object using noisy i.i.d. observations. Some studies consider a semi-parametric
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approach for the estimation of the deformation parameters (self-modeling regres-
sion framework used by [KG88]). [Cas12] uses a Bayesian approach to obtain
statistical results on the SIM in a semi-parametric setting when the level of
noise on observations asymptotically vanishes. Older approaches generally focus
on parametric problems (see [GM01] and the discussion therein for an overview).
M -estimation is used in [BGL09] and [AKT10] proposes a stochastic algorithm
to run estimations in the SIM. A recent study [CD11] used a testing strategy
to obtain curve registration. Finally, [BG10] obtained minimax adaptive rates
for non-parametric estimations when the law of the randomized translations is
known. The SIM could be extended to more general situations of geometrical
deformations described through an action of a finite dimensional Lie Group (see
[BCG12]). We restricted our work to the case of the one-dimensional Lie group
of translation S1 to warp the functional objects.

This work was inspired by several discussions about the work of [AKT10]
concerning the study of the SIM. Our aim was to extend their theoretical para-
metric Bayesian result to non-parametric settings and to then study the be-
havior of some posterior distributions. We considered the general case where
both the functional shape and the probability distribution of the deformations
are unknown. This in fact corresponds to the more realistic case. To the best
of our knowledge, significant statistical results have yet to be derived in this
non-parametric situation.

Our paper describes the evolution of the posterior distribution when the num-
ber of observations grows to +∞ with a fixed noise level σ, with the aim of ob-
taining results on the estimation of f and g, which are assumed to be unknown
in our work. This is considerably different from the study of the asymptotically
vanishing noise situation (σ → 0) that is studied in [BG12]. This is itself a spe-
cial feature of the SIM: there is no obvious Le Cam equivalence of experiments
(see [LCY00]) between the experiments when n 7→ +∞ and when σ 7→ 0. Very
different minimax results occur in [BG10] (n 7−→ +∞) and in [BG12] (σ 7−→ 0).
Bayesian non-parametric methods are used with mixture models to obtain the
contraction rates of our Bayesian procedures that rely on the important contri-
butions of [BSW99, GGvdV00, GvdV01] and [GW00].

We first prove polynomial contraction rates for the posterior distribution
of the law of the process generated by the SIM. This is a step toward semi-
parametric results that no longer interest us from the point of view of the whole
process but, instead, in terms of the common shape or in the law of deformations
that underlies it. We prove identifiability, but obtain only logarithmic posterior
contraction rates for them. These slower contraction rates are linked to the
logarithmic frequentist lower bounds that we also present here.

This paper therefore contributes to the understanding of the SIM under a
Bayesian framework. It also illustrates that there is still numerical work to be
done to efficiently estimate the common shape or the law of the deformations
when both are unknown.

Section 2 presents a description of the SIM, standard notations, and ends
with the statements of our main results (contraction rates, identifiability and
lower bounds). Section 3 gives a look at some of the challenging issues that
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remain to be elucidated. Section 4 provides a metric description of the main
probability spaces of the model, and Section 5 presents the proofs of the main
result. Finally, Section 6 provides the proof of our semi-parametric results. A few
auxiliary results are given in the appendix.

2. Model, notations and main results

2.1. Motivation

We give next a brief description of a possible application that present the main
features of the SIM, even though our primary interest is mainly theoretical.
Note that although in this study, simulation results are not included, they are
nevertheless of major interest for applications. However, development of efficient
sampling algorithms is beyond the initial scope of this paper and requires further
advances on stochastic algorithms (MCMC and Langevin diffusions).

An important application of the mean shape computation is the estimation
of the average cardiac cycle using electrocardiogram (ECG) records. An ECG
records the electrical activity of the heart and consists of a succession of similar
cycles. An example taken from the MIT-BIH database [GR01] is shown at the
top of Fig. 1. The estimation of the mean shape of the successive cycles is
useful for the diagnosis of heart disease, and among them, arrhythmia. There
are several types of arrhythmia and it is important to determine the variant
that is affecting the patient, which can be determined on the basis of an ECG.
Unfortunately, segmentation of the ECG records is a non-trivial task, as pointed
out by [GK95], and is generally based on feature detections such as maximum,
inflexion points, etc. A segmentation of cycles using the crossing level 0 of the
ECG1 is shown in Fig. 1 and it can be observed that this segmentation is far
from satisfactory. This phenomenon is even worse when dealing with arrhythmic
cycles, which are more irregular than normal cycles and essential for establishing
a medical diagnosis. In order to eliminate spacial fluctuations around the mean
shape, it is possible to attempt to average the cycles, but as indicated in Fig. 1,
the averaging step produces a type of Tichonov regularization. This inverse
problem phenomenon occurs as a result of the errors in the alignment procedure,
and the law of these warping errors produces a convolution kernel that has a
negative impact on the estimation of the mean shape.

The question arises as to whether or not it is possible to produce a sharper
warping procedure that perfectly recovers the unknown random deformations
between each individual cycle with an asymptotically vanishing warping error.
Indeed, as shown by Theorem 5 of [BG10], this last search is useless for smooth
signals when increasing the number of observations (n −→ +∞), and is only
possible when the resolution of the recorded signals is increasing (the level of
the noise should asymptotically vanish). Even worse, statistical estimation of
the true shape with any warping estimator fails and cannot be consistent for
regular shapes when the number of samples is growing to +∞.

1Indeed, the original data is translated by +1.5 millivolts for the sake of convenience and
the electrical activity is always non negative!
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Fig 1. Top: Original time series “chfdb chf13 45590” of the ECG dataset; Bottom left: One
individual cycle; Bottom right: whole cycles (in dashed blue) and the average cycle (in red).

In the following section, we therefore attempt to obtain an estimation of
the common shapes with a learning procedure of the deformation law. We are
interested in the asymptotic case where the resolution level is kept fixed, since
it is not possible to imagine reducing the noise level to 0 in many practical
problems (i.e., below the precision of the recording machine), although it may
be possible to multiply the observations (for example, by increasing the time of
ECG recordings).

2.2. Statistical settings

Shape Invariant Model We recall here the definition of the Shape Invariant
Model. Let f0 ∈ F be a subset of smooth functions and consider a probability
measure g0 ∈ M([0, 1]) (this last set stands for the set of probability measures on
[0, 1]). We observe n realizations of noisy and randomly shifted complex valued
curves Y1, . . . , Yn resulting from the following white noise model:

∀x ∈ [0, 1] ∀j = 1 . . . n dYj(x) := f0(x− τj)dx+ σdWj(x). (2.1)

Here, f0 is the mean pattern of the curves Y1, . . . , Yn. The random shifts
(τj)j=1...n are sampled independently according to the probability measure g0,
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and (Wj)j=1...n are independent complex standard Brownian motions on [0, 1],
which models the presence of noise in the observations. The noise level σ is kept
fixed in our study and is set to 1 for the sake of simplicity. Note that in our white
noise model, σ can be directly obtained from the quadratic variation of each in-
dividual curve, and is therefore known. Complex valued curves are considered
here to simplify notations but our results can be adapted to the real-valued
case. A complex standard Brownian motion Wt on [0, 1] is such that W1 is a
standard complex Gaussian random variable whose distribution is designated
by NC(0, 1). A standard complex Gaussian random variable has independent
real and imaginary parts distributed according to NR(0,

1
2 ).

We aim to describe the behavior of posterior distributions given a sample
(Y1, . . . , Yn) when n → +∞. We intensively use “.”, which refers to an in-
equality up to a multiplicative absolute constant, and a ∼ b, which means that
a/b −→ 1.

2.3. Notations and Definitions

Bayesian framework We briefly recall the Bayesian formalism following the
presentation of [GGvdV00] but readers familiar with it can skip this paragraph.

The functional objects f0 and g0 that we are looking for belong to F ⊗
M([0, 1]) and for any couple (f, g) ∈ F ⊗ M([0, 1]). Equation (2.1) describes
the law of one continuous curve. Its law is designated as Pf,g and possesses a
density pf,g with respect to the Wiener measure on the sample space. Pf0,g0

belongs to a set P of probability measures over the sample space. This set P is
the set of all possible measures described by Equation (2.1) when (f, g) varies
over F⊗M([0, 1]). Given a prior distribution Πn on P , Bayesian procedures are
based on the posterior:

Πn (B|Y1, . . . , Yn) =
∫

B

∏n
j=1 p(Yj)dΠn(p)

∫

P
∏n
j=1 p(Yj)dΠn(p)

,

which is a random measure on P that depends on the observations Y1, . . . , Yn.
Bayesian estimators can then be obtained using the mode, the mean or the
median of the posterior distribution (the approach, for example, adopted in
[AKT10]).

The posterior distribution is then said to be consistent if it concentrates
on arbitrarily small neighborhoods of Pf0,g0 in P with a probability tending
to 1 when n grows to +∞. If d is a distance on probability measures (e.g.,
the Hellinger distance dH or the Total Variation dTV ), a frequentist rate ǫn
corresponds to:

Πn
(
Pf,g : d(Pf0,g0 ,Pf,g) ≥Mǫn|Y1, . . . Yn

)
−→ 0 Pf0,g0 a.s. as n −→ +∞.

A frequentist property of such a posterior distribution describes the contraction
rate (ǫn)n≥0 of such neighborhoods while still capturing most of the posterior
mass. We refer to [GGvdV00] (especially their Theorem 2.1) for a complete
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discussion on the posterior concentration rates, as well as the links with classical
non-parametric frequentist benchmarks (see [IH81]). Using Equation (2.1), we
attempt to tackle such a Bayesian property.

Fourier analysis We assume that f0 belongs to F ⊂ L2
C
([0, 1]), endowed with

the Euclidean norm ‖h‖2 :=
∫ 1

0 |h(s)|2ds. Each element h ∈ L2
C
([0, 1]) may be

extended to a 1-periodic function on R. f0 is assumed to be 1-periodic, and i

will stand for the complex number so that i2 = −1. Fourier coefficients of h are:

θℓ(h) :=

∫ 1

0

e−i2πℓth(t)dt. (2.2)

We often use the parameterization of any element of h ∈ L2
C
([0, 1]) through its

Fourier expansion and will use the shortcut (θℓ)ℓ∈Z instead of (θℓ(h))ℓ∈Z. We
are interested in the SIM for smooth functions and balls of Sobolev spaces with
a smoothness parameter s, when s ≥ 1:

Hs(A) :=

{

f ∈ L2
C([0, 1]) :

∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ(f)|2 < A2

}

,

‖θ‖Hs :=

√
∑

ℓ∈Z

|ℓ|2s|θℓ|2.

The notation Hs refers to the whole Sobolev subspace (A = +∞). Finally, given
any integer ℓ, we define the “thresholded” elements of Hs as:

Hℓ :=
{
f ∈ L2

C([0, 1]) | ∀|k| > ℓ θk(f) = 0
}
.

Mixture models and probability distributions Equation (2.1) can be
written in the Fourier domain as:

∀ℓ ∈ Z ∀j ∈ {1 . . . n} θℓ(Yj) = θ0ℓe
−i2πℓτj + ξℓ,j ,

where θ0 := (θℓ(f
0))ℓ∈Z denotes the true unknown Fourier coefficients of f0,

and θℓ(Yj) those of the observed signals. The white noise model implies that
ξℓ,j ∼i.i.d. NC(0, 1) for any ℓ, j. The density of the complex Gaussian random
variables is designated as:

γµ(z) := π−pe−‖z−µ‖2

, ∀z ∈ C
p,

and will be referred to as γ when µ = 0 and p = 1. For any ℓ ∈ Z, Equation (2.1)

implies that θℓ(Y ) ∼
∫ 1

0 γθ0ℓe−i2πℓϕ(·)dg(ϕ), which is a mixture law of Gaussian

random variables. We use, for any phase ϕ ∈ [0, 1] and any θ ∈ ℓ2(Z), the
notation:

∀ℓ ∈ Z (θ • ϕ)ℓ := θℓe
−i2πℓϕ.

This corresponds to a rotation of each coefficient θℓ with an angle 2πℓϕ. Hence

θ(Y ) ∼ Pθ0,g :=

∫ 1

0

γθ0•ϕ(.)dg(ϕ).
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From one frequency to another, the rotations used in θ(Y ) are not independent,
and the coefficients (θℓ(Y ))ℓ∈Z are highly correlated. When θ has a length k,
pθ,g will be the density w.r.t. the Lebesgue measure on Ck of the law Pθ,g:

∀z ∈ C
k pθ,g(z) :=

∫ 1

0

γ(z − θ • ϕ)dg(ϕ).

We will use standard objects (see [vdVW96]) such as the Hellinger (dH) or To-
tal Variation (dTV ) distances between probability measures, as well as covering
numbers of metric spaces such asD(ǫ,P , d), bracketing numbersN[ ](ǫ,P , d), etc.

2.4. Bayesian priors in the randomly shifted curves model

We detail here the prior Πn on P , defined on Hs⊗M([0, 1]). Equation (2.1) will
convert it to a prior on P . We choose f and g independently as follows.

Prior on f The prior on f is adapted from [RR12] and is defined on Hs by:

π :=
∑

ℓ≥1

λ(ℓ)πℓ.

Given any integer ℓ, we randomly switch on the Fourier frequencies in [[−ℓ,+ℓ]]
with probability λ(ℓ), and πℓ is a distribution where πℓ := ⊗k∈Zπ

k
ℓ with:

∀k ∈ Z πkℓ = 1|k|>ℓδ0 + 1|k|≤ℓNC(0, ξ
2
n).

The selected frequencies are chosen with a distribution λ on N⋆, which satisfies:

∃ρ ∈ (1, 2) ∃ c1 ≥ c2 > 0 ∀ℓ ∈ N
⋆ e−c1ℓ

2 logρ ℓ . λ(ℓ) . e−c2ℓ
2 logρ ℓ.

The prior π depends on the variance of the Gaussian laws ξn used to sam-
ple the Fourier coefficients. We use a sample size-dependent variance (see Re-
mark 5.1):

ξ2n := n−µs(log n)−ζ , (2.3)

where µs and ζ may depend on s (non-adaptive prior) or not (adaptive prior).

Prior on g We propose in the sequel two priors on g.

Dirichlet Process prior As pointed out above, the model can be seen as
a Gaussian mixture model, and natural priors on g may be built according to
a Dirichlet Process (see [GvdV01]). Given any absolutely continuous measure
α w.r.t. the Lebesgue measure on [0, 1] with a positive continuous density, the
Dirichlet Process DPα generates a random probability measure g ∈ M([0, 1]).
For any finite partition (A1, . . . , Ak) of [0, 1], the vector (g(A1), . . . , g(Ak)) on
the simplex has a Dirichlet distribution Dir(α(A1), . . . , α(Ak)) (see details in
[Fer73]).

Non-adaptive Gaussian Process Prior We may use another prior to ob-
tain smoothness results on g, and then extend our result further than a simple
contraction on laws. Smoothness is barely compatible with D.P., and even a
kernel convolution with D.P. seems problematic in our situation. To get around
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this difficulty, we propose the use of Gaussian Processes. In this construction,
we assume that g0 ∈ Hν(A), where ν ≥ 1/2 and A are both known and define
the corresponding subspace:

Mν([0, 1])(A) := M([0, 1]) ∩Hν(A).

