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1. Introduction

We congratulate Drs. Laber, Lizotte, Qian, Pelham and Murphy on an out-
standing review of dynamic treatment regimes (DTRs) [4]. This group has done
pioneering work in advancing the theory and applications of DTRs. In a DTR,
the treatment type and level are repeatedly adjusted according to an individ-
ual’s need. An important part of designing DTRs is to choose tailoring variables.
A tailoring variable is a variable that is used to decide how to adjust the treat-
ment. Laber et al. say that the current state of the art for choosing tailoring
variable is to construct low-dimensional summaries of information that is avail-
able at the time of treatment on a subject’s status, where the summaries are
motivated by clinical judgment, exploratory analyses and convenience. Laber
et al. state that an important open problem is the development of formal fea-
ture extraction and construction techniques for choosing tailoring variables for
DTRs. In this discussion, we discuss a method for choosing tailoring variables
when the data available is a simple randomized clinical trial in which the treat-
ment regimes after the initial randomization are set by protocol. This includes
trials in which the treatment regime is changed over time based on a patient’s
status in a set way specified by the protocol. In such trials, at a given time
past the initial treatment assignment, there is no variation in how a patient is
treated at that time given a patient’s status and past treatment history, i.e.,
every patient who has the same status and treatment history at time t past
initial treatment assignment receives the treatment at time t that is specified
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by the protocol. Because of this lack of variation in treatment regimes after the
initial treatment assignment, such simple randomized clinical trials cannot be
used to evaluate DTRs. However, we will show that such simple randomized
clinical trials may provide useful data for designing DTRs to evaluate in a later
Sequential, Multiple, Assignment Randomized Trial (SMART).

2. Defining a tailoring variable using a post-treatment variable

We consider a simple randomized clinical trial in which R is the randomized
treatment (assumed to be binary) and Y is the long run outcome of interest
which is measured some time after the treatment. We are interested in choosing
tailoring variables which are measured sometime between the administration of
treatment R and measurement of the long run outcome Y . Can we learn whether
a post-treatment variable D could be useful as a tailoring variable in a DTR?
The post-treatment variable D would be a good tailoring variable if the value
of D would provide information about whether the current treatment regime is
working and should be maintained, or is not working and should be altered. The
post-treatment variable D being a good tailoring variable has some connection
to D being an effect modifier. We say that a post-randomization variableD is an
effect modifier if E(Y r=1

i −Y r=0

i | Dr=1

i = d) 6= E(Y r=1

i −Y r=0

i | Dr=1

i = d′) for
d 6= d′, where Y r

i
and Dr

i
are potential outcomes for subject i under treatment

level r for Y and D. For example, considering binary D, that is, d ∈ {1, 0}, one
type of effect modification by D is

E(Y r=1

i − Y r=0

i | Dr=1

i = 1) > E(Y r=1

i − Y r=0

i | Dr=1

i = 0). (1)

This effect modification by D suggests that if Dr=1 = 0 (i.e., D = 0 when R =
1), it may be beneficial to modify the treatment strategy since the treatment’s
expected benefit is less than if Dr=1 = 1 (i.e., D = 1 when R = 1). Note that
even if (1) holds and D is an effect modifier, using D as a tailoring variable to
modify the treatment strategy might not work because the modification may
make things worse.WhetherD is an effective tailoring variable needs to be tested
out in a SMART trial or an observational study in which there is variation in
treatment regimes; a simple randomized clinical trial in which the only time
point t at which two patients with the same status and treatment history are
given different treatments is the initial treatment assignment can be used to
generate hypotheses about what might be good tailoring variables for a DTR
but cannot be used to validate a DTR.

