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1. Introduction

Time-varying parameter models are often used in empirical econometric analy-
sis. Cox [3] established the nomenclature for the two alternative frameworks for
capturing time-varying parameters, namely observation driven and parameter
driven time series models. In this paper we concentrate on the class of observa-
tion driven models, which includes famous examples such as the autoregressive
conditional heteroskedasticity (ARCH) model of Engle [9]. The main advantage
of observation driven models is that the likelihood is available in closed form,
such that in many cases parameter estimation is relatively simple to implement.
A unified observation driven framework for time-varying parameters applicable
in a general parametric context, however, was lacking thus far.

In a sequence of recent papers, Creal et al. (2011, 2013a,b) [4, 5, 6] intro-
duced a new unified class of observation driven time-varying parameter models,
called Generalized Autoregressive Score (GAS) models. GAS models combine
in a consistent manner the dynamics of time-varying parameters and the condi-
tional distribution of the observed data by driving the time-varying parameter
using the scaled score of the conditional density. Creal et al. show that GAS
models encompass many well-known observation driven time series models, in-
cluding the ARCH model of Engle [9], the generalized ARCH (GARCH) model
of Bollerslev [1], the exponential GARCH (EGARCH) model of Nelson [24], the
autoregressive conditional duration (ACD) model of Engle and Russell [11], the
multiplicative error model (MEM) of Engle [10], the autoregressive conditional
multinomial (ACM) model of Rydberg and Shephard [25], the Beta-t-GARCH
model of Harvey [15], and many related models. In addition, the GAS framework
gives rise to many new time-varying parameter models.

A simple illustration of the usefulness of GAS models is given in Figure 1 for
a time-varying volatility model for fat-tailed financial return data. The figure
displays the absolute returns in Norwegian Krone on Nordpool electricity prices,
together with two estimated volatility series based on GAS models with a nor-
mal and a Student’s ¢ distribution, respectively. The dashed curve in Figure 1
gives the estimated volatility series based on a GAS model and a conditional
normality assumption. The GAS model in this case coincides with the standard
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Abs Nordpool Returns
—— t-GAS volatility
"""""" G-GAS volatility

Fic 1. Time series of returns on Nordpool electricity prices and volatility estimates from the
GAS model under the assumption of a Gaussian distribution (dashed curve) and a Student’s
t distribution (solid curve). Data obtained from Datastream.

GARCH(1,1) model of Bollerslev [1]. As the normal distribution does not have
fat tails, the model dynamics imply that a large absolute return must be fully at-
tributed to an increase in volatility. This causes the spikes in the figure, followed
by the rapid subsequent decay, see for example the zoomed-in plots for January
and February 2010, April 2011, and December 2011. The solid curve in the figure
is obtained for a GAS model under the assumption of a conditional Student’s
t distribution. This model is very different from the familiar GARCH-t model
of Bollerslev [1], and is in fact much closer to the recent Beta-t-GARCH model
of Harvey [15]. In particular, the model uses the score of the Student’s ¢ distri-
bution rather than the lagged squared returns to drive the volatility dynamics;
see also Section 2. The different effect on how the volatility estimates respond
to large absolute returns is apparent, particularly in the zoomed-in panels in
Figure 1. The volatility estimates from the GAS model based on the Student’s
t distribution recognize that large absolute returns need not (only) be due to
volatility increases, but can also result from tail realizations of the Student’s ¢
distribution. As a result, we obtain much less erratic volatility dynamics. More
examples can be found in Creal et al. (2013a,b) [5, 6], Harvey [15], Lucas et al.
[22], and Harvey and Luati [17].

Despite the proven empirical usefulness of GAS models and their conceptual
generalizability, relatively little is known about the general stochastic behavior

of GAS processes except for some well-known special cases such as the ARCH
and GARCH models and the Beta-t-GARCH model of Harvey [15]. In this pa-
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per we address this issue by providing explicit conditions for stationarity and
ergodicity for a large class of GAS processes. In particular, we give a character-
ization of the region of the parameter space that renders the process stationary
and ergodic. Establishing stationarity and ergodicity not only allows for a better
understanding of the nature of the GAS process, it also plays an important role
in standard proofs of estimator consistency and asymptotic normality. Indeed,
the stationarity and ergodicity of the underlying time series process, together
with appropriate model invertibility, bounded moments and smoothness con-
ditions, allows for the properties of the maximum likelihood estimator to be
obtained by appealing to appropriate laws of large numbers and central limit
theorems. The stationarity and ergodicity properties are the focal point of the
current paper, while establishing the existence of moments and invertibility to
future work. For a careful discussion about the importance of the latter, we refer
to Wintenberger [28] for the exponential GARCH case.

Our approach builds on the contraction condition formulated in Bougerol [2]
and Straumann and Mikosch [27] for general stochastic recurrence equations.
As shown in Straumann and Mikosch [27], this contraction condition can be
used to ensure model invertibility when applied to the filtering equation. Here
we focus on using the contraction condition to ensure the strict stationarity and
ergodicity (SE) of the GAS model as a data generating process. In particular,
we derive sufficient conditions for the supremum Lipschitz constants of the GAS
(stochastic) recurrence relations to be bounded in expectation. The nonlinearity
of the GAS recursions only allows us to establish sufficient conditions for strict
stationarity and ergodicity. If the GAS recursion collapses to a linear form,
stronger results might be obtainable since the contraction condition becomes
both necessary and sufficient for SE; see Nelson [23] for results related to the
GARCH model and Jensen and Rahbek [19] who explore such results to derive
ML asymptotics for the nonstationary GARCH. Even in such cases, however,
not all parameters in the model may be estimated consistently. This is true in
particular for the intercept in the GARCH update equation; see Francq and
Zakoian [12].

A complication is provided by the generality of the GAS framework which
allows one to select the distribution of the data, the parameterization of the
time-varying parameter, and the scaling of the score function that governs the
dynamic processes of the parameters. Each of these choices yields a different
model and is directly relevant for the SE properties of the dynamic parameter.
In particular, these choices determine also the region of the parameter space
that renders the process strictly stationary and ergodic. We call this the SE
region of the parameter space.