We define the integer kν := ⌊ν − 1/2⌋ to be the largest integer smaller than
ν − 1/2 and follow the strategy in Section 4 of [vdVvZ08a], but the additional
difficulty is to guarantee the periodicity of g. Its construction is inspired from
that of the Brownian bridge (Bt)t∈[0,1], which is obtained as Bt = Wt − tW1

(where W is a standard Brownian motion). For any continuous function f on
[0, 1], we define:

J(f) : t 7−→
∫ t

0

f(s)ds− t

∫ 1

0

f(u)du

and the recursive compositions Jk = Jk−1 ◦ J . In order to fit our prior to the
values of derivatives of g on the extremal points {0, 1}, we introduce (ψj)j=1...kν :

∀t ∈ [0, 1] ψj(t) := sin(2πjt) + cos(2πjt).

Our prior is now built as follows. We first independently sample a real Brow-
nian bridge (Bτ )τ∈[0,1] and (Z1, . . . Zkν ) ∼i.i.d. NR(0, 1). We next compute:

∀τ ∈ [0, 1] wτ := Jkν (B)(τ) +

kν∑

i=1

Ziψi(τ). (2.4)

Given (wτ , τ ∈ [0; 1]) generated by Equation (2.4), we build pw through:

∀τ ∈ [0; 1] pw(τ) :=
ewτ

∫ 1

0 e
wτdτ

. (2.5)

Hence, this prior based on GP yields a prior on densities on [0; 1] and pw inherits
the smoothness kν of the Gaussian process τ 7→ wτ . We now restrict this prior
to the Sobolev balls of radius 2A to obtain a prior qν,A on Mν([0, 1])(2A).

In the sequel, we designate ΠDPn (resp. ΠGPn ) for the posterior distribution
built from the prior obtained with the Dirichlet Process (resp. the Gaussian
Process).

2.5. Main results

2.5.1. Contraction rates

Dirichlet Process Prior

Theorem 2.1. Assume that f0 ∈ Hs with s ≥ 1/2, then µs = 1/(2s+ 2) and
ζ = 0 in the definition of ξn yield a non adaptive prior: for any g0 ∈ M([0, 1])
and for a sufficiently large M ,

ΠDPn
{
Pf,g : dH(Pf,g,Pf0,g0) ≥Mǫn|Y1, . . . Yn

}
−→ 0Pf0,g0 a.s. asn −→ +∞.

Moreover, the contraction rate ǫn is given by ǫn = n−s/(2s+2) logn.
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The values µ = 1/3 (independent on s) and ζ = 3/2 yield the following for a
sufficiently large M :

ΠDPn
{
Pf,g : dH(Pf,g,Pf0,g0) ≥Mǫn|Y1, . . . Yn

}
−→ 0Pf0,g0 a.s. asn −→ +∞.

where

ǫn =

{
n−s/(2s+2) logn if s ∈ [1/2, 2],

n−1/3 logn if s ≥ 2.

This result describes the posterior concentration around some Hellinger neigh-
borhoods of Pf0,g0 within a polynomial rate.

Our prior when µ = 1/3 is adaptive to the regularity s as soon as s ∈ [1/2, 2],
where ξ2n = n−1/3(log n)−3/2. In this case, the convergence rate is n−s/(2s+2)

up to a log term. When s ≥ 2, the above choice for ξ2n is no longer optimal.
However, taking µ < 1/3 yields an adaptive prior on the range s ∈ [ 1

2µ−1; 1
µ−1].

With this last prior, the concentration is no longer guaranteed when s < 1
2µ −1,

and for s > 1
µ − 1 the rate is stuck to n−(1−µ)/2.

Finally, the non-adaptive prior based on ξ2n = n−1/(2s+2) recovers the rate
−s/(2s+2) for any s larger than 1/2. To the best of our knowledge, the minimax
frequentist rate is unknown when both f0 and g0 are unknown. Remind that
in the standard regression model (without shift) on Hs, the minimax rate of
estimation for f is n−s/(2s+1). The rate we obtain in Theorem 2.1 is slightly
damaged owing to our upper bound of the statistical complexity of the model
coming from the estimation of g, see Proposition 4.2

Gaussian Process Prior

Theorem 2.2. Assume that f0 ∈ Hs with s ≥ 1/2 and g0 ∈ Mν([0, 1])(A) with
ν ≥ 1/2, then:

ΠGPn
{
Pf,g : dH(Pf,g,Pf0,g0) ≥Mǫn|Y1, . . . Yn

}
−→ 0Pf0,g0 a.s. asn −→ +∞.

for a sufficiently large M , with ǫn = n−[ ν(s∧1)
2ν(s∧1)+1

∧ s
2s+2 ] log(n)κ, for an explicit κ.

We still obtain a polynomial contraction rate here, but the smoothness of
g has a great impact on the rate (ǫn)n≥0. This bound is damaged when ν is
close to 1/2, which is its lower limiting value, and we then obtain a contraction
rate of n−1/4 if s ≥ 1. In a sense, Theorem 2.2 is weaker than Theorem 2.1,
but it will make it possible to extend our mathematical analysis further since it
guarantees that the marginal on the g coordinate of the posterior distribution
ΠGPn is supported by smooth densities.

2.5.2. Identifiability

We then attempt to derive results on the objects f ∈ Hs and g ∈ Mν([0, 1])
themselves. Hence, a crucial step is to guarantee the identifiability of the model,
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which is illustrated below. Without any constraint on the first Fourier coefficient,
it can be easily checked that identifiability fails. We then restrict our study to:

Fs :=
{

f ∈ L2
C([0, 1]) | θ1(f) > 0 and

∑

ℓ∈Z

(1 + |ℓ|2s)|θℓ(f)|2 < +∞
}

,

and the prior used on Fs is the one induced by π, up to the restriction that the
first Fourier coefficient is positive. We constrain g ∈ M([0, 1])⋆ (subsequently
converted to an inverse problem assumption):

M([0, 1])⋆ := {g ∈ M([0, 1]) | ∀k ∈ Z θk(g) 6= 0} .

Theorem 2.3. The SIM is identifiable as soon as (f0, g0) ∈ Fs ×M([0, 1])⋆:

I : (f0, g0) ∈ Fs ×M([0, 1])⋆ 7−→ Pf0,g0 is injective.

Indeed, the necessary assumption to yield identifiability is slightly more gen-
eral than the restriction to M([0, 1])⋆. If we define M([0, 1])+ as follows:

M([0, 1])+ := {g ∈ M([0, 1]) | ∀k ∈ Z, ∃ jk ∈ Z : θk.jk(g) 6= 0} .

We will see in the proof of Theorem 2.3 that the set Fs × M([0, 1])+ is the
minimal set for the identifiability of the model.

2.5.3. Contraction rate on functional objects

Theorem 2.4. (i) Assume f0 ∈ Fs with s ≥ 1/2, and g0 ∈ Mν([0, 1]) with
ν > 1:

ΠGPn
{
g : ‖g − g0‖ ≥Mµn|Y1, . . . Yn

}
−→ 0Pf0,g0 a.s. asn −→ +∞

for a sufficiently large M , with a contraction rate of µn = (logn)−ν .
(ii) Assume that g0 ∈ Mν([0, 1]) satisfies the inverse problem assumption:

∃c > 0 ∃β > ν + 1
2 ∀k ∈ Z |θk(g0)| ≥ ck−β

then we also have:

ΠGPn
{
f : ‖f − f0‖ ≥Mµ̃n|Y1, . . . Yn

}
−→ 0Pf0,g0 a.s. asn −→ +∞

where the contraction rate µ̃n is µ̃n = (log n)−
2sν

2s+2β+1 .

The optimality of this result is, to the best of our knowledge, an open problem.
Note that when β increases, the rate on f is seriously impacted, which is a
common feature of statistical inverse problems. This result is consistent with
the fact that estimating f when g is known is an inverse problem (see [BG10]).
Our next result shows that it is impossible to obtain frequentist convergence
rates better than a power of log n, even if our lower bound does not exactly
match the upper bound obtained in the previous result.
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2.5.4. Link with heteroscedastic deconvolution with unknown variance

Our problem seems strongly related to standard deconvolution with unknown
variance setting. For instance, the first Fourier coefficients are

θ1(Yj) = θ1e
−i2πτj + ǫ1,j, ∀j ∈ {1 . . . n}

and up to a division by θ1, it can also be parametrised as

θ̃1(Yj) = e−i2πτj +
ǫ1,j
θ1

, ∀j ∈ {1 . . . n}, (2.6)

which is similar to the problem

Yi = Xi + ǫi, ∀i ∈ {1 . . . n} (Xi)i=1...n ∼ g, (2.7)

studied for instance by [Mat02] where ǫ ∼ NC(0, σ
2) whose variance σ2 is un-

known. As pointed in [Mat02] (see also the more recent work [BM05] where sim-
ilar situations are extensively detailed), such a particular setting is unfavourable
for statistical estimation since convergence rates are generally of log order.

Results obtained in [Mat02] and [BM05] are obtained using the van Trees
inequality, which is a Bayesian Cramer-Rao bound (see for instance [GL95] for
further details). However, Proposition 6.1 gives a polynomial rate for the poste-
rior contraction around θ01 and this rate, at the first glance, seems contradictory
with the results given by [Mat02]. Indeed, [Mat02] considers some lower bounds
in a larger class than the estimation problem of θ1 written as (2.6): from a min-
imax point of view, the supremum over all hypotheses is taken in a somewhat
larger set than ours. Moreover, if one considers (2.6), the density of e−i2πτj is
supported by S1 instead of the whole complex plane which would be a natu-
ral extension of (2.7). Hence, g is a singular measure with respect to the noise
measure and the ability of going beyond the log rate is due to the degeneracy
nature of our problem according to the Gaussian complex noise on θ1. It is
an important structural information which is not available when one considers
general problems such as (2.7). A new proof is thus needed for the SIM.

2.5.5. Frequentist lower bounds

Theorem 2.5. Assume that (f0, g0) ∈ Fs×Mν([0, 1]), then a sufficiently small
c exists so that the minimax rate over Fs ×Mν([0, 1]) satisfies:

lim inf
n−→+∞

(logn)
2s+2

inf
f̂∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖f̂ − f‖2 ≥ c,

and
lim inf
n−→+∞

(logn)2ν+1 inf
ĝ∈Mν([0,1])

sup
(f,g)∈Fs×Mν([0,1])

‖ĝ − g‖2 ≥ c.

This result is far from being contradictory with the polynomial rate obtained
in Theorems 2.1 and 2.2. A series of remarks can be made. First, Theorems 2.1
and 2.2 provide contraction rates on the probability distributions in P and not
on the functional space Fs. Second, the link between (f0, g0) and Pf0,g0 relies
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on the identifiability, and the lower bound is derived with a set of functions
(fi, gi)i, which are very hard to identify through I : (f, g) 7→ Pf,g. On this set of
functions, the injection is very “flat” and the two-by-two differences of I(f i, gi)
are small, so that the pairs of functions (f i, gi) become very hard to distinguish.
It should be noted that a typical feature of this set is that the convolution
products are very similar each others: f i ⋆ gi ≃ f j ⋆ gj , i 6= j. Typically, hard
estimations occur when faced with a deconvolution statistical problem with an
unknown operator. It is shown in [BG10] that in the SIM, when n −→ +∞, it is
impossible to recover the unknown true shifts. The abrupt degradation between
the polynomial rates on probability laws in P and the logarithmic rates on
functional objects in Fs ×Mν([0, 1]) also occurs because of this.

3. Discussion

In this paper, we exhibit a suitable prior that makes it possible to obtain a
contraction rate of the posterior distribution near the true underlying distribu-
tion Pf0,g0 . Moreover, this rate is polynomial with the number n of observations,
even if our SIM is an inverse problem with an unknown translation operator that
depends on g. From a technical point of view, the milestones of such results are
the tight link between the white noise model and the Fourier expansion, as well
as the smoothness of Gaussian law that makes it possible to obtain an efficient
covering strategy. Up to a non-restrictive condition, we also obtain a large iden-
tifiability class, but the contraction of the posterior is dramatically damaged in
this class since we then obtain a logarithm rate instead of a polynomial one.
This last point cannot be much improved by using the standard L2 distance to
measure the neighborhoods of f0, as pointed out by our last lower bound. Note
that we do not obtain exactly the same rates for our lower and upper reconstruc-

tion bounds. This may be due to the rough inequality |ψa(ϕ)| ≥ |ψa(ϕ)|2
‖ψa‖∞

used

to obtain Equation (6.1), and may be the reason why we do not obtain optimal
rates. Indeed, the degradation of the contraction rate occurs when attempting to
invert the identifiability map I : (f, g) 7→ Pf,g. This difficulty should be under-
stood as a novel consequence of the impossibility to exactly recover the random
shift parameters when only n grows to +∞. This phenomenon is highlighted
in several papers, including [BG10] or [BGKM13]. However, it may be possible
to obtain a polynomial rate using a more appropriate distance adapted to our
problem of randomly shifted curves, for instance

dFréchet(f1, f2) := inf
τ∈[0,1]

‖f1(.− τ) − f2(.)‖.

We plan to tackle this problem in a future study. The important requirement in
this case is to find some relationships between the neighborhoods of Pf0,g0 and
the neighborhoods of f0 according to the distance dFréchet. Another interesting
study would consider the SIM with a noise level σ depending on n in the Bayesian
framework. This asymptotic setting is linked to the work of [BG12] in which their
J curves are sampled at the n points of a discrete design in [0, 1]. Finally, an
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open issue that still remains to be elucidated concerns the search for a stochastic
algorithm to approach the posterior distribution in our SIM.

4. Metric description of the model

We follow the roadmap of Theorem 2.1 of [GGvdV00] by the introduction of a
suitable sieve Pℓǫ,wǫ defined in Section 4.1.2 (see also [SW01] and [Zha00]), and
find optimal calibrations of ǫ, ℓǫ and wǫ with respect to n. We then need to find
a lower bound of the prior mass around a type of Kullback-Leibler neighborhood
of Pf0,g0 ∈ P . These sets are defined as

Vǫn(Pf0,g0 , dKL) =
{
Pf,g ∈ P|dKL(Pf0,g0 ,Pf,g) ≤ ǫ2n, V (Pf0,g0 ,Pf,g) ≤ ǫ2n

}
.

We will indeed consider Hellinger neighborhoods instead of Kullback-Leibler
ones (a link is given in Section A). In Section 4.2, we exhibit suitable Hellinger
neighborhoods.

4.1. Entropy estimates

4.1.1. Covering numbers for fixed f

When f belongs to the Sobolev space Hs, for s ≥ 1/2, described by the infinite
vector of Fourier coefficients (θk)k∈Z, the set of all possible Gaussian measures
is denoted Aθ := {γθ•ϕ, ϕ ∈ [0, 1]}. We establish the preliminary result.

Proposition 4.1. For any sequence f ∈ Hs for s ≥ 1/2, with Fourier coeffi-
cients θ:

i) dTV (Pf,δφ1
,Pf,δφ2

) . |φ2 − φ1|s∧1‖f‖Hs∧1.

ii) logN(ǫ,Aθ, dH) . log ‖θ‖H1/2
+ log 1

ǫ .

