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Abstract: We are interested in consistent estimation of the mixing ma-
trix in the ICA model, when the error distribution is close to (but different
from) Gaussian. In particular, we consider n independent samples from the
ICA model X = Aǫ, where we assume that the coordinates of ǫ are inde-
pendent and identically distributed according to a contaminated Gaussian
distribution, and the amount of contamination is allowed to depend on n.
We then investigate how the ability to consistently estimate the mixing
matrix depends on the amount of contamination. Our results suggest that
in an asymptotic sense, if the amount of contamination decreases at rate
1/

√
n or faster, then the mixing matrix is only identifiable up to transpose

products. These results also have implications for causal inference from
linear structural equation models with near-Gaussian additive noise.
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1. Introduction

We consider the p-dimensional independent component analysis (ICA) model

X = Aǫ, (1.1)
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where A is a p× p mixing matrix, ǫ is a p-dimensional error (or source) variable
with independent and nondegenerate coordinates of mean zero, and X is a p-
dimensional observational variable. Based on observations of X , ICA aims to
estimate the mixing matrix A and the distribution of the error variable ǫ. Theory
and algorithms for ICA can be found in, e.g., [4, 5, 11, 12, 13, 18, 22]. ICA
has applications in many different disciplines, including blind source separation
(e.g., [6]), face recognition (e.g., [2]), medical imaging (e.g., [3, 15, 26]) and
causal discovery using the LiNGAM method (e.g., [23, 24]).

Our focus is on consistent estimation of the mixing matrix. Here, identifiabil-
ity is an issue, since two different mixing matrices A and B may yield the same
distribution of X . This is the case, for example, if the distribution of ǫ is mul-
tivariate Gaussian and AAt = BBt. In this case, the mixing matrix cannot be
identified from X , instead only the transpose product of the mixing matrix can
be identified. In [5], it was shown that whenever at most one of the components
of ǫ is Gaussian, the mixing matrix is identifiable up to scaling and permutation
of columns. This result was expanded upon in the ICA context in Theorem 4 of
[9] and extended considerably to the broader class of additive index models in
Theorem 1 of [27]. In order to illustrate the relevance of the mixing matrix in
(1.1), we give an example based on causal inference.

Example 1.1. Consider a two-dimensional linear structural equation model
with additive noise of the form

(

X1

X2

)

=

(

C11 C12

C21 C22

)(

X1

X2

)

+

(

ǫ1
ǫ2

)

, (1.2)

see, e.g., [23]. We assume that the coordinates of ǫ are independent, nondegen-
erate and have mean zero, and are independent of X . We also assume that C
is strictly triangular, meaning that all entries of C are zero except either C12

or C21. In the context of linear structural equation models, identifying C corre-
sponds to identifying whether X1 is a cause of X2 (corresponding to C21 6= 0),
X2 is a cause of X1 (corresponding to C12 6= 0), or neither is a cause of the
other (corresponding to C21 = C12 = 0).

As C is strictly triangular, I − C is invertible. Letting A = (I − C)−1, we
obtain

(

X1

X2

)

=

(

A11 A12

A21 A22

)(

ǫ1
ǫ2

)

, (1.3)

where A is upper or lower triangular according to whether the same holds for C.
Thus, we have arrived at an ICA model of the form (1.1). In the case where ǫ is
jointly Gaussian, it is immediate that we cannot identify A from the distribution
of X alone. By the results of [5, 23], identification of A up to scaling and permu-
tation of columns from the distribution of X is possible when ǫ has at most one
Gaussian coordinate. In this case, we may therefore infer causal relationships
from estimation of the mixing matrix in an ICA model. The LiNGAM method
[23] is based on this idea. However, if we only get n i.i.d. samples from X and
the distribution of ǫ is close to Gaussian, it may be expected that estimation of
A becomes difficult, and consequently causal inference is difficult as well. ◦
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Motivated by the above, we take an interest in the following question: When
the distribution of ǫ is close to Gaussian but non-Gaussian, how difficult is it
to consistently estimate the mixing matrix as the number n of observations
increases? For any fixed non-Gaussian ǫ, the results of [5] show that A is iden-
tifiable up to scaling and permutation of columns, so letting n tend to infinity
in this model, we should be able to consistently estimate A up to such scaling
and permutation of columns. However, if the distribution of ǫ converges to a
Gaussian distribution, it is natural to expect that the model begins to take on
the properties of ICA models with Gaussian errors, where only the transpose
product AAt is identifiable. Our question, heuristically speaking, is: How large
should the number of observations n be in order to counterbalance the near-
Gaussianity of the noise distribution? We think of this as quantifying the level
of identifiability of A. In order to elucidate this issue, we will consider asymp-
totic scenarios where the distribution of ǫ depends on the sample size n, and
tends to a Gaussian distribution as n tends to infinity.

2. Problem statement and main results

ICA can be used to estimate A when the distribution of ε is unknown. In this
case, we may think of the statistical model (1.1) as the collection of probability
measures

{LA(R) | A ∈ M(p, p), R ∈ P(p)}, (2.1)

where M(p, p) denotes the space of p × p matrices, LA : Rp → Rp is given by
LA(x) = Ax, LA(R) denotes the image measure of R under the transformation
LA, P(p) denotes the set of product probability measures on (Rp,Bp) with
nondegenerate mean zero coordinates and Bp denotes the Borel σ-algebra on
Rp. With ε having distribution R, this means that the error distribution has
independent nondegenerate mean zero coordinates. In other words, it is assumed
that the distribution of X in (1.1) is equal to LA(R) for some A ∈ M(p, p) and
R ∈ P(p). This is a semiparametric model, where A is the parameter of interest
and R is a nuisance parameter. Asymptotic distributions of estimates of the
mixing matrix in this type of set-up are derived in, e.g., [1, 4, 14]. The difficulty
of estimating A can then be appraised by considering for example the asymptotic
variance of the estimates.

Alternatively, one can consider estimation of A for a given error distribution.
This is the approach we take in this paper. When ε has the distribution of
some fixed R ∈ P(p), the statistical model (1.1) is the collection of probability
measures

{LA(R) | A ∈ M(p, p)}. (2.2)

Results on identifiability of A in (2.2) follow from the results of [5] and [9]. In
particular, if no two coordinates of R are jointly Gaussian, the mixing matrix A
is identifiable up to sign reversion and permutation of columns, in the sense that
LA(R) = LB(R) implies A = BΛP for some diagonal matrix Λ with Λ2 = I
and some permutation matrix P .



Quantifying identifiability in ICA 1441

We are interested in how difficult it is to consistently estimate the mixing
matrix in (2.2) when the error distributions are different from Gaussian but
close to Gaussian. Some results in this direction can be found in [19], where
the authors calculated the Crámer-Rao lower bound for the model (2.2), un-
der the assumption that the coordinates of the error distribution have certain
regularity criteria such as finite variance and differentiable Lebesgue densities.
These results indicate how the minimum variance of an unbiased estimator of
the mixing matrix depends on the error distribution.