The remainder of this paper is organized as follows. In Section 2 we introduce
the GAS model, its parameterization, and its scaling. In Section 3 we derive our
characterization of stationarity and ergodicity regions and provide some generic
examples. In Section 4 we provide a range of concrete GAS models for time-
varying means, variances, and higher-order moments to show how the results
from Section 3 can actually be applied. We conclude in Section 5. The Appendix
gathers the proofs.



1092 F. Blasques et al.
2. The generalized autoregressive score model

Consider a real-valued stochastic sequence of observations {y;}.cz with condi-
tional probability density,

B(f:(60)); 2). (2.1)

for all t € Z, where {f;(0)}1cz represents a scalar time-varying parameter that
depends on a vector of time-invariant parameters § € O, h : R — R is a link
function, and A € A is a vector of time-invariant parameters that indexes the
conditional density p,. Equation (2.1) contains many models of empirical inter-
est. For example, A\ may denote the degrees of freedom parameter of a Student’s
t distribution, h the identity function, and {f:(0)}icz a time-varying variance
to obtain a time-varying volatility model for the Student’s ¢ distribution. The
model in (2.1) can be further extended to allow for exogenous variables, lagged
endogenous variables, and lagged values of f;(f) in the conditioning set; see
Creal et al. (2011, 2013a) [4, 5].

The Generalized Autoregressive Score (GAS) framework specifies the dy-
namic process for the time-varying parameter {f;(0)}:cz as

A)

frer(0) = w+ast(ft( ); +ﬁft( )s (2.2)
se(f(0); ) S(fi(0); A) - Vi (fe(8); M),
Vi(fu(0):N) = alogpy (welfs0)/ 0f |f:ft<e> :

where w, «, and f§ are time-invariant parameters, S(f;(6); A) is a univariate scal-
ing factor for the score V(f(6); A) of the conditional observation density (2.1),
and log denotes the natural logarithm. The current GAS model specification
has one lag of s.(f:(0); A) and one lag of f:(#) on the right-hand side of (2.2).
The inclusion of more lags for f:(0) or s:(f:(0); \) is straightforward; see Creal
et al. (2013a) [5] for more details. We define the parameter vector § € © as
0 = (w,a, B,\), with © denoting the parameter space.

The key element in (2.2) is the definition of s;(f:(6); A) as the scaled score
of the conditional observation density in (2.1) with respect to the time-varying
parameter f;(6). The intuition for this is straightforward: at time ¢ we improve
the local fit of the model as measured by the log conditional observation den-
sity log py (ye|f:(0); A). We do so by taking a scaled step in the steepest ascent
direction of the model’s fit at time ¢. Since s;(f¢(0); ) is a function of past data
and parameters alone, the GAS model can be classified as an observation driven
model; see Cox [3].

An advantage of the choice of s:(f+(6); A) as the driving mechanism in (2.2)
is that it can be applied whenever an explicit expression for the conditional
observation density is available. The equations (2.1) to (2.4) therefore encompass
a large set of familiar time series models. For example, if p,, is the normal density,
f+(9) is the time-varying variance, and h is the identity function, we obtain the
standard GARCH model of Bollerslev [1]; see also the discussion and references
in Section 1. For other choices, the GAS framework gives rise to entirely new

Dy (yt
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time-varying parameter models, the dynamic properties of which have typically
not been studied before; see Creal et al. (2013b) [6] for an elaborate example in
the credit risk setting.

Each choice for the scaling function S = S(f¢(6); A) in (2.3) gives rise to a
new GAS model. Intuitive choices for S may relate to the local curvature of the
score as measured by the inverse information matrix, for example

S(fe(0); A) = (Ze(fe(0); M) ™7, (2.5)

where

Zi(fe(0); A) = Eea[Ve(fe(0); M) Ve (fe(0): N)'],
and where a is typically taken as 0, 1/2, or 1. Other choices of S are possible as
well.

Similarly, the choice of a link function h provides another degree of freedom
for model specification. For example, in a time-varying variance setting, we
can choose to model the variance directly by setting h(fi(0)) = fi(0) with
f+(0) representing the variance. Alternatively, we can opt for modelling the
log variance by setting h(f:(0)) = exp(f:(0)) with f;(0) representing the log
variance. The latter specification can have the advantage that the variance itself
is always positive by construction, even if f;(f) becomes negative.

To provide further structure to the probability density function in (2.1) we
let it be implicitly defined by the following observation equation,

Yt = ga (h(ft(t?)),ut) YVt € Z, (2.6)

where for all A € A, gy : RxR — Ris a function and {u; }4¢z is an independently
identically distributed sequence with u; independent of f; for every t and u; ~
pu,(ug). This structure covers many cases of empirical interest. For example,
a time-varying volatility model is obtained by setting v, = f:(6)"/? - u,, with
f+(0) denoting the time-varying variance and wu; being, for example, normally
or Student’s ¢ distributed. Many other models are contained in (2.6) as well
by letting g be the inverse distribution function corresponding to (2.1), and
by letting u; be a uniform random variable on [0, 1]. For example, a model for
a Student’s t distribution with time-varying degrees of freedom parameter is
captured by taking u; as a uniform, h as the identity function, and gy as the
inverse Student’s ¢ distribution function with f;(0) degrees of freedom.

The stochastic properties of {y;}iez are now fully determined by (i) the
parameterization h, (i7) the family of densities p, = {pu,x}rea, (%) the family
of transformation functions g = {gx}xea, (i) the scaling function S, and (v)
the parameter value § € ©. In other words, a probability measure for {y;} is
defined whenever a point

(h,pu,g,S,Q) S HXPquXSXG

is selected, where H denotes the space of link functions, P, the space of families
of densities p, for u;, G the space of families of transformation functions g,
and S the space of scaling functions. Given this notation, we can now start
characterizing stationarity and ergodicity regions for GAS processes.
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3. Stationarity and ergodicity
3.1. Stochastic recurrence equations

To characterize the dynamic properties of GAS processes, we use the station-
arity and ergodicity conditions formulated by Bougerol [2] and Straumann and
Mikosch [27] for general stochastic recurrence equations; see also Diaconis and
Freedman [7] and Wu and Shao [29]. In particular, we define subsets of H x
Pu x G xS x O that render {y; }+cz stationary and ergodic (SE). Measurability
of the relevant maps is implied by explicit assumptions about continuity of the
relevant maps and by letting the relevant domain and image spaces be mea-
surable sets equipped with Borel o-algebras generated by the topology of each
respective set.

