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Abstract: In real life we often have to deal with situations where the sam-
pled observations are independent and share common parameters in their
distribution but are not identically distributed. While the methods based
on maximum likelihood provide canonical approaches for doing statistical
inference in such contexts, it carries with it the usual baggage of lack of
robustness to small deviations from the assumed conditions. In the present
paper we develop a general estimation method for handling such situa-
tions based on a minimum distance approach which exploits the robustness
properties of the density power divergence measure (Basu et al. 1998 [2]).
We establish the asymptotic properties of the proposed estimators, and
illustrate the benefits of our method in case of linear regression.
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1. Introduction

The standard and basic problem of statistical inference provides the exper-
imenter with a suitably chosen random sample from a distribution of interest
which is appropriately modeled by a parametric family and the experimenter has
to estimate the unknown parameters and/or perform tests of hypothesis about
them. However more complex cases are quite frequent in real life, and often the
experimenter is faced with the situation where the observations, although inde-
pendent, do not have the same distribution. Yet the associated random variables
may share a common parameter which might be of interest to us. Depending
on the situation, the problem in this case can be quite non-routine and useful
methods that can deal with such situations may be of great practical value. Our
aim in this paper is to develop a general method of estimation for such problems
with particular attention on the robustness issue. We plan to exploit the robust-
ness and the other desirable properties of the density power divergence measure
(Basu et al. 1998 [2]) to develop estimators with good robustness properties in
this general scenario.

In some cases, of course, such problems have been extensively studied. A sim-
ple example in this connection is the linear regression problem with normal er-
rors. The least squares method has long been in use to handle this problem, and
the robustness problem of this method has also been recognized for a while. Yet
other situations, such the Poisson regression problem, have not been explored
nearly to that extent, and there are few, if any, robust techniques available to
deal with such problems. We trust that our approach will provide a general
technique to handle this and other situations involving independent but non-
homogeneous data.
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The rest of the paper is organized as follows. In Section 2 we present the
proposed approach where we define the minimum density power divergence es-
timator in case of independent but non-homogeneous observations and the cor-
responding estimating equation. Section 3 presents the asymptotic properties
of the proposed minimum density power divergence estimators. The robustness
issue of these estimators is considered in Sections 4 and 5 through the influence
function analysis and breakdown results respectively. Section 6 provides the ap-
plication of the proposed approach in case of linear regression models and some
real data regression examples are presented in Section 7. Concluding remarks
are presented in Section 8. To avoid interrupting the flow of the article, the
proofs of all the results derived in this paper are presented in the Appendix.

2. The minimum density power divergence (DPD) estimator for
independent non-homogeneous observations

Basu et al. (1998) [2] introduced the density power divergence family as a mea-
sure of discrepancy between two probability density functions and used this
family for robustly estimating the model parameter under the usual set up
of independent and identically distributed data. The density power divergence
measure dα(g, f) between the densities g and f is defined, as the function of a
single tuning parameter α (≥0), as

dα(g, f) =

∫ {

f1+α −
(

1 +
1

α

)

fαg +
1

α
g1+α

}

, α > 0 (2.1)

d0(g, f) =

∫

g ln

(

g

f

)

. (2.2)

Here ln represents the natural logarithm. Basu et al. (1998) [2] demonstrated
that the parameter α controls the trade-off between efficiency and robustness
of the minimum density power divergence estimator. While the divergence is
not defined for α = 0, d0(·, ·) represents the divergence obtained in the limit as
α → 0; presented in Equation (2.2), this measure is a version of the Kullback-
Leibler divergence. On the other hand α = 1 generates the squared L2 distance.

Let G represent the true, data generating distribution, and let g be the corre-
sponding density function. We model the true unknown density function g with
the family of densities Fθ = {fθ(x) : θ ∈ Θ ∈ R

p}; the minimizer of dα(g, fθ)
over θ ∈ Θ is the minimum DPD functional at the distribution point G. Notice
that the third term of the divergence dα(g, fθ) is independent of θ and hence
does not figure in the minimization process; the relevant objective function
therefore includes the first two terms only. Suppose now that an independent
and identically distributed (i.i.d.) sample X1, . . . , Xn is available from the true
distribution. The minimum DPD estimator of θ can then be obtained by mini-
mizing

∫

f1+α
θ −

(

1 +
1

α

)

1

n

n
∑

i=1

fα
θ (Xi)
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over θ ∈ Θ. In the above expression the empirical Gn has been used to approx-
imate the relevant theoretical quantity; this allows the experimenter to avoid
kernel density estimation and related bandwidth selection issues. This approxi-
mation works only because the density g shows up linearly in the middle term
of dα(g, f) in Equation (2.1).