We now discuss a method for estimating whether a post-treatment variableD
is an effect modifier and needed assumptions. This continues work that Tom Ten
Have was doing before his untimely death as discussed in Section 3.3 of Small,
Joffe, Lynch, Roy and Localio (2014) [5]. For example, Ten Have (2007) [7] re-
ported proof of concept results that for treating suicide attempters in a way
that prevents subsequent depression six months later, the effect of a cognitive
behavioral therapy intervention was modified by early hopelessness (hopeless-
ness three months after the therapy had begun) or early suicide ideation (suicide
ideation three months after therapy had begun).
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One approach to estimating post-randomization effect modification is to use
structural mean models as in Faerber, Joffe, Zhang, Brown, Beck and Ten Have
(2014) [1] and Stephens, Keele and Joffe (2014) [6]; see also Section 3.3 of Small
et al. (2014) [5]. Here, we develop a principal stratification (Frangakis and Ru-
bin, 2002) approach [2]. We consider a binary D. The potential outcomes of D,
Dr=1 and Dr=0, create four principal strata: (1) ‘always-high’ consist of sub-
jects who regardless of treatment assignment always have the high value of the
post-randomization variable (Dr=1 = 1, Dr=0 = 1); (2) ‘never-high’ consist of
subjects who regardless of treatment assignment never have the high value of
the post randomization variable (Dr=1 = 0, Dr=0 = 0); (3) ‘treatment positively
affected’ consist of subjects who have the high value of the post-randomization
variable when assigned to the treatment but have the low value when assigned
to the control (Dr=1 = 1, Dr=0 = 0); (4) ‘treatment negatively affected’ consist
of subjects who have the low value of the post-randomization variable when as-
signed to the treatment but have a high value of the post-randomization variable
when assigned to the control (Dr=1 = 0, Dr=0 = 1). We make a monotonicity
assumption that the treatment never negatively affects the post-randomization
variable, Dr=1 ≥ Dr=0 so that there are no treatment negatively affected sub-
jects.

Let pA, pN , and pT denote the proportion of always-high, never-high, and
treatment positively affected, respectively, such that pA + pN + pT = 1:





pA = Pr(Dr=1

i
= 1, Dr=0

i
= 1) =

∫
Pr(Dr=1

i
= 1, Dr=0

i
= 1 | X)Pr(X)dx

pN = Pr(Dr=1

i = 0, Dr=0

i = 0) =
∫
Pr(Dr=1

i = 0, Dr=0

i = 0 | X)Pr(X)dx
pT = Pr(Dr=1

i
= 1, Dr=0

i
= 0) = 1− pA − pN

.

We consider the following model for potential outcomes,

Y r=1

i = Y r=0

i + β1I(D
r=1

i = 1, Dr=0

i = 1)

+ β2I(D
r=1

i = 0, Dr=0

i = 0) + β3I(D
r=1

i = 1, Dr=0

i = 0), (2)

where Y r=0

i is an iid random variable. Denote a matrix of p pre-treatment
variables by X. We assume that the association of X with potential outcomes
is linear and the same for each principal stratum:

E(Y r=0

i | Dr=1

i , Dr=0

i ,Xi) = α1I(D
r=1

i = 1, Dr=0

i = 1)

+ α2I(D
r=1

i = 0, Dr=0

i = 0) + α3I(D
r=1

i = 1, Dr=0

i = 0) + γTXi. (3)

We can rewrite (1) as

E(Y r=1

i − Y
r=0

i | Dr=1

i = 1)− E(Y r=1

i − Y
r=0

i | Dr=1

i = 0) > 0

⇒ E{β1I(D
r=1

i = 1, Dr=0

i = 1) + β3I(D
r=1

i = 1, Dr=0

i = 0) | Dr=1

i = 1}

− E{β2I(D
r=1

i = 0, Dr=0

i = 0) | Dr=1

i = 0} > 0

⇒ β1Pr(D
r=1

i = 1, Dr=0

i = 1 | Dr=1

i = 1) + β3Pr(D
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− β2Pr(D
r=1

i = 0, Dr=0

i = 0 | Dr=1

i = 0) > 0

⇒
β1Pr(D

r=1

i = 1, Dr=0

i = 1) + β3Pr(D
r=1

i = 1, Dr=0

i = 0)

Pr(Dr=1

i
= 1)

− β2
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i = 0, Dr=0

i = 0)
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i
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> 0
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β1Pr(D

r=1
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i = 1) + β3Pr(D
r=1
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i = 0)

Pr(Dr=1

i
= 1, Dr=0

i
= 1) + Pr(Dr=1

i
= 1, Dr=0

i
= 0)

− β2

Pr(Dr=1

i = 0, Dr=0

i = 0)

Pr(Dr=1

i
= 0, Dr=0

i
= 0)

> 0

⇒
β1pA + β3pT

pA + pT
− β2 > 0. (4)

If (4) holds, D is a post-treatment effect modifier and accordingly might be a
good tailoring variable.

