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Abstract: A breakthrough is provided in the study of the existence prob-
lem for maximum likelihood estimators (MLE) in the hierarchical general-
ized linear model (HGLM) of Poisson-gamma type, as well as in the negative
binomial regression model. Any more than the uniqueness problem asso-
ciated, the existence problem of MLE for these models has not yet been
studied except in the very special case of the sample. This issue is addressed
here for the Poisson-gamma HGLM, and a sufficient condition is obtained
to ensure the MLE existence in that case. It is also shown that this condi-
tion has the same effect in the negative binomial regression model with the
index parameter considered as unknown. In the latter model, the obtained
condition appears as a natural extension of the necessary and sufficient
condition well known for solving the existence and uniqueness problems for
the index parameter MLE in the sample case.

AMS 2000 subject classifications: Primary 62J02; secondary 62F10.
Keywords and phrases: Count data, hierarchical generalized linear model,
negative binomial regression, Poisson-gamma HGLM, random effects.

Received December 2012.

The Poisson-gamma HGLM are members of the hierarchical generalized linear
model family (Lee and Nelder [14]), which is an extension of the generalized
linear model family and of the generalized linear mixed model family. HGLM
have many fields of application, and are specifically adapted for representing
longitudinal data that are generally correlated (Cameron and Trivedi [4], Hilbe
[12], Lee and Nelder [14], Molas and Lesaffre [19]). For instance, Poisson-gamma
HGLM are used in practice to describe longitudinal count data, as the claim
numbers in non-life insurance (Dionne and Vanasse [6], Boucher et al. [3]), among

∗Corresponding author.

2577

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/13-EJS852
mailto:luciendesgning@yahoo.fr
mailto:daniel.pierre-loti-viaud@upmc.fr


2578 L. Gning and D. Pierre-Loti-Viaud

others. It should be noted that a Poisson-gamma HGLM considered at a single
moment follows a negative binomial regression model (Cameron and Trivedi [4],
Hilbe[12]), since a mixture of Poisson distributions by a gamma distribution
gives a negative binomial distribution (Johnson et al. [13]). Therefore, without
the regression part, a very special case of Poisson-gamma HGLM is the negative
binomial sample. To estimate parameters in HGLM, several methods have been
proposed in the literature, see, for instance, Lee and Nelder [14], Lee et al. [15],
Molas and Lesaffre [19], or Liang and Zeger [18] and Zeger et al. [24]. In this
work, we only focus on the classical maximum likelihood estimation approach.

The existence and uniqueness problems for maximum likelihood estimators
(MLE) in Poisson-gamma HGLM are not considered in the literature, except in
the case of the negative binomial sample (see Levin and Reeds [17] for a correct
solution in this case). And it may be observed that this very special case has
had a “long” history before being entirely resolved (see Fisher [7] and Haldane
[11] for the beginning). The aim of this paper is to provide a breakthrough in
the study of the existence problem for MLE in Poisson-gamma HGLM. The
same issue for generalized linear models and log linear models is discussed for
instance in Christensen [5], Haberman [10], Santner and Duffy [22], a special
case of these types of models consisting of Poisson regression models.

However, it should be noticed that the problem addressed is only partially
solved here. A condition on the observations is presented, and it is only shown
that it is sufficient to solve the MLE existence problem. At present, interesting
extensions of this work seem not to be easy to achieve, despite the fact that
the presented condition appears to be a good candidate to be a necessary and
sufficient condition for solving the existence and uniqueness problems of MLE for
the HGLM Poisson-gamma. On the contrary, the transposition of the obtained
result to the negative binomial regression model is trivial.

To complete this introduction, it is probably useful to discuss the importance
to be given to the fact that maximum likelihood estimators do not always exist.
First, it may be observed that two conditions must be introduced to ensure that
these estimators exist for Poisson-gamma HGLM. The former is typical of the
presence of covariables in a Poisson regression model and ensures that there is
a solution to the likelihood equations associated (Haberman [10]). The second
is concerned with the additional parameter which exists in the Poisson-gamma
HGLM and fixes the longitudinal structure of the model. Also note that the
need for such conditions is well referenced, for example in the special case of
samples of discrete distributions. Moreover, in this latter case, it is known that
these conditions are not satisfied on a set of observations of nonzero probability,
even if the probability of this set converges to 0 when the sample size goes to
infinity. Now, some additional details specifying the role of these conditions are
given by separating theoretical and practical aspects.