We consider the problem from the following different perspective. For p ≥ 1
and any signed measure µ on (R,B), let µ ⊗ µ denote the product measure of
µ with itself, and let µ⊗p = ⊗p

i=1µ denote the p-fold product measure. Fix two
nondegenerate mean zero probability measures ξ and ζ with ξ 6= ζ, and let Pe(β)
be the contaminated distribution given by

Pe(β) = βξ + (1− β)ζ. (2.3)

We write FA
β for the cumulative distribution function of LA(Pe(β)

⊗p), and

write FA = FA
0 . Note that FA is then the cumulative distribution function

of LA(ζ
⊗p). We assume that we observe n i.i.d. observations from the distri-

bution FA
βn
, where the amount of contamination βn is allowed to depend on

the sample size. Our results indicate that, in this framework, consistent estima-
tion of A (up to scaling and permutation of columns) cannot be expected when
βn = o(1/

√
n) and ζ is mean zero Gaussian.

3. An upper asymptotic distance bound

In this section, we develop some preliminary results which will be used to prove
our main results in Section 4. We begin by introducing some notation. For any
measure µ on (Rp,Bp), let |µ| denote the total variation measure of µ, see, e.g.,
[21]. We define two norms by

‖µ‖∞ = sup
x∈Rp

|µ((−∞, x1]× · · · × (−∞, xp])|, (3.1)

‖µ‖tv = |µ|(Rp), (3.2)

and refer to these as the uniform and the total variation norms, respectively. The
uniform norm for measures is also known as the Kolmogorov norm. Note that if
P and Q are two probability measures on (Rp,Bp) with cumulative distribution
functions F and G, then ‖P −Q‖∞ = ‖F −G‖∞. Finally, we use the notation
f(s) ∼ g(s) as s → s0 when lims→s0 f(s)/g(s) = 1.

As in the previous section, let ξ and ζ be two nondegenerate mean zero
probability distributions on (R,B) with ξ 6= ζ. We aim to bound the distance

‖FA
β − FB

β ‖∞ = ‖LA(Pe(β)
⊗p)− LB(Pe(β)

⊗p)‖∞ (3.3)

for matrices A,B ∈ M(p, p) with FA = FB. To this end, define

ν = (ξ − ζ)/‖ξ − ζ‖∞. (3.4)
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The following theorem is a first step towards our goal.

Theorem 3.1. Let β ∈ (0, 1), and let A ∈ M(p, p). Then

lim
β→0

LA(Pe(β)
⊗p)− LA(ζ

⊗p)

‖Pe(β)− ζ‖∞
=

p
∑

k=1

LA(ζ
⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)), (3.5)

where convergence is in ‖ · ‖∞. Moreover, FA
β tends uniformly to FA as β tends

to zero.

The proof of Theorem 3.1 exploits properties of the contaminated distribu-
tions Pe(β) for β ∈ (0, 1), in particular the fact that ‖Pe(β)−ζ‖∞ is nonzero and
linear in β and that (Pe(β)−ζ)/‖Pe(β)−ζ‖∞ is constant in β. These properties
are used to obtain a decomposition of Pe(β)

⊗p as a polynomial function of β
in the proof. As Lemma 3.2 shows, only contaminated distributions have these
properties. This is our main reason for working with this family of distributions.

Lemma 3.2. Let β 7→ Q(β) be a mapping from (0, 1) to the space of probability

measures on (R,B) with the properties that ‖Q(β)− ζ‖∞ is nonzero and linear

in β and (Q(β) − ζ)/‖Q(β) − ζ‖∞ is constant in β. Then Q(β) can be written

as a contaminated ζ distribution, in the sense that Q(β) = βξ + (1 − β)ζ for

some probability measure ξ on (R,B).
Due to the properties of contaminated distributions, Theorem 3.1 in fact also

holds for other norms than the uniform norm. However, the choice of the norm
is important when we wish to bound the norm of the right-hand side of (3.5).
Such a bound is achieved in Lemma 3.3.

Lemma 3.3. Let A ∈ M(p, p). Then

∥

∥

∥

∥

∥

p
∑

k=1

LA

(

ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)
)

∥

∥

∥

∥

∥

∞

≤ 2p. (3.6)

Combining Theorem 3.1 and Lemma 3.3 yields the following corollary, which
we give without proof.

Corollary 3.4. Let A,B ∈ M(p, p) be such that FA = FB. Define

Γ(A,B, ν) =

p
∑

k=1

LA

(

ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)
)

−
p
∑

k=1

LB

(

ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)
)

. (3.7)

Then we have, for β → 0,

‖FA
β − FB

β ‖∞ ∼
∥

∥

∥

∥

Γ

(

A,B,
ξ − ζ

‖ξ − ζ‖∞

)∥

∥

∥

∥

∞
‖Pe(β) − ζ‖∞ ≤ 4pβ‖ξ − ζ‖∞.

(3.8)
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Corollary 3.4 shows that, if FA = FB, the distance between the observational
distributions FA

β and FB
β decreases asymptotically linearly in β as β tends to

zero.
The corollary is stated under the condition that FA = FB. For later use, we

characterize the occurrence of this in the next lemma, for the case where A and
B are invertible. Recall that a probability distribution Q on (R,B) is said to
be symmetric if, for every random variable Y with distribution Q, Y and −Y
have the same distribution. The proof of Lemma 3.5 is a simple consequence of
Theorem 4 of [9].

Lemma 3.5. Let A,B ∈ M(p, p) be invertible. Then the following hold:

1. If ζ is Gaussian, then FA = FB if and only if AAt = BBt.

2. If ζ is non-Gaussian and symmetric, then FA = FB if and only if we

have A = BΛP for some permutation matrix P and a diagonal matrix Λ
satisfying Λ2 = I.

3. If ζ is non-symmetric, then FA = FB if and only if A = BP for some

permutation matrix P .

4. Asymptotic properties of ICA models with near-Gaussian noise

We now use the results obtained in Section 3 to obtain asymptotic results on
ICA models with near-Gaussian noise. We will consider a sequence of ICA mod-
els with increasingly near-Gaussian noise, and will investigate the asymptotic
properties of this sequence of models.

We need some basic facts about random fields in order to formulate our
results, see [16] and [17] for an overview. Recall that a mapping R : Rp×Rp → R

is said to be symmetric if R(x, y) = R(y, x) for all x, y ∈ Rp, and is said
to be positive semidefinite if for all n ≥ 1 and for all x1, . . . , xn ∈ Rp and
ξ1, . . . , ξn ∈ R, it holds that

n
∑

i=1

n
∑

j=1

ξiR(xi, xj)ξj ≥ 0. (4.1)

For any symmetric and positive semidefinite function R : Rp × Rp → R, there
exists a mean zero Gaussian random field W with covariance function R and
with sample paths in RRp

. In general, W will not have continuous paths. For
a general random field W , we associate with W its intrinsic pseudometric ρ on
Rp, given by

ρ(x, y) =
√

E(W (x) −W (y))2. (4.2)

If the metric space (Rp, ρ) is separable, we say that W is separable. In this case,
‖W‖∞ = supx∈D |W (x)| with probability one, for any countable dense subset
D of Rp. In particular, whenever the σ-algebra on the space where W is defined
is complete, ‖W‖∞ is measurable.