Let fi(f1,0) denote the value at time ¢ € N of the time-varying parameter,
with random initialization f; taking values in F C R and dynamics determined
by 6 € ©. A stochastic recurrence equation for the sequence { f:(f1,0)}+en takes
the form

A(f,0)=f and  fera(f1.0) = ¢ (fe(f1,0):0) VEEN, (3.1)

where ¢y : F — F is a random function. This clearly embeds the GAS model
in (2.2) with random initialization f; in F by setting

b (fi(f1,0);0) = w + asi(fi(f1,0); X) + Bfe(f1,0) V t €N, (3.2)

with every ¥, in s; (ft(fl,G); )\) replaced by gy (h(ft(fl,G)),ut) from equation
(2.6). Sufficient conditions for {fi(f1,0)}ien to converge exponentially almost
surely (e.a.s.) to a unique SE sequence {f;(0)}icz V 0 € © are given below.!

Assumption 1. For every 6 € ©, {¢.(+;0)}iez is an SE sequence of Lipschitz
maps ¢i(+;0) : R — R satisfying E [logJr lpo(f;0) — f|] < oo for some f € F,
with log™* (z) = max(0, log(x)).

Assumption 2. For every 6 € O, the sequence {¢.(+;0)} ez satisfies

(f,fYEFXF: f£[f' |f - f |
and (r) (r)
Blog|  wp VGO —dwsoN] -
(f,fYEFXF: f£[f |f - f|

for some r > 1 with (bér) =¢go-0P_pri1.

The proof of the following lemma can be found in Bougerol [2]. Uniqueness
of the limit process is added in Straumann and Mikosch [27].

1A sequence {x:}¢cn is said to converge e.a.s. if there exists v > 1 such that v¢|z¢| 2 0.
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Lemma 1. Let Assumptions 1 and 2 hold for a real-valued sequence { fi(f1,0)}ten
generated by (3.1). Then for every 6 € © there exists a unique real-valued SE
sequence { f1(0)Yiez such that |f:(f1,0) — f:(0)] “5° 0 as t — oco.

The SE properties for {y;}tcz defined in (2.6) follow directly from those of
{ft(0)}1ez. This is stated in the following assumption and proposition.

Assumption 3. The sequence {ut}iez in (2.6) consists of independently iden-
tically distributed (i.i.d.) random variables and the function gy is continuous for
every A € A.

Proposition 1. Let Assumptions 1-3 hold and let the real-valued sequence
{ft(0) }rez be the unique SE solution to { f+(f1,0)}ten generated by (3.1). Let the
link function h : R — R be continuous. Then {y:}tez in (2.6) is an SE random
sequence for every 6 € ©.

The proposition can also be obtained under much weaker conditions on the
sequence {ut}iez, such as stationarity and ergodicity, but for our current ex-
positional purposes the assumption of an independently identically distributed
{us} ez suffices.

In practice, condition (3.4) in Assumption 2 is the most challenging, both in
terms of the class of models that it restricts, and in terms of analytic verification.
It might be tempting to use numerical methods to evaluate condition (3.4) in
applications. However, this approach is complicated by the fact that taking the
expectation of the supremum of a possibly highly nonlinear function can lead to
misleading results. Mistakes can then easily be made if the numerical algorithm
for computing the supremum fails to find a global maximum for every 6 € ©
and every u; € R. To prevent such mistakes, we shall provide an analytical
characterization of these SE regions. The following immediate result is helpful
in this respect.

Proposition 2. Let ¢; be given by (3.2) and si(f; \) be almost surely (a.s.) con-
tinuously differentiable in f. Then under Assumption 3, conditions (3.3) and
(8.4) in Assumption 2 are implied by

E sup B—l—aast(f §)\)

sup. T‘ <1, (3.5)

which in turn is implied by

(3.6)

58t(f*;/\)‘ 1—|B]
E sup < .
prer| Of ol

In applications, both conditions (3.5) and (3.6) play an important role in the

characterization of the SE region. We illustrate this in Section 4.
From condition (3.6) it follows directly that the sufficient SE region:

(i) conmsists at most of the interval (—1,1) in the direction of 3; and
(ii) consists of an interval (™, a™) with @~ < 0 < at in the direction of a.



1096 F. Blasques et al.

The supremum in (3.6) also reveals that if 7 depends on w, the value of w can
influence the SE region. We shall deal conservatively with such cases by adopting
always the largest possible F. As a result, we focus our discussion entirely on the
size of the SE region in terms of («, 3, A). In particular, for any given value of
A, we obtain an SE region in the (o, 8)-plane. Clearly, the maximum SE region
dictated by Proposition 2 is obtained if

E sup |9s:(f*;\)/0f| = 0.
freF

In this case, only condition (i) above is binding, while = = —o00, and a™ = oo.
In other words, when the score is zero, then « can take any value as it does not
affect the contraction condition, and hence condition (ii) becomes irrelevant.
The SE region for given A then becomes a rectangle of infinite length in the
(o, B)-plane as characterized by |3] < 1, irrespective of the value of & and w. If,
on the other hand,
E sup |0s,(f"; \)/0f] = oo,
freF

we obtain the degenerate SE region in the («, 3)-plane which we can characterize
by {(o,8) | |8] < 1, = 0}. The intermediate cases are characterized by the
condition

0 < E sup |9s:(f";0)/0f] < 0.
freF

In such an intermediate case, we obtain a non-degenerate, bounded SE region
in (a, B) for every given A\ € A. Given the structure of equation (3.6), such a
region takes the form of a composition of triangles.