The theoretical aspects are considered discussing a well-known example which
is among the simplest possible to be described. Consider a sample of negative
binomial distribution NB(r, p), with parameters r ∈]0,∞[ and p ∈]0, 1[, and
probability mass function f given by f(y) = (Γ(y + r)/(y! Γ(r))) py(1 − p)r for
y ∈ N. The empirical mean and variance are calculated for this sample (the
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empirical variance has to be normalized by the sample size). The necessary and
sufficient condition for solving the existence and uniqueness problems of MLE
for the parameter r and p is then that the empirical variance is strictly greater
than the empirical mean. This condition has long been known (Fisher [7] and
Haldane [11]), but its role was fully demonstrated nearly forty years later (Levin
and Reeds [17]); moreover, incorrect demonstrations have even been published
since this last publication. Under the condition set out the MLE of r and p
exist in ]0,∞[×]0, 1[. What will happen when this condition is not satisfied?
A laborious calculation shows that a solution that maximizes the likelihood
function exists on the boundary of the area where the parameters are defined.
This solution is such that r is equal to infinity, p is equal to 0 and rp is equal
to the empirical mean (and the likelihood function is finite). Then, recalling the
convergence result of the negative binomial distribution NB(r, p) to the Poisson
distribution P(λ) when λ is positive, r goes to infinity, p goes to 0 and rp goes
to λ, the “boundary” solution may be connected to the MLE of parameter λ
in the Poisson sample when the empirical mean is positive. And it remains to
handle the case where the sample mean is zero, again a change of statistical
models can be considered for this purpose. However, from a theoretical point of
view, a comfortable approach is to not change the statistical model and to seek
estimators within their domain of definition. It is a choice which is usually done
and this is the one retained in this paper: the conditions of existence presented
below ensure that the MLE will exist in the area where the parameters are
defined for the model used and not on the boundary of this area. However, it is
important to note that the same boundary phenomenon as the one just described
for the negative binomial sample arises for the Poisson-gamma HGLM. The
Poisson regression models are then the boundary statistical models having to
be considered in that case. As well, the convergence of Poisson-gamma HGLM
to Poisson regression models is a known fact (Gning [8], Rodŕıguez-Avi et al.
[21]) that is used in this paper in proving the main result presented. Indeed, this
convergence result allows to obtain the behavior of the likelihood function when
the parameters are at the border of their domain of definition and this is crucial
to conclude on the existence of MLE in the sense that has been reminded.

From a practical point of view, several numerical methods already exist to find
estimators in the context of HGLM and these algorithms address these models in
a wider context than envisaged here. Some of them, however, rely on the concept
of maximum likelihood (Molas and Lesaffre [19]), other methods are also used
(see, for instance, Lesaffre and Spiessens [16]). What meaning should be given
to the conditions of existence obtained? To the extent that it would be shown
that these conditions are necessary and sufficient to ensure that MLE exist, it
seems inevitable that an algorithm takes into account their function to change
statistical models when they are not satisfied by the observations, and also when
they are close to not be satisfied. Otherwise, errors and instabilities will appear
in a numerical research of MLE. Moreover, it may be indicated that, at least for
the case of a simple negative binomial sample, other estimation methods, such
as the method of moments, encounter the same problem and there exist recent
publications still questioning methods for estimating both parameters r and p
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when the condition of existence of MLE is not satisfied (see, for instance, Al-
Khasawneh [2], Robinson and Smyth [20]). Finally, the following point should
be emphasized. It will be easy to see that the two conditions obtained in the
case of Poisson-gamma HGLM become less easy to check when the number of
covariables in the regression part of the model increases, therefore, the subset of
observations satisfying these conditions is likely to become smaller in this case.

The rest of this paper is organized as follows. In the first section, we present
the Poisson-gamma HGLM and introduce notation that will be useful later. In
the second section, we state our main result, and also preliminary results that
will be used to prove the main result. This section concludes with a conjecture,
since it seems quite likely that our condition is also a necessary and sufficient
condition for the MLE existence and uniqueness in the models considered. All
the results are proved in the third section. And some possible extensions of this
work are discussed in the last section.

1. Poisson-gamma HGLM

Consider a sample of n individuals kept under observation over T periods. For
the individual k during the period t, a random count variable Ykt is observed
and represents the dependent variable, while the J deterministic characteristics
xkt = (xkt1, . . . , xktJ )

′ ∈ R
J are known and represent the covariables. For indi-

vidual k, it is also assumed that there is a real and positive random characteristic
Θk, which is attached but is not observed. Finally, the regression structure will
use the vector of regression parameters β = (β1 . . . βJ)

′

∈ R
J , the quantities

λkt = exp(x′

ktβ), for k = 1, . . . , n and t = 1, . . . , T , and the nT × J regression
matrix X = (x11x12 · · ·xnT )

′.
In this setting, denoting by P(λ) the Poisson distribution of parameter λ,

λ>0, and, by gamma(a, b) the gamma distribution of parameters a and b, a>0,
b>0, the Poisson-gamma HGLM requires the three following assumptions:

(H1) the individual k is represented by the random vector (Θk Yk1 . . . YkT )
′

,
and these vectors are independent for k = 1, . . . , n;

(H2) for each k and θk > 0, given Θk = θk, the variables Yk1, . . . , YkT are inde-
pendent and for each t the conditional distribution of Ykt is the Poisson distri-
bution P(λktθk);

(H3) for each k the distribution of Θk is the gamma distribution gamma(a, a).

For the presentation of the results obtained, one additional assumption must
still be made:

(H4) X is a matrix of full rank, and nT ≥ J .