The following lemma describes some important properties of a class of Gaus-
sian fields particularly relevant to us. The result is well known, see for example
[8], and can be proven quite directly using the approximation results in [7].
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Lemma 4.1. Let F be a cumulative distribution function on Rp. There exists

a p-dimensional separable mean zero Gaussian field W which has covariance

function R : Rp×Rp → R given by R(x, y) = F (x∧y)−F (x)F (y) for x, y ∈ Rp,

where x ∧ y is the coordinate wise minimum of x and y. With Q denoting the

rationals, it holds that ‖W‖∞ = supx∈Qp |W (x)| and ‖W‖∞ is almost surely

finite.

For a fixed cumulative distribution function F , we refer to the Gaussian field
described in Lemma 4.1 as an F -Gaussian field. We are now ready to formulate
our results on asymptotic scenarios in ICA models.

Theorem 4.2 describes the classical asymptotic scenario, where the error dis-
tribution does not depend on the sample size n. Fix a nondegenerate mean zero
probability distribution ζ on (R,B) and a matrix A ∈ M(p, p). As in the previ-
ous section, we let FA denote the cumulative distribution function of LA(ζ

⊗p),
corresponding to the distribution of Aǫ when ǫ is a p-dimensional variable with
independent coordinates having distribution ζ. Consider a probability space
(Ω,F , P ) endowed with independent variables (Xk)k≥1 with cumulative distri-
bution function FA. Let FA

n be the empirical distribution function ofX1, . . . , Xn.
Also assume that we are given an FA-Gaussian field W on (Ω,F , P ).

Theorem 4.2. Let c ≥ 0 be a continuity point of the distribution of ‖W‖∞.

Then

lim
n→∞

P (
√
n‖FA

n − FA‖∞ > c) = P (‖W‖∞ > c), (4.3)

while in the case where FA 6= FB, it holds that

lim
n→∞

P (
√
n‖FA

n − FB‖∞ > c) = 1. (4.4)

Equations (4.3) and (4.4) roughly state that in the classical asymptotic sce-
nario,

√
n‖FA

n−FA‖∞ converges in distribution to ‖W‖∞, while
√
n‖FA

n−FB‖∞
is not bounded in probability if FA 6= FB. Note that Lemma 3.5 gives us con-
ditions under which FA = FB and FA 6= FB depending on ζ.

Next, we consider an asymptotic scenario where the error distribution is con-
taminated and the amount of contamination depends on the sample size n. As
in Section 3, ξ and ζ are fixed nondegenerate mean zero probability measures on
(R,B) with ξ 6= ζ, Pe(β) = βξ+(1−β)ζ, A ∈ M(p, p) is a fixed matrix, FA is the
cumulative distribution function of LA(ζ

⊗p) and FA
β is the cumulative distribu-

tion function of LA(Pe(β)
⊗p). Thus, FA

β is the cumulative distribution function
of Aε, where ε is a p-dimensional variable with independent coordinates having
distribution Pe(β). Consider a sequence (βn) in (0, 1), and consider a proba-
bility space (Ω,F , P ) endowed with a triangular array (Xnk)1≤k≤n such that
for each n, the variables Xn1, . . . , Xnn are independent variables with cumula-
tive distribution function FA

βn
. Let FA

βn
be the empirical distribution function

of Xn1, . . . , Xnn. Also assume that we are given an FA-Gaussian field W on
(Ω,F , P ). We are interested in the asymptotic properties of FA

βn
. Theorem 4.3

is our main result for this type of asymptotic scenario.
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Theorem 4.3. Let limn
√
nβn = k for some k ≥ 0. If FA = FB, then

P (‖W‖∞ > c+ 4pk‖ξ − ζ‖∞) ≤ lim inf
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≤ lim sup
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≤ P (‖W‖∞ ≥ c− 4pk‖ξ − ζ‖∞). (4.5)

In particular, if k = 0 and c is a continuity point of the distribution of ‖W‖∞,

we have

lim
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) = P (‖W‖∞ > c). (4.6)

Theorem 4.3 essentially shows that for the asymptotic scenario considered,
the convergence of FA

βn
to FA is fast enough to ensure that the asymptotic

properties of FA
βn

are determined by FA instead of FA
βn
. Corollary 4.4 applies

this result to the case where the error distributions become close to Gaussian
without being Gaussian.

Corollary 4.4. Assume that limn
√
nβn = 0. Let A,B ∈ M(p, p) be invertible.

Assume that AAt = BBt while A 6= BΛP for all diagonal Λ with Λ2 = I and

all permutation matrices P . Let ζ be a nondegenerate Gaussian distribution and

let ξ be such that Pe(β) is non-Gaussian for all β ∈ (0, 1). Let c be a point of

continuity for the distribution of ‖W‖∞, with W an FA-Gaussian field. Then

1. FA
βn

6= FB
βn

for all n ≥ 1.

2. limn→∞ P (
√
n‖FA

βn
− FB

βn
‖∞ > c) = P (‖W‖∞ > c).

Statement (1) of Corollary 4.4 shows that for any finite n, it would be possible
to asymptotically distinguish FA

βn
and FB

βn
at rate 1/

√
n as in (4.4) of the clas-

sical case, if it was not for the case that the error distribution is changing with
n. However, statement (2) shows that as n increases and the error distribution
becomes closer to a Gaussian distribution, distinguishing FA

βn
and FB

βn
at rate

1/
√
n is nonetheless impossible, with a limit result similar to (4.3). Note that

the condition in Corollary 4.4 involving A 6= BΛP is the minimum requirement
for non-Gaussian error distributions to asymptotically distinguish FA and FB

in the classical scenario (see Lemma 3.5).
Theorem 4.3 and Corollary 4.4 cover the case βn = o(1/

√
n), in particular

the case βn = n−ρ for ρ > 1/2. We end this section with a result showing that,
under some further regularity conditions, distinguishing FA

βn
and FB

βn
at rate

1/
√
n is possible when 0 < ρ < 1/2.

Theorem 4.5. Let ρ ∈ (0, 1/2) and let βn = n−ρ. For all A ∈ M(p, p), define

Γ1(A) =

p
∑

k=1

LA

(

ζ⊗(k−1) ⊗ ξ − ζ

‖ξ − ζ‖∞
⊗ ζ⊗(p−k)

)

. (4.7)

If either FA 6= FB or FA = FB and Γ1(A) 6= Γ1(B), then

lim
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) = 1. (4.8)
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As can be seen from the proof of Theorem 4.5, the measure LA(Pe(β)
⊗p)

can be written as a polynomial of degree p in β, where the constant term cor-
responds to FA and the first order term corresponds to Γ1(A), and similarly
for LB(Pe(β)

⊗p). In this light, Theorem 4.5 shows that in the absence of a dif-
ference between the constant terms of LB(Pe(β)

⊗p) and LA(Pe(β)
⊗p), having

different first order terms is a sufficient criterion for distinguishing FA
βn

and FB
βn

at rate 1/
√
n.