Here we generalize the above concept of robust minimum density power di-
vergence estimation to the case of independent but not identically distributed
observations. Let us assume that our observed data Y1, . . . , Yn are independent
but for each i, Yi ∼ gi where g1, . . . , gn are possibly different densities with
respect to some common dominating measure. We want to model gi by the fam-
ily Fi,θ = {fi(·; θ)|θ ∈ Θ} for all i = 1, 2, . . .. Thus while the distributions are
possibly different, they all share the same parameter θ. We want to estimate θ
by minimizing the density power divergence between the data and the model.
However, here the model density is different for each Yi, and hence we need to
calculate the divergence between data and model separately for each data point.
Considering all the data points it is intuitive to minimize the average divergence
between the data points and the models. Therefore if dα(ĝi, fi(.; θ)) denotes the
density power divergence between the density estimate corresponding to the i-th
data point and the associated model density, we minimize

1

n

n
∑

I=1

dα(ĝi, fi(.; θ))

with respect to θ ∈ Θ. In the presence of only one data point Yi from density gi,
the best possible density estimate of gi is the (degenerate) density which puts
the entire mass on Yi so that we have

dα(ĝi, fi(·; θ)) =
∫

fi(y; θ)
1+αdy −

(

1 +
1

α

)

fi(Yi; θ)
α +K

where K is a constant independent of θ, the parameter of interest. Thus, for the
purpose of estimation it suffices to minimize the objective function

Hn(θ) =
1

n

n
∑

i=1

[∫

fi(y; θ)
1+αdy −

(

1 +
1

α

)

fi(Yi; θ)
α

]

=
1

n

n
∑

i=1

Vi(Yi; θ)

(2.3)
where Vi(·; θ) is the indicated term within the square brackets in the above equa-
tion. Differentiating the above with respect to θ we get the estimating equation
of the minimum density power divergence estimator for non-homogeneous ob-
servations as

∇
n
∑

i=1

Vi(Yi; θ) = 0

which on simplification leads to the equation

n
∑

i=1

[

fi(Yi; θ)
αui(Yi; θ)−

∫

fi(y; θ)
1+αui(y; θ)dy

]

= 0. (2.4)
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Here ∇ represents the gradient with respect to θ, and ui(y; θ) = ∇ ln fi(y; θ)
is the score function for the model of the i-th density. Note that the above
estimating equation is unbiased when each data generating density gi belongs
to the corresponding model family Fi,θ. Further note that like the minimum
density power divergence estimator for the i.i.d. case, here also we do not require
the kernel density estimator and hence we can avoid the problem of bandwidth
selection and other associated difficulties.

Note that in the limit where α → 0, the corresponding objective function to
be minimized is given by

1

n

n
∑

i=1

[− ln(fi(Yi; θ))] .

The minimizer of the above also maximizes
∑n

i=1 ln(fi(Yi; θ)), and hence
∏n

i=1 fi(Yi; θ), with respect to θ. Thus the minimum density power estimator
with α = 0 is nothing but the maximum likelihood estimator for which the
estimating equation has the form

n
∑

i=1

ui(Yi, θ) = 0.

Therefore the estimating equation in (2.4) is a simple generalization of the
maximum likelihood score equation for independently and identically distributed
data.

In terms of statistical functionals, the minimum density power divergence
functional Tα(G1, . . . , Gn) for non-homogeneous observations is given by the
relation

1

n

n
∑

i=1

dα(gi(.), fi(.;Tα(G1, . . . , Gn))) = min
θ∈Θ

1

n

n
∑

i=1

dα(gi(.), fi(.; θ)).

Since the density power divergence is a genuine divergence in the sense that
it is nonnegative and attains its minimum if and only if the two arguments
are identical, it follows that the functional Tα(G1, . . . , Gn) is Fisher consistent
under the assumption of identifiability of the model.

3. Asymptotic properties

We will now derive the asymptotic distribution of the minimum density power
divergence estimator θ̂n defined by the relation

Hn(θ̂n) = min
θ∈Θ

Hn(θ)

provided such a minimum exists. Let us first present the necessary set up and
conditions. Let the parametric model Fi,θ be as defined above in Section 2. We
also assume that there exists a best fitting parameter of θ which is independent
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of the index i of the different densities and let us denote it by θg. All the results
of this section will be derived under these assumptions. The assumption holds
if all the true densities gi belong to the model family so that gi = fi(·; θ) for
some common θ, and in that case the best fitting parameter is nothing but the
true parameter θ.

Next, recall that the minimum DPD estimator θ̂n is obtained as a solution
of the estimating equation (2.4). This equation is satisfied by the minimizer of
Hn(θ) in (2.3). Similarly, we also define, for i = 1, 2, . . .,

H(i)(θ) =

∫

fi(y; θ)
1+αdy −

(

1 +
1

α

)∫

fi(y; θ)
αgi(y)dy (3.1)

Note that at the best fitting parameter θg, we must have

∇H(i)(θg) = 0, i = 1, 2, . . . .