From these assumptions, it follows that the model defined is identifiable and
satisfies the following constraint:

logλ ∈ F ,
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with λ=(λ11λ12 · · ·λnT )
′

∈R
nT , logλ=(logλ11 log λ12 · · · logλnT )

′

∈R
nT and

F = Im(X)⊂R
nT which is the range ofX . Observe also that the non-conditional

distribution of Ykt is the negative binomial distribution NB(a, λkt/(a+ λkt)),
since, by (H1) and (H2), for ykt ∈ N:

P(Ykt = ykt) =

∫ +∞

0

(λktθk)
ykt

ykt!
e−λktθk

aa

Γ(a)
θa−1
k e−aθkdθk

=
Γ(a+ ykt)

ykt! Γ(a)

(

λkt

a+ λkt

)ykt
(

a

a+ λkt

)a

.

Therefore, when T = 1, the Yk1, k = 1, . . . , n, constitute one of the main forms
of negative binomial regression models, with β as regression parameter and a
as index parameter (see Hilbe [12]).

An extension of the Poisson-gamma HGLM, useful for instance in insurance,
is to assume that individuals are not necessarily observed for the same number
of periods. All results presented seem to be easily extended to cover this case.

2. Existence results for MLE

Starting with the calculus of the log-likelihood expression, this section introduces
the main results obtained. Several preliminary results are also stated.

2.1. The log-likelihood function

For any k = 1, . . . , n, given Θk, the count variables Yk1, . . . , YkT are assumed in-
dependent. Therefore, their joint probability function is given for (yk1 · · · ykT )

′

∈
N

T by:

P(Yk1=yk1, . . . , YkT =ykT ) =

∫ +∞

0

( T
∏

t=1

(λktθk)
ykt

ykt!
e−λktθk

)

aa

Γ(a)
θa−1
k e−aθkdθk

=

( T
∏

t=1

λykt

kt

ykt!

)

aa

Γ(a)

Γ(a+ sk)

(a+ µk)a+sk
,

where sk =
∑T

t=1 ykt and µk =
∑T

t=1 λkt. So that the log-likelihood function
of the model differs of the following function ℓy by a constant term, where

y=(y11 . . . ynT )
′

∈N
nT is the vector of observation:

ℓy(a,β) =

n
∑

k=1

T
∑

t=1

yktx
′

ktβ −
n
∑

k=1

(a+ sk) log

(

a+

T
∑

t=1

ex
′

kt
β

)

+ na log a

+

n
∑

k=1

log

(

Γ(a+sk)

Γ(a)

)
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= y′Xβ −
n
∑

k=1

(a+ sk) log

(

a+
T
∑

t=1

ex
′

kt
β

)

+ na log a+
n
∑

k=1

sk−1
∑

j=0

log(a+ j),

where, for k = 1, . . . , n,
∑sk−1

j=0 log(a+ j) = 0 whenever sk=0 (for properties of
the function gamma, see Abramovitz and Stegun [1]).

Finally, the following notation is introduced. Let r = 1
a and Φ be the function

defined from ]0,+∞[×R
J to R by:

Φ(r,β) = ℓy
(1

r
,β

)

= y′Xβ−
n
∑

k=1

(
1

r
+sk) log

(

1+r

T
∑

t=1

ex
′

kt
β

)

+

n
∑

k=1

sk−1
∑

j=0

log
(

1+rj
)

.

(2.1)
Therefore, passing to the limit as r tends to 0, the function Φ(0, ·) can be defined
from R

J to R by:

Φ(0,β) = y′Xβ −
n
∑

k=1

T
∑

t=1

ex
′

kt
β. (2.2)

And it must be noticed that the function Φ(0, ·) differs of the log-likelihood func-
tion of a Poisson regression model by an additive term which is independent of
the model parameter β. Indeed, that is the model where the Ykt, k = 1, . . . , n,
t = 1, . . . , T , are independent and the distribution of Ykt is the Poisson distribu-
tion P(λkt). Moreover, the following condition is known to be a necessary and
sufficient condition for solving the existence and uniqueness problems of MLE
for this Poisson regression model (see Haberman [10]):

(C1) there exists δ ∈ F⊥ such that ykt + δkt > 0, k = 1, . . . , n, t = 1, . . . , T.

Under (C1), the vector y is nonzero, and the MLE of β in this model is denoted
in the following by β̂(0).

The following remarks can be made on the condition (C1). Recall that all ykt
are natural numbers, so that condition (C1) requires that there is not too many
of these observations of the dependent variable that are equal to zero. In the
particular case of a Poisson sample, the subspace F is generated by the vector
in R

nT with all coordinates equal to 1 and condition (C1) is then equivalent to
at least one of the ykt has to be different from zero (which is also equivalent to
their sum has to be different from zero). On the other hand, when all covariates
are categorical and the Poisson regression model has a multiplicative structure
(Haberman [10], Santner and Dufy [22]), condition (C1) is equivalent to an
elementary form. Indeed, in that case, it can be shown (Gning and Pierre-Loti-
Viaud [9]) that (C1) is equivalent to the fact that for any covariate and any
category of this covariate, there is an observation with this characteristic and
a nonzero dependent variable (in other words, all sums on the margins of the
observations of the dependent variable are different from zero). In general, in a
less accurate way, the dimension of the subspace F gets larger when the number
of covariables increases, which in turn requires an augmentation of the number
of nonzero observations of the dependent variable.
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2.2. Main result

Now, we can state the sufficient condition for the existence of MLE of the
Poisson-gamma HGLM introduced in Section 1, letting, when β̂(0) exists:

λ̂kt(0) = ex
′

kt
β̂(0), k = 1, . . . , n, t = 1, . . . , T,

and considering the condition:

(C2)
1

n

n
∑

k=1

1

T

(

sk−
T
∑

t=1

λ̂kt(0)
)2

−
1

nT

n
∑

k=1

T
∑

t=1

ykt > 0.