To identify the parameters in (4), we will assume the stable unit treatment
value assumption (SUTVA) under which we can write observed outcome Y as
Y = (1 − R)Y r=0 + RY r=1. The model for the observed outcome given R, D,
and X is then

E (Yi |Ri, Di,Xi) = E
{

(1−Ri)Y
r=0

i +RiY
r=1

i

∣

∣Ri, Di,Xi

}

= E
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where a1(Xi) = pA|Xi
/(pA|Xi

+ pT |Xi
) and a2(Xi) = pN |Xi

/(pN |Xi
+ pT |Xi

).
Furthermore,
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. (5)

Table 1 on page 1306 shows the correspondence between the coefficients in
the regression (5) and the parameters {γ, α1, α2, α3, β1, β2, β3}. The parameters
{γ, α1, α2, α3, β1, β2, β3} can be solved for as long as we know the coefficients
in the regression (5). In order for the coefficients in the regression (5) to be
identified, we need that a1(X) and a2(X) vary with X; otherwise we will have
collinearity and be unable to estimate the regression coefficients.

2.1. Estimation

In this section, we describe how to estimate the parameters {γ, α1, α2, α3, β1,
β2, β3} using the observed data.

First, we estimate a1(X) and a2(X) by fitting a multinomial logistic regres-
sion model with parameters θ for probability of principal strata (P) given X;
i.e., pA|X, pN |X, and pT |X. We can use the EM algorithm to estimate θ. In

the E-step, we estimate Pr(P | X, R,D, θ̂
∗
), where θ̂

∗
are the previous step

estimates for θ. In the M-step, we fit a weighted multinomial logistic regression
model with augmented data that for each original data point contains observa-
tions for each possible principal stratum for that data point and weights equal to

Pr(P | X, R,D, θ̂
∗
) divided by the sum of all Pr(P | X, R,D, θ̂

∗
) that are con-

sistent with that data point (Ibrahim, 1990) [3]. For example, if Di = 1, Ri = 1,
then the possible principal strata are always-high and treatment positively af-
fected. In augmented data, we have two observations for data point i, one with
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Table 1

Parameters for least squares regression in Equation (5)

Variable Coefficient

X γ

Intercept α3

R α2 − α3 + β2

D α1 − α3

R×D α3 − α1 + α3 − α2 + β3 − β2

R×D × a1(X) α1 − α3 + β1 − β3

(1− R) × (1 −D)× a2(X) α2 − α3

P = always-high (A) and one with P = treatment positively affected (T ), and

weights equal to Pr(A | X, R,D, θ̂
∗
)/{Pr(A | X, R,D, θ̂

∗
)+Pr(T | X, R,D, θ̂

∗
)}

and Pr(T | X, R,D, θ̂
∗
)/{Pr(A | X, R,D, θ̂

∗
) + Pr(T | X, R,D, θ̂

∗
)} respec-

tively.
Second, to estimate the parameters {γ, α1, α2, α3, β1, β2, β3}, we run least

squares regression of Y on intercept, X, R, D, R×D, R×D×a1(X), (1−R)×
(1−D)× a2(X), plugging in the estimated values of a1(X) and a2(X) from the
previous step, and then solve for {γ, α1, α2, α3, β1, β2, β3} using Table 1 on page
1306. As noted above, in order to for the regression coefficients on on X, R, D,
R×D, R×D× a1(X), (1−R)× (1−D)× a2(X) to be identified, we need that
a1(X) and a2(X) vary with X; otherwise we will have collinearity.

Based on the estimates of β1, β2, β3, a1(X) and a2(X), we can evaluate
whether inequality (1) holds; if inequality (1) holds, this suggests that D might
be a good tailoring variable for a DTR. Also if the reverse of inequality (1)
holds, i.e., E(Y r=1

i −Y r=0

i | Dr=1

i = 1) > E(Y r=1

i −Y r=0

i | Dr=1

i = 0), this also
suggests that D might be a good tailoring variable where now Dr=1 = 1 would
indicate that the treatment might not be working well and we might want to
adjust it. If E(Y r=1

i − Y r=0

i | Dr=1

i = 1)− E(Y r=1

i − Y r=0

i | Dr=1

i = 0) is close
to zero, this suggests that D might not be a good tailoring variable.