5. Numerical experiments

In this section, we carry out numerical experiments related to the results in
Section 4. To make our experiments feasible, we consider the scenario where
p = 2, ζ is the standard normal distribution and ξ is the standard exponential
distribution. We consider the two matrices

A =

[

1 0

α
√
1− α2

]

and B =

[ √
1− α2 α
0 1

]

,

where we set α = 0.4. These two matrices are related to Example 1.1. Note
that AAt = BBt while A 6= BΛP for all diagonal Λ with Λ2 = I and all
permutation matrices P . These properties makes A and B appropriate for eval-
uating the results of Section 4. Fix β ∈ (0, 1) and let ε be a two-dimensional
random variable with independent marginales and marginal distributions equal
to Pe(β) = βξ + (1− β)N , where N denotes the standard normal distribution.
The benefit of this setup is that the cumulative distribution functions FA

β and

FB
β of Aε and Bε can be calculated in semi-analytical form, depending only on

elementary functions and cumulative distribution functions for one-dimensional
and two-dimensional normal distributions.

We consider numerical evaluation of the sequence in the left-hand side of
(4.6) and approximation of its limit for βn = n−ρ with varying ρ > 0. We use
a Monte Carlo approximation to evaluate the probability. To be concrete, for
fixed n and βn = n−ρ, we make the approximation

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) ≈ 1

N

N
∑

k=1

1(Xk>c) (5.1)

for some fixed N , where (Xk) are independent and identically distributed vari-
ables with the same distribution as

√
n‖FA

βn
− FB

βn
‖∞. In order to simulate

values from Xk, we first simulate n variables with distribution Aǫ, this allows
us to calculate the empirical cumulative distribution function in any point. Due
to properties of empirical cumulative distribution functions, the supremum in
‖FA

βn
−FB

βn
‖∞ can be reduced to a finite one. However, for the purpose of reduc-

ing computational time, we are forced to approximate the finite maximum with
a maximum over some fewer points. This means that our probability estimates
in general will be biased downwards. Also because of time considerations, we
restrict ourselves to using N = 1000 in (5.1).
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Fig 1. Left: Estimates of P (
√
n‖FA

βn
− FB

βn
‖∞ > c) for βn = n−ρ with ρ equal to 0.25, 0.35,

0.50 and 0.75, with n varying up to 5000. Right: Estimates of P (
√
n‖FA

βn
− FB

βn
‖∞ > c) for

βn = n−ρ with ρ varying from 0.25 to 0.75. Here, n = 50000. In both cases, c = 1.

Coupling the above with the semi-analytical form of the exact cumulative
distribution function, we are capable of simulating values of Xk and evaluat-
ing the Monte Carlo estimate (5.1). Our numerical results are summarized in
Figure 1.

Theorem 4.3 states that for ρ > 1/2, the left hand side of (5.1) has a limit
less than one. For ρ equal to 0.50 and 0.75, our numerical results in Figure 1
are in agreement with this.

On the other hand, for ρ < 1/2, Theorem 4.5 states that the limit of the
left hand side of (5.1) equals 1. The results in Figure 1 indeed confirm this for
ρ = 0.25. For ρ between 0.3 and 0.5, however, the results are less clear. We think
this is caused by the fact that the sample size required to see the asymptotic
behavior in Theorem 4.5 increases as ρ tends closer to 1/2. To see this, note
that for large n, we have for some constant K > 0 that

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) ≈ P (

√
n‖FA

βn
− FB

βn
‖∞ > c) ≈ 1(

√
nKβn>c), (5.2)

since ||FA
βn

− FB
βn
||∞ ≈ ||FA

βn
− FB

βn
||∞ and ||FA

βn
− FB

βn
||∞ is approximately

linear in βn by Corollary 3.4. Therefore, P (
√
n‖FA

βn
− FB

βn
‖∞ > c) ≈ 1 if it

holds that
√
nβn > c/K, corresponding to n > exp((log c/K)/(1/2− ρ)). This

indicates that the n required to detect the limiting value grows exponentially
fast in (1/2− ρ)−1.

6. Discussion

We studied ICA models for error distributions which have independent and iden-
tically distributed coordinates following contaminated distributions. Our main
theoretical contribution is Theorem 4.3, which shows that for βn = n−ρ and
ρ ≥ 1/2, FA

βn
is asymptotically as close to FB

βn
as to FA

βn
in the uniform norm



1448 A. Sokol et al.

whenever FA = FB. For contaminated Gaussian distributions, the requirement
FA = FB corresponds to AAt = BBt. Our results thus indicate that consistent
estimation of A up to sign reversion and permutation of columns is not possi-
ble in this asymptotic scenario. In particular, causal inference as described in
Example 1.1 (using LiNGAM) would suffer in such scenarios.

The proof of our main theoretical result, Theorem 4.3, rests on two partial
results:

1. Lemma A.3, stating that when Fn is a sequence of cumulative distribution
functions converging uniformly to F , and Fn is an empirical process based
on n independent observations of variables with cumulative distribution
function Fn, then

√
n(Fn − Fn) converges weakly in ℓ∞(Rp).

2. Theorem 3.1, which is used to obtain that the convergence of the distri-
bution functions FA

β of is asymptotically linear in β as β tends to zero.
This result, combined with Lemma 3.3, allows us to obtain an asymptotic
bound on ‖FA

β − FB
β ‖∞ in Corollary 3.4.

In Theorem 4.5, we also considered the case of slower rates of decrease in
the level of contamination, namely rates n−ρ for 0 < ρ < 1/2. Our results here
indicate that in such asymptotic scenarios, identifiability of the mixing matrix
up to sign reversion and permutation of columns is possible, subject to some
regularity conditions related to the Γ1 signed measures of (4.7).

Our results are asymptotic in nature, considering limiting scenarios for a
sequence of noise distributions. Theory on ICA applying such sequences is not
common. One paper using similar methodologies is [22]. The authors of that
paper are mainly interested in estimation of A−1 using nonparametric maximum
likelihood. For this purpose, they introduce the log-concave ICA projection. In
Theorem 5 of their paper, they essentially prove that the set of log-concave ICA
projections for which the corresponding ICA model is identifiable is an open set,
using sequences of ICA models (parametrized through sequences of probability
measures). We hope that the present results as well as those of [22] indicate
that considering the properties of ICA for various limiting scenarios of noise
distributions may be an area for results on ICA not yet fully reaped.