Theorem 1. If (C1) and (C2) are satisfied, then the MLE of the parameters a
and β of the model satisfying (H1)-(H4) exist.

Remark 1 (Negative binomial regression model). By taking T = 1, Theorem 1
applies to one of the main forms of negative binomial regression models. As-
suming further that all λk1 are equal, so that Yk1, k = 1, . . . , n, is a negative
binomial sample, then, the condition (C2) becomes: the empirical variance is
strictly greater than the empirical mean. The latter condition is also necessary
and sufficient for the existence and uniqueness of MLE of the index parameter
in a negative binomial sample (Levin and Reeds [17]).

Remark 2. (C2) can be interpreted as the empirical variance “between class”
of the Poisson regression model related to our model has to be greater than
the empirical mean of the observations. Moreover, proceeding as in the first
section, it is easily seen that for k = 1, . . . , n the sum Sk =

∑T
t=1 Ykt follows the

negative binomial distribution NB(a, µk/(a+µk)), where µk =
∑T

t=1 λkt. Since
the variance of a negative binomial distribution is strictly greater than the mean,
a theoretical counterpart of (C2) is thus obtained in writing that the variance
of Sk is strictly greater than its mean and summing in k = 1, . . . , n. Indeed, the
variance of Sk can be rewritten as E((Sk−µk)

2) = E((Sk−
∑T

t=1 λkt)
2), so that,

the Poisson-gamma HGLM introduced in Section 1 satisfies the inequality:

n
∑

k=1

E

((

Sk −
T
∑

t=1

λkt

)2)

>

n
∑

k=1

ESk =

n
∑

k=1

T
∑

t=1

EYkT .

2.3. Preliminary results

The proof of Theorem 1 is based on the following results, where 1nT = (1 . . . 1)
′

∈
R

nT , s = (s11 · · · snT )′ ∈ R
nT with skt = sk, k = 1, . . . , n, t = 1, . . . , T , and

diag(ukt) denote the nT ×nT diagonal matrix in which the diagonal entries are
u11, . . . , unT .

Lemma 1. For each compact subset Kof R
J , when rց 0 the function Φ(r, ·)

converges uniformly on K to the function Φ(0, ·).
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Lemma 2. For r ≥ 0, Φ(r, .) is a strictly concave function, and (C1) is satisfied
if and only if there exists a unique β̂(r) ∈ R

J such that:

Φ(r, β̂(r)) = max
β∈RJ

Φ(r,β).

Lemma 3. If (C1) is satisfied, then, for all neighborhood V of β̂(0) and for
r > 0 small enough, Φ(r, .) has a local maximum on V which is β̂(r).

Lemma 4. If (C1) is satisfied, then limrց0 β̂(r) = β̂(0).

Lemma 5. If (C1) is satisfied, then, for r>0 in a neighborhood of 0:

β̂(r) = β̂(0) + rDβ̂(0) + o(r),

with Dβ̂(0) being equal to:

(

X
′

diag(ex
′

kt
β̂(0))X

)−1
(

X
′

diag
(

ex
′

kt
β̂(0)

T
∑

u=1

ex
′

ku
β̂(0)

)

1nT−X
′

diag
(

ex
′

kt
β̂(0)

)

s

)

.

2.4. Conjecture

The foregoing subsections, and especially Remark 1, lead us to introduce the
following conjecture.

Conjecture The MLE of the parameters of Poisson-gammaHGLM, and there-
fore that of the related negative binomial regression models, exist and are unique
if and only if (C1) and (C2) are satisfied.

3. Proofs

The proofs of the results stated previously are established, starting with the
proofs of the preliminary results of Section 2.3.

3.1. Proof of the preliminary results

Proof of Lemma 1. Fix a compact subset K of RJ . With Ak(β) =
∑T

t=1 e
x

′

kt
β

and B(r) =
∑n

k=1

∑sk−1
j=0 log

(

1 + rj
)

, it follows from (2.1) and (2.2) that, for

all r > 0 and all β ∈ R
J :

|Φ(r,β)− Φ(0,β)| =

∣

∣

∣

∣

n
∑

k=1

Ak(β)−
n
∑

k=1

(
1

r
+ sk) log

(

1 + rAk(β)
)

+B(r)

∣

∣

∣

∣

≤
n
∑

k=1

(

Ak(β)

∣

∣

∣

∣

1−
log

(

1 + rAk(β)
)

rAk(β)

∣

∣

∣

∣

+ sk log
(

1 + rAk(β)
)

)

+B(r).
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Then, since we have 0 < 1− log(1+u)
u ≤ u

2 for u > 0, we obtain, for all r > 0 and
all β ∈ R

J :

|Φ(r,β)− Φ(0,β)| ≤
n
∑

k=1

(

r

2
A2

k(β) + sk log
(

1 + rAk(β)
)

)

+B(r),

Finally, observing that Ak(β) ≤
∑T

t=1 e
‖xkt‖‖β‖, where ‖.‖ denotes the euclidean

norm on R
J , clearly, the last inequality leads to the identity:

lim
rց0

(

sup
β∈K

|Φ(r,β)− Φ(0,β)|
)

= 0.