In all cases the actual SE region can be larger due to the fact that (3.6)
only provides sufficient conditions for SE. We come back to this in the concrete
examples in Section 4. The current set of conditions, however, already provides
considerable insight into the type of SE regions that can be obtained for various
types of GAS models. The conditions simplify for the special case where s;(+; \)
is a linear function of f;(f1,#). This includes a number of GAS models for time-
varying volatilities and means. These GAS models behave substantially different
from their GARCH counterparts; see Creal et al. [4]. In particular, their SE
properties and conditions have as yet not been fully investigated. Only the case
of the volatility model with h(-) = log(-), S(-;A) = 1, and p, the Student’s ¢
density has been investigated by Harvey [15]. The results for an s;(-; \) that is
affine in f;(f1,60) are summarized in the following corollary.

Corollary 1. Let si(fi(f1,0);A) = C1,e(N) - fe(f1,0) + (2, (N), where (1,4(N) and

C2.4(N) are real-valued random wvariables. A sufficient condition for SE is then
given by E|¢ (M) < (1 —=[8])/lal.

The corollary makes clear that if s is affine in f;(f1, €), the maximal SE region
is obtained if {; +(\) = 0. A non-degenerate SE region is obtained whenever
E|¢1.¢(A)| < oo. A smaller value for this expectation ensures a larger SE region
in the («,B)-plane. If E|¢; (N\)| is unbounded, we obtain the degenerate SE
region.
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3.2. Non-degeneracy and bounds for SE regions

We separate the analysis of SE regions two steps. First, we determine whether
there exists some A for which the SE region is non-degenerate in the («, 3)-
plane. Second, we determine the SE region’s actual size and shape in terms of
(w, e, B, \). While the first step is more limited, it already allows for a character-
ization of the stochastic properties of GAS processes over a range of parameters
(w, o, B) determining the dynamics of {f¢(0)} and {y;} for a given conditional
density. The second step extends the analysis by characterizing stochastic prop-
erties over a family of conditional densities indexed by A.

As shown in Section 3.1, the existence and size of a non-degenerate SE region
both depend on the value of Esup ..z |0s:(f*;A)/0f]. In what follows, we
obtain meaningful upper bounds for this expectation for any combination of
a given link function h, family of distributions p,,, and scale function S that
generates a separable upper bound.

Assumption 4. Let s; be a.s. continuously differentiable with
10se(fs M) /0f| < In(f; N)Ca(us A) + Ga(us A)| V f € F, (3.7)

where sup ;5 [1(f: V)] < 7(0) < 00, Bl (s )| < G(N) < 50, and ElGa(ug; N)| <
CQ()\) < Q.

Proposition 3 below gives the main result. When A is a singleton in R%, we
mainly use the proposition for models where the distribution of u; is assumed
to be known (X is given). When A is unknown, then we use the proposition
with A being a non-degenerate subset of R. In these models we assume the
distribution of u; belongs to some parametric family of distributions indexed by
A € A and we obtain the properties of the stochastic sequence with A ranging
over an appropriately defined set A.

Proposition 3. Let h be continuous and {u;}iez in (2.6) be an i.i.d. sequence.
For every A € A suppose that E [logJr Iso(f; A) = fI] < oo for some f € F,
gx is continuous, and Assumption 4 holds. Then Esup;. [0s:(f*;\)/0f| < oo
and {f1(f1,0)}ien generated by (3.1) converges e.a.s. to the unique SE solution
{ft(0)}rez and {yi}icz defined in (2.6) is an SE random sequence for every
(w,a, B,\) € © where

1—1p]

@::{(w,a,ﬂ,/\)ERxRx(—1,1)><A Dl < = = — }

1M(A) X C1(A) + C2(A)

As we shall see in the examples in Section 4, Proposition 3 allows us to
identify SE regions of the parameter space in a wide class of GAS models
with nonlinear dynamics. We also note the following. For s:(f:(f1,60);\) =
S(fi(f1,0);N) - Vi(fi(f1,0); A), we can rewrite (3.5) and (3.6) of Proposition 2
as

IV(f5 M) +3S(f*;>\)
of of

E log sup ‘B—Fa (S(f*;)\)

frer

-Vt(f*;)\)>’ <0, (3.8)
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and

1- 4]
o

Condition (3.9) is intuitive and reveals two interesting cases. If a constant scaling
is used, S(f:(f1,0); \) = S, a maximal SE region is obtained if the parameter-
ization h is such that V,(fi(f1,0); \) = C1(ui; A) does not depend on fi(f1,6).
The condition then reduces to || < 1 as both partial derivatives in (3.9) are
equal to zero. Similarly, the SE region is maximal if the parameterization h
yields a separable score Vi(f;\) = n(f;A\)¢1(u; A) and the scaling function is
S(f) =1/n(f;N). In this case, s:(f+(f1,6); \) does not depend on f:(f1,0) and
the condition also reduces to || < 1. We illustrate both features further in the
examples in the next section.

b ] of V]

(3.9)

4. Examples

To illustrate how the conditions formulated in Section 3 can be implemented for
relevant empirical models, we consider a number of examples for time-varying
conditional volatility, time-varying conditional expectation, and time-varying
conditional tail index. The results in this section establish SE properties for a
range of volatility and point process GAS models suggested in earlier work, for
which the dynamic properties have so far not been characterized.

4.1. Example 1: Volatility dynamics

The case of GAS driven volatility models embeds a wide class of GARCH mod-
els. It includes new robust volatility models such as the Student’s ¢ based GAS
volatility model of Creal et al. [4] and the Beta-t-GARCH model of Harvey and
Chakravarty [16]. This class can be even extended to models for positively val-
ued random variables such as dynamic duration and intensity models. It also
includes robust Gamma-Weibull mixture models for duration data as proposed
in Koopman et al. [20].