We also define, for each i = 1, 2, . . ., the p× p matrix J (i) whose (k, l)-th entry
is given by

J
(i)
kl =

1

1 + α
Egi [∇klVi(Yi; θ)] , (3.2)

where ∇kl represents the partical derivative with respect to the indicated com-
ponents of θ. We further define the quantities

Ψn =
1

n

n
∑

i=1

J (i), (3.3)

Ωn =
1

n

n
∑

i=1

V argi [∇Vi(Yi; θ)] , (3.4)

where V ar represents the variance of the random variable. A simple calculation
shows that,

J (i) =

∫

ui(y; θ
g)uT

i (y; θ
g)f1+α

i (y; θg)dy

−
∫

{∇ui(y; θ
g) + αui(y; θ

g)uT
i (y; θ

g)}{gi(y)− fi(y; θ
g)}fi(y; θg)αdy

(3.5)

and

Ωn =
1

n

n
∑

i=1

[∫

ui(y; θ
g)uT

i (y; θ
g)fi(y; θ

g)2αgi(y)dy − ξiξ
T
i

]

, (3.6)

where

ξi =

∫

ui(y; θ
g)fi(y; θ

g)αgi(y)dy. (3.7)

We will make the following assumptions to establish the asymptotic proper-
ties of the minimum DPD estimators:
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(A1) The support χ = {y|fi(y; θ) > 0} is independent of i and θ for all i; the
true distributions Gi are also supported on χ for all i.

(A2) There is an open subset of ω of the parameter space Θ, containing the
best fitting parameter θg such that for almost all y ∈ χ, and all θ ∈ Θ,
all i = 1, 2, . . ., the density fi(y; θ) is thrice differentiable with respect to
θ and the third partial derivatives are continuous with respect to θ.

(A3) For i = 1, 2, . . ., the integrals
∫

fi(y; θ)
1+αdy and

∫

fi(y; θ)
αgi(y)dy can

be differentiated thrice with respect to θ, and the derivatives can be taken
under the integral sign.

(A4) For each i = 1, 2, . . ., the matrices J (i) are positive definite and

λ0 = inf
n

[min eigenvalue of Ψn] > 0

(A5) There exists a function M
(i)
jkl(y) such that

|∇jklVi(y; θ)| ≤ M
(i)
jkl(y) ∀θ ∈ Θ, ∀i

where
1

n

n
∑

i=1

Egi

[

M
(i)
jkl(Y )

]

= O(1) ∀j, k, l.

(A6) For all j, k, we have

lim
N→∞

sup
n>1

{

1

n

n
∑

i=1

Egi [|∇jVi(Y ; θ)|I(|∇jVi(Y ; θ)| > N)]

}

= 0 (3.8)

lim
N→∞

sup
n>1

{

1

n

n
∑

i=1

Egi [|∇jkVi(Y ; θ)− Egi(∇jkVi(Y ; θ))|

× I(|∇jkVi(Y ; θ)− Egi(∇jkVi(Y ; θ))| > N)]

}

= 0 (3.9)

where I(B) denotes the indicator variable of the event B.
(A7) For all ǫ > 0, we have

lim
n→∞

{

1

n

n
∑

i=1

Egi

[

||Ω−1/2
n ∇Vi(Y ; θ)||2I(||Ω−1/2

n ∇Vi(Y ; θ)|| > ǫ
√
n)
]

}

= 0

(3.10)

Theorem 3.1. Under Assumptions (A1)–(A7), the following results hold:

(i) There exists a consistent sequence θn of roots to the minimum DPD esti-
mating equation (2.4).

(ii) The asymptotic distribution of Ω
− 1

2
n Ψn[

√
n(θn−θg)] is p−dimensional nor-

mal with (vector) mean 0 and covariance matrix Ip, the p-dimensional
identity matrix.
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Remark 3.1. [i.i.d. Case] Note that, setting fi = f for all i, we get back the
corresponding asymptotic properties of the minimum density power divergence
estimator for the i.i.d. case as given in Basu et al. (1998) [2]. If fi = f , i =
1, 2, . . ., we get J (i) = J , ξi = ξ for all i; thus Ψn = J and Ωn = K. Here
J , K and ξ are as defined in Basu et al. (1998 [2], Section 3.2). In this case
assumptions (A1)–(A5) are exactly the same as the assumptions given in Basu
et al. [2], while assumptions (A6) and (A7) are automatically satisfied by the
dominated convergence theorem. Thus the Basu et al. (1998) [2] result, which
establishes the consistency and asymptotic normality of the minimum density
power divergence estimator θ̂ with n1/2(θ̂−θg) having the asymptotic covariance
matrix Ψ−1

n ΩnΨ
−1
n = J−1KJ−1, emerges as a special case of Theorem 3.1.

Remark 3.2. The assumptions (A1)–(A5) are simple generalizations of the
assumptions of Basu et al. (1998) [2] for proving the asymptotic normality of
the minimum density power divergence estimator in the i.i.d. case. The as-
sumptions (A6) and (A7) are similar in spirit to the corresponding assumptions
required in the case of the maximum likelihood estimators under the similar
independent non-homogeneous set-up [Ibragimov and Has’minskii (1981 [10],
p. 191)]. These assumptions hold automatically for the minimum density power
divergence estimators in the i.i.d. case as observed in Remark 3.1. In subse-
quent sections we will see that these assumptions hold, for example, for the
normal linear regression models under some mild conditions on the independent
variables.