Proof. Remark that for any dimension p and any couple of points (z1, z2) ∈
Cp, if ‖z1 − z2‖ is the Euclidean distance in Cp, then one has

dTV (γz1 , γz2) =
1

2
‖γz1 − γz2‖L1 =

[

2Φ

(‖z1 − z2‖
2

)

− 1

]

≤ ‖z1 − z2‖√
2π

,

where Φ is the c.d.f. of a real standard Gaussian variable. Now, we compute

dTV (Pf,δφ1
,Pf,δφ2

) = dTV (Pγθ ,Pγθ•(φ2−φ1)
) . ‖θ − θ • (φ2 − φ1)‖

.

√
∑

k∈Z

|θk|2|1− ei2πk(φ2−φ1)|2

≤
√
∑

k∈Z

2(1−2s)∨(−1)π|k(φ2 − φ1)|2(s∧1)|θk|2

. |φ2 − φ1|s∧1‖f‖Hs∧1

Now, an ǫ-covering of Aθ is simply obtained by covering the tore with intervals
of radius (C‖f‖H1/2

/ǫ)2, which leads to the announced metric entropy.
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We next consider a continuous mixture for g, which is the natural case. Define

Pf := {Pf,g | g ∈ M([0, 1])} .

Now, we will only consider functions f with null Fourier coefficients of order
higher than ℓǫ and will omit the dependence on ǫ with the notation ℓ. It would
be tempting to use Lemma 3.1 and 3.2 of [GvdV01] to bound the metric entropy
of Pf . However, as pointed by [MM11], it leads to a too weak result since the
upper bound of N(ǫ,Pf , dH) will have a strong dependency on ℓ. It is then
necessary to adapt the proof of [GvdV01] to obtain a sufficiently sharp upper
bound of the entropy of Pf (with respect to dTV which is easier to handle here).

These results are still true with dH using
d2H
2 ≤ dTV ≤ dH .

Proposition 4.2. If f ∈ Hℓ satisfies ‖θ‖2 . 2ℓ+ 1 and ǫ > 0 with log 1
ǫ . ℓ:

logN(ǫ,Pf , dTV ) . ℓ2
(

log
1

ǫ
+ log ‖θ‖H1/2

)

.

If furthermore w .
√
2ℓ+ 1 then

sup
f∈Hℓ:‖θ(f)‖≤w

logN(ǫ,Pf , dTV ) . ℓ2
(

log
1

ǫ
+ log ℓ

)

.

The second inequality opens the way for the case of unknown f since we
express the dependency on f and ℓ. The rate s/(2s+ 2) obtained in Theorem
2.1 comes from this upper bound of the order ℓ2 (to be compared to ℓ when
no shift occurs in the standard regression model). We currently do not know
whether smaller covering numbers can be obtained in the SIM.

Proof. To build an ǫ-covering of Pf , we now

• approximate any mixture g by a finite one g̃ such that

dTV (Pθ,g,Pθ,g̃) ≤ ǫ/2,

with a number of points uniformly bounded (only depends on f and ǫ);
• use Lemma 2 of [GW00] to obtain an upper bound of the metric entropy
of finite mixtures from Proposition 4.1.

We first fix the notation p = 2ℓ+1 which is the dimension of the multivariate
mixture. For any R > 0, denote ER the centered ball of Cp of radius R. For sake
of simplicity, we will sometimes omit the dependence of p with ǫ. There exists
an absolute constant a such that ‖θ‖ ≤ w ≤ a

√
p. Now

dTV (Pθ,g,Pθ,g̃) ≤
1

2

∫

Ec
R

|dPθ,g − dPθ,g̃| (z)
︸ ︷︷ ︸

:=(A)

+
1

2

∫

ER

|dPθ,g − dPθ,g̃| (z)
︸ ︷︷ ︸

:=(B)

.

Let ν be a measure on [0, 1] that dominates both g and g̃.
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Term (A) We will pick R such that (A) is smaller than ǫ/2, first set R2 >
(1 + a)2p ≥ a−2(1 + a)2‖θ‖2 and with this choice, ‖z − θ • ϕ‖ > ‖z‖/(1 + a) if
z ∈ EcR. This simply implies that,

(A) ≤ π−p
∫

Ec
R

∫ 1

0

e
− ‖z‖2

(1+a)2

∣
∣
∣
∣

dg

dν
(ϕ) − dg̃

dν
(ϕ)

∣
∣
∣
∣
dν(ϕ)dz

≤ 2(1 + a)2p P

(

χ2
2p ≥

2R2

(1 + a)2

)

.

From the concentration of χ2
p statistics given by Lemma 1 of [IL06]:

∀k ≥ 1, ∀c > 0 P
(
χ2
k ≥ (1 + c)k

)
≤ 1

c
√
2π
e−

k
2 [c−log(1+c)]− 1

2 log k. (4.1)

Therefore, writing R2 = (1 + a)2(1 + c)p for c > 0, one gets

(A) ≤ 1

c
√
π
e−p[c−log(1+c)−2 log(1+a)]− 1

2 log p

and this term is smaller than ǫ/2 if we pick c large enough, since log 1
ǫ . p.

Term (B) We follow the strategy of [GvdV01] which exploits the smooth-
ness of Gaussian laws and exhibit suitable discrete mixtures. We traduce their
matching moment conditions to the multivariate setting by exploiting Fourier
analysis. Remark that

∀k ∈ N ∀y ∈ R+

∣
∣
∣
∣
∣
∣

e−y −
k−1∑

j=0

(−y)j
j!

︸ ︷︷ ︸

:=Rk(y)

∣
∣
∣
∣
∣
∣

≤ |y|k
k!

≤ (e|y|)k
kk

. (4.2)

Thus, for all z ∈ ER, we have

Pθ,g(z)− Pθ,g̃(z) = π−p
∫ 1

0

e−‖z−θ•ϕ‖2

[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ)

= π−p
k−1∑

j=0

(−1)j

j!

∫ 1

0

‖z − θ • ϕ‖2j
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

+ π−p
∫ 1

0

Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ).

We now decompose θ = (θ−ℓ, . . . , θℓ) and z = (z−ℓ, . . . , zℓ) using polar coordi-

nates: θm = ρ
(1)
m eiαm and zm = ρ

(2)
m eiβm for |m| ≤ ℓ. This leads to ‖z−θ •ϕ‖2 =

‖z‖2 + ‖θ‖2 − 2
∑ℓ
m=−ℓ ρ

(1)
m ρ

(2)
m cos(βm − αm −mϕ). For any integer j ≤ k, we

deduce that

‖z − θ • ϕ‖2j = Cj(z, θ) +

j
∑

r=1

ℓ∑

m=−ℓ
ar,m(z, θ) [cos(βm − αm −mϕ)]r ,
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where (a(r,m))r=1...k,m=−ℓ...ℓ only depends on z and θ. Using Euler’s identity,

‖z − θ • ϕ‖2j = Cj(z, θ) +

jℓ
∑

r=−jℓ
br(z, θ)e

irϕ,

where b stands for a complex vector obtained through the Binomial formula.

∀z ∈ ER : (Pθ,g − Pθ,g̃) (z)

= π−p
k−1∑

j=0

(−1)j

j!

∫ 1

0

[

Cj(z, θ) +

jℓ
∑

r=−jℓ
br(z, θ)e

irϕ

] [
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ)

+ π−p
∫ 1

0

Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ)

= π−p
k−1∑

j=0

(−1)j

j!

[

Cj(z, θ)c0(g − g̃) +

jℓ
∑

r=−jℓ
br(z, θ)cr(g − g̃)

]

+ π−p
∫ 1

0

Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ) − dg̃

dν
(ϕ)

]

dν(ϕ).

Caratheodory’s theorem shows that one can find g̃ with a finite support of size
2(k − 1)ℓ+ 1 ∼ 2kℓ such that cr(g) = cr(g̃ for all r ∈ [−(k − 1)ℓ, (k − 1)ℓ].

For such finite mixture law g̃, we obtain ∀z ∈ C
p,

Pθ,g(z)− Pθ,g̃(z) = π−p
∫ 1

0

Rk
(
‖z − θ • ϕ‖2

)
[
dg

dν
(ϕ)− dg̃

dν
(ϕ)

]

dν(ϕ),

and of course (B) ≤ 2π−p supz∈ER,ϕ∈(0,1)Rk(‖z − θ • ϕ‖2)V ol(ER). According
to the choice R = (1 + a)

√

(1 + c)p which implies that ‖z − θ • ϕ‖ ≤ (1 +

2a)
√

(1 + c)p, and using the volume of ER and Stirling’s formula, we obtain

(B) . π−p
(
e(1 + 2a)2(1 + c)p

)k

kk
πp[(1 + a)2(1 + c)p]p

p!
. Cp1C

k
2 e

−k log(k)+k log(p)

where we used in the last equation pp/p! ≤ Cp. If we define k in (4.2) such that
k ∼ bℓ for a sufficiently large b, we then obtain for a universal C:

(B) =

∫

ER

|dPθ,g − dPθ,g̃| (z) . eℓ(C−b log(b)).

In order to bound (B) by ǫ/2, we consider kǫ ∼ bℓǫ for b large enough, since
log 1

ǫ . ℓǫ, we have found g̃ with a discrete support of cardinal sǫ ∼ 2bℓ2ǫ points,
with sǫ not depending on g, such that dTV (Pf,g,Pf,g̃) ≤ ǫ/2.
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Now, the first inequality in Proposition 4.2 comes from Lemma 2 of [GW00].
The second inequality is now deduced uniformly from the first one using ‖θ‖H1 ≤
ℓ‖θ‖ when f ∈ Hℓ.

4.1.2. General case

We describe the picture when f varies, which is our main objective. We assume
that f ∈ Hs and define a sieve which depends on a cut-off ℓ and a size w:

Pℓ,w :=
{
Pf,g | f ∈ Hℓ, ‖θ(f)‖ ≤ w, g ∈ M([0, 1])

}
.

Theorem 4.1. For ǫ > 0 small enough and (ℓǫ, wǫ) s.t. log
1
ǫ . ℓǫ and wǫ .

√
ℓǫ:

logN(ǫ,Pℓǫ,wǫ , dTV ) . ℓ2ǫ

(

log
1

ǫ
+ log ℓǫ

)

.

Remark 4.1. i) If we focus on the role of wǫ, we see in the proof of Proposition
4.2 that a wǫ of smaller order than

√
ℓǫ would not decrease the obtained entropy

number. In the same time, a larger radius wǫ entails a damaged entropy number
of order ℓǫ(ℓǫ ∨ w2

ǫ )(log
1
ǫ + log ℓǫ). At the end, this would also damage the

contraction rate of Pf,g.
ii) Our model is a special case of Gaussian mixture models, nevertheless it may
be generalized to other cases within a growing dimension setting.
iii) We will use a higher choice of ℓǫ than log 1

ǫ , this will be fixed in Section 5.1.
iv) Note that we can derive the same upper bound for the metric entropy using
the Hellinger distance.

The proof of Theorem 4.1 is based on two simple results. The first one is the
Girsanov formula (see e.g. Appendix of [BG10]). In our framework, we obtain

dPf,g
dPf0,g0

(Y ) =

∫ 1

0
exp

(
2ℜe〈f−α1 , dY 〉 − ‖f−α1‖2

)
dg(α1)

∫ 1

0 exp (2ℜe〈f0,−α2 , dY 〉 − ‖f0,−α2‖2) dg0(α2)
, (4.3)

for any measurable trajectory Y . The second result is given as follows.

Lemma 4.1. Let (f, f̃) ∈ L2
C
([0, 1])2, and g ∈ M([0, 1]), then

dTV (Pf,g,Pf̃ ,g) ≤
‖f − f̃‖√

2
.

Proof. Pf,g is a mixture model: Pf,g =
∫ 1

0 Pf,δαdg(α). Thus

dTV

(

Pf,g,Pf̃ ,g

)

=

∥
∥
∥
∥

∫ 1

0

(

Pf,δα − Pf̃ ,δα

)

dg(α)

∥
∥
∥
∥
TV

≤
∫ 1

0

∥
∥
∥Pf,δα − Pf̃ ,δα

∥
∥
∥
TV

dg(α),
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and the last term is bounded by ‖Pf,δ0 − Pf̃ ,δ0
‖TV ≤ dH(Pf,δ0 ,Pf̃ ,δ0) Assume

now Y ∼ Pf,δ0 , hence from (2.1) dY = f(x)dx + dW , with W is a complex
standard Brownian motion. If we denote U a random variableNC(0, 1), standard
argument using Girsanov’s formula yields

d2H

(

Pf,δ0 ,Pf̃ ,δ0

)

/2

= 1− Ef,δ0

√

dPf̃ ,δ0
dPf,δ0

(Y ) = 1− Ef,δ0

√

exp
(

2ℜe〈f̃ − f, dW 〉 − ‖f̃ − f‖2
)

=

(

1− exp

(

−‖f̃ − f‖2
2

)

EU

[

exp
(

‖f̃ − f‖ℜe(U)
)]
)

≤ ‖f̃ − f‖2
4

.

Proof of Theorem 4.1. We build a ǫ-covering of Pℓ,w with ǫ/2-coverings for f
and g. First, let Pf,g and Pf̃ ,g̃ two elements of Pℓ,w and use the triangle inequality

dTV (Pf,g,Pf̃ ,g̃) ≤ dTV (Pf,g,Pf̃ ,g) + dTV (Pf̃ ,g,Pf̃ ,g̃).

We will look for a covering method that will use the inequality above and a
tensorial argument, it requires to bound both terms. The second term is handled
uniformly in f̃ by Proposition 4.2. We handle the first one with Lemma 4.1,
deducing ǫ/2-coverings of Pf,g for fixed g from ǫ/

√
2-coverings of f for the ‖.‖:

logN
(

ǫ/
√
2,
{
f ∈ Hℓǫ , ‖θ(f)‖ ≤ wǫ

}
, ‖ · ‖

)

. ℓǫ log
wǫ
ǫ

= o

(

ℓ2ǫ log
1

ǫ

)

.

Therefore only the entropy obtained through Proposition 4.2 matters.

4.2. Hellinger neighborhoods

We describe Hellinger neighborhoods of Pf0,g0 in terms of (f, g) and later turn
them into Kullback-Leibler ones to compute their prior mass. For sake of sim-
plicity, E0F (Y ) will refer to the expectation of F (Y ) when Y ∼ Pf0,g0 . For a
cut-off ℓn, we denote f0

ℓn
∈ Hℓn the truncation of f0 at frequency ℓn, we get

dH(Pf0,g0 ,Pf,g) ≤
(E1)

︷ ︸︸ ︷

dH(Pf0,g0 ,Pf0
ℓn
,g0)+

(E2)
︷ ︸︸ ︷

dH(Pf0
ℓn
,g0 ,Pf0

ℓn
,g)+

(E3)
︷ ︸︸ ︷

dH(Pf0
ℓn
,g,Pf,g) .

Next, we provide sharp upper bounds on (E1), (E2), (E3) to find a suitable
lower bound of the prior mass of Hellinger neighborhoods.

Upper bound of (E1) Since d2H ≤ dKL, the Girsanov formula (4.3) yields

(E1) ≤
√

dKL(Pf0,g0 ,Pf0
ℓn
,g0)
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=



E0



− log

∫ 1

0
exp

(

2ℜe〈f0,−α
ℓn

, dY 〉 − ‖f0
ℓn
‖2
)

dg0(α)
∫ 1

0
exp (2ℜe〈f0,−α, dY 〉 − ‖f0‖2) dg0(α)









1/2

:= (Ẽ1)

We now obtain the upper bound of (E1) according to the next proposition.