We can formulate this class by considering a special case of the GAS model
with observation equation (2.6) to obtain the GAS scale model

ye = h(fe(f1,0)ue ,  fir1(f1,0) = w+ asi(fi(f1,0); A) + Bfi(f1,0), (4.1)

where {u;} is independently identically distributed with u; ~ p, » and the
function h is smooth. We typically have E[u;] = 0 in a volatility model and
E[u:] = 1 in a duration or intensity model. Then

se(fe(f1,0); N) = S(fe(f1,0); ) - Vie(fe(f1,0); M)
= =S(fe(f1,0); N) - VR(fi(f1,0)) - (Vpur(ui)ue +1),  (4.2)
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where Vh(fi(f1,0)) = 0logh(fi(f1,0))/0f and Vpy x(ui) = Ologpy a(ut)/Ouy.
It follows that

0st(f; A OVh
S (T s+ B0 ) Turra 1) 03)
The result applies to, for example, the familiar GARCH model where p,, » is the
standard normal distribution and S(f;(f1,0); \) = Z.(f:(f1,0); ) ~L. It also cov-
ers many other models, including models for volatility and duration dynamics
as discussed in Section 1. The GAS scale model (4.1) with Gaussian distur-
bance sequence {u;} can be adopted to illustrate cases where the conditions of
Assumption 4 do not hold and a non-degenerate SE region cannot be ensured.

aS(f; M)

4.1.1. Non-degeneracy of SE region

In case of the GAS scale model (4.1), Assumption 4 applies with

WU 0)50) = S 05 ) T D) | OB DE ) g1, ),

Cilug; A) = =Vpua(ug)ug — 1, (4.4)

The theory developed in Section 3 can be used to obtain the non-degeneracy of
the SE region as long as n(f;(f1,0); A) is uniformly bounded, and E|(7 (us; A)| < oc.
First, we consider the GAS scale model with

h(fe(£1,0)) = fi(f.0)'2 uw~N(O,1),  S(f;A) =1.

It follows that

VI = slfi0) = —g -, PN g )
Since n(f; ) = % f~2 is not bounded, the conditions of Assumption 4 are not
satisfied. Therefore, we cannot ensure the existence of a non-degenerate SE
region for this GAS model.
A different GAS model is obtained if we replace the assumption of unit scaling
S(fi(f1,0); ) = 1 by a scaling based on the inverse information matrix, that is

S(fe(f1,0);A) = Te(fe(f1,0); 0) "
We obtain,

se(FiX) = £ (u2 = 1), — - L. (4.5)

4.1.2. SE region bounds

When making use of (4.4), the structure of Assumption 4 can be used to ob-
tain bounds on the SE region. We specifically consider the parameterization
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h(fi(f1,0)) = fi(f1,0)"/? which implies that f;(f1,0) is the variance of y;. If we
set S(fi(f1,0);\) = Zi(fi(f1,0); \) ™1, we obtain

_ as¢(fi A _
(FN) = =26 T (Tpusu+ 1), 2N o @+ ),
where Z,,, , = E[(Vpu,a(u¢))?uf] — 1, which does not depend on f. This result

is valid for models that are substantially different from the standard GARCH
model, such as the Student’s ¢ GAS volatility model of Creal et al. [4] and the
Generalized Hyperbolic GAS volatility model of Zhang et al. [30]. These models
have dynamic volatility properties that are clearly different from those of the
GARCH model. In particular, they correct the volatility dynamics for the fat-
tailedness and possible skewness of u;. The GAS volatility model for a Student’s
t distribution with A degrees of freedom can serve as an example. Its dynamic
equation for the volatility f;(f1,6) is given by

Jer1(f1,0) = w+ Bfi(f1,0) + as:(fi(f1,0); N), (4.6)
se(fi(f1,0);0) = (L4327 - (we(fe(f1,0); Mg — fi(f1,0)) , (4.7)
14\ 142!

w(fe(f1,0); A)

eI AT I e )
The weight w; ensures that large values of y; have a smaller impact on future
values of fi(f1,0); see Creal et al. [4] and Harvey [15] for more details. To ensure
positivity of the variance f:(f1,6) at all times, it follows directly from (4.6) that
we require 3 > (1 +3A"1a > 0. If A=1 = 0, these restrictions collapse to
the standard restrictions for the GARCH model.? Using these restrictions, we
obtain the simplification

9si(f*) _ -1 o1y (@ + A Duf
_ -1 -1 (L+ 2D
=B8—-(1+3xHa+(1+31xHa=4 (4.9)

Hence analytical bounds are immediately given by g < 1 subject to conditions
that ensure positivity of f;(f1,0) for all ¢, i.e., 8 > (1 +3X71)a > 0. Note that
B < 1 for the GAS parameter [ coincides with the familiar condition o*+5* < 1
for the GARCH parameters o* and §*; see also footnote 2.

Figure 2 presents the SE regions obtained by the numerical evaluation of con-
dition (3.4) and the analytical derivations based on condition (4.9) for different
values of A. The (linearly) upward sloping lower bound of the SE region follows
from the condition f;(f1,6) > 0 and is given by the relation 8 = (1 + 3A™1)av.

2 The parameters a and 8 of the GAS model coincide to the familiar a* and (a* + 8%)
parameters, respectively, for the standard GARCH model as in Bollerslev [1]. Hence the re-
strictions 8 > a > 0 for the GAS parameters are the same as a*,3* > 0 in the standard
GARCH model.
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Fic 2. Stationarity and ergodicity regions for the Student’s t GAS volatility model for different
values of A obtained by Proposition 1 under numerical evaluation of Assumption 2 (dashed
line) and the region derived analytically in Proposition 8 (solid line).

Finally, the curved region is obtained by numerical integration of equation (3.4).
The difference between the curved SE region and the solid triangle is a conse-
quence of Jensen’s inequality when going from sufficient condition (3.4) to (3.5).

4.1.8. Mazimal SE regions

We have discussed in Section 4.2.3 that for particular choices of the parameter-
ization h and scale S, we can obtain the maximal SE region. In case of model
(4.1), we can set h(fi(f1,0)) = exp(fi(f1,0)) and S(fe(f1,0); A) = 1, which im-
plies that we model log volatility with unit scaling. This parameterization can
be convenient to ensure positivity of the variance without imposing parameter
restrictions on o or 8. This model has been used in, for example, Janus et al. [18]
and Harvey [15], and its multivariate counterparts in Creal et al. [4] and Zhang
et al. [30]. Tt is easily shown that s:(f¢(f1,6); A) does not depend on f:(f1,0) for
this specification. As a result, ds:(f;\)/0f = 0 and we obtain the maximal SE
region || < 1 without any restrictions on a.