4. Influence function analysis

We will now derive the influence function of the minimum density power di-
vergence functional for the non-homogeneous data case. Let Gi denote the true
distribution for the datum Yi, and T (G1, . . . , Gn) be the minimum density power
divergence functional defined as the minimizer of

n
∑

i=1

H(i)(θ) =

n
∑

i=1

[∫

fi(y; θ)
1+αdy − 1 + α

α

∫

fi(y; θ)
αdGi(y)

]

, (4.1)

or, under appropriate differentiability conditions, as the solution of the estimat-
ing equation

∑n
i=1 ∇H(i)(θ) = 0, i.e.,

(1 + α)
∑n

i=1

[∫

fi(y; θ)
1+αui(y; θ)dy −

∫

fi(y; θ)
αui(y; θ)gi(y)dy

]

= 0.

(4.2)

To derive the Influence function for our special non i.i.d. set-up, we will follow
the approach used by Huber (1983) [9] in the context of the influence function for
the non i.i.d. fixed-carriers linear models. We consider the contaminate density
gi,ǫ = (1−ǫ)gi+ǫ∧ti where ∧ti is the degenerate distribution at the the point of
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contamination ti and Gi denotes corresponding distribution function for all i =
1, . . . , n. Let θ = Tα(G1, . . . , Gn), and let θi0ǫ = Tα(G1, . . . , Gi0−1, Gi0,ǫ, . . . , Gn)
be the minimum density power divergence functional with contamination only in
the i0-th direction. Now substitute θi0ǫ and gi0,ǫ in place of θ and gi0 respectively
in the estimating equation (4.2); differentiating with respect to ǫ and evaluating
at ǫ = 0, we then get the influence function of the functional which considers
contamination only along the i0-th direction to be

IFi0(ti0 , Tα, G1, . . . , Gn) = Ψ−1
n

1

n
[fi0(ti0 ; θ)

αui0(ti0 ; θ)− ξi0 ] . (4.3)

where ξi =
∫

ui(y; θ)fi(y; θ)gi(y)dy. Similarly, letting θǫ = Tα(G1,ǫ, . . . , Gn,ǫ)
and proceeding similarly, we get the influence function with contamination at
all the data-points as

IF (t1, . . . , tn, Tα, G1, . . . , Gn) = Ψ−1
n

1

n

n
∑

i=1

[fi(ti; θ)
αui(ti; θ)− ξi0 ] . (4.4)

In particular, letting ti = t, Gi = G and fi = f in above, we get back the
influence function of the minimum density power divergence estimator for the
i.i.d. case given by

IF (t, Tα, G) = J−1 [f(t; θ)αu(t; θ)− ξ] (4.5)

where J and ξ are as given in Section 3.2 of Basu et al.(1998) [2].
Hampel (1968 [6], 1974 [7]) defined several summary measure of robustness

based on the influence function in case of i.i.d. data; see Hampel et al. (1986) [8]
for details. Following these approaches, we will define some influence function
based gross summary measures for our non-homogeneous set up. The simplest
one is the (unstandardized) gross-error sensitivity of the functional Tα at the
true distributions G1, . . . , Gn considering contamination only in the i0-th direc-
tion, which is defined as

γu
i0(Tα, G1, . . . , Gn) = sup

t
{||IFi0(t, Tα, G1, . . . , Gn)||} (4.6)

=
1

n
sup
t
{[fi0(t; θ)αui0(t; θ)− ξi0 ]

T
Ψ−2

n [fi0(t; θ)
αui0(t; θ) − ξi0 ]}

1
2 . (4.7)

However it is not invariant to scale transformation of the individual parameter
components. Whenever, the asymptotic variance of the corresponding MDPE
exists, we can overcome this problem by considering the Self-Standardized Sen-
sitivity. For contamination along the i0-th direction only, this is defined as

γs
i0(Tα, G1, . . . , Gn)

= sup
t
{IFi0(t, Tα, G1, . . . , Gn)

T (Ψ−1
n ΩnΨ

−1
n )−1IFi0(t, Tα, G1, . . . , Gn)}

1
2

(4.8)

=
1

n
sup
t
{[fi0(t; θ)αui0(t; θ)− ξi0 ]

T
Ω−1

n [fi0(t; θ)
αui0(t; θ)− ξi0 ]}

1
2 . (4.9)
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When we have contamination in all the directions, we can define the (unstan-
dardized) gross-error sensitivity γu(Tα, G1, . . . , Gn) and the self-standardized
sensitivity γs(Tα, G1, . . . , Gn) using equation (4.6) and (4.8) respectively with
IFi0(t, Tα, G1, . . . , Gn) replaced by IF (t1, . . . , tn, Tα, G1, . . . , Gn) and taking supre-
mum over all possible t1, . . . , tn.