Proposition 4.3. Assume that Y ∼ Pf0,g0 and f0 ∈ Hs, then

(E1) ≤ (Ẽ1) ≤
√
2‖f0 − f0

ℓn‖ ≤
√
2‖f0‖Hsℓ

−s
n .

Proof. Denote Y a random variable sampled from Pf0,g0 .For any function F of
the trajectory Y , we will denote EβF (Y ) the expectation of F (Y ) up to the
condition that the shift is equal to β, and of course one has

E0[F (Y )] =

∫ 1

0

Eβ [F (Y )]dg0(β).

For each possible value of β ∈ [0, 1], we define

Dβ(α) := exp
(

2ℜe〈f0,−α
ℓn

, f0,−β〉+ 2ℜe〈f0,−α
ℓn

, dW 〉 − ‖f0
ℓn‖2

)

,

Xβ(α) := exp
(

2ℜe〈(f0 − f0
ℓn)

−α, f0,−β〉

+ 2ℜe〈(f0 − f0
ℓn)

−α, dW 〉 − ‖f0 − f0
ℓn‖2

)

.

We can now split the randomness of the Brownian motion into two parts: the
first one is spanned by the Fourier frequencies from −ℓn to ℓn and the second
part is its orthogonal (in L2): W = W1 + W2. Of course, W1 and W2 are
independent.

Moreover, 〈f0,−α
ℓn

, dW 〉 = 〈f0,−α
ℓn

, dW1〉 and 〈(f0 − f0
ℓn
)−α, dW 〉 = 〈(f0 −

f0
ℓn
)−α, dW2〉. For any fixed β, Dβ(α) is measurable with respect to the filtration

associated to W1, and Xβ(α) is independent of W1. Jensen’s inequality implies

(Ẽ1)
2 = E

[

log

∫ 1

0
Dβ(α)Xβ(α)dg

0(α)
∫ 1

0 Dβ(α)dg0(α)

]

≤ log

∫ 1

0

E
W2

β

[

E
W1

β

[ ∫ 1

0
Dβ(α)Xβ(α)dg

0(α)
∫ 1

0 Dβ(α)dg0(α)

∣
∣
∣
∣
∣
W2

]]

dg0(β)

≤ log

∫ 1

0

E
W2

β

[

Xβ(α)E
W1

β

[ ∫ 1

0
Dβ(α)dg

0(α)
∫ 1

0 Dβ(α)dg0(α)

∣
∣
∣
∣
∣
W2

]]

dg0(β)

≤ log

∫ 1

0

(

sup
α

E
W2

β [Xβ(α)]

)

dg0(β).

The notation E
W1

β F (Y ) (resp. EW2

β F (Y )) used above refers to the expectation
of F (Y ) with respect to W1 (resp. with respect to W2) with a fixed β. Now,
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remark that Xβ(α) ∼ exp(2ℜe〈(f0−f0
ℓn
)−α, f0,−β〉+U), where U ∼ NR(−‖f0−

f0
ℓn
‖2, 2‖f0 − f0

ℓn
‖2), and E[eU ] = 1. Hence

(Ẽ1)
2 ≤ log

∫ 1

0

sup
α

exp
(
2ℜe〈(f0 − f0

ℓn)
−α, f0,−β〉

)
dg0(β)

≤ log sup
α,β

exp
(
2ℜe〈(f0 − f0

ℓ )
−α, f0,−β〉

)

We can now switch log and sup since log is increasing, and we obtain

(Ẽ1) ≤
√

2 sup
α,β

ℜe〈(f0 − f0
ℓn
)−α, f0,−β〉.

We decompose f0,−β = f0,−β
ℓn

+ f0,−β − f0,−β
ℓn

and Cauchy-Schwarz’s inequality

yields (Ẽ1) ≤
√
2‖f0− f0

ℓn
‖. Note that untill now we did not use the hypothesis

f0 ∈ Hs. It is only needed to get the last inequality in Proposition 4.3.

Upper bound of (E3) We are interested in dH(Pf0
ℓn
,g,Pf,g) when f

0
ℓn

is close

to f , ℓn grows up to +∞ ( with the same mixture law on [0, 1]). The important
fact will be its exclusive dependence with respect to ‖f0

ℓn
−f‖. This upper bound

is immediate from Lemma 4.1:

∀f ∈ Hℓn , ∀g ∈ M([0, 1]) : dH(Pf0
ℓn
,g,Pf,g) ≤ 21/4

√

‖f − f0
ℓn
‖.

Upper bound for (E2) We can use a discrete mixture with η-separated sup-
port points as follows.

Proposition 4.4. Assume that f0 ∈ Hs for s ≥ 1/2, g0 ∈ M([0, 1]), and
log 1

ǫn
. ℓn. For any ηn ≤ ǫ4n, there exists a discrete distribution g̃ whose support

(ψj)j=1...Jn is of size Jn . ℓ2n, ηn-separated, and such that

dH(Pf0
ℓn
,g0 ,Pf0

ℓn
,g̃) .

(

1 + ‖f0‖1/2H1/2

)

ǫn.

Furthermore, for any g ∈ M([0, 1]),

dH(Pf0
ℓn
,g0 ,Pf0

ℓn
,g) .

(

1 + ‖f0‖1/2H1/2

)

ǫn

+

√
√
√
√‖f0

ℓn
‖H1/2

√
ηn +

Jn∑

j=1

|ǧ([ϕj − ηn/2, ϕj + ηn/2])− g̃(ϕj)|.

Proof. The construction used in the proof of Proposition 4.2 provides a mix-
ture ˜̃g such that ˜̃g is supported by J̃n := Cℓ2n points (denoted (ϕj)j=1...J̃n

)

so that dH(Pf0
ℓn
,g0 ,Pf0

ℓn
,˜̃g) ≤ ǫn. Therefore ˜̃g =

∑J̃n

j=1 wjδϕj . As pointed by

[GvdV01], one can slightly modify ˜̃g so that the support points are separated
enough as follows. First, denote (ψj)j=1...Jn the subset of (ϕj)j=1...J̃n

which
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is ηn-separated with a maximal number of elements. Hence, Jn ≤ J̃n and
up to a permutation, one can divide (ϕj)j=1...J̃n

in two parts: (ϕj)j=1...J̃n
=

(ψj)j=1...Jn ∪ (ϕj)j=Jn+1...J̃n
. For any i ∈ {Jn + 1, . . . , J̃n}, we define ψj(i) as

the closest point of (ψj)j=1...Jn , the new discrete mixture law is then given by

g̃ =

Jn∑

j=1



wj +
∑

i>Jn|j(i)=j
wi





︸ ︷︷ ︸

:=w̃j

δψj .

Of course, g̃ has a ηn-separated support. Moreover, we have

dTV

(

Pf0
ℓn
,g̃,Pf0

ℓn
,˜̃g

)

= dTV





J̃n∑

i=1

wjγθ•ϕj ,

Jn∑

i=1

w̃iγθ•ψi





≤
Jn∑

j=1

∑

i>Jn|j(i)=j
widTV (γθ•ϕi , γθ•ψj)

.

Jn∑

j=1

∑

i>Jn|j(i)=j
wi‖θ‖H1/2

√
ηn ≤ ‖θ‖H1/2

√
ηn

where we successively used convexity and Proposition 4.1. Now the relations
between Hellinger and Total Variation distances yield

dH(Pf0
ℓn
,g0 ,Pf0

ℓn
,g̃) ≤ ǫn + dH(Pf0

ℓn
,g̃,Pf0

ℓn
,˜̃g) .

(

1 + ‖θ‖1/2H1/2

)

ǫn.

Now, let g be in M([0, 1]), then an adaptation of Lemma 5.1 of [GvdV01]
leads to

d2H(Pf0
ℓn
,g̃,Pf0

ℓn
,g) . ‖f0

ℓn‖H1/2

√
η +

J∑

j=1

|g([ϕj − η/2, ϕj + η/2])− g̃(ϕj)| .

which permits to conclude.

Description of neighborhoods We can now gather (E1, E2, E3) as follows.

Proposition 4.5. Assume that f0 ∈ Hs for s ≥ 1/2 and g0 ∈ M([0, 1]) and

consider ℓn ∼ ǫ
−1/s
n , ηn := ǫ4n, and g̃ the mixture get in Proposition 4.4. Define

Gǫn :=






g ∈ M([0, 1]) :

Jn∑

j=1

|g(ψj − ηn/2, ψj + ηn/2)− g̃(ψj)| ≤ ǫ2n






,

Fǫn :=
{
f ∈ Hℓn : ‖f − f0

ℓn‖ ≤ ǫ2n
}
.

There exists a constant C0 depending only on f0 such that

∀g ∈ Gǫn , ∀f ∈ Fǫn : dH
(
Pf0,g0 ,Pf,g

)
≤ C0ǫn.
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5. Posterior contraction rates

5.1. Proof of Theorem 2.1

We first study the minoration of the Kullback-Leibler neighborhoods.

Proposition 5.1. Assume that f0 ∈ Hs for s ≥ 1 and g0 ∈ M([0, 1]). For any
sequence (ǫn)n∈N which converges to 0 as n→ +∞, one has

ΠDPn
(
Pf,g ∈ P : dKL(Pf,g,Pf0,g0) ≤ ǫ2n, V (Pf,g,Pf0,g0) ≤ ǫ2n

)
≥ hn,

where c is a constant such that

hn := e−(c+o(1)) [ǫ−2/s
n (log(1/ǫn))

ρ+2/s∨ξ−2
n ].

We could obtain a suitable lower bound as soon as λ(ℓn) ≥ e−cℓ
2
n log ℓn and

any λ possessing an heavier tail would also fit. But, we also need to majorize
ΠDPn (P \ Pn), see below.

Proof. We have seen in the proof of Proposition A.1 that M2
δ is uniformly

bounded with respect to ‖f‖ and ‖f0‖ for a suitable choice of δ. We restrict our
study to the elements f such that ‖f‖ ≤ 2‖f0‖. We know from Proposition A.1
that as soon as ǫ̃n log

1
ǫ̃n

≤ cǫn with c small enough, Vǫ̃n(Pf0,g0 , dH) := {Pf,g ∈
P|dH(Pf0,g0 ,Pf,g) ≤ ǫ̃n, ‖f‖ ≤ 2‖f0‖} ⊂ Vǫn(Pf0,g0 , dKL). This last condition
on ǫ̃n is true as soon as

ǫ̃n := c̃ǫn

(

log
1

ǫn

)−1

(5.1)

with c̃ small enough. Now, Proposition 4.5 permits to describe a subset of

Vǫ̃n(Pf0,g0 , dH),with subsets Fǫ̃n and Gǫ̃n for f and g. Choose ℓn := ǫ̃
−1/s
n .

We first bound the prior mass on Gǫ̃n . This follows from the bound given by

Lemma 6.1 of [GGvdV00] for DP. Note that Jn . ℓ2n = ǫ̃
−2/s
n ≤ ǫ̃−4

n and there
exists an absolute constant a ∈ (0, 1] such that the condition Jn ≤ 2(aǫ̃n)

−4 is
fulfilled. Hence one can find constants C and c such that for n large enough

Πn (Gǫ̃n) ≥ Πn (Gaǫ̃n) ≥ Ce
−cJn log 1

ǫ̃4n ≥ Ce−cℓ
2
n log 1

ǫ̃n . (5.2)

We next consider the prior mass on Fǫ̃n . Remark that when n is large enough,
any element of Fǫ̃n satisfies ‖f‖ ≤ 2‖f0‖ and the additional condition on ‖f‖
in the definition of Vǫ̃n(Pf0,g0 , dH) is instantaneously fulfilled. Of course:

Πn (Fǫ̃n) ≥ λ(ℓn)× πℓn
(
B
(
θ0ℓn , ǫ̃

2
n

))
.

From our assumption on the prior λ, we have λ(ℓn) ≥ e−cℓ
2
n logρ ℓn , and the value

of the volume of the (4ℓn + 2)-dimensional Euclidean ball of radius ǫ̃2n implies

Πn (Fǫ̃n) ≥ e−cℓ
2
n logρ ℓn inf

u∈B(0,ǫ̃2n)

(

e−‖θ0+u‖2/ξ2n

π2ℓn+1ξ
2(2ℓn+1)
n

)

(
ǫ̃2n
)4ℓn+2 π2ℓn+1

Γ(2ℓn + 2)
.
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For n large enough we get

Πn (Fǫ̃n) ≥ exp−
[
cℓ2n log

ρ ℓn + ξ−2
n

+(2ℓn + 1)
(
log ℓn + 4 log(1/ǫ̃n)− log ξ−2

n +O(1)
)]

≥ exp
[
−(c+ o(1))

[
ℓ2n log

ρ ℓn ∨ ξ−2
n

]]
(5.3)

Gathering (5.2), (5.3), ℓn = ǫ̃
−1/s
n and (5.1) lead (for c small enough) to

Πn
(
Vǫn(Pf0,g0 , dKL)

)
≥ Πn (Fǫ̃n)Πn (Gǫ̃n)
≥ exp

[
−(c+ o(1))

[
ℓ2n log

ρ ℓn ∨ ξ−2
n

]]

≥ exp
[

−(c+ o(1))
[

ǫ−2/s
n (log(1/ǫn))

ρ+2/s ∨ ξ−2
n

]]

.

Proposition 5.2. For any sequences kn 7→ +∞ and ǫn 7→ 0 as n 7→ +∞,
define w2

n = 4kn + 2, then there exists a constant c such that

ΠDPn (P \ Pkn,wn) ≤ e−c[k
2
n logρ(kn)∧knξ−2

n ],

and logD (ǫn,Pkn,wn , dH) . k2n

[

log kn + log
1

ǫn

]

.

Proof. The upper bound on the packing number comes directly from Theorem
4.1 since we set wn =

√
2kn + 1. To control the prior mass outside the sieve,

remark that owing to the construction of our prior, we have

Πn (P \ Pkn,wn) ≤
∑

|k|≥kn

λ(k) + Pr




∑

|k|≤kn

|θk|2 ≥ w2
n



 , (5.4)

where each θk for −kn ≤ k ≤ kn follows a centered Gaussian law of variance
ξ2n. Now, there exists some constants c and C such that for sufficiently large n:
∑

|k|≥kn λ(k) ≤ Cλ(kn) ≤ e−ck
2
n logρ(kn). Regarding now the second term of the

upper bound in (5.4), we use (4.1) to get

Pr




∑

|k|≤kn

|θk|2 ≥ w2
n



 = Pr




∑

|k|≤kn

∣
∣
∣
∣

θk
ξn

∣
∣
∣
∣

2

ξ2n ≥ w2
n





≤ P
(
χ2
2kn+1 ≥ 2(2kn + 1)ξ−2

n

)
(5.5)

≤ 1

(ξ−2
n − 1)

√
π
e−(2kn+1)[ξ−2

n −1−log ξ−2
n ]−log(2kn+1)/2.

The value of ξn yields Πn(P \ Pkn,wn) ≤ e−c[k
2
n logρ(kn)∧knξ−2

n ].