Proof of Lemma 2. See Haberman [10] for the case r = 0 and Gning [8] or Gning
and Pierre-Loti-Viaud [9] for the case r > 0.

Proof of Lemma 3. Let γ > 0, and let B̄γ be the closed ball in R
J of radius γ,

centered at β̂(0). Moreover, for 0 < γ1 < γ, let Bγ1
be the open ball of radius

γ1, centered at β̂(0). Under (C1), we have by Lemma 2:

ε = Φ(0, β̂(0))− max
β∈B̄γ β/∈Bγ1

Φ(0,β) > 0.

Then, according to Lemma 1, there exists r0 > 0 small enough such that:

sup
β∈B̄γ

|Φ(r,β)− Φ(0,β)| <
ε

3
, 0 ≤ r ≤ r0,

from which we deduce the following inequalities:

Φ(r, β̂(0))>Φ(0, β̂(0))−
ε

3
, 0 ≤ r ≤ r0,

and:

Φ(r,β)<Φ(0, β̂(0))−
2ε

3
, β∈B̄γ−Bγ1

, 0 ≤ r ≤ r0.

Hence, for 0 < r < r0, the smooth function Φ(r, .) has a local maximum in Bγ1

and this local maximum is necessarily the global maximum β̂(r) because of the
strict concavity of Φ(r, .).

Proof of Lemma 4. The proof is a direct consequence of Lemmas 2 and 3.

Proof of Lemma 5. We have to prove that the function β̂ is of class C1 in a right
neighborhood of 0, and we must establish a first order Taylor expansion at this
point.

Consider the function f defined from [0,+∞[×R
J to R

J by:

f(r,β) = ∇βΦ(r,β).
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If (C1) is satisfied, then Lemma 2 yields that for r ≥ 0, β̂(r) exists and is the
unique solution of the equation f(r,β) = 0, with:

f(r,β) = X ′y −
n
∑

k=1

(1 + rsk)

T
∑

t=1

ex
′

kt
β

1 + r
∑T

u=1 e
x

′

ku
β
xkt

=

n
∑

k=1

T
∑

t=1

xkt

(

ykt − (1 + rsk)
ex

′

kt
β

1 + r
∑T

u=1 e
x

′

ku
β

)

.

This will show that the function β̂ is of class C1 by using the Implicit Function
Theorem (see, for example, Spivak [23]). This theorem is applied at 0, in a right
neighborhood of 0. The hypotheses of the Implicit Function Theorem are now
checked.

First, note that f is of class C1, and let Dβf denote its partial derivative with
respect to β, and Drf denote its partial derivative with respect to r. Then, it
is easily obtained that, for r ≥ 0:

Dβf(r,β) = −X ′diag

(

(1 + rsk) e
x

′

kt
β

(1 + r
∑T

u=1 e
x

′

ku
β)2

)

X,

Drf(r,β) =

−X
′

diag

(

ex
′

kt
β

1 + r
∑T

u=1 e
x

′

ku
β

)

s+X
′

diag

(

ex
′

kt
β
∑T

u=1 e
x

′

ku
β

(1 + r
∑T

u=1 e
x

′

ku
β)2

)

(1+rs).

Now, we have:
f(0, β̂(0)) = ∇βΦ(0, β̂(0)) = 0,

and:
Dβf(0, β̂(0)) = −X

′

diag
(

ex
′

kt
β̂(0)

)

X,

where Dβf(0, β̂(0)) is invertible since X is a full-rank matrix and nT ≥ J by
(H4).

It thus follows by using the Implicit Function Theorem that there exist r1>r0,
V an open neighborhood of β̂(0) and h a function of class C1 defined from [0, r1[
to V , such that, for all 0 ≤ r < r1:

f(r,β) = ∇βΦ(r,β) = 0 ⇐⇒ β = h(r),

moreover, for all 0 ≤ r < r1:

Dh(r) = −
(

Dβf(r, h(r))
)−1

Drf(r, h(r)).

Finally, since there exists a unique solution for the equation f(r,β) = 0 for
r ≥ 0, we have β̂(r) = h(r) for 0 ≤ r < r1. Hence, the function β̂=h is of class
C1 in [0, r1[ , and its first order Taylor expansion at 0 is given by:

β̂(r) = β̂(0) + rDβ̂(0) + o(r),
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where some straightforward calculations lead to the expression:

Dβ̂(0) =
(

X
′

diag(ex
′

kt
β̂(0))X

)−1
(

X
′

diag
(

ex
′

kt
β̂(0)

T
∑

u=1

ex
′

ku
β̂(0)

)

1nT

−X
′

diag
(

ex
′

kt
β̂(0)

)

s

)

.