Our results also open up new research questions, such as the following: Is it
possible to characterize the matrices A and B such that the regularity condi-
tion Γ1(A) 6= Γ2(B) of Theorem 4.5 holds? Also, together, Theorem 4.3 and
Theorem 4.5 describe the behaviour of the empirical process FA

βn
for asymptotic

scenarios of the form βn = n−ρ for ρ > 0, in particular describing the difficulty
of using FA

βn
to distinguish FA

βn
and FB

βn
. Is it possible to obtain finite-sample

bounds instead of limiting behaviours in these results? How do Theorem 4.3 and
Theorem 4.5 translate into results on the ability of practical algorithms such as
the fastICA algorithm, see [11], to distinguish the correct mixing matrix? Is it
possible to use similar techniques to analyze identifiability of the mixing matrix
in asymptotic scenarios where the number of components p tends to infinity?
Do the present results extend to cases where the coordinates of the error dis-
tributions are not contaminated normal distributions, or when the coordinates
are not identically distributed?



Quantifying identifiability in ICA 1449

Our results have been motivated by applications in causal inference. Besides
linear SEMs with non-Gaussian noise as discussed in Example 1.1, there are
other settings where the underlying causal structure is completely identifiable,
such as non-linear SEMs with almost arbitrary additive noise and linear SEMs
with additive Gaussian noise of equal variance, see e.g. [10] and [20], respectively.
We may also ask whether one can use similar techniques to those presented here
in order to study identifiability in these models when the structural equations
are close to linear or the variance of the errors are close to equal, respectively.
Also, we may consider the asymptotic behaviour of the model when we, instead
of considering perturbations of the error distribution, consider perturbations of
the additive nature of the noise, such that our SEM is defined by X = f(X, ε),
where f(x) ≈ Ax+ ε, corresponding to models with near-additive noise, and we
let f tend to a function linear in ε?

In light of these open questions, our present results should be seen as a small
step towards a better understanding of the identifiability of the mixing matrix
for ICA for error distributions which are close to Gaussian but not Gaussian.
We hope that this paper will lead to more work in this direction.

Appendix: Proofs

A.1. Proofs for Section 3

Proof of Theorem 3.1. First note that we have Pe(β) − ζ = β(ξ − ζ). Taking
norms, this implies ‖Pe(β)− ζ‖∞ = β‖ξ − ζ‖∞ and

Pe(β)− ζ

‖Pe(β) − ζ‖∞
=

ξ − ζ

‖ξ − ζ‖∞
= ν. (A.1)

We then also have Pe(β) = ζ + β‖ξ − ζ‖∞ν.
We now analyze Pe(β)

⊗p. For Borel subsets C1, . . . , Cp of R, we have

Pe(β)
⊗p(C1 × · · · × Cp) = (ζ + β‖ξ − ζ‖∞ν)⊗p(C1 × · · · × Cp)

=

p
∏

k=1

(ζ(Ck) + β‖ξ − ζ‖∞ν(Ck))

=

p
∑

k=0

βk‖ξ − ζ‖k∞
∑

α∈Sk

p
∏

i=1

ζ(Ci)
1−αiν(Ci)

αi , (A.2)

where Sk = {α ∈ {0, 1}p |∑p
i=1 αi = k }, and the last equality follows since

p
∏

k=1

(ak + γbk) =

p
∑

k=0

γk
∑

α∈Sk

p
∏

i=1

a1−αi

i bαi

i , for a, b ∈ Rp and γ ∈ R. (A.3)

Defining µ0 = ζ and µ1 = ν, we then obtain

Pe(β)
⊗p(C1 × · · · × Cp) =

p
∑

k=0

βk‖ξ − ζ‖k∞
∑

α∈Sk

(⊗p
i=1µαi

)(C1 × · · · × Cp).

(A.4)
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Letting Γk =
∑

α∈Sk
LA(⊗p

i=1µαi
), this yields

LA(Pe(β)
⊗p) =

p
∑

k=0

βk‖ξ − ζ‖k∞Γk. (A.5)

Next, note that Γ0 = LA(ζ
⊗p), so that

lim
β→0

LA(Pe(β)
⊗p)− LA(ζ

⊗p)

‖Pe(β)− ζ‖∞
= lim

β→0

p
∑

k=1

βk−1‖ξ − ζ‖k−1
∞ Γk

= Γ1 =

p
∑

k=1

LA(ζ
⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)). (A.6)

In particular, this shows that for any η > 0,

lim sup
β→0

‖FA
β − FA‖∞ = lim sup

β→0
‖LA(Pe(β)

⊗p)− LA(ζ
⊗p)‖∞

≤ lim sup
β→0

(1 + η)‖Γ1‖∞‖Pe(β)− ζ‖∞

≤ lim sup
β→0

(1 + η)‖Γ1‖∞β‖ξ − ζ‖∞ = 0, (A.7)

so FA
β converges uniformly to FA as β tends to zero. �

Proof of Lemma 3.2. Let β ∈ (0, 1) and let α be such that ‖Q(β)− ζ‖∞ = αβ.
Let ξ = Q(1). We then have

Q(β)− ζ

‖Q(β)− ζ‖∞
=

Q(β)− ζ

αβ
, (A.8)

while

Q(1)− ζ

‖Q(1)− ζ‖∞
=

ξ − ζ

α
. (A.9)

By our assumptions, the right-hand sides in (A.8) and (A.9) are equal. This
implies Q(β) = βξ + (1− β)ζ.

To prove Lemma 3.3, we first present a lemma relating the uniform norm of
certain measures on (Rp,Bp) to the uniform and total variation norms of some
measures on (R,B).
Lemma A.1. Let µ1, . . . , µp be signed measures on (R,B), and let A ∈ M(p, p).
Then for any i ∈ {1, . . . , p}, it holds that

‖LA(µ1 ⊗ · · · ⊗ µp)‖∞ ≤ 2‖µi‖∞
p
∏

k 6=i

‖µk‖tv. (A.10)
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Proof. For any permutation π : {1, . . . , p} → {1, . . . , p} and corresponding per-
mutation matrix P , we have LA(µ1 ⊗ · · · ⊗ µp) = LAP−1(µπ(1) ⊗ · · · ⊗ µπ(p)).
Hence, it suffices to consider the case where i = p. Let x ∈ Rp and define
Ix = (−∞, x1] × · · · × (−∞, xp]. Then Fubini’s theorem for signed measures
yields

|LA(µ1 ⊗ · · · ⊗ µp)(Ix)|

=

∣

∣

∣

∣

∫

· · ·
∫

1Ix(LA(y)) dµp(yp) · · · dµ1(y1)

∣

∣

∣

∣

≤
∫

· · ·
∫
∣

∣

∣

∣

∫

1Ix(LA(y)) dµp(yp)

∣

∣

∣

∣

d|µp−1|(yp−1) · · · d|µ1|(y1), (A.11)

where we have also used the triangle inequality for integrals with respect to
signed measures, which follows for example from Theorem 6.12 of [21]. We now
analyze the innermost integral of (A.11). For fixed y1, . . . , yp−1, we have