We conclude this example by investigating the influence of the scaling func-
tion S. In particular, we consider the GAS model (4.1) with S(f:(f1,0);\) =
Ti(fe(f1,0); \)~Y/2 for some arbitrary parameterization h(fi(f1,6)). We then
have

si(fi\) = —Ip_ul,{z (Vpurus + 1),
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which does not depend on f;(f1,6) and hence yields the maximum SE region
|8] < 1 for any arbitrary parameterization h(f;(f1,6)) and a square root inverse
information matrix scaling.® This is a specific case where the effect of the pa-
rameterization h(f:(f1,0)) on the size and shape of the SE region vanishes for
a specific choice of the scaling function S.

4.2. Example 2: Conditional expectation models

GAS models of the conditional expectation embed a large class of linear and
nonlinear state-space models of the conditional mean as analyzed for example in
Hamilton [14] and Durbin and Koopman (2012, Chapter 2) [8], with applications
in Stock and Watson [26]. In addition, it gives rise to various linear and nonlinear
autoregressive moving average (ARMA) model specifications for the dynamics
of observed data as covered for example in Granger and Terasvirta [13].

For concreteness, consider a GAS model for the time-varying conditional
expectation,

ye = h(fi(f1,0)) +us, fir1(f1,0) = wtas(fi(f1,0); \)+Bfe(f1,6), (4.10)

where {u;} is an independently identically distributed random variable with
Ut ~ pu (-3 A) = Du.x, such that E[u,] = 0, and hence,

Elyilyt—1,ye-2,- -] = B[yl f: (f1,0)] = h(fi(f1,0)).

We assume that A is a continuous, smooth function of the time-varying param-
eter fi(f1,0). Given the assumption on the pdf of u, the pdf of y; takes the

form py (| fi(f1,0)) = pur(ye — h(f:(f1,0))), such that

0 0
aF log py (yel fe(f1,0)) = —h'(ft(flﬁ))a—ut 10g pu,x (us). (4.11)
As a result, we obtain the following specification for the GAS step s;,
se(fe(f1,0):A) = =S(fe(f1,0); A) - B (fe(f1,0)) - VPu(ue), (4.12)

with

85t(ft(f159);/\) N7 .
CAIDIED) (1, DSl 1,00 )

+ 1 (fie(f1,0)) S (fe(f1,0); )] - Vpux (),
where b/ (f(f1,0)) and h”(fi(f1,0)) denote the first and second order derivatives

of h, respectively, evaluated at f;(f1,8), S'(f:(f1,0); A) denotes the derivative of
the scale function S(-; \), evaluated at fi(f1,0), and Vp, x(us) denotes the score

3The SE region may be smaller than |3| < 1 for any « if parameter restrictions apply to
«a and B, for example, to ensure positivity of f¢(f1,0) for the Student’s ¢ GAS model with

h(fe(f1,0)) = fe(f1,0)'/2.
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of the error density w.r.t. u, that is Vp, (ur) = 9logpy a(ut)/Ous. The score
function Vp, (u;) depends on the static parameter A, but not on the dynamic
parameter fi(f1,0).
This GAS model can also give rise to nonlinear ARMA dynamics for {y: }tez
as given by
Yer1 = W (ye, us; 0) +ug1 Vt € Z,

where
B (ye, ues 0) = h(w +a—Sh Ny, — u); \)
X B (W (ye — ue)) - Vpu(ue) + B(h™ (g — ut))),

and h~! denotes the inverse of h. A linear ARMA specification is only obtained
if h and S are linear functions.

4.2.1. Non-degeneracy of SE region

Since Assumptions 1 and 3 hold, the non-degeneracy of the SE region of this
GAS model can be established by bounding Esup .. z[9s:(f*;\)/0f] and by
appealing to Lemma 1 and Propositions 1 and 2.* The moment bound on the
score derivative Esup ..z [0si(f*; A)/0f| can in turn be obtained by ensuring
that Assumption 4 holds and then by appealing to Proposition 3.

To see that the current GAS model fits the conditions in Assumption 4, we
set Co(wii \) = 0, G (ug; A) = —Vpy a(ug), and

n(fe(f1,0); A) = K" (fe(f1,0))S(fe(f1,0); A) + 1 (fu(f1,0)) S (fe(f1,0); A).

Hence, by Propositions 2 and 3, we need to show that h” - S + A’ - S’ is uni-
formly bounded and E|Vp, x| < co. For example, when we consider the case
of unit scaling, S(fi(f1,0); \) = 1 with independently identically distributed
Gaussian errors u; ~ N(0,0?), it follows that A = 2. In this case we obtain

se(fe(f1,0); A) = W' (fi(f1,0))0>us, and

A R e

of
The non-degeneracy of the SE region is then obtained by bounding
*. 2
E sup M} =F sup }h”(f*)afzut}.
freF of freF

In the context of Assumption 4, set (2(ui; 02) = 0, n(f;02) = h"(f), ¢1(ug; 02) =
o 2uy. Then the conditions of Proposition 3 are satisfied on a non-degenerate
SE region if h”’(f) is uniformly bounded, 0 < 0% < oo and E|u,| < oo.

4For Assumption 1 we have that {w+ 8f+s¢(f;\),t € Z} is a stationary and ergodic (SE)
sequence of Lipschitz maps due to the assumption of an independently identically distributed
sequence {u¢} and the subsequent conditions imposed on h and the distribution p,, .
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If a more elaborate scaling function S is used, then non-degeneracy is available
for a larger class of nonlinear link functions h. In particular, by Assumption 4
and Proposition 3 the results can be extended to unbounded link functions h
with unbounded second derivatives, since the relevant boundedness condition
on 7(f;0?) must hold for n(f;0%) = h'(f)S(f; \) + k' (f)S'(f; \) instead.

4.2.2. SE region bounds

To provide bounds on the SE region, we use Proposition 2, which in this case
reduces to considering

E sup |8+ a0 2w (f*)| < 8]+ lalo™ sup [1"(f*)| Elu. (4.14)
freF freF

As a concrete example, consider the logistic link function h(f) = (14+exp(—f))~*
with Gaussian errors u; ~ N(0,0?), and unit scaling S = 1. Then h"(f) =
—(e2f —ef)/(e?f + 3e2f 4 3ef 4+ 1), and hence equation (4.14) reduces to

aV3 | G

181+ 5o el 180/

=18l +

~ |B| + 0.076776|a|/o. (4.15)

This yields the sufficient SE region
181 < 1= (alV6) / (180v/7). (4.16)

For 02 = 1, Figure 3 plots the regions obtained by numerical evaluation of the
Bougerol condition in Assumption 2, and the analytic bound obtained in (4.15).