3.2. Proof of Theorem 1

First, under (C1), and for each r ≥ 0, the problem argmax
β∈RJ

Φ(r,β) is solved

according to Lemma 2 and its unique solution is denoted by β̂(r). In addition,
it must be recalled that β̂(r) is also the unique solution of ∇βΦ(r,β) = 0.

The completion of the proof of Theorem 1 then consists in showing that
(C2) is a sufficient condition for the existence of solutions of the problem
argmax
r∈]0,+∞[

Φ(r, β̂(r)), given that, for each r > 0, ∇βΦ(r, β̂(r)) = 0.

To achieve this goal, let Ψ(r) = Φ(r, β̂(r)), r ≥ 0 , and observe that, using
(C1):

Ψ(r)=(y+δ)′Xβ̂(r)−
n
∑

k=1

(
1

r
+sk) log

(

1+r

T
∑

t=1

ex
′

kt
β̂(r)

)

+

n
∑

k=1

sk−1
∑

j=0

log
(

1+rj
)

,

(3.1)
where δ = (δ11 . . . δnT )

′

∈ F⊥ (so that δ′X = 0), and is such that ykt + δkt > 0
for k = 1, . . . , n and t = 1, . . . , T . Then, the rest of the proof will be completed
by studying:

• the limit of Ψ at +∞, and we will show that limr→+∞ Ψ(r) = −∞;
• the behavior of Ψ in a neighborhood of 0, and we will recall that lim

r→0
Ψ(r)=

Ψ(0), specifying in addition the position of Ψ with respect to its limit.

In fact, thanks to these properties, if the function Ψ is strictly above its limit
in a neighborhood of 0, and since it is a continuous function, then it reaches its
maximum in ]0,+∞[ .

Limit of Ψ at +∞
First, observe that if δ satisfies (C1), then for 0 < α < 1 any αδ satisfies

too (C1) since all ykt are natural numbers. We thus consider a δ of the form
δ = ∆

r , where ∆ = (∆11 . . .∆nT )
′

∈ R
nT and ∆kt < 1/T for k = 1, . . . , n and

t = 1, . . . , T . Then, Ψ may be rewritten as follows:

Ψ(r) = (y+δ)′Xβ̂(r)−
n
∑

k=1

(
1

r
+sk) log

(

1

r
+

T
∑

t=1

ex
′

kt
β̂(r)

)

+

n
∑

k=1

sk−1
∑

j=0

log
(1

r
+j

)

+
n

r
log(

1

r
). (3.2)
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We start by observing that obviously:

lim
r→+∞

n

r
log(

1

r
) = 0. (3.3)

In addition, it is easy to show that:

lim
r→+∞

n
∑

k=1

sk−1
∑

j=0

log(
1

r
+ j) = −∞. (3.4)

Indeed, if (C1) is satisfied, the observation that y is nonzero is crucial, so that
the set A = {k ∈ {1, . . . , n} : sk > 0} is not empty. Now, since for k ∈ A, the
presence of the term j = 0 yields:

lim
r→+∞

sk−1
∑

j=0

log(
1

r
+ j) = −∞,

while for the other k, by definition we have:

sk−1
∑

j=0

log(
1

r
+ j) = 0,

the proof of (3.4) is therefore complete.
Then, the final step consists in showing that the remaining term defining

Ψ in (3.2) is bounded above when r → +∞. For that purpose, let η̂(r) =
(η̂11(r) · · · η̂nT (r)) ∈ R

nT , where η̂kt(r) = x
′

ktβ̂(r), k = 1, . . . , n, t = 1, . . . , T ,

and let, for η = (η11 . . . ηnT )
′

∈R
nT and r > 0:

ϕ(η, r) =
n
∑

k=1

T
∑

t=1

(ykt +
∆kt

r
)ηkt −

n
∑

k=1

(
1

r
+ sk) log

(1

r
+

T
∑

t=1

eηkt

)

. (3.5)

We observe that the function ϕ is not explicitly related to the log-likelihood
of some statistical model (because of the presence of the ∆kt), but this func-
tion retains the properties summarized in the following lemma, whose proof is
deferred to the next sub-section.

Lemma 6. Assuming that ∆kt < 1/T , k = 1, . . . , n, t = 1, . . . , T , then, for
each r > 0, the function ϕ(·, r) is of class C∞ and strictly concave in R

nT .
Moreover, its maximum is reached at a unique point η̃(r) ∈ R

nT , which is the
unique solution of ∇ηϕ(η, r) = 0 and is given by η̃(r) = (η̃11 · · · η̃nT )′ with:

η̃kt = log

(

ykt +∆kt/r

1−
∑T

u=1 ∆ku

)

, k = 1, . . . , n, k = 1, . . . , T.