{yp ∈ R | 1Ix(LA(y)) = 1}
= {yp ∈ R | ∀ i ≤ p : (Ay)i ≤ xi}
= ∩p

i=1 {yp ∈ R | aipyp ≤ xi − (ai1y1 + · · ·+ ai(p−1)yp−1)}, (A.12)

where aij is the (i, j)’th entry of A. Hence, {yp ∈ R | 1Ix(LA(y)) = 1} is a finite
intersection of intervals, and is therefore itself an interval. This yields

|µp({yp ∈ R | 1Ix(LA(y)) = 1})| ≤ 2‖µp‖∞. (A.13)

This inequality is immediate when the interval is of the form (−∞, a] for some
a ∈ R. If the interval is of the form [a,∞), we have

|µp([a,∞))| ≤ |µp(R)|+ |µp(−∞, a)|
= lim

b→∞
|µp((−∞, b])|+ |µp((−∞, a− 1/b])| ≤ 2‖µp‖∞, (A.14)

and similarly for other types of intervals, whether bounded or unbounded, open,
half-open or closed. Combining (A.11) and (A.13) yields

|LA(µ1 ⊗ · · · ⊗ µp)(Ix)|

≤
∫

· · ·
∫

2‖µp‖∞ d|µp−1|(yp−1) · · · d|µ1|(y1) = 2‖µp‖∞
p−1
∏

k=1

‖µk‖tv. (A.15)

Proof of Lemma 3.3. By Lemma A.1, we have

‖LA(ζ
⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k))‖∞ ≤ 2‖ν‖∞‖ζ‖p−1

tv = 2. (A.16)

Applying the triangle inequality, we therefore obtain
∥

∥

∥

∥

∥

p
∑

k=1

LA

(

ζ⊗(k−1) ⊗ ν ⊗ ζ⊗(p−k)
)

∥

∥

∥

∥

∥

∞

≤ 2p. (A.17)
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Proof of Lemma 3.5. Proof of (1). With ζ Gaussian with mean zero and vari-
ance σ2, LA(ζ

⊗p) is Gaussian with mean zero and variance σ2AAt, and so the
result is immediate for this case.

Proof of (3). Now consider the case where ζ is not a symmetric distribu-
tion. As LP (ζ

⊗p) = ζ⊗p holds for any permutation matrix P , we obtain that
if A = BP , then LA(ζ

⊗p) = LB(ζ
⊗p) and so FA = FB, proving one implica-

tion.

Conversely, assume that FA = FB, meaning that LA(ζ
⊗p) = LB(ζ

⊗p). As ζ
is nondegenerate and non-Gaussian and A and B are invertible, Theorem 4 of
[9] shows that A = BΛP , where Λ ∈ M(p, p) is an invertible diagonal matrix
and P ∈ M(p, p) is a permutation matrix. This yields

ζ⊗p = LB−1(LB(ζ
⊗p)) = LB−1(LA(ζ

⊗p)) = LΛP (ζ
⊗p) = LΛ(ζ

⊗p). (A.18)

Now let Z be a random variable with distribution ζ. The above then yields that
for all i, ΛiiZ and Z have the same distribution. In particular, |Λii||Z| and |Z|
have the same distribution, so P (|Z| ≤ z/|Λii|) = P (|Z| ≤ z) for all z ∈ R. As Z
is not almost surely zero, there is z 6= 0 such that P (|Z| ≤ z−ε) < P (|Z| ≤ z+ε)
for all ε > 0. This yields |Λii| = 1. Next, let ϕ denote the characteristic function
of Z. We then have ϕ(Λiiθ) = ϕ(θ) for all θ ∈ R. As Z is not symmetric, there is
a θ ∈ R such that ϕ(θ) 6= ϕ(−θ). Therefore, Λii = −1 cannot hold, so we must
have Λii = 1. We conclude that Λ is the identity matrix and thus A = BP , as
required.

Proof of (2). Finally, consider a symmetric probability measure ζ. It is then
immediate that when Λ and P are as in the statement of the lemma, it holds
that LΛP (ζ

⊗p) = ζ⊗p and thus FA = FB whenever A = BΛP . The converse
implication follows as in the proof of (3).

A.2. Proofs for Section 4

Before proving Theorem 4.2 and Theorem 4.3, we show a result on empirical pro-
cesses. Recall that for a metric space (M,d), the ε-covering number N(ε,M, d)
is the minimum number of open balls of radius ε which is required to cover
(M,d), see, e.g., Section 2.1.1 of [25].

Lemma A.2. Fix a cumulative distribution function F . Define ρ : Rp × Rp by

ρ(x, y) =
√

F (x) + F (y)− 2F (x ∧ y), (A.19)

and let Ix = (−∞, x1] × · · · × (−∞, xp]. Let Z be a variable with cumulative

distribution function F . Then, the following holds:

1. ρ is a pseudometric.

2. ρ(x, y) =
√

E(1Ix(Z)− 1Iy (Z))2.
3. (Rp, ρ) is totally bounded.
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Proof. First note that

ρ(x, y)2 = F (x) + F (y)− 2F (x ∧ y)

= E1Ix(Z) + E1Iy (Z)− 2E1Ix(Z)1Iy (Z)

= E(1Ix(Z)− 1Iy (Z))2, (A.20)

proving claim (2). It is then immediate that ρ is a pseudometric, proving claim
(1). Next, it holds that (Rp, ρ) is totally bounded if and only if N(ε,Rp, ρ) is
finite for all positive ε. Let Q be the distribution corresponding to the cumulative
distribution function F , and let L2(Rp,Bp, Q) be the space of Borel measurable
functions from Rp to R which are square-integrable with respect to Q. Let ‖·‖2,Q
denote the usual seminorm on L2(Rp,Bp, Q). Applying claim (2), it is immediate
that

N(ε,Rp, ρ) = N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q). (A.21)

Combining Example 2.6.1 and Exercise 2.6.9 of [25], we find that (1Ix)x∈Rp is a
Vapnik-Cervonenkis (VC) subgraph class with VC dimension p+1. Furthermore,
(1Ix)x∈Rp has envelope function constant and equal to one. Therefore, Theorem
2.6.7 of [25] shows that N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) and thus N(ε,Rp, ρ) is finite,
and so (Rp, ρ) is totally bounded.

Lemma A.3. Let (Fn) be a sequence of cumulative distribution functions on

Rp, and let F be a cumulative distribution function on Rp. Let (Xnk)1≤k≤n

be a triangular array such that for each n, Xn1, . . . , Xnn are independent with

distribution Fn. Let Fn be the empirical distribution function of Xn1, . . . , Xnn.

If Fn converges uniformly to F , then
√
n(Fn − Fn) converges weakly in ℓ∞(Rp)

to an F -Gaussian field.