5. Breakdown point of the location parameter in a location-scale
type model

In this section we will derive the breakdown point of the minimum density power
divergence estimator in above set-up of non-homogeneous observations for the
location parameter in a special class of models. We will consider the above set-up
and assume that

fi(y; θ) ∈ Fi,θ =

{

1

σ
f

(

y − li(µ)

σ

)

: θ = (µ, σ) ∈ Θ

}

(5.1)

where li(·) is some one-to-one function for each i = 1, . . . , n. We consider the
breakdown point of the estimator of the location parameter µ at the model and
will assume the scale-parameter σ to be fixed (for example, σ can be substituted
with any suitable robust scale estimator) and the true data generating densities

gi to belongs to the model family Fi,θ; thus, for each i, gi(y) = 1
σ f(

y−li(µg)
σ ),

where µg is the true value of the location parameter µ. For given σ, the minimum
density power divergence estimator of µ is defined as

T µ
α (G1, . . . , Gn) = argmin

µ

1

n

n
∑

i=1

dα(gi(·), fi(·; θ)).

Assume n to be fixed and consider the contamination models

Hi,ǫ,m = (1− ǫ)Gi + ǫKi,m,

for each i where {Ki,m} is a sequence of contaminating distributions. Denote the
corresponding densities by hi,ǫ,m, gi and ki,m. Following Simpson (1987) [14],
we say that there is breakdown in T µ

α for ǫ level contamination if there exists
sequences Ki,m such that

|T µ
α (H1,ǫ,m, . . . , Hn,ǫ,m)− T µ

α (G1, . . . , Gn)| → ∞ as m → ∞.

Here we will use a generalization of the argument used by Park and Basu
(2004) [11] to derive the breakdown of the minimum disparity estimators. Recall
that we can also write the density power divergence in equation (2.1) as

dα(g, f) =

∫

f1+αCα(g/f) =

∫

f1+αCα(δ + 1)

where δ = g/f − 1 and

Cα(δ + 1) =
1

α

[

α− (1 + α)(δ + 1) + (δ + 1)1+α
]

. (5.2)
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In the above integral we have suppressed the dummy variable and the dif-
ferential for simplicity of notation. Note that Cα(0) = 1. Define Dα(g, f) =
f1+αCα(g/f). Whenever α > 0, we have

Dα(g, 0) = lim
f→0

Dα(g, f) = lim
f→0

[

f1+α − 1 + α

α
fαg +

1

α
g1+α

]

=
1

α
g1+α. (5.3)

We also utilize useful results based on the special structure of the location-scale
type model considered here. For example, note that

∫ {

1

σ
f

(

y − li(µ)

σ

)}1+α

dy =
1

σα

∫

{f(x)}1+αdx =
1

σα
Mα

f , say

which is independent of the location parameter µ and the index i. In addition,
we have the crucial lemma given below.

Lemma 5.1. Assume that α > 0 and fix any i. Then for any two densities gi,
hi in the location-scale model Fi,θ in equation (5.1) with fixed σ > 0 and any
ǫ ∈ (0, 1), the integral

∫

Dα(ǫgi, hi) is minimized when gi = hi.

We are now in a position to state and prove our main result on breakdown.
First we provide the necessary set of assumptions.

(BP1) For each i = 1, . . . , n,
∫

min{fi(y; (µ, σ)), ki,m(y)} → 0 as m → ∞ uni-
formly for |µ| ≤ c for any fixed c. That is, the contamination distribution
is asymptotically singular to the true distribution and to specified models
within the parametric family.

(BP2) For each i = 1, . . . , n,
∫

min{fi(y; (µg, σ)), fi(y; (µm, σ))} → 0 as m → ∞
if |µm| → ∞ as m → ∞. That is, large values of the parameter µ give dis-
tributions which become asymptotically singular to the true distribution.

(BP3) Let Cα(·) be as in equation (5.2). For each i = 1, . . . , n, the contaminating
sequence {ki,m} is such that

dα(ǫki,m(.), fi(.; θ)) ≥ dα(ǫfi(.; θ), fi(.; θ)) =
Cα(ǫ)

σα
Mα

f

for any θ ∈ Θ and 0 < ǫ < 1 and

lim sup
m→∞

1

n

n
∑

i=1

∫

k1+α
i,m ≤

Mα
f

σα
.

We then have the following theorem.

Theorem 5.2. Assume that α > 0. Then under the assumptions (BP1)–(BP3)
above, the asymptotic breakdown point ǫ∗ of the minimum DPD functional T µ

α

of the location parameter µ is at least 1
2 at the location scale set up of (5.1) for

fixed scale parameters.