From this, the following upper bound is obtained:

(y + δ)′Xβ̂(r) −
n
∑

k=1

(
1

r
+ sk) log

(

1

r
+

T
∑

t=1

ex
′

kt
β̂(r)

)

= ϕ(η̂(r), r)
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≤ sup
η∈RnT

ϕ(η, r) = ϕ(η̃(r), r),

where:

ϕ(η̃(r), r) =
n
∑

k=1

T
∑

t=1

(ykt +
∆kt

r
) log

(

ykt +
∆kt

r

1−
∑T

u=1∆ku

)

−
n
∑

k=1

(
1

r
+ sk) log

(1

r
+

T
∑

t=1

ykt +
∆kt

r

1−
∑T

u=1∆ku

)

=
n
∑

k=1

T
∑

t=1

(ykt +
∆kt

r
) log

(

ykt +
∆kt

r

)

−
n
∑

k=1

(
1

r
+ sk) log

(1

r
+ sk

)

+

n
∑

k=1

1−
∑T

t=1 ∆kt

r
log

(

1−
T
∑

u=1

∆ku

)

,

Moreover, making use of the convention z log z = 0 when z = 0, it is easily seen
that:

lim
r→+∞

ϕ(η̃(r), r) =
n
∑

k=1

T
∑

t=1

ykt log ykt −
n
∑

k=1

sk log sk < +∞.

In particular, these results imply that:

lim sup
r→+∞

(

(y + δ)′Xβ̂(r) −
n
∑

k=1

(
1

r
+ sk) log

(1

r
+

T
∑

t=1

ex
′

kt
β̂(r)

)

)

< +∞,

which, when combined with (3.2), (3.3) and (3.4), completes the proof that:

lim
r→+∞

Ψ(r) = −∞.

Behavior of Ψ in a neighborhood of 0

In this step, we take δ = 0 in the expression (3.1) of Ψ. A Taylor expansion
at order 1 will be established for Ψ in a right neighborhood of 0. And it should
be noted that all the expansions in what follows are given for r in a right
neighborhood of 0.

We start from the result of Lemma 5, by combining this result with the Taylor
expansions:

log(1 + rj) = rj + o(r), j ∈ N,

and, since β̂(r) is bounded in a right neighborhood of 0, for k = 1, . . . , n:

log
(

1 + r

T
∑

t=1

ex
′

kt
β̂(r)

)

= r

T
∑

t=1

ex
′

kt
β̂(r) +

r2

2

(

T
∑

t=1

ex
′

kt
β̂(r)

)2

+ o(r2),
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So that, we also have, for k = 1, . . . , n:

log
(

1 + r
T
∑

t=1

ex
′

kt
β̂(r)

)

= r
T
∑

t=1

ex
′

kt
β̂(0)erx

′

kt
Dβ̂(0) +

r2

2

(

T
∑

t=1

ex
′

kt
β̂(0)

)2

+ o(r2)

= r
T
∑

t=1

ex
′

kt
β̂(0) + r2

( T
∑

t=1

x
′

ktDβ̂(0) ex
′

kt
β̂(0) +

1

2

(

T
∑

t=1

ex
′

kt
β̂(0)

)2
)

+ o(r2),

where the Taylor expansion eu = 1+ u+ o(u) for u in a neighborhood of 0, has
been used to establish the last equality.

Combining these Taylor expansions leads to the following expansion for the
function Ψ:

Ψ(r) = y′Xβ̂(0)−
n
∑

k=1

T
∑

t=1

ex
′

kt
β̂(0) + r

(

y′XDβ̂(0)−
n
∑

k=1

T
∑

t=1

x
′

ktDβ̂(0) ex
′

kt
β̂(0)

+
1

2

n
∑

k=1

(

T
∑

t=1

ex
′

kt
β̂(0)

)2

−
n
∑

k=1

sk

(

T
∑

t=1

ex
′

kt
β̂(0)

)

+
n
∑

k=1

sk−1
∑

j=0

j

)

+ o(r)

= Φ(0, β̂(0)) +r
n
∑

k=1

(

1

2

(

T
∑

t=1

λ̂kt(0)
)2

− sk

T
∑

t=1

λ̂kt(0) +
sk(sk−1)

2

)

+o(r)

= Φ(0, β̂(0)) +
r

2

n
∑

k=1

(

(

sk −
T
∑

t=1

λ̂kt(0)
)2

− sk

)

+ o(r),

where we recall that λ̂kt(0) = ex
′

kt
β̂(0), k = 1, . . . , n, t = 1, . . . , T , and that:

y′X =

n
∑

k=1

T
∑

t=1

x
′

kt e
x

′

kt
β̂(0) ⇔ ∇βΦ(0, β̂(0)) = 0.

Thus, the position of Ψ with respect to its limit Φ(0, β̂(0)) = Ψ(0) is given
by the sign of C, where:

C =

n
∑

k=1

(

(

sk −
T
∑

t=1

λ̂kt(0)
)2

− sk

)

=

n
∑

k=1

(

sk −
T
∑

t=1

λ̂kt(0)
)2

−
n
∑

k=1

T
∑

t=1

ykt.