Proof. For x, y ∈ Rp and n ≥ 1, let Rn(x, y) = Fn(x∧ y)−Fn(x)Fn(y) and also
define R(x, y) = F (x ∧ y) − F (x)F (y). Let ρ be the pseudometric of Lemma
A.2 corresponding to the cumulative distribution function F . Let Znk be the
random field indexed by Rp given by Znk(x) = 1Ix(Xnk)/

√
n, where we as usual

put Ix = (−∞, x1]× · · · × (−∞, xp]. We then have

n
∑

k=1

Znk(x) − EZnk(x) =
1√
n

n
∑

k=1

1Ix(Xnk)− Fn(x)

=
√
n(Fn(x)− Fn(x)). (A.22)

We will apply Theorem 2.11.1 of [25] to prove that
∑n

k=1 Znk −EZnk and thus√
n(Fn −Fn) converges weakly in ℓ∞(Rp). We may assume without loss of gen-

erality that all variables are defined on a product probability space as described
in Section 2.11.1 of [25], and as the fields (Znk) can be constructed using only
countably many variables, the measurability requirements in Theorem 2.11.1 of
[25] can be ensured. In order to apply Theorem 2.11.1 of [25], first note that by
Lemma A.2, (Rp, ρ) is totally bounded and so can be applied in Theorem 2.11.1
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of [25]. Also, the covariance function of
∑n

k=1 Znk − EZnk is

Cov

(

n
∑

k=1

Znk(x)− EZnk(x),

n
∑

k=1

Znk(y)− EZnk(y)

)

=

n
∑

k=1

n
∑

i=1

EZnk(x)Zni(y)− EZnk(x)EZni(y)

=
1

n

n
∑

k=1

E1Ix(Xnk)1Iy (Xnk)− E1Ix(Xnk)E1Iy (Xnk)

= Fn(x ∧ y)− Fn(x)Fn(y) = Rn(x, y). (A.23)

Note that

|R(x, y)−Rn(x, y)|
≤ |F (x ∧ y)− Fn(x ∧ y)|+ |F (x)F (y) − Fn(x)Fn(y)|
≤ |F (x ∧ y)− Fn(x ∧ y)|+ |F (x) − Fn(x)| + |Fn(y)− Fn(y)|, (A.24)

so as Fn converges uniformly to F , Rn converges uniformly to R. Thus, the
covariance functions of

∑n
k=1 Znk −EZnk converge to R. Therefore, in order to

apply Theorem 2.11.1 of [25], it only remains to confirm that the conditions of
(2.11.2) in [25] hold. Fixing η > 0, we have

n
∑

k=1

E‖Znk‖2∞1(‖Znk‖∞>η) =
1

n

n
∑

k=1

E1Ix(Xnk)1(1Ix (Xnk)>
√
nη)

≤ P (1Ix(Xn1) >
√
nη),

and so it is immediate that the first condition of (2.11.2) in [25] holds. Next,
define d2n(x, y) =

∑n
k=1(Znk(x)−Znk(y))

2. We then also have for x, y ∈ Rp that

d2n(x, y) =
1

n

n
∑

k=1

(1Ix(Xnk)− 1Iy (Xnk))
2, (A.25)

and therefore,Edn(x, y)
2 = Fn(x)+Fn(y)−2Fn(x∧y). Thus, (x, y) 7→ Edn(x, y)

2

converges uniformly to ρ2 on Rp × Rp. Therefore, we conclude that for any se-
quence (δn) of positive numbers tending to zero, it holds for all η > 0 that

lim sup
n→∞

sup
x,y:ρ(x,y)≤δn

Ed2n(x, y) ≤ lim sup
n→∞

sup
x,y:ρ(x,y)≤δn

ρ(x, y)2

≤ lim sup
n→∞

δ2n = 0. (A.26)

Hence, the second condition of (2.11.2) in [25] holds. In order to verify the fi-
nal condition of (2.11.2) in [25], first note that dn(x, y)

2 = EPn
(1Ix − 1Iy )

2 by
(A.25), where EPn

denotes integration with respect to Pn and Pn is the empir-
ical measure on (Rp,Bp) in Xn1, . . . , Xnn. Thus, dn(x, y) is the L2(Rp,Bp,Pn)
distance between the mappings Ix and Iy , and so

N(ε,Rp, dn) = N(ε, (1Ix)x∈Rp , ‖ · ‖2,Pn
) ≤ sup

Q
N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q), (A.27)
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where ‖ · ‖2,Q denotes the norm on L2(Rp,Bp, Q) and the supremum is over all
probability measures Q on (Rp,Bp). Thus, the third condition of (2.11.2) in [25]
is satisfied if only it holds that for all sequences (δn) of positive numbers tending
to zero,

lim
n→∞

∫ δn

0

sup
Q

√

logN(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) dε = 0. (A.28)

However, Theorem 2.6.7 of [25] yields a constant K > 0 such that for 0 < ε < 1,

sup
Q

N(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) ≤ K(p+ 1)(16e)p+1ε−2p. (A.29)

As a consequence, again for 0 < ε < 1,

sup
Q

√

logN(ε, (1Ix)x∈Rp , ‖ · ‖2,Q) ≤
√

logK(p+ 1)(16e)p+1 − 2p log ε. (A.30)

By elementary calculations, we obtain for 0 < c < d < 1 and a, b > 0 that

∫ d

c

√

a− b log xdx

=

[

x
√

a− b log x− ea/b
√
πb

2
erf

(√
a− b logx√

b

)

]d

c

, (A.31)

where erf denotes the error function, erf(x) = (2/
√
π)
∫ x

0 exp(−y2) dy. There-
fore, we conclude that for all 0 < η < 1, the mapping x 7→ √

a− b logx is
integrable over [0, η]. Thus, (A.28) holds. Recalling (A.22), Theorem 2.11.1 of
[25] now shows that

√
n(Fn − Fn) converges weakly in ℓ∞(Rp). By uniqueness

of the finite-dimensional distributions of the limit, we find that the limit is an
F -Gaussian field.

Proof of Theorem 4.2. By Lemma A.3 and the continuous mapping theorem,√
n‖FA

n − FA‖∞ converges weakly to ‖W‖∞. Therefore, equation (4.3) follows.
In order to prove equation (4.4), consider A and B such that FA 6= FB and let
‖FA−FB‖∞ = α. Whenever ‖FA

n−FA‖∞ ≤ α/2, the reverse triangle inequality
yields

‖FA
n − FB‖∞ = ‖FA

n − FA − (FB − FA)‖∞
≥ |‖FA

n − FA‖∞ − ‖FB − FA‖∞|
= |‖FA

n − FA‖∞ − α| ≥ α/2. (A.32)

Since limn→∞ P (‖FA
n − FA‖∞ ≤ α/2) = 1 by Lemma A.3, we obtain

lim sup
n→∞

P (
√
n‖FA

n − FB‖∞ ≤ c)

= lim sup
n→∞

P (‖FA
n − FB‖∞ ≤ c/

√
n, ‖FA

n − FA‖∞ ≤ α/2)
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≤ lim sup
n→∞

P (‖FA
n − FB‖∞ ≤ c/

√
n, ‖FA

n − FB‖∞ ≥ α/2) = 0. (A.33)

Hence, limn→∞ P (
√
n‖FA

n − FB‖∞ ≤ c) = 0 and so (4.4) holds.