2.2. Simulation studies

In this section, we conduct a simulation study to demonstrate the idea of es-
timating whether a post-treatment variable from a simple randomized clinical
trial is an effect modifier, i.e., we estimate the parameters of interest in (4) from
the observed data. There are n subjects, i = 1, . . . , n. We consider the follow-
ing setup for a simulation study. Let Xi be a continuous pre-treatment variable
with Xi ∼ U(0, 1) and Pi ∈ {A,N, T } be principal strata with Pi ∼ Multi(n,pi)
where pi = [pA|Xi

, pN |Xi
, pT |Xi

]T are




pA|Xi
=

exp(θA0 + θA1Xi)

exp(θA0 + θA1Xi) + exp(θN0 + θN1Xi) + 1

pN |Xi
=

exp(θN0 + θN1Xi)

exp(θA0 + θA1Xi) + exp(θN0 + θN1Xi) + 1

pT |Xi
= 1− pA|Xi

− pN |Xi

, (6)
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Table 2

Simulation studies for estimating the parameters of interest using observed data from 100
simulated data sets of size 10,000

Parameter Truth Mean Standard
Estimate Deviation

α1 0.75 0.7478 0.0418
α2 0.5 0.5045 0.1970
α3 1 0.9982 0.1608
β1 0.2 0.1857 0.2042
β2 0.1 0.0943 0.1773
β3 0.3 0.3190 0.1820
γ 1 1.0016 0.0647

pA 1/3 0.3325 0.0059
pN 1/3 0.3305 0.0068
pT 1/3 0.3370 0.0092

β1pA + β3pT

pA + pT
− β2 0.15 0.1583 0.2660

and {θA0, θA1, θN0, θN1} are set to be {−0.5, 1,−0.5, 1}. We consider a binary
treatment assignment Ri following a Bernoulli distribution with probability 0.5.
A binary post-treatment variable Di is determined based on the principal strata
Pi and the treatment assignment Ri such that

Di =

{
1 if {Pi = A} or {Pi = T and Ri = 1}
0 if otherwise

. (7)

The potential outcomes Y r=0

i
and Y r=1

i
are iid random variables such that

{
Y r=0

i = α1I(Pi = A) + α2I(Pi = N) + α3I(Pi = T ) + γXi + ǫi

Y r=1

i
= Y r=0

i
+ β1I(Pi = A) + β2I(Pi = N) + β3I(Pi = T )

,

where ǫi ∼ N(0, 1) and {α1, α2, α3, β1, β2, β3, γ} = {0.75, 0.5, 1, 0.2, 0.1, 0.3, 1}.
The observed outcome is then Yi = RiY

r=1

i
+(1−Ri)Y

r=0

i
. We use the observed

data {Yi, Ri, Di, Xi} to estimate the parameters of interest {α1, α2, α3, β1, β2,
β3, γ}. The sample size for each simulated data set is n = 10, 000. Table 2 on
page 1307 shows averaged estimates for the parameters of interest and their
standard errors from 100 simulated data sets. The estimates of the parameters
are approximately unbiased. D is estimated to be an effect modifier satisfying
(1); this suggests that D might be a good tailoring variable for a DTR.

3. Conclusion

Drs. Laber, Lizotte, Qian, Pelham and Murphy have provided a valuable review
of DTRs. In our discussion, we have considered the issue raised by Laber et al.
of how to choose tailoring variables. We have considered the setting of a simple
randomized clinical trial in which at times t past initial treatment assignment,
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every patient who has the same status and treatment history receives the treat-
ment at time t that is specified by the protocol. Such trials cannot be used
to evaluate DTRs because there is no variation in treatment regimes beyond
the initial treatment assignment, but such trials can suggest potential tailoring
variables for designing DTRs to be evaluated in a later SMART. We have pro-
vided a method for estimating whether a post-treatment variable is an effect
modifier; a post-treatment effect modifier might be a good tailoring variable.
The key assumptions of our method are that there are pre-treatment covariates
X which interact with the treatment in affecting the post-treatment variable
(a1(X) and a2(X) vary with X) but do not interact with treatment assignment
in affecting the outcome (the association of X with potential outcomes is the
same for each principal stratum), and also that there are no subjects whose
post-treatment variable is negatively affected by being treated. In this paper,
we have considered one binary post-treatment variableD as a potential tailoring
variable; it would be useful to extend the method to consider continuous and
multiple post-treatment variables in future work.
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