4.2.83. Mazimal SE regions

When we consider a GAS model for (4.10) and scale the scores Vi (fi(f1,6); \)
by the square root of the inverse information matrix, that is

Ti(fi(f1,0);N) = —E [Vi(fi(f1,0); \)?] = 021/ (f1(f1,0))%,
we have

st(fe(f1,0);7) = S(fi(f1,0);A) - Ve(fe(f1,0); M)
= It(ft(f179)7)\)_1/2vt(ft(fhe)?)\) = U_1Ut7

which does not depend on f;(f1,6). As a result, we obtain the maximal SE
region characterized by || < 1 for this model.

The maximal SE region can also be obtained if we let the time-varying pa-
rameter be the mean, rather than the transformed mean of y;, that is y; =
fi(f1,0)+u. The GAS model for this parameterization has h(f) = f and it fol-
lows that s¢(fi(f1,0);\) = S(fi(f1,0); N)us/o?. Therefore, as long as the scale
S(f:(f1,0); \) does not depend on fi(f1,6), we obtain the maximal SE region.
This includes all cases where S(f:(f1,0);\) is a power of Z;(f:(f1,0); \).
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Fic 3. Stationarity and ergodicity regions for the dynamic logistic regression model derived
in Proposition 1 under numerical evaluation of Assumption 2 (dashed line) and the region
derived analytically in Proposition 8 (solid line).

4.3. Example 3: Higher-order moments

Our final example consists of a model with time-varying higher-order moments.
In particular, we consider a model where the tail index f;(f1,6) of a Pareto
distribution is time-varying. Consider the density

Py (el fe(f1,0)) = ft(fl,9)71yt_(1+ft(f170)7 ), ye > 1, (4.17)

where h(fi(f1,0)) = fi(f1,6) > 0 is the tail index. The model is a special case
of equation (2.6) and implies that the data is generated by

g(fi(f1,0),u0) = (1 — uy) ~fe (0 (4.18)

where u; € (0, 1) is a standard uniform random variable. The equivalence of the
two model representations can be shown by inverting the cumulative distribution
function corresponding to (4.17). The score function is given by

Vil fe(f1,0); A) = fi(f1,0) " (log(ye) — fi(f1,0)) = ft(flu9)_1'(_10g(1_ut()_1))7
4.19
where —log(l — u;) has a standard exponential distribution with unit mean.
The information matrix is given by Zy(f(f1,0); \) = fi(f1,0) 2.
For a GAS model with unit scaling S(f¢(f1,0); \) = 1, we cannot ensure the
existence of a non-degenerate SE region since V,(f(f1,0);\) is unbounded in
f+(f1,0) for fixed us. For a GAS model with inverse information matrix scaling
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Fic 4. Stationarity and ergodicity region for the dynamic tail index model (4.17) derived
in Proposition 1 under numerical evaluation of Assumption 2 (dashed line) and the region
derived analytically in Proposition 3 (solid line).

S(fe(f1,0);N) = T(fe(f1,0); )7, se(fe(f1,0);A) is linear in fi(f1,60). There-
fore, its derivative does not depend on fi(f1,0) and we can easily obtain the
bound for the SE region by appealing to Propositions 2 and 3. The result is
presented in Figure 4, where we impose the restriction 5 > « > 0 to ensure that
the tail index f:(f1,0) always remains positive.

An interesting feature of our current approach is that sometimes we can facil-
itate the derivation of the SE region by a transformation of variables rather than
by a transformation of parameters. For example, consider the GAS model for
log(y:) rather than for y;. The Jacobian of this transformation does not depend
on fi(f1,0) and therefore does not influence the GAS dynamics for fi(f1,6). In
particular, using (4.18) we recognize that log(y:) has an exponential distribution
with mean f;(f1,6). Therefore, we can consider the model specification

log(y:) = fe(f1,0) - up,

where u; is a standard exponentially distributed random variable with unit
mean. This reduces the derivation of the SE region for model (4.17) to that
for model (4.1). Based on this relation, the SE regions take a similar form
as those in Section 4.1. This similarity also holds when we consider a GAS
model with inverse square root information matrix scaling S(f¢(f1,0);\) =
Ti(f(f1,0); \)~/2. In this case s;(fi(f1,0); A) does not depend on f;(f1,6) and
hence we obtain the maximal SE region |3] < 1. The same result holds if we
parameterize the log tail index rather than the tail index itself and consider unit
scaling S(f:(f1,0); \) = 1.
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5. Concluding remarks

In this paper we have derived conditions characterizing the stationarity and er-
godicity (SE) regions for a general class of observation driven dynamic param-
eter models which are referred to as Generalized Autoregressive Score (GAS)
models. The GAS model has a likelihood function that is analytically tractable.
Given the flexibility of the GAS framework, new dynamic models of empirical
interest are easily formulated. However, the dynamic specification for most GAS
models is highly nonlinear. This complicates our understanding of the dynamic
properties of the model.

Different formulations of the conditions for SE may be relevant for different
GAS model formulations. Illustrations are provided for GAS models of time-
varying means, variances, and tail shapes, whose dynamic SE properties have
not been characterized in earlier work. The examples are empirically relevant
and include GAS models for volatility and duration dynamics under fat-tailed
distributions.

Given the current results, three obvious extensions emerge. First, it appears
useful to apply our results to a proof of consistency and asymptotic normality
for the maximum likelihood estimator of a class of univariate GAS models. The
characterization of the SE region is a key step in obtaining laws of large numbers
and central limit theorems that are required in the proof of such results. Second,
it is interesting to extend our current results to the multivariate context. Third,
it is interesting to use the generality of the stochastic recurrence approach to
characterize the SE regions of mixed models for continuous and discrete data,
such as the mixed measurement dynamic factor GAS models of Creal et al. [6].
We leave such extensions for future work.