Proof of Theorem 4.3. By the triangle inequality, we have the inequalities

P (
√
n‖FA

βn
− FA

βn
‖∞ −√

n‖FB
βn

− FA
βn
‖∞ > c)

≤ P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≤ P (
√
n‖FA

βn
− FA

βn
‖∞ +

√
n‖FB

βn
− FA

βn
‖∞ > c). (A.34)

Let η > 0. By Corollary 3.4, we can choose N ≥ 1 such that for n ≥ N ,

√
n‖FB

βn
− FA

βn
‖∞ ≤ 4p(1 + η)

√
nβn‖ξ − ζ‖∞. (A.35)

By our assumptions, limn
√
nβn = k. Letting γ > 0, we then find for n large

that

√
n‖FB

βn
− FA

βn
‖∞ ≤ 4p(1 + η)(k + γ)‖ξ − ζ‖∞. (A.36)

For such n, the first inequality of (A.34) yields

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≥ P (‖√n(FA
βn

− FA
βn
)‖∞ > c+

√
n‖FB

βn
− FA

βn
‖∞)

≥ P (‖√n(FA
βn

− FA
βn
)‖∞ > c+ 4p(1 + η)(k + γ)‖ξ − ζ‖∞). (A.37)

Now recall from Theorem 3.1 that FA
βn

converges uniformly to FA. Therefore,

Lemma A.3 and the continuous mapping theorem show that
√
n‖FA

βn
− FA

βn
‖∞

converges weakly to ‖W‖∞. As a consequence, (A.37) yields

lim inf
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≥ P (‖W‖∞ > c+ 4p(1 + η)(k + γ)‖ξ − ζ‖∞). (A.38)

Letting η and then γ tend to zero, we obtain

lim inf
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) ≥ P (‖W‖∞ > c+ 4pk‖ξ − ζ‖∞). (A.39)

Similarly, the second inequality of (A.34) yields

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≤ P (‖√n(FA
βn

− FA
βn
)‖∞ > c−√

n‖FB
βn

− FA
βn
‖∞)

≤ P (‖√n(FA
βn

− FA
βn
)‖∞ ≥ c− 4p(1 + η)(k + γ)‖ξ − ζ‖∞), (A.40)

and by similar arguments as previously, we obtain

lim sup
n→∞

P (
√
n‖FA

βn
− FB

βn
‖∞ > c) ≤ P (‖W‖∞ ≥ c− 4pk‖ξ − ζ‖∞). (A.41)

Combining our results, we obtain (4.5).
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Proof of Corollary 4.4. As we have assumed that Pe(βn) is non-Gaussian, it
follows from Lemma 3.5 that FA

β 6= FB
β , since A 6= BΛP for all diagonal Λ with

Λ2 = I and all permutation matrices P . This shows (1). And as AAt = BBt

and ζ is Gaussian, Lemma 3.5 yields FA = FB, so Theorem 4.3 yields (2).

Proof of Theorem 4.5. Note that for any x ∈ Rp, we have

P (
√
n‖FA

βn
− FB

βn
‖∞ > c)

≥ P (
√
n|FA

βn
(x)− FB

βn
(x)| > c)

= P (|√n(FA
βn
(x)− FA

βn
(x)) +

√
n(FA

βn
(x) − FB

βn
(x))| > c). (A.42)

We first consider the case FA 6= FB. Let x ∈ Rp be such that FA(x) 6= FB(x).
Then limn F

A
βn
(x)− FB

βn
(x) 6= 0, so |√n(FA

βn
(x)− FB

βn
(x)| tends to infinity as n

tends to infinity. By the central limit theorem,
√
n(FA

βn
(x)− FA

βn
(x)) converges

in distribution. Therefore, (A.42) yields the result.
Next, consider the case FA = FB and Γ1(A) 6= Γ1(B). Let x ∈ Rp be

such that Γ1(A)(Ix) 6= Γ1(B)(Ix). Similarly to the proof of Theorem 3.1, define
µ0 = ζ, µ1 = (ξ − ζ)/‖ξ − ζ‖∞, Sk = {α ∈ {0, 1}p |∑p

i=1 αi = k} and also
Γk(A) =

∑

α∈Sk
LA(⊗p

i=1µαi
). Note that Γk(A) with k = 1 corresponds to

(4.7). Then, we have

LA(Pe(β)
⊗p) =

p
∑

k=0

βk‖ξ − ζ‖k∞Γk(A), (A.43)

see (A.5). In particular, we obtain

FA
β (x) − FB

β (x) = LA(Pe(β)
⊗p)(Ix)− LB(Pe(β)

⊗p)(Ix)

=

p
∑

k=1

βk‖ξ − ζ‖k∞(Γk(A)(Ix)− Γk(B)(Ix)), (A.44)

where we have used that Γ0(A) = Γ0(B), since FA = FB. Since βn = n−ρ, we
obtain

√
n(FA

βn
(x) − FB

βn
(x)) =

p
∑

k=1

n1/2−kρ‖ξ − ζ‖k∞(Γk(A)(Ix)− Γk(B)(Ix)).

(A.45)

As ‖ξ−ζ‖∞(Γ1(A)(Ix)−Γ1(B)(Ix)) 6= 0, we conclude that as n tends to infinity,
the term corresponding to k = 1 in the above tends to infinity in absolute value.
Since the right hand side of (A.45) is a sum with finitely many terms, where the
remaining terms are of lower degree in n, we conclude that |√n(FA

βn
(x)−FB

βn
(x))|

tends to infinity as n tends to infinity. As in the previous case, since the ordinary
central limit theorem shows that

√
n(FA

βn
(x)−FA

βn
(x)) converges in distribution,

(A.42) yields the result.
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[20] Peters, J. andBühlmann, P., Identifiability of Gaussian structural equa-

tion models with same error variances, Biometrika 101 (2014), 219–228.
MR3180667

[21] Rudin, W., Real and complex analysis, third ed., McGraw-Hill Book Co.,
New York, 1987. MR0924157

[22] Samworth, R. J. and Yuan, M., Independent component analysis via

nonparametric maximum likelihood estimation, Ann. Statist. 40 (2012),
2973–3002. MR3097966

[23] Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kerminen, A., A lin-

ear non-Gaussian acyclic model for causal discovery, J. Mach. Learn. Res.
7 (2006), 2003–2030. MR2274431

[24] Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawa-

hara, Y., Washio, T., Hoyer, P. O., and Bollen, K., DirectLiNGAM:

a direct method for learning a linear non-Gaussian structural equation

model, J. Mach. Learn. Res. 12 (2011), 1225–1248. MR2804599
[25] van der Vaart, A. W. and Wellner, J. A., Weak convergence and em-

pirical processes, Springer Series in Statistics, Springer-Verlag, New York,
1996. MR1385671
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