Remark 5.1. Note that the limited size of wn and the entropy of the sieve
(see Proposition 4.2) prevent the use of a prior independent on the sample size.
Indeed, we need in (5.5) a small enough ξn to avoid a too large weight outside of
the sieve Pℓn,wn . Note also that a variance ξk,n that decays with the frequency
k would not bypass this limitation.
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We are now able to conclude the proof of the posterior consistency.

Proof of Theorem 2.1. Take ǫn := n−α(log n)κ and kn := nβ(log n)γ . From the
definition (2.3), we have ξ−2

n = nµs(log n)ζ , and we look for admissible values of
α, β, κ, γ, µs, and ζ to apply Theorem 2.1 of [GGvdV00]. To derive a suitable
lower bound of the prior of Vǫn(Pf0,g0 , dKL), Proposition 5.1 yields

ǫ−2/s
n

(

log
1

ǫn

)ρ+2/s

∨ nµs(logn)ζ ≪ nǫ2n = n1−2α(log n)2κ.

This is true as soon as ǫn = n−α(log n)κ satisfies α ≤ s
2s+2 and κ > ρs+2

2s+2 . We
also obtain the condition on µs: µs ≤ 1− 2α, and if µs = 1− 2α then ζ < 2κ.

Now, Proposition (5.2) shows that the sieve is not too large provided that

k2n

[

log kn + log
1

ǫn

]

. nǫ2n = n1−2α(log n)2κ. (5.6)

This condition is satisfied when 2β ≤ 1−2α and 2γ+1 ≤ 2κ. At last, Proposition
(5.2) shows that the prior of the complementary of the Sieve is not too large if

k2n log
ρ kn ∧ knnµs & nǫ2n

and we deduce from (5.6) that 2β = 1 − 2α and −ρ/2 + κ ≤ γ ≤ −1/2 + κ.
Moreover, we also see that β+µs ≥ 1−2α, hence µs ≥ 1/2−α, and if µs = 1/2−α
then γ + ζ ≥ 2κ; the former condition on µs yields µs ≥ 1/2− α ≥ 1

2s+2 .
To sum up this part, we have to balance the following inequalities

1

2s+ 2
≤ 1/2− α ≤ µs ≤ 1− 2α and if µs = 1− 2α then ζ < 2κ.

Now, we split the proof according to the adaptive or non adaptive case.

Adaptive prior We first set µ independent of s and equal to 1/3. For any
s ∈ [1/2, 2], we see that α(s) = s/(2s+ 2) is the largest value of α and α(s) =
1/3 < s/(2s+ 2) as soon as s > 2. The corresponding value of β is 1/(2s+ 2)
when s ∈ [1/2, 2] and β = 1/6 otherwise. Any choice of ζ ∈ [3/2, 2) permits to
deal with the conditions on ζ. The other values of γ and κ may be determined
by choosing ρ ∈ (1, 2), κ = 1 and γ = 1/2.

Non adaptive prior This case is simpler, for instance we can fix

µs = β =
1

2s+ 2
, α =

s

2s+ 2
, ρ = 2, κ = 1, γ =

1

2
, ζ = 0.

5.2. Proof of Theorem 2.2

The entropy bounds of the model are still valid for the proof of Theorem 2.2.
However, the way we previously described the closeness of Pf,g and Pf,g̃ is not
satisfactory with a smooth GP prior: Lemma 6.1 of [GGvdV00] designed for DP
is not yet convenient for GP and we must derive another neighborhood struc-
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ture, easily tractable with GP. The next Proposition, of independent interest
for mixture models, does the job.

Consider the inverse functions of the distribution functions defined by

∀u ∈ [0, 1], G−1(u) = inf{t ∈ [0, 1] : g([0, t]) > u},
and recall that the Wasserstein (or Kantorovich) distance Wt, for t > 0, is given
by

Wt(g, g̃) :=

(∫ 1

0

∣
∣
∣G−1(u)− G̃−1(u)

∣
∣
∣

t

du

)1/t

.

Proposition 5.3. Consider f ∈ Hs for s ≥ 1/2, and let (g, g̃) ∈ M([0, 1]), then

dTV (Pf,g,Pf,g̃) . ‖f‖Hs∧1Ws∧1(g, g̃)
s∧1 ≤ ‖f‖Hs∧1W1(g, g̃)

s∧1

≤ ‖f‖Hs∧1dTV (g, g̃)
s∧1 . ‖f‖Hs∧1‖g − g̃‖s∧1.

Proof of Proposition 5.3. The convexity of dTV , and Lemma 4.1 yields

dTV (Pf,g,Pf,g̃) =

∥
∥
∥
∥

∫ 1

0

Pf,δαdg(α) −
∫ 1

0

Pf,δαdg̃(α)

∥
∥
∥
∥
TV

=

∥
∥
∥
∥

∫ 1

0

(

Pf,δG−1(u)
− Pf,δG̃−1(u)

)

du

∥
∥
∥
∥
TV

. ‖f‖Hs∧1

∫ 1

0

∣
∣
∣G−1(u)− G̃−1(u)

∣
∣
∣

s∧1

du.

by Proposition 4.1. Now, the last inequalities are classical, see for instance [GS02,
Theorem 4].

Proof of Theorem 2.2. We mimic the proof of Theorem 2.1

Complementary of the sieve First, we consider the following sieve over P :

P̃kn,wn :=
{
Pf,g : (f, g) ∈ Hkn ×Mν([0, 1])(2A), ‖f‖ ≤ wn

}
,

where kn is a sequence such that kn 7−→ +∞ as n 7−→ +∞, and w2
n = 4kn + 2.

Our sieve is included in the set of all mixture laws (without any restriction on
the smoothness of g), and since the marginal of the prior on the f coordinate
is the same for the DP and the GP priors, we can apply Proposition 5.2 to get

ΠGPn

(

P \ P̃kn,wn

)

≤ e−c[k
2
n logρ(kn)∧knξ−2

n ].

Entropy estimates Since Mν([0, 1])(2A) ⊂ M([0, 1]), our sieve is included in
the one of in Theorem 2.1 and we also deduce that for any sequence ǫn −→ 0:

logN
(

ǫn, P̃kn,wn , dH

)

. k2n

[

log kn + log
1

ǫn

]

.

Lower bound of ΠGPn (Vǫn(Pf0,g0 , dKL)) Define ǫ̃n = cǫn(log
1
ǫn
)−1, ℓn ∼

ǫ̃
−1/s
n , as well as the sets Fǫ := {f ∈ Hℓn : ‖f − f0

ℓn
‖ ≤ ǫ2}, which was used be-
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fore, and G̃ǫ := {g ∈ Mν([0, 1])(2A) : dTV (g, g
0) ≤ ǫ}. Lemma 4.1, Proposition

A.1 and 5.3 implies that if f ∈ Fǫ̃n and g ∈ G̃
ǫ̃

1
s∧1
n

, then Pf,g ∈ Vǫn(Pf0,g0 , dKL).

Proposition 5.1 yields: ΠGPn (Fǫ̃n) ≥ e−(c+o(1)) [ǫ−2/s
n (log(1/ǫn))

ρ+2/s∨ξ−2
n ]. Accord-

ing to Theorem B.1 (given in the appendix), and since kν + 1/2 ≤ ν:

ΠGPn

(

G̃
ǫ̃

1
s∧1
n

)

≥ e−(c+o(1))ǫ̃
− 1

(s∧1)(kν+1/2)
n ≥ e−(c+o(1))ǫ̃

− 1
(s∧1)ν

n .

Contraction Rate We now find a suitable choice of kn and ǫn, i.e.

ΠGPn

(

G̃ǫ̃n
)

Πn (Fǫ̃n) ≥ e−Cnǫ
2
n , ΠGPn (P \ Pkn,wn) ≤ e−(C+4)nǫ2n ,

logD
(

ǫn, P̃kn,wn , dH

)

. nǫ2n.

Following the arguments of Section 5.1, we can find γ > 0 and κ > 0 such that

ǫn := n−[ ν(s∧1)
2ν(s∧1)+1

∧ s
2s+2 ] log(n)κ, kn = n

1
2−[

ν(s∧1)
2ν(s∧1)+1

∧ s
2s+2 ] log(n)γ .

Remark 5.2. Note that we have chosen to deal with a non-parametric structure
on g for the sake of generality. Now, if g is assumed unknown and to belong to a
parametric space of dimension d, it is reasonnable to expect a better convergence
rate. More precisely, one can use Lemma 4.1 and Proposition 5.3 to obtain
an entropy number of order ǫ−1/s log(ǫ−1) and then deduce a standard non
parametric contraction rate on Pf,g of order n−s/(2s+1).

6. Semi-parametric results for ΠGP

n

In the SIM, an important issue is the identifiability with respect to the unknown
curve f and mixture law g. We provide a generic identifiability condition and
then deduce from Theorem 2.2 a contraction rate around the true f0 and g0.

6.1. Identifiability of the model

In previous works, identifiability generally depends on a restriction on the sup-
port of g. For instance, [BG10] assume g centered and compactly supported
in [−1/4, 1/4] (shapes were defined on [−1/2; 1/2] instead of [0, 1] in our pa-
per) although f is supposed to have a non vanishing first Fourier coefficient
(θ1(f) 6= 0). The same kind of conditions are also assumed in [BG12].

If the condition on the first harmonic on f is imperative to obtain identifia-
bility of g, the restriction on its support size seems artificial and we detail in the
sequel how one can avoid it. Recall that for any curve Y , θ1(Y ) = θ01e

−i2πτ + ξ.
Up to a change of variable, we can always modify g in g̃ such that θ01 ∈ R+, for
instance fix g̃(ϕ) = g(ϕ + α) where α is the complex argument of θ01. Conse-
quently, w.l.o.g. we study identifiability of the SIM when f belongs to Fs.
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Proof of Theorem 2.3. We use three hierarchical steps. First, we prove that if
Pf,g = Pf̃ ,g̃ =⇒ θ1(f) = θ1(f̃). Then we deduce that g = g̃ and at last we obtain
the identifiability for all other Fourier coefficients of f .

Note that as soon as ν > 1/2, g and g̃ admit densities w.r.t. the Lebesgue
measure on [0, 1]. In the sequel we use the same notation g for the density of g.

Point 1: Identifiability on θ0(f) and θ1(f) We denote Pkf,g the marginal

law of Pf,g on the kth Fourier coefficient. We have the following implications

dTV (Pf,g,Pf̃ ,g̃) = 0 =⇒
(

Pf,g = Pf̃ ,g̃

)

=⇒ ∀k ∈ Z : dTV

(

P
k
f,g,P

k
f̃,g̃

)

= 0.

We immediately obtain that θ0(f) = θ0(f̃) since θ0(f) (resp. θ0(f̃)) represents
the mean of the distribution P0

f,g (resp. P0
f̃ ,g̃

). But the distribution P0
f,g does

not bring any information on the measure g, and is no longer helpful for iden-
tifiability. Concerning now the first Fourier coefficient, remark that

dTV

(

P
1
f,g,P

1
f̃ ,g̃

)

=
1

2π

∫

C

∣
∣
∣
∣

∫ 1

0

e−|θ1ei2πα−z|2g(α)dα−
∫ 1

0

e−|θ̃1ei2πα−z|2 g̃(α)dα

∣
∣
∣
∣
dz.

Assume that θ̃1 6= θ1, w.l.o.g. θ̃1 > θ1 > 0 and consider the disk DC(0,
θ̃1−θ1

2 ),

we then get for any z in DC(0,
θ̃1−θ1

2 ) and any α: |θ1ei2πα − z| < θ̃1+θ1
2 and

|θ̃1ei2πα− z| > θ̃1+θ1
2 . Hence, we get

∫ 1

0 e
−|θ1ei2πα−z|2g(α)dα > e−

|θ̃1+θ1|2
4 and of

course
∫ 1

0 e
−|θ̃1ei2πα−z|2 g̃(α)dα < e−

|θ̃1+θ1|2
4 . We obtain

dTV

(

P
1
f,g,P

1
f̃ ,g̃

)

≥ 1

2π

∫

DC

(

0,
θ̃1−θ1

2

)

∣
∣
∣
∣

∫ 1

0

e−|θ1ei2πα−z|2g(α)dα

−
∫ 1

0

e−|θ̃1ei2πα−z|2 g̃(α)dα

∣
∣
∣
∣
dz > 0.

In the opposite, dTV (P
1
f,g,P

1
f̃ ,g̃

) = 0 implies that θ1 = θ̃1 since (f, f̃) ∈ Fs(A).

Point 2: Identifiability on g We still assume that dTV (P
1
f,g,P

1
f̃ ,g̃

) = 0, so

that θ1 = θ̃1 and we want to infer that g = g̃. Using a polar change of variables

dTV

(

P
1
f,g,P

1
f̃ ,g̃

)

=
1

2π

∫

C

e−[θ21+|z|2]
∣
∣
∣
∣

∫ 1

0

e2ℜe(zθ1e
i2πα)(g(α)− g̃(α)dα

∣
∣
∣
∣
dz

=
1

4π2

∫ +∞

0

ρe−[θ21+ρ
2]

∫ 2π

0

∣
∣
∣
∣

∫ 2π

0

e2ρθ1 cos(u−ϕ)(g − g̃)(u/2π)du

∣
∣
∣
∣
dϕdρ

=
1

4π2

∫ +∞

0

ρe−[θ21+ρ
2]

∫ 2π

0

|ψ2ρθ1(ϕ)| dϕdρ.
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In the expression above, we denote h = g − g̃ and ψa(ϕ) is defined as

ψa(ϕ) =

∫ 2π

0

ea cos(u)h

(
u+ ϕ

2π

)

du.

Of course, ‖ψa‖∞ ≤ 4πea, and we roughly bound |ψa(ϕ)| ≥ |ψa(ϕ)|2
4πea . Hence,

dTV (P
1
f,g,P

1
f̃ ,g̃

) ≥ 1

8π2

∫ +∞

0

ρe−(θ21+ρ
2+2θ1ρ)‖ψ2ρθ1‖2dρ. (6.1)

Since ν > 1, h and ψa may be expanded in Fourier series since h ∈ L2([0, 1]):

h(x) =
∑

n∈Z

cn(h)e
i2πnx, ψa(ϕ) =

∑

n∈Z

cn(h)

[∫ 2π

0

ea cos(u)einudu

]

ei2πnϕ.

Thus, the L2 norm of ψa is given by

‖ψa‖2 =
∑

n∈Z

|cn(h)|2
∣
∣
∣
∣

∫ 2π

0

ea cos(u)einudu

∣
∣
∣
∣

2

. (6.2)

Now, denote the first and second kind of Tchebychev polynomials (Tn)n∈Z and
(Un)n∈Z satisfying Tn(cos θ) = cos(nθ) and (sin θ)Un(cos θ) = sin(nθ), we get

∫ 2π

0

ea cos(u)einudu

=

∫ 2π

0

ea cos(u) [Tn(cos u) + i(sinu)Un(cosu)] du

=

∫ 2π

0

∑

k≥0

ak(cosu)k

k!



Tn(cosu) + i(sinu)

n∑

j=0

βj(cosu)
j



 du

where we have used the analytic expression of Un given by

Un(cosu) =

E((n−1)/2)
∑

j=0

(−1)jC2j+1
n (cos u)n−2j−1(1 − cos2 u)j .