Appendix: Proofs

Proof of Proposition 1. By Assumptions 1-3 and Lemma 1, {f;(6)}+cz is an SE
sequence. By continuity of h, {h(f:(0))}icz is a measurable sequence (w.r.t. the
Borel o-algebra). This sequence is trivially stationary. Ergodicity follows by
Proposition 4.3 of Krengel (1985, p.26) [21]. Together with {u:} being SE
(Assumption 3), it follows that {(u¢, h(f:(0)))}iez is a stationary and ergodic
vector sequence. By the same argument, continuity of g, ensures measurabil-

ity of yr = gx(h(f:(0)),us) and hence that {y:} = {gr(h(f:(0)), us)}iez is also
SE. O

Proof of Proposition 2. For every map ¢:(+;0) : F — R, define

H(64(+0)) = sup 2110 = 01(7'5)
’ L Ilf = fI ,

and note that,

E

log sup H (¢ (; 9))1
fiof!
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108 (f50) — o0 (1:9)]
= 1 u
E_Og?f? =7
_ B [logsup 1205000+ 0 610 (£160) — 0(56) 0+ 0 61y ('30)
£.f If = f']
I l614(£30) — d1_a(F';0)]
SE_logiHﬁ?}? =7 ]
|p1-i(f30) — 1 (f";0)]
E |1
<38 ey (A gt

since for every collection of Lipschitz maps ¢o(;0),...,¢1-.(;0) with

H(¢i(+;0)) < oo it holds that H(¢o(-;0) 0 0p1_r(+0)) < [Ii_; H(p1—r(+;0)).
Hence, it follows that,

E

£F If = f']

|p1—i(f50) — d1—i(f";0)]
E |1
- Zl - [Ogsfuﬁ =7 1 <!

06" (f:6) — 65” (£30)]
log su .
T If =1 ]<O

log sup [61-:(£36) = ¢1_i(f/;9)|] <0Vi

= E

We can thus focus on the condition, Eflog H(¢(+;0))] < 0 for all t € Z. By
Jensen’s inequality,

|¢t(f§9) - ¢t(f';9
E |1
l"g?‘? =71

such that we have the sufficient condition

Els |6:(f30) — ¢t<f’;9>|]<1.

)W <logE

|¢t(f§9)—¢t(f/;9)|
A=Y ]

A
fﬂ If = fl (A1)

The assumed a.s. continuous differentiability of s; in f implies the a.s. continuous
differentiability of ¢, in f. The exact Taylor series expansion on the realized ¢
states that for every (f, f') € R?, 3f* € [f, f'] such that

o 130) = ou(10)+ 2L g - g

160(F:6) — 6u(F:6)] = }M (/7:6) ] =7

|¢t(f;9) —¢t(f/;9)| _ ‘5¢t(f 79)‘
lf =1 of '
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Now, since this holds for every pair (f, f’), then,

|¢t(f§9)—¢t(f/;9)| a¢t(f*;9)'
T -7 = P Ter |
and hence
|¢t(f§9)—¢t(f/;9)|

Esup Esup | ————=
I lf =1 £ af

As a result, (Al) is implied by Esup. [0¢:(f*;0)/0f] < 1. Finally, since
0o (f*;0)/0f = B+ a-9s,(f*;\)/0f, we have that

001(/"16) } |

3¢t(f*;9)‘ 3st(f*;/\)‘
Esup| ——=| <1 & Esuwp|f+a————| < 1.
r of px of
By norm sub-additivity, we have
8st(f*; )\) ’ 8St(f*; )\)
Esup |8 +a——F7—| < |[B]+|a|-Esup|——F+—],
u o7 18] + laf u o7

which yields the desired condition Esup ;. |[0s¢(f*; \)/0f] < (1—|B])/|c|. Unifor-
mity in ¢ follows directly from the i.i.d. nature of u; and implies the boundedness
condition at t = 0. O

Proof of Proposition 3. For every A € A, the i.i.d. nature of {u;};cz and the
a.s. continuous differentiability of s;(f;A) in f imply that {¢:(-;0)} is SE as
imposed in Assumption 1. This follows directly from the fact that ¢.(f;6) =
wtasi(f, \)+8f, se(f, \) = s(uy, f, A), and that the continuity of s in u; implies
that {s(us, -, A)} is i.i.d. and hence also SE. Next, note that E[log™ [so(f; \) —
fl] < oo for some f € F for the process defined in (3.2) implies the condition
Ellog™ |po(f;0) — f|] < oo for some f € F in Assumption 1. To see this, we
note that it follows from Lemma 2.2 in Straumann and Mikosch [27] that for all
(w,a,8) € R3

Elog™ |¢o(f;0) — f| < Elog™ |w+ aso(f;\) + Bf — f]
< 2log2+Elog™ |a(so(f; A) — )|+ Elog™ |w + Bf + (o — 1) f|
< 2log2 +log™ || + Elog™ [so(f; \) — f| + log* |w + Bf + (a — 1)f],

such that E[log™ |po(f;\) — f|]] < oo for some f € F is implied by
Elog™ [so(f;\) — f| < oo for some f € F. Now, continuous differentiability
of s¢(f;A) in f implies by Proposition 2 and Lemma 1 that {f:(f1,0)}+en as
generated by (3.1) converges e.a.s. to the unique SE solution { f;(0) }+cz for every
(w,a, B,\) on a non-degenerate set

| -1
{(W,Oé,ﬂv)\) ERXRx (-1,1) xA : |a < E sup;- |6st(f*;)\)/5f|}
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if Esupy. [0si(f*;A)/0f| < oo. This bound is obtained under Assumption 4
with 7(\) < oo, (1(\) < 0o and (2(\) < oo through norm-subadditivity since,
VteN,

Esup [0s:(f; A)/0f] < Esup [n(f; A)Ci(ue; A) + Ca(ue; A)]
fer fer
< sup [n(f5 M)[E |G (u N)| 4+ E |G (ue; A)|
feF

< NGO + ).

As a result the non-degenerate set takes the form

0= {(w,a,ﬂ,/\)eRxRx(—l,l)xA :al <

118l }
M(A) x GL(A) + (W)

By continuity of h, gy, and the i.i.d. nature of {u;}ecz, we obtain that {y;}iez
as defined in (2.6) is an SE sequence. O
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