The above theorem establishes that the minimum DPD procedure generates
estimators with high breakdown points for all α > 0. For the i.i.d. set up ob-
tained by letting fi(y; θ) = fθ(y), Theorem 5.2 directly yields the following
Corollary.
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Corollary 5.3. Suppose independent and identically distribution data are ob-
tained from the location scale model Fθ = { 1

σf(
y−µ
σ ) : θ = (µ, σ) ∈ Θ} and

assume that the scale parameter σ is fixed. Then under assumptions (BP1)–
(BP3) and for all α > 0, the minimum density power divergence estimator of
the location parameter µ has asymptotic breakdown point of at least 1

2 at the
model.

The above result may be contrasted with the Basu et al. (1998 [2], Section 4.3)
result which gives the simultaneous location and scale breakdown point of the
minimum DPD estimator to be α/(1 + α)3/2. The remarks give us some justifi-
cation for assumptions (BP1)–(BP3).

Remark 5.1. Suppose that the contaminating densities {ki,m} belongs to the
model presented in equation (5.1), and satisfies the set up of this section for all
i and all m. Then the following results are seen to be true.

1 Assumption (BP3) holds. The second part of the assumption holds trivially
and the first part of the assumption holds by Lemma 5.1.

2 Let ki,m = fi(y; (µm, σ)) and suppose that |µm| → ∞ as m → ∞. Then
assumption (BP2) implies assumption (BP1).

3 If we assume that f(·) = φ(·) in the model represented by equation (5.1)
where φ(·) is the univariate normal density, assumption (BP2) also holds
trivially.

We expect that it will be possible to prove the breakdown result in Theo-
rem 5.2 under conditions where a weaker version of (BP3) will suffice but we do
not have a proof at this point.

6. Application: Normal linear regression

A natural situation where the theory proposed above would be immediately
applicable is the case of linear regression. In particular all the machinery will
immediately fall into place for the case of linear regression set up with nor-
mal errors where the conditional approach to inference given fixed values of the
explanatory variable is adopted. In the rest of the paper we will provide appli-
cations of the proposed method in case of linear regression. Other application
domains of the proposed theory will be considered in a sequel paper.

A qualification of the linear regression set up employed in the following is
necessary in this context. To describe this, consider the simple linear regression
set up with a single independent variable. If one considered the joint distribu-
tion of the entire data considering the explanatory variable X to be random
(together with the response variable Y ), one could write down a single “multi-
variate” DPD measure between the data and an appropriate multivariate model
such as the bivariate normal. In such a case one could obtain the estimates of
the model parameters by using the i.i.d. formulation of the DPD based on the
bivariate data vectors (X,Y ), and the estimators of the bivariate model may
then be presumably used to determine the estimates of the regression parame-
ters of interest. However the elegance of the linear regression model stems from
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the fact that one does not need to model the explanatory variable and can con-
centrate entirely on the parameters of the conditional distribution alone. Indeed
this is how linear regression is performed in most applications and this is the
approach we follow. Unlike the multivariate DPD formulation, this requires the
treatment of nonhomogeneous observations where the theory developed in this
paper becomes immediately applicable. Apart from the fact that this avoids the
modelling of unnecessary parameters and keeps the method simple in imple-
mentation, this has a theoretical advantage over the multivariate DPD as well.
Basu et al. (1998) [2] pointed out the DPD method typically loses efficiency for
fixed α as the dimension of the data vector increases. Under the present theory,
however, it follows from Theorem 6.2 that the asymptotic relative efficiency of
the minimum DPD estimators of the regression parameters (relative to the least
squares estimators under the normal model) is exactly the same as the aysmp-
totic relative efficiency of the minimum DPD estimator of the normal mean in
the univariate normal model (relative to maximum likelihood). The efficiency
gain for the non-homogeneous approach over the multivariate DPD approach
will be further pronounced in case of multiple linear regression.

Basu et al. (1998 [2], Section 3.5) briefly suggested linear regression as being
among the likely scenarios where the methods based on density power divergence
could be extended. A technical report by the same authors, with the same title,
gives some more details of the possibilities of this method for the regression
case (Statistical Report Number 7, Department of Mathematics, University of
Oslo, 1998). Durio and Isaia (2011) [4] followed up on this method and provided
some simulation results to indicate the superior robust behavior of the mini-
mum DPD estimators of the regression parameters. Scott (2001) considered the
special case of this for the minimum L2 distance estimator (α = 1). However the
asymptotic properties of the minimum DPD estimators in this context have not
yet been rigorously studied in the literature. As the observations are no longer
identically distributed, the theory needs to be suitably extended, both for the
efficiency and the robustness results, without which the results remain ad-hoc.
Here we will provide the theoretical background and fill in this gap in the liter-
ature using the set up of independent but non-homogeneous observations, and
establish the asymptotic properties and robustness credentials of the minimum
DPD estimators.

Consider the linear regression model:

yi = xT
i β + ǫi, i = 1, . . . , n, (6.1)

where the error ǫi’s are i.i.d. normal variables with mean zero and variance σ2,
xT
i = (xi1, . . . , xi,p) is the vector of the independent variables corresponding to

the i-th observation and β = (β1, . . . , βp)
T represents the regression coefficients.