Hence, we obtain for a ∈ R:

∫ 2π

0

ea cos(u)einudu

=

∫ 2π

0

∑

k≥0

ak(cos u)k

k!
Tn(cosu)du+ i

∑

k≥0

n∑

j=0

βj
ak

k!

∫ 2π

0

sinu(cosu)k+jdu

=

∫ 2π

0

∑

k≥0

ak(cos u)k

k!
Tn(cosu)du =

∫ 2π

0

ea cos(u) cos(nu)du.
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Denote An(a) :=
∫ 2π

0
ea cos(u) cos(nu)du, Equation (6.2) yields

‖ψa‖2 =
∑

n∈Z

|cn(h)|2An(a)2. (6.3)

An is analytic and is not the null function, otherwise all its derivative would
also vanish but remark that (cosu)n = Tn(cosu) and several derivations yield

A(n)
n (0)

=
d(n)

da(n)

[ ∞∑

k=0

ak

k!

∫ 2π

0

(cosu)k cos(nu) du

]

(0) =

∫ 2π

0

(cosu)nTn(cosu)du

=

∫ 2π

0

[
n−1∑

k=0

αkTk(cosu) + 21−nTn(cosu)

]

Tn(cosu)du = 21−nπ > 0.

Note that in the meantime, we also obtain that A
(j)
n (0) = 0, ∀j < n, so that

An(a) ∼a 7→0
21−nπ

n!
an. (6.4)

We can conclude the proof of the identifiability of g using (6.3) in (6.1) to obtain

dTV (P
1
f,g,P

1
f̃ ,g̃

) ≥ 1

8π2

∑

n∈Z

|cn(h)|2
(∫ +∞

0

ρe−[θ1+ρ]
2

An(2ρθ1)
2dρ

)

︸ ︷︷ ︸

:=In(θ1)

. (6.5)

From (6.4), each integral In(θ1) 6= 0, ∀n ∈ Z and we then conclude that:

dTV (P
1
f,g,P

1
f̃ ,g̃

) ⇐⇒ g = g̃ and θ1 = θ̃1.

Point 3: Identifiability on f We prove now that Pf,g = Pf̃ ,g̃ =⇒ f = f̃ .

Since it implies g = g̃, it remains to show that θk(f) = θk(f̃), ∀k ∈ Z \ {0, 1}.
A similar argument as the one of Point 1 yields

dTV (P
k
f,g,P

k
f̃,g̃

) = 0 =⇒ |θk| = |θ̃k|.
But we cannot directly conclude here (no restriction is assumed on the phase of
Fourier coefficients θk(f), k ∈ Z \ {0, 1}). Write θ̃k = θke

iϕ, and g = g̃ implies

dTV (P
k
f,g,P

k
f̃,g

) =
1

2π

∫

C

∣
∣
∣
∣

∫ 2π

0

e−|z−θke−ikα|2 − e−|z−θkei(ϕ−kα)|2g(α)dα

︸ ︷︷ ︸

:=F (z)

∣
∣
∣
∣
dz.

If one writes z = x + iy, F is differentiable w.r.t. x and y and F (0) = 0.
A computation of ∇F (0) shows that ∇F (0) is the vector (written in C):

∇F (0) = θke
−|θk|2ck(g)[1− eiϕ].

Since g ∈ M([0, 1])⋆, this last term is non vanishing except if θk = 0 (which
implies θ̃k = 0 = θk) or if ϕ ≡ 0(2π). In both cases, F ′(0) = 0 ⇐⇒ θ̃k = θk.
Thus, θk 6= θ̃k =⇒ ∇F (0) 6= 0 and we may find r small enough such that
|F |(z) > 0 when z ∈ B(0, r) \ {0}. This ends the proof of identifiability.
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Point 4: Minimal assumption on g We now briefly show that M([0, 1])+ is
minimal for the identifiability of the model. Indeed, consider any integer k and
a couple of functions (f, f̃) whose Fourier coefficients are θ1(f) = θ1(f̃) = 1 and
θk(f) = θk(f̃)e

−iϕ 6= 0. By construction, for any g ∈ M([0, 1])+, P1
f,g = P

1
f̃ ,g

.

Following the definition of F above, when f and f̃ have only two frequencies
switched on, it is thus necessary and sufficient to consider

dTV (P
k
f,g,P

k
f̃,g

) =
1

2π

∫

C

|F (z)|dz.

As an holomorphic function, F is null iff all its derivatives at 0 vanish. We
have already seen that F (0) = 0 and F ′(0) = θke

−|θk|2ck(g)[1 − eiϕ]. A simple
induction then shows that

∀j ≤ m,F (j)(0) = 0 =⇒ ∀j ≤ m, ckj(g) = 0.

Thus, if g ∈ M([0, 1])+, there existsm such that F (m)(0) 6= 0 and then F cannot
be null, unless ϕ = 0. Hence, we see in this framework that

g ∈ M([0, 1])+ andPf,g = Pf̃ ,g =⇒ f = f̃ .

Conversely, if g /∈ M([0, 1])+, there exists k ∈ Z such that cjk(g) = 0 for all
integers j ∈ Z but one cannot distinguish Pf,g from Pf̃ ,g as soon as

|θk(f)| = |θk(f̃)|.
In particular, in this case the model is not identifiable.

The main difficulty was dTV (P
1
f,g,P

1
f̃ ,g̃

) =⇒ g = g̃ and we will use this to

obtain a contraction rate for (f, g) around (f0, g0). The main inequality is (6.5)
where h = g − g̃. and we first use it to study a contraction rate around g0.

6.2. Contraction rate of the posterior distribution around f0 and g0

At this stage, we assume that (f, g) ∈ Fs ×Mν([0, 1]), with s ≥ 1 and ν > 1.
Sketch of proof: the next proof will be splitted in three parts. First we show
that the joint contraction on Pf,g around Pf0,g0 implies a contraction property
of the first Fourier coefficient of f around θ1(f

0). We use this last property to
obtain the contraction of g around g0. At last, we use the whole marginals of the
complete process to derive contraction rates for the other Fourier coefficients of
f around those of f0.

6.2.1. Contraction rate on the first Fourier coefficient

Proposition 6.1. If (f, g) ∈ Fs ×Mν([0, 1]), then for a sufficiently large M :

ΠGPn

(

θ1(f) ∈ B
(

θ01 ,Mǫ1/3n

)c∣
∣
∣Y1, . . . , Yn

)

−→ 0 Pf0,g0 a.s. as n→ +∞.

Moreover, the contraction rate is n−1/3×[ν(s∧1)/(2ν(s∧1)+1)∧s/(2s+2)](log n)1/3.
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Proof. In this proof, we will omit the dependence on f in the notation θ1(f),
which will be shortenned as θ1. From the beginning of the proof of Theorem
2.3, one can show that for any θ1 such that 0 < η < |θ1 − θ01| < θ01/2, and for
any g ∈ Mν([0, 1]):

dTV
(
Pf,g,Pf0,g0

)
≥ dTV

(
P
1
f,g,P

1
f0,g0

)
,

owing to the variational definition of the Total Variation distance. Then

dTV
(
P
1
f,g,P

1
f0,g0

)

≥ 1

2π

∫

B

(

0,
|θ1−θ01 |

4

)

∣
∣
∣
∣

∫ 1

0

g(α)e−|z−θ1ei2πϕ|2 − g0(α)e−|z−θ01ei2πϕ|2dϕ

∣
∣
∣
∣
dz

≥ η2

32

∣
∣
∣e−(3θ01+θ1)

2/16 − e−(3θ1+θ
0
1)

2/16
∣
∣
∣ ≥ C(θ01)η

3,

for a small enough C(θ01). Simple inclusions and Pinsker’s inequality yields

{θ1 ∈ B(0, η)c} ⊂
{
θ1|dTV (Pf,g,Pf0,g0) ≥ C(θ01)η

3
}

⊂
{
θ1|dH(Pf,g,Pf0,g0) ≥ C(θ01)η

3
}
.

The proof is now achieved according to Theorem 2.2.

6.2.2. Posterior contraction rate around g0

Proof of Theorem 2.4, i). Using Theorem 2.2 and for M large enough

ΠGPn
{
Pf,g s.t. dH(Pf,g,Pf0,g0) ≥Mǫn|Y1, . . . Yn

}
−→ 0 as n→ +∞.

Since dTV (P
1
θ1,g

,P1
θ01,g

0) ≤ dTV (Pf,g,Pf0,g0) ≤ dH(Pf,g,Pf0,g0), we then get

ΠGPn

{

Pf,g s.t. dTV (P
1
θ1,g,P

1
θ01,g

0) ≥Mǫn|Y1, . . . Yn
}

−→ 0 as n→ +∞.

(6.6)
For any g ∈ Mν([0, 1]), the triangular inequality yields

dTV

(

P
1
θ01,g

,P1
θ1,g

)

+ dTV

(

P
1
θ1,g,P

1
θ01,g

0

)

≥ dTV

(

P
1
θ01,g

,P1
θ01,g

0

)

. (6.7)

Let f̃ s.t. θ̃ = θ(f̃) with θ̃1 = θ1(f), and for any k ∈ Z\{1}, θ̃k = θk(f
0). Then

Lemma 4.1 yields dTV (P
1
θ01,g

,P1
θ1,g

) = dTV (P
1
f̃ ,g
,P1

f0,g) ≤ ‖f̃−f0‖√
2

=
|θ1−θ01|√

2
.

Therefore, as n→ +∞:

ΠGPn

(

Pf,g s.t. dTV

(

P
1
θ01,g

,P1
θ1,g

)

≤ M√
2
ǫ1/3n

∣
∣
∣
∣
Y1, . . . , Yn

)

≥ ΠGPn

(

Pf,g s.t. |θ1 − θ01| ≤Mǫ1/3n

∣
∣
∣Y1, . . . , Yn

)

−→ 1 (6.8)
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In conclusion, (6.6),(6.7) and (6.8) shows that for M large enough:

ΠGPn

(

Pf,g s.t. dTV

(

P
1
θ01,g

,P1
θ01,g

0

)

≤Mǫ1/3n

∣
∣
∣Y1, . . . , Yn

)

−→ 1 as n→ +∞.

We now use (6.5) applied with θ1 = θ01 to obtain our consistency rate:

dTV (P
1
θ01,g

,P1
θ01,g

0) ≥
1

8π2

∑

n∈Z

|cn(g − g0)|2
∫ +∞

0

ρe−(ρ+θ01)
2

An(2ρθ
0
1)

2dρ. (6.9)

Now, equivalents given by Lemma C.1 (see Appendix C) shows that the main
part of the integral above corresponds to a ∈ [0, c

√
n]. One can find κ such that

∫ +∞

0

ρe−(ρ+θ01)
2

An(2ρθ
0
1)

2dρ

≥
∫

√
n

2θ0
1

0

4π2ρ2n+1{θ01}2n
n!2

e−(ρ+θ01)
2

(

1− κ
[2ρθ01]

n

)2

dρ

≥
(

1− κ√
n

)2
4π2{θ01}2n

n!2
e
−
(
θ01+

√
n

2θ01

)2 ∫
√

n

2θ01

0

ρ2n+1dρ.

Now, we can apply the Stirling formula to obtain:

4π2{θ01}2n
n!2

e
−
(
θ01+

√
n

2θ01

)2 ∫
√

n

2θ0
1

0

ρ2n+1dρ

∼ 4π2{θ01}2n
(n/e)2n2πn

e
−
(
θ01+

√
n

2θ01

)2 (√
n/(2θ01)

)2n+2

2n+ 2

∼ 2π

n(2n+ 2)
e
−2n log

[

n

eθ01

]

−
(
θ01+

√
n

2θ01

)2
+(n+1) log

[

n

4{θ01}2

]

,

which is lower bounded by C(θ01)e
−n log(n). Such lower bound in (6.9) yields

dTV (P
1
θ01,g

,P1
θ01,g

0) ≥ c̃
∑

k∈Z

|ck(g − g0)|2e−ck log k,

for (c, c̃) sufficiently small. We now end the proof of the Theorem: choose a
frequency cut-off kn that depends on n and remark that

∀g ∈ Mν([0, 1]) ‖g − g0‖2 =
∑

|ℓ|≤kn

|cℓ(g − g0)|2 +
∑

|ℓ|>kn

|cℓ(g − g0)|2

. eckn log kn
∑

|ℓ|≤kn

|cℓ(g − g0)|2e−cℓ log ℓ + k−2ν
n

. eckn log kndTV (P
1
θ01,g

,P1
θ01,g

0) + k−2ν
n .
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Equation (6.8) implies that the above term is lower than eckn log knǫ
1/3
n + k−2ν

n

up to a multiplicative constant, with probability close to 1 as n goes to +∞.
The optimal choice for kn yields [kn + 2ν] log kn = 1

3 log
1
ǫn
, which ensures that

Πn
{
g s.t. ‖g − g0‖2 ≤M log(n)−2ν |Y1, . . . Yn

}
−→ 1 asn→ +∞.

In the last lines, we use the knowledge of ν as well as the radius A of the
Sobolev ellipsoid Mν([0, 1])(2A) to build a suitable threshold kn. But we cannot
control easily the posterior weights on Mν([0, 1])(2A) from the posterior around
Pf0,g0 : that’s why it is difficult to conclude with an adaptive prior.

6.2.3. Posterior contraction rate around f0

We then obtain a result for the neighborhoods of f0. Proposition 6.1 leads to a
polynomial order on θ1. It is far from being the case for the other frequencies.

Proof of Theorem 2.4, ii). The proof of ii) is inspired from the one of i).

Point 1: Triangular inequality For any f ∈ Fs, we have for any k ∈ Z:

dTV (P
k
f,g0 ,P

k
f0,g0) ≤ dTV (P

k
f,g0 ,P

k
f,g) + dTV (P

k
f0,g0 ,P

k
f,g),

and if ǫn ≪ log(n)−ν , we have as n −→ +∞:

ΠGPn
(
∀k ∈ Z dTV (P

k
f,g,P

k
f0,g0) < Mǫn

∣
∣Y1, . . . , Yn

)
−→ 1 (6.10)

Point 2: ΠGPn (supk∈Z dTV (P
k
f,g0 ,P

k
f,g) < M log(n)−ν |Y1, . . . , Yn) → 1 We can

use the Cauchy-Schwarz inequality as follows:

dTV (P
k
f,g0 ,P

k
f,g) =

1

2π

∫

C

∣
∣
∣
∣

∫ 2π

0

e−|z−θkeikϕ|2 [g(ϕ)− g0(ϕ)]dϕ

∣
∣
∣
∣
dz

≤ ‖g − g0‖
2π

∫

C

[∫ 2π

0

e−2|z−θkeikϕ|2dϕ

]1/2

dz

Young’s inequality yields |z−θkeikϕ|2 = |z|2+ |θk|2−2ℜ(z̄θkeikϕ) ≥ |z|2
2 −|θk|2 :

dTV (P
k
f,g0 ,P

k
f,g) ≤

‖g − g0‖
2π

∫

C

(

e−|z|2+2|θk|2
)1/2

dz ≤ ‖g − g0‖e
|θk|2

2
. (6.11)

We denote An = {(f, g) : ∃k ∈ Z dTV (P
k
f,g0 ,P

k
f,g) ≥M log(n)−ν} and the two

sets B = {f : ∀k ∈ Z |θk| ≤ |θ0k| +M log(n)−ν} and C = {f : ∀k ∈ Z |θ0k| ≤
|θk|+M log(n)−ν}. Let k and θk such that |θk| > |θ0k|+M log(n)−ν , then

dTV (P
k
f0,g0 ,P

k
f,g) =

1

2π

∫

C

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikϕ|2g(ϕ)− e−|z−θ0keikϕ|2g0(ϕ)
]

dϕ

∣
∣
∣
∣
dz.
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For any z ∈ Bn := B(0, M log(n)−ν

3 ), one has for any ϕ ∈ [0, 2π]

|z − θ0ke
ikϕ| ≤ M log(n)−ν

3
+ |θ0k| ≤ 2

M log(n)−ν

3
+ |θ0k|

≤ |θk| −
M log(n)−ν

3
≤ |z − θke

ikϕ|.