So that, if C > 0, then in a right neighborhood of 0, Ψ is strictly above its limit
in 0. Hence, there exists a maximum of Ψ that is attained in ]0,∞[ when (C2)
is satisfied .
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3.3. Proof of Lemma 6

First, fix r > 0. With the function ϕ(., r) as defined by (3.5), it is easily verified
that it is C∞ on R

nT , and satisfies too:

∇ηϕ(η, r) = y + δ − diag

(

eηkt

1
r +

∑T
u=1 e

ηku

)

(
1

r
1nT + s),

and, for k, k1 and k2 in {1, . . . , n}, and t, t1 and t2 in {1, . . . , T }:

∂2ϕ

∂η2kt
(η, r) =

(

−
eηkt

1
r +

∑T
u=1 e

ηku

+
e2ηkt

(1r +
∑T

u=1 e
ηku)2

)

(
1

r
+ sk);

∂2ϕ

∂ηkt1∂ηkt2
(η, r) =

eηkt1+ηkt2

(1r +
∑T

u=1 e
ηku)2

(
1

r
+ sk), t1 6= t2;

∂2ϕ

∂ηk1t1∂ηk2t2

(η, r) = 0, k1 6= k2.

Thus, any solution η of the equation ∇ηϕ(η, r) = 0 verifies:

0 < ykt +
∆kt

r
=

(1r + sk)
1
r +

∑T
u=1 e

ηku

eηkt , k = 1, . . . , n, t = 1, . . . , T.

That is, for each k = 1, . . . , n, the quantities eηkt are proportional to ykt +
∆kt

r
when t = 1, . . . , T , which implies, after an easy calculation, that η is necessarily
equal to η̃(r) = (η̃11 · · · ηnT )′ defined by:

η̃kt = log

(

ykt +∆kt/r

1−
∑T

u=1 ∆ku

)

, k = 1, . . . , n, k = 1, . . . , T.

It should be noted that under our assumptions, we have
∑T

u=1 ∆ku < 1 for
k = 1 . . . , n.

On the other hand, for each k = 1, . . . , n, let ak = (ak1 · · · akT )′ ∈ R
T be

such that akt = eηkt/(1/r +
∑T

u=1 e
ηku), t = 1, . . . , T , and let Dk be the T×T

diagonal matrix in which the diagonal entries are the akt, t = 1, . . . , T . Then,
denoting by Hηϕ(η, r) the Hessian matrix with respect to the vector variable
η, this matrix is block diagonal and equal to:

Hηϕ(η, r) =







H1 0 0

0
. . . 0

0 0 Hn






,

where, for each k = 1, . . . , n, Hk is the T×T symmetric matrix satisfying:

Hk = (
1

r
+ sk)(aka

′
k −Dk).
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Moreover, for all k = 1, . . . , n, we have akt> 0, t = 1, . . . , T , and
∑T

u=1aku< 1,
so that it can easily be shown that aka

′
k −Dk, and therefore Hk, is a negative-

definite matrix. Which obviously implies that the Hessian matrix is negative-
definite and that ϕ(., r) is a strictly concave function on R

J .

Finally, the function ϕ(., r) being strictly concave, and having a value η̃(r)
that cancels its gradient, the function ϕ(., r) reaches its maximum at the same
value.

4. Conclusion

When a parametric statistical model is used in the case of count observations,
in general there is a nonzero probability subset of the observations on which the
MLE are not found in the area where the parameters are defined. The existence
of this problem is well referenced, at least for the samples, and for the GLM
or log linear models. It is also known when other methods of estimation are
used, as is the case when the moment method is applied to a sample of negative
binomial distribution. The study of this problem in the context of HGLM is
addressed in this work for the estimators obtained by the maximum likelihood
method, but considering only the case of HGLM Poisson-gamma having regard
to the difficulty encountered in its solving. In contrast, and although extensions
are still required, the result obtained allow to evaluate the importance of this
phenomenon. In particular, an augmentation of the importance of the regression
component, with its own constraint, seems to increase the influence of the second
constraint obtained. And one can reasonably expect that such a phenomenon
exists for extensions of the model presented, always for count data, but also for
other methods of research of estimators. The present study begin to measure
its importance in the HGLM setting.

It may then be noted that among the HGLM that deserve to be studied,
the ones where the Poisson distribution is replaced by the negative binomial
distribution can be cited because another complication arises in this case. The
work done here has greatly benefited of the fact that the multidimensional dis-
tribution of the count data has an explicit form, but this fact is not true for
most extensions that can be considered and notably in the ones just mentioned.
It can also be observed that, although numerical procedures currently exist for
determining the MLE in the case of Poisson-gamma HGLM, it is important to
be informed of the conditions under which such MLE exist. When these condi-
tions are not satisfied by the data, errors and numerical instabilities will have a
negative impact on the quality of estimator evaluation to be obtained.

At that time several extensions of the work done can be considered. The main
objective being to complete the proof of the conjecture that the (C1) and (C2)
conditions are necessary and sufficient for the existence and uniqueness of the
MLE in the Poisson-gamma HGLM. In addition, by referring to the full case
study of a negative binomial sample, it should be observed that the work done
is the easiest part among those necessary to achieve this objective. The study of
others HGLM is also an important aim. On the other hand, small extensions of
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the results obtained can be easily considered. For example, if the n individuals
are not observed on the same number of periods, an extension of Theorem 1
appears clearly as possible following the same pattern of demonstration. For the
particular case where xkt = xk for k = 1, . . . , n, t = 1, . . . , T , a detailed study
is given in Gning [8].
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