We will assume that xi’s are fixed. Then yi ∼ N(xT
i β, σ

2), and hence the yi’s
are independent but not identically distributed. Thus yi’s satisfy our above set-
up and hence the minimum density power divergence of the parameter θ =
(βT , σ2)T can be obtained by minimizing the expression in equation (2.3) with
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fi ≡ N(xT
i β, σ

2). Under the notation of equation (2.3), we then have

Vi(yi; θ, xi) =
1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα
e−α(yi−xT

i β)2/(2σ2)

Thus, our objective function to be minimized becomes

1

n

n
∑

i=1

Vi(yi; θ, xi) =
1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−α(yi−xT
i β)2/(2σ2), (6.2)

which is exactly the same as the one suggested by Basu et al. (1998) [2] for
linear regression and the equation considered by Durio and Isaia (2011 [4], equa-
tion (3)). Letting ∇j , j = 1, . . . , p represent the partial derivative with respect
to βj we get

∇jVi(yi; θ, xi) = − 1 + α

(2π)α/2σα+2
e−

α(yi−xT
i β)2

2σ2 (yi − xT
i β)xij ∀j = 1, . . . , p

and the partial derivative with respect to σ2 is then

∇p+1Vi(yi; θ, xi)

= − 1

(2π)α/2

[

α

2σα+2
√
1 + α

− (1 + α)

2σα+2
e−

α(yi−xT
i β)2

2σ2

{

1− (yi − xT
i β)

2

σ2

}]

.

Thus we get the estimating equation to be

n
∑

i=1

xij(yi − xT
i β)e

−α(yi−xT
i β)2

2σ2 = 0 ∀j = 1, . . . , p (6.3)

n
∑

i=1

[

1− (yi − xT
i β)

2

σ2

]

e−
α(yi−xT

i β)2

2σ2 =
α

(1 + α)
3
2

. (6.4)

We can then solve these estimating equations numerically to obtain the esti-
mates of θ. Let us denote these estimators by θ̂T = (β̂T , σ̂2).

6.1. Asymptotic efficiency

Following Theorem 3.1, we can now obtain the asymptotic distribution of the
estimator β̂ and σ̂2. For simplicity, we will assume that the true data generating
density gi also belongs to the model family of distributions, i.e., gi(y) = fi(y; θ).
Then we can derive the simplified form of the matrices Ψn and Ωn. Note that
for this regression model, we have

ui(yi; θ) =







(yi−xT
i β)

σ2 xi

(yi−xT
i β)2

2σ4 − 1
2σ2






. (6.5)
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Thus a routine calculation shows that the matrix J (i) is given by

J (i) =

∫

ui(y; θ)ui(y; θ)
T fi(y; θ)

1+αdy =





ζαxix
T
i 0

0 ςα



 (6.6)

where

ζα = (2π)−
α
2 σ−(α+2)(1 + α)−

3
2

ςα = (2π)−
α
2 σ−(α+4) 1

4

(

2 + α2

(1 + α)
5
2

)

.

Therefore, we have a simplified form for the matrix Ψn as

Ψn =





ζα
n (XTX) 0

0 ςα



 (6.7)

where XT = (x1, . . . , xn)p×n. Similarly, we get

ξi =

∫

ui(y; θ)fi(y; θ)
1+αdy =





0

−α
2 ζα



 (6.8)

and hence

Ωn =





ζ2α
n (XTX) 0

0 ς2α − α2

4 ζ2α



 . (6.9)

Using the above, we are now in a position to derive the asymptotic distributions
of the minimum DPD estimator of the regression coefficients and error variances
under the assumptions (A1)–(A7). We first present some mild conditions on the
given values of the independent variables, under which these assumptions may
be shown to hold.

(R1) The values of xi’s are such that for all j, k, and l

sup
n>1

max
1≤i≤n

|xij | = O(1), sup
n>1

max
1≤i≤n

|xijxik| = O(1), (6.10)

and
1

n

n
∑

i=1

|xijxikxil| = O(1). (6.11)

(R2) The matrix XT = (x1, . . . , xn)p×n satisfies

inf
n

[min eigenvalue of
(XTX)

n
] > 0, (6.12)

which also implies that the matrix X has full column rank, and

n max
1≤i≤n

[xT
i (X

TX)−1xi] = O(1). (6.13)

Then the following lemma is easily seen to be true.
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Lemma 6.1. Consider the set-up of the normal linear regression model and
assume that the true data generating density belongs to the model family. Then
the conditions (R1) and (R2) imply assumptions (A1)–(A7).