Hence if |θk| ≥ |θ0k|+M log(n)−ν , one has

dTV (P
k
f0,g0 ,P

k
f,g)

≥ 1

2π

∫

Bn

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikϕ|2g(ϕ)− e−|z−θ0keikϕ|2g0(ϕ)
]

dϕ

∣
∣
∣
∣
dz

≥ 1

2π

∫

Bn

e−[|θ0k|+M log(n)−ν/3]2 − e−[|θ0k|+2M log(n)−ν/3]2dz

≥ c|θ0k|2e−|θ0k|2 log(n)−3ν ,

for a sufficiently small absolute constant c > 0. Since (θ0k)k∈Z is bounded, for n

large enough, we know that ‖θ0‖2e− infk |θ0k|2 log(n)−3ν ≫ ǫn and (6.10) implies

ΠGPn (Bc|Y1, . . . , Yn) −→ 0 as n −→ +∞. (6.12)

A similar argument yields

ΠGPn (Cc|Y1, . . . , Yn) −→ 0 as n −→ +∞.

Gathering now (6.12) and (6.11), we get for a sufficiently large M

ΠGPn (An|Y1, . . . , Yn) = ΠGPn (An ∩ B ∩ C|Y1, . . . , Yn)
+ ΠGPn (An ∩ (B ∩ C)c|Y1, . . . , Yn)

≤ ΠGPn

(

‖g − g0‖ ≥Me−(1+supk |θ0k|2) log(n)−ν
)

+ΠGPn (Bc|Y1, . . . , Yn) + ΠGPn (Cc|Y1, . . . , Yn)

Now, Theorem 2.4 i) leads, as n −→ +∞, to

ΠGPn

(

sup
k∈Z

dTV (P
k
f,g0 ,P

k
f,g) < M log(n)−ν

∣
∣
∣
∣
Y1, . . . , Yn

)

−→ 1. (6.13)

Point 3: Contraction of θk near θ0k Arguments of Point 2 shows that

ΠGPn
(
f : ∀k ∈ Z

∣
∣|θk| − |θ0k|

∣
∣ < M log(n)−ν

)
−→ 1 as n −→ +∞.

We now study the situation when ||θk| − |θ0k|| < M log(n)−ν , and we can write
θk = θ0ke

iϕ + ξn where ξn is a complex number such that |ξn| ≤M log(n)−ν .

dTV (P
k
f,g0 ,P

k
f0,g0) =

1

2π

∫

C

∣
∣
∣
∣

∫ 2π

0

[

e−|z−θkeikα|2 − e−|z−θ0keikα|2
]

g0(α)dα

︸ ︷︷ ︸

:=F (z)

∣
∣
∣
∣
dz
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Indeed, F (0) = o(1) and a Taylor expansion near 0 yields that

F (z) = 2e−|θ0k|2
∫ 2π

0

[
1 + ℜe

(
zθ̄ke

−ikα)− (1 + ℜe
(
zθ̄0ke

−ikα)] g0(α)dα

+ o(|z|) +O(|ξn|).

If we write θk = θ0ke
iϕ +O(log(n)−ν), for η small enough such that |z| ≤ η:

|F (z)| ≥ ce−|θ0k|2
∣
∣
∣sin(ϕ/2)ℜe

(

zieiϕ/2θ̄0kc−k(g
0)
)∣
∣
∣+O(log(n)−ν)

Now, denote ū =
ieiϕ/2 θ̄0kc−k(g

0)

|θ0k|×|c−k(g0)| which is a complex number of norm 1, and let

v = ūeiπ/2. The vector v is orthogonal to ū and z may be decomposed as

z = aū+ bv.

We then choose |b| < |a|/2 and denotes Ra the area where z is living. For a < η
small enough, there exists an absolute constant c independent of k such that

dTV (P
k
f,g0 ,P

k
f0,g0) ≥

∫

Ra

|F (z)| ≥ cη3e−|θ0k|2 | sin(ϕ/2)||θ̄0k||c−k(g0)|

+O
(
log(n)−ν

)
.

Since |θk − θ0k| = 2| sin(ϕ/2)||θ0k|+O(log(n)−ν), we deduce that:

dTV (P
k
f,g0 ,P

k
f0,g0) ≥ cη3e−|θ0k|2 |c−k(g0)||θk − θ0k|+O

(
log(n)−ν

)
. (6.14)

We conclude using (6.13) and (6.14) that for a sufficiently largeM , as n −→ +∞:

Πn

(

f : sup
k∈Z

∣
∣(θk − θ0k)c−k(g

0)
∣
∣ < M log(n)−ν

∣
∣
∣
∣
Y1, . . . , Yn

)

−→ 1 (6.15)

Point 4: Contraction on f0 We now produce a standard thresholding proof:

‖f − f0‖2

=
∑

|ℓ|>kn

|θℓ − θ0ℓ |2 +
∑

|ℓ|≤kn

|θℓ − θ0ℓ |2 . k−2s
n +

∑

|ℓ|≤kn

|θℓ − θ0ℓ |2|c−ℓ(g0)|2
|c−ℓ(g0)|2

. k−2s
n + k2βn

∑

|ℓ|≤kn

|θℓ − θ0ℓ |2|c−ℓ(g0)|2

. k−2s
n + k2β+1

n sup
|ℓ|≤kn

|θℓ − θ0ℓ |2|c−ℓ(g0)|2

Hence, the frequency cut-off kn = (logn)
2ν

2β+2s+1 and (6.15) implies

Πn

(

f : ‖f − f0‖2 ≤M (logn)
−4sν/(2s+2β+1)

∣
∣
∣Y1, . . . , Yn

)

−→ 1

as n −→ +∞ for M large enough. This last result is the desired inequality.
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Remark 6.1. The lower bound obtained on dTV (P
k
f,g0 ,P

k
f0,g0) is important

to understand how one can build an appropriate net of functions (fj , gj) ∈
Fs × Mν([0, 1]) hard to distinguish with the L2 distance. When |θk| 6= |θ0k|,
it is quite easy to distinguish the two hypotheses. On the contrary, when the
modulus are the same, the behaviour of the Fourier coefficients of g0 becomes
important. This is a clue to exhibit a “difficult” net.

6.3. Lower bound from a frequentist point of view

We have chosen to use the Fano Lemma (see [IH81] for instance) instead of
Le Cam’s method, since we will only be able to find some discrete (instead of
convex) set of pairs (fj , gj) in Fs × Mν([0, 1]) closed according to the Total
Variation distance.

Proof of Theorem 2.5. We are looking for a set (fj , gj)j=1...pn such that each
Pfj ,gj are closed together with rather different functional parameters fj or gj .
Reading carefully the Bayesian contraction rate is informative to build pn hy-
potheses which are difficult to distinguish. First, we know that since each fj
should belong to Fs, we must impose for any fj that θ1(fj) > 0. Proposition
6.1 shows that two laws Pfj ,gj and Pfj′ ,gj′ are statistically very different as soon
as θ1(fj) 6= θ1(fj′). Then we build our net using a common value for θ1(fj):

∀j ∈ {1 . . . pn} θ1(fj) = 1.

Point 1: Net of functions (fj)j=1...pn We choose the following construction

∀j ∈ {1 . . . pn} fj(x) = ei2πx + p−sn ei2
(j−1)
pn

πei2πpnx. (6.16)

The number of elements pn will be next adjusted and will grow to +∞. Our
construction naturally satisfies that each fj ∈ Fs since the modulus of the pn-th
Fourier coefficient is of size p−sn . At last, we have: ∀(j, j′) ∈ {1 . . . pn}2, j 6= j′ :

‖fj − fj′‖2 ≥ p−2s
n ×

∣
∣
∣ei2π/pn − 1

∣
∣
∣

2

≥ 4p−2s
n sin2(π/pn) ∼n7→+∞ 4π2p−2s−2

n .

Point 2: Net of measures (gj)j=1...pn The cornerstone of the lower bound
is how to adjust the measures of the random shifts to make the distributions
Pfj ,gj , j = 1 . . . pn, as close as possible. First, remark that we will still use Total
Variation instead of the entropy between laws since Kullback Leibler distance
is difficult to handle with mixtures, we use the chain of inequalities: ∀j 6= j′

dTV

(

Pfj ,gj ,Pfj′ ,gj′

)

≤ η ⇒ dH

(

Pfj ,gj ,Pfj′ ,gj′

)

≤
√

2η

⇒ dKL

(

Pfj ,gj ,Pfj′ ,gj′

)

.
√
η log

1

η
.

Hence, from the tensorisation of the entropy, we must find a net such that
dTV (Pfj ,gj ,Pfj′ ,gj′ ) ≤ ηn with −√

ηn log ηn = O(1/n) to obtain a tractable
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application of the Fano Lemma. It imposes to find mixture laws such that
dTV (Pfj ,gj ,Pfj′ ,gj′ ) .

1
(n logn)2 , it is sufficient to build (gj)j=1...pn satisfying

∀j ∈ {1 . . . pn} dTV
(
Pfj ,gj ,Pf1,g1

)
.

1

(n logn)2
. (6.17)

For sake of convenience, we replace pn by p. In a similar way, θjp = θp(fj) given

by θjp = ei2παjθ1p where αj =
j−1
pn

. From (6.16), we have

dTV
(
Pfj ,gj ,Pf1,g1

)
=

1

2π2

∫

C×C

∣
∣
∣
∣

∫ 1

0

e−|z1−ei2πϕ|2−|z2−ei2πpϕθ1p|2g1(ϕ)dϕ

−
∫ 1

0

e−|z1−ei2πϕ|2−|z2−ei2πpϕθjp|2gj(ϕ)dϕ

∣
∣
∣
∣
dz1dz2

Now, we use the smoothness of Gaussian densities, denote F defined on R4 by

F (x1, y1, x2, y2) :=

∫ 1

0

(

e−‖z−θ1•ϕ‖2

g1(ϕ)− e−‖z−θj•ϕ‖2

gj(ϕ)
)

dϕ,

where z = (x1 + iy1, x2 + iy2) and θ
j • ϕ = (ei2πϕ, θpj e

i2πpϕ).
To control F , we adapt the proof of Proposition 4.2. Only the sketch of

the proof is given here. We use a truncation in RRn := BR2(0, Rn)
2. Outside

RRn , we use the key inequality given by (4.2). Inside RRn we need to satisfy
some constraints on the Fourier coefficients. Since here the only non null Fourier
coefficients are of order 1 and p, we have finally to ensure that

∀m, l ≤ d ∀(s, s̃) ∈ {−1;+1}2 csm+s̃ℓp(gj)e
s̃ℓαj = csm+s̃ℓp(g1). (6.18)

Hence, the maximum size of d is d = p/4. We have from (6.18) and (4.2):

dTV
(
Pfj ,gj ,Pf1,g1

)
=

1

2π2

∫

RRn

|F (x1, y1, x2, y2)|dx1dy1dx2dy2

+
1

2π2

∫

Rc
Rn

|F (x1, y1, x2, y2)|dx1dy1dx2dy2

. e−R
2
n/2 +

(
(eRn)

p/4

(p/4)p/4

)4

. e−R
2
n/2 +

(eRn)
p

(p/4)p
,

where the last point is deduced from inequality (4.2). We choose now Rn such

as Rn := 3
√
logn to obtain that e−R

2
n/2 ≪ (n logn)−2 as required in condition

(6.17). Now, we control the last term of the last inequality: the Stirling formula
yields

(eRn)
p

(p/4)p
. ep log(3

√
log n)−p log p/4.

If one chooses pn = κ logn with κ > 12, we then obtain that

dTV
(
Pfj ,gj ,Pf1,g1

)
. e−Cpn log pn . (n logn)−2.

Such a choice of Rn and pn ensures that (6.17) is fulfilled.
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Point 3: Fano’s Lemma application We have to make sure that our con-
ditions (6.18) for the Fourier coefficients of the gj ’s lead to valid densities. Take
for instance, for some β > ν + 1/2,

a =
A

(

2
∑

k≥1 k
−2β+2ν

)1/2
∧ 1
(

2
∑

k≥1 k
−2β
)1/2

.

Then take c0(gj) := 1, and ∀k ∈ Z⋆, ck(g1) := a|k|−β. This ensures that
∑

k∈Z⋆

|ck(gj)| ≤ 1,

and therefore all gj remains nonnegative. Note that the densities gj fulfill the
condition of Theorem 2.4; the lower bounds below are also valid in this slightly
smaller model. We then conclude our proof: we aim to apply the Fano Lemma
(see e.g. [IH81]) with αn = p−2s−2

n and βn = O(1) for the net (fj)j=1...pn :

lim inf
n→+∞

(logn)
2s+2

inf
f̂∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖f̂ − f‖2 ≥ c.

Our construction implies also that each gj are rather different each others
since one has for instance, cp(gj)e

iαj = cp(g1) = cp(gj′ )e
iαj′ . Thus

∀j 6= j′ ‖gj − gj′‖22 ≥ |cp(gj)− cp(gj′)|2 = p−2ν |eαj − eαj′ |2 ≥ cp−2ν−2.

Applying the Fano Lemma to (gj)j=1...pn implies

lim inf
n→+∞

(logn)
2ν+2

inf
ĝ∈Fs

sup
(f,g)∈Fs×Mν([0,1])

‖ĝ − g‖2 ≥ c.

Appendix A: Link between Kullback-Leibler and Hellinger

neighborhoods

We relate Hellinger neighborhoods and Kullback-Leibler ones following [WS95].

Proposition A.1. i) For any Pf0,g0 ∈ P, and for any f ∈ Hs such that

‖f‖ ≤ 2‖f0‖, and any g ∈ M([0, 1]), define q =
dPf0,g0

dPf,g
and

M2
δ :=

∫

q≥e1/δ
qδ+1dν, ∀δ ≥ 0. (A.1)

There exists δ ∈ (0, 1] such that M2
δ is uniformly bounded with respect to f .

ii) There exists a constant C such that for ǫ small enough, one has

Vǫ(Pf0,g0 , dH) ⊂ VCǫ log(ǫ−1)(Pf0,g0 , dKL).

In our model, Hellinger neighborhoods are almost Kullback-Leibler ones (up
to a log term) since a sufficiently large moment exists for q (q log q/q1+δ tends
to 0 when q tends to +∞, and a second order expansion of q log q−q+1 around
1 yields a term similar to [

√
q − 1]2).
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Proof. This proposition uses a corollary of the Rice formula (see e.g. [AW09])
stated in Lemma A.1. We use Girsanov’s formula (4.3):

dPf0,g0

dPf,g
(Y ) = exp

(
‖f‖2 − ‖f0‖2

)
∫ 1

0 e
2ℜe〈f0,−α1 ,f0,−τ+dW 〉dg0(α1)

∫ 1

0
e2ℜe〈f−α2 ,f0,−τ+dW 〉dg(α2)

≤ e‖f‖
2−‖f0‖2

exp

(

2 sup
α1,α2

ℜe〈f0,−α1 − f−α2 , f0,−τ 〉
)

≤ e(‖f‖+‖f0‖)2eZ1+Z2

where the last line is obtained using Cauchy-Schwarz’s inequality and:

Z1 := 2 sup
α1

ℜe〈f0,−α1 , dW 〉 = 2 sup
α1

ℜe
∫ 1

0

f0(s− α1)dWs,

Z2 := 2 sup
α2

ℜe〈−f−α2 , dW 〉 = 2 sup
α2

ℜe
∫ 1

0

−f(s− α2)dWs.

We now set δ ∈ (0, 1] and we define the trajectories Eδ as

Eδ :=
{

Y = f0,−τ +W | dPf0,g0

dPf,g
(Y ) ≥ e1/δ

}

.

Hence, following the definition of M2
δ of (A.1), we have

M2
δ = EY∼Pf0,g0

[(
dPf0,g0

dPf,g
(Y )

)δ

1Y ∈Eδ

]

.

For δ small enough, (δ ≤ 1
2(‖f‖+‖f0‖)2 ):

M2
δ ≤ eδ(‖f‖+‖f0‖)2

Eeδ(Z1+Z2)1Z1+Z2≥ 1
δ−(‖f‖+‖f0‖)2

≤ eδ(‖f‖+‖f0‖)2
Eeδ(Z1+Z2)1Z1+Z2≥ 1

2δ

≤ eδ(‖f‖+‖f0‖)2
Eeδ(Z1+Z2)1eδ(Z1+Z2)≥√

e.

Integrating by parts the last expectation, the use of Lemma A.1 yields

M2
δ ≤ eδ(‖f‖+‖f0‖)2

∫ +∞

√
e

P

(

eδ(Z1+Z2) > u
)

du

= eδ(‖f‖+‖f0‖)2
∫ +∞

√
e

[

P

(
Z1

2
≥ log u

4δ

)

+ P

(
Z2

2
≥ log u

4δ

)]

du

M2
δ ≤ C(f0, f)eδ(‖f‖+‖f0‖)2

∫ +∞

√
e

[

e
− log2(u)

16δ2‖f0‖2 + e
− log2(u)

16δ2‖f‖2

]

du. (A.2)

Now, we can choose δ non negative and small enough such that M2
δ <∞ since

for u ≥ √
e, we have e

− log2(u)

16δ2‖f0‖2 ≤ e
− log(u)

32δ2‖f0‖2 = u−1/32δ2‖f0‖2

, which is an
integrable function as soon as δ2 < 1

32‖f0‖2 . The same result holds replacing f0

by f and M2
δ is uniformly bounded if ‖f‖ ≤ 2‖f0‖.
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We now show that the technical inequality used in (A.2) is satisfied.

Lemma A.1. Let W a complex standard Brownian motion and u a complex
1-periodic map of Hs, of class C2. Then when t/‖u‖ −→ +∞, we have

P

(

sup
α

ℜe〈u−α, dW 〉 > t

)

.
‖u′‖
2π‖u‖ exp

( −t2
‖u‖2

)

.

In particular, if u ∈ Hℓ, we have P(supαℜe〈u−α, dW 〉 > t) . ℓ
2π exp( −t2

‖u‖2 ).

Proof. We define the following Gaussian centered process,

∀α ∈ [0, 1] X(α) :=

√
2ℜe

(∫ 1

0
u(s− α)dWs

)

‖u‖ ,

whose covariance function is given by Γ(t) = E[X(0)X(t)]. Obviously, one has
Γ(0) = 1 and Cauchy-Schwarz’s inequality implies that Γ(s) ≤ Γ(0). Moreover,
since Γ is C1([0, 1]), we deduce that Γ′(0) = 0 and simple computation yields

Γ”(0) =
ℜe
(∫ 1

0
u′(s)u”(s)ds

)

‖u‖2 = −‖u′‖2
‖u‖2 .

Rice’s formula (see exercice 4.2, chapter 4 of [AW09]) yields that

P

(

sup
α
X(α) > t

)

∼ ‖u′‖
2π‖u‖e

−t2/2 as t −→ +∞.

The second point is a simple consequence of inequality ‖u′‖ ≤ ℓ‖u‖.

Appendix B: Small ball probability for integrated Brownian bridge

Recall that pv defined by (2.5) refers to the probability distribution which is
proportionnal to ev. We detail here a lower bound of the prior weight around
g0. As a log density model, it is enough to find a lower bound of the weight
around w0 if one writes g0 ∝ ew

0

according to Lemma 3.1 of [vdVvZ08a]. Recall
the notation of the prior weight qν,A(Gǫ), where Gǫ were previously defined as:

Gǫ :=
{
g ∈ Mν([0, 1])(2A) : dTV (g, g

0) ≤ ǫ
}
.

Theorem B.1. There exists c such that for ǫ small enough

qν,A (Gǫ) ≥ ce−ǫ
− 1

kν+1/2
.

Proof. Structure of the prior We denote w0 := log g0, which is a kν-differen-
tiable function of [0, 1], extended to a 1-periodic element of Ckν (R). We define
q̃ the prior defined by (2.4) on this class of periodic functions (and omit the
dependence on ν and A for sake of simplicity). The prior qν,A is then derived
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from q̃ through (2.5). We can remark that our situation looks similar to the one
described in paragraph 4.1 of [vdVvZ08a] for integrated brownian motion. The
log-density w0 is approximated by a “Brownian bridge started at random”:

w = Jkν (B) +

kν∑

i=1

Ziψi,

where B is a real Brownian bridge between 0 and 1. We suppose B built as Bt =
Wt−tW1 on the basis of a Brownian motionW on [0, 1]. The key point of the op-

erateur J is that Jkν (B)(0) = Jkν (B)(1) = 0 and Jk(f)
′ = Jk−1(f)−

∫ 1

0
Jk−1(f).

Hence, an induction argument yields Jkν (B)(j)(0) = Jkν (B)(j)(1), whenever
j ∈ {1, . . . , kν}. Hence, Jkν (B) and its first kν derivatives are 1-periodic. Since
functions ψi are also 1-periodic and C∞(R), our prior q̃ generates admissible
functions of [0, 1] to approximate w0. We will denote this set of admissible tra-
jectories Ckν1 (1-periodic functions which are kν times differentiable).

Transformation of the Brownian bridge Denote B1 the separable Banach
space of Brownian bridge trajectories and B2 = Rkν+1. The map T : (B,Z0, . . . ,

Zkν ) 7−→ Jkν (B) +
∑kν
i=0 Ziψi is injective from the Banach space B = B1 × B2

to the set B := T (B). More precisely, by induction each map Jk(B) may be
decomposed as

∀t ∈ [0, 1] Jk(B)(t) = Ik(W )(t) +

k+1∑

i=1

ci,k(W )ti, (B.1)

where ci,k(W ) are explicit linear functionals that depend on W1 and on the

collection
( ∫ 1

0
(1− t)k−jWtdt

)

1≤j≤k (and not on t), and Ik is the operator used

in [vdVvZ08a] defined as I1(f) =
∫ t

0
f and Ik = I1 ◦ Ik−1 for k ≥ 2. Hence,

∀t ∈ [0, 1], T (B,Z1, . . . , Zkν )
(k)(t)

=Wt + ck,k(W )k! + ck+1,k(W )(k + 1)!t+

kν∑

i=0

Ziψ
(k)
i (t) (B.2)

According to the Karhunen-Loeve expansion of Brownian bridge, and since each

ψ
(k)
i possesses a non vanishing cosinus term: t 7→ cos(2πit), we then deduce that

T (B1, Z1
1 , . . . , Z

1
kν ) = T (B2, Z2

1 , . . . , Z
2
kν )

implies that Z1
i = Z2

i for i ∈ {0, . . . , kν}, and next thatW 1 =W 2 and B1 = B2.
Thus, it is possible to apply Lemma 7.1 of [vdVvZ08b] to deduce that the

RKHS associated to the Gaussian process (2.4) in B is H := TH where H is the
RKHS derived in the space B = B1 × B2. Moreover, the map T is an isometry
from H to H for the RKHS-norms. At last, B1 and B2 are independent and

H :=

{

(f, z) ∈ AC([0, 1])× R
kν+1 : f(0) = f(1) = 0,

∫ 1

0

f ′2 <∞
}

,



Bayesian methods for the Shape Invariant Model 1563

where AC([0, 1]) is the set of absolutely continuous functions on [0, 1], H is

endowed with the inner product: 〈(f1, z1), (f2, z2)〉H :=
∫ 1

0 f
′
1f

′
2 + 〈z1, z2〉Rkν+1 .

Extremal derivatives We study the process b :=
∑kν

i=0 Ziψi and are look-

ing for realizations of (Zi)i that suitably matches arbitrarily values w
(j)
0 (0) =

w
(j)
0 (1). We can check that for any integer p: ψ

(2p)
k (t) = (−1)p(2πk)2pψk(t), and

ψ
(2p+1)
k (t) = (−1)p(2πk)2p+1[− sin(2πkt) + cos(2πkt)]. Hence, the matching of

w
(j)
0 (0) by b(j)(0) is quantified by

w
(j)
0 (0)− b(j)(0) = w

(j)
0 (0)−

kν∑

k=0

(−1)⌊j/2⌋(2πk)jZk.

If one denotes αk := 2πk, the vector of derivatives as d0 := (w
(j)
0 (0))j=0...kν ,

Z = (Z0, . . . , Zkν+1) and the squared matrix of size (kν + 1)× (kν + 1):

A0 :=












1 1 . . . 1
α1 α2 . . . αkν
−α2

1 −α2
2 . . . −α2

kν
−α3

1 −α3
2 . . . −α3

kν
α4
1 α4

2 . . . α4
kν

...












,

then we are looking for values of Z such that d0 = A0Z. The matrix A0 is
invertible since it may be linked with the Vandermonde matrix. We can now
establish that the support of the prior (adherence of B) is exactly Ckν1 . Indeed,
the support of the transformed Brownian bridge Jk(B) is included in elements of
Ckν1 with at the most k+1 constraints on the values of their kν+1 first derivatives
at the point 0. These constraints are given by the coefficients (ci,kν )i=0...kν in
(B.2). From the invertibility of the matrix A0, it is possible to match any term

w
(j)
0 (0), 0 ≤ j ≤ kν with the additional process b [see vdVvZ08b, section 10].

Small ball probability estimates We now turn into the core of the proof
of the Theorem. Since the Total Variation distance is bounded from above by
the Hellinger distance, an immediate application of Lemma 3.1 of [vdVvZ08a]
shows that it is sufficient to find a lower bound of the q̃(G̃ǫ) where

G̃ǫ :=
{

w ∈ Ckν1 ([0, 1]) : ‖w − w0‖∞ ≤ ǫ
}

.

Following the argument of [KLL94] on shifted Gaussian ball, we have

log
(

q̃
(

G̃ǫ
))

≥ − inf
h∈H:‖h−w0‖∞≤ǫ

‖h‖2H − log q̃ (‖Jk(B) + b‖∞ ≤ ǫ) .

From the isometry T from H to H, we can write that the approximation term
infh∈H:‖h−w0‖∞≤ǫ ‖h‖2H is of the same order as the approximation term that we
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can derive in H, and following arguments of Theorem 4.1 in [vdVvZ08a]:

inf
h∈H:‖h−w0‖∞≤ǫ

‖h‖2H . ǫ−
1

kν+1/2 .

We now obtain a lower bound of the small ball probability of the centered
Gaussian ball: b and Jkν are independent Gaussian processes and log(1ǫ ) .

logP(‖b‖∞ ≤ ǫ). The main difficulty relies on φ0(ǫ) := logP(‖Jk(B)‖∞ ≤ ǫ).
Going back to (B.1), we see that Jk(B) can be decomposed into two noninde-

pendent Gaussian processes: Ik(W ) and a polynomial
∑k+1
i=1 ci,k(W )ti which is a

linear functional ofW1 and of the collection
( ∫ 1

0 (1−t)k−jWtdt
)

1≤j≤k. Therefore

log

(
1

ǫ

)

. logP (‖Jk(B)− Ik(W )‖∞ ≤ ǫ) .

Now, applying Theorems 3.4 and 3.7 of [LS01] yields

logP (‖Jkν (B)‖∞ ≤ ǫ) ∼ logP (‖Ikν (W )‖∞ ≤ ǫ) ≥ −ǫ− 1
kν+1/2 ,

which is of the same order as the approximation term. We end the proof gath-
ering our lower bound on shifted Gaussian ball and the terms above.

Appendix C: Equivalents on Modified Bessel functions

Lemma C.1. For n ∈ Z and a > 0, with An(a) :=
∫ 2π

0 ea cos(u) cos(nu)du,

∀a ∈ [0,
√
n] An(a) ∼

2π

n!

(a

2

)n (

1 +O
( a

n

))

.

Proof. This equivalent is related to the modified Bessel functions (see e.g. [AS64]
and [LL10]). More precisely, Im(a) is defined as

∀m ∈ N, ∀a > 0 Im(a) :=
∑

k≥0

1

k!(k +m)!

(a

2

)2k+m

,

and we have (see for instance [AS64]) I0(a) + 2
∑+∞
m=1 Im(a) cos(mu) = ea cosu.

Hence, we easily deduce that An(a) = 2πIn(a). For small a, standard results on
modified Bessel functions (Equation (9.7.7) of [AS64], p. 378.) yield

∀a ∈ [0,
√
n] In(a) ∼

1

n!

(a

2

)n (

1 +O
( a

n

))

. (C.1)

This integral is strongly related to the density of continuous time random

walk: if Bn(a) =
e−aAn(a)

2π , one has Bn(0) = 0, ∀n 6= 0 and B0(0) = 1 and at last

B′
n(a) =

Bn(a− 1) +Bn(a+ 1)

2
−Bn(a).

We can recognize here the forward Kolmogorov equation and Bn(a) is the proba-
bility that a C.T.R.W. is located at n ∈ Z at time a. We then deduce equivalents
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of Bn(a): from the Brownian approximation of the C.T.R.W., we have

Bn(a) ∼
1√
2πa

e−n
2/(2a), ∀a≫ n2. (C.2)

Moreover, from [AS64], we know that

In(a) ∼
ea√
2πa

, as soon as a ≥ 2n, (C.3)

and this equivalent is sharp when a is large (see Eq. (9.7.1) p. 377 of [AS64])

∀a ≥ 4n2 In(a) ≥
1

2
× ea√

2πa
.

(C.3) yields the heuristic equivalent proposed by (C.2): Bn(a) = e−aIn(a) ∼
1√
2πa

, and (C.1) gives a different information for small a. We stopped here our

investigations since integral of (C.1) is much more larger than integral of (C.3).
For a ∈ [

√
n, 2n], we do not have found any satisfactory equivalent on mod-

ified Bessel functions. Formula of [AS64] is still tractable but do not lead to
“uniform enough” formula (we need to integrate this equivalent).
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