Note that the conditions (R1) and (R2) on the xi’s mainly says that their
values remain bounded in large samples and the spectrum of the corresponding
sum-product matrix (XTX) remains bounded away from zero. With these con-
ditions, the asymptotic distribution of the minimum density power divergence
estimators of the parameters of the linear regression model are derived in the
following theorem:

Theorem 6.2. Under the set-up of the normal linear regression model consid-
ered here, assume that the true data generating density belongs to the model
family and the given values of the independent variables satisfies assumptions
(R1) and (R2). Then,

(i) There exists a consistent sequence as θ̂T = (β̂T , σ̂2) of roots to the mini-
mum DPD estimating equations (6.3) and (6.4).

(ii) The asymptotic distributions of β̂ and σ̂2 are independent.

(iii) The asymptotic distribution of (XTX)
1
2 (β̂−β) is a p-dimensional normal

with mean (vector) and covariance matrix υβ
αIp and

√
n(σ̂2 − σ2) follows

a normal distribution with mean 0 and variance υe
α, where

υβ
α =

ζ2α
ζ2α

= σ2

(

1 +
α2

1 + 2α

)
3
2

υe
α =

ς2α − α2

4 ζ2α
ς2α

=
4σ4

(2 + α2)2

[

2(1 + 2α2)

(

1 +
α2

1 + 2α

)
5
2

− α2(1 + α)2

]

.

Note that substituting α = 0 in the expression of the asymptotic variances of
the estimators β̂ and σ̂2 in the above theorem, we will get the exactly the same
results as obtained for their maximum likelihood estimates.

We will now look at the Asymptotic Relative Efficiency (ARE) of the min-
imum density power divergence estimators with respect to the (fully efficient)

maximum likelihood estimator. The ARE of the estimator β̂ of the regression
coefficient β = (β1, . . . , βp) is the same for all the βi’s and is given by

υβ
0

υβ
α

× 100 =

(

1 +
α2

1 + 2α

)− 3
2

× 100

Similarly the asymptotic relative efficiency of the estimator σ̂2 of the error
variance is given by

υe
0

υe
α

× 100 =
(2 + α2)2

2

[

2(1 + 2α2)

(

1 +
α2

1 + 2α

)
5
2

− α2(1 + α)2

]−1

× 100.

Table 1 presents the asymptotic relative efficiencies of these estimators for var-
ious values of α. From the table it is easy to see that the loss of efficiency is
quite small for small values of α. It is also interesting to note that the ARE of
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Table 1

The Asymptotic Relative Efficiencies of the estimators β̂ and σ̂2 for various values of the
tuning parameter α

α 0 0.01 0.02 0.05 0.10 0.15 0.25 0.50 0.75 1.00

ARE(β̂) 100 99.99 99.94 99.66 98.76 97.46 94.06 83.81 73.76 64.95
ARE(σ̂2) 100 99.97 99.88 99.32 97.56 95.05 88.84 73.06 61.53 54.11

the minimum DPD estimator of the regression coefficient β is the same as the
ARE of the minimum DPD estimator of the normal mean parameter and ARE
of the minimum DPD estimator of error variance σ2 is the same as the ARE of
the normal variance are reported in Basu et al. (1998) [2].

6.2. Equivariance of the regression coefficient estimators

Standard regression literature considers three types of equivariance of the esti-
mators of regression coefficients – regression, scale and affine equivariance. It is
known that the maximum likelihood estimator satisfies all the three properties.
We will now show that our minimum density power divergence estimator of the
regression coefficient β̂ also satisfies all the three equivariance properties also
for all α > 0.

Theorem 6.3. The minimum density power divergence estimator β̂ of the re-
gression coefficient β is regression equivariant, scale equivariant and affine equiv-
ariant.

The regression equivariance of the estimator allows us to assume, without
loss of generality, any suitable value for the parameter β while proving any
asymptotic properties or describing the Monte Carlo studies. It also implies
that no linear structure should remain while regressing the residuals on the
explanatory variable x. The scale and affine equivariance of the estimator β̂
ensures that it does not depend on the choice of measurement unit for the
response variable y and on the choice of coordinate system for the explanatory
variables x.

Further note that the objective function here depends on the yi and xi’s
through only the summation

n
∑

i=1

e−
α(yi−xT

i (Aβ))2

2σ2

which is permutation invariant. Thus the corresponding estimators of the regres-
sion coefficient β and the error variance σ are both Permutation Equivariant so
that the ordering of the data does not affect the estimators.

6.3. Influence function and sensitivities

To see the robustness properties of the estimators of the regression coefficients
and the error variance, we will now derive the influence function of these esti-
mators following the notations of Section 4. Let us denote the minimum density
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power divergence functional of β and σ2 by T β
α and T σ

α respectively so that
the corresponding functional for θT = (βT , σ̂2) is given by Tα = (T β

α , T
σ
α ). Now

using the formula derived in Section 4, we can compute the influence function
of the functional Tα.

Note that from the expression of Ψn given in equation (6.7), we get

Ψ−1
n =





n
ζα
(XTX)−1 0

0 1
ςα





Then using the expression of ui and ξi from equation (6.5) and (6.8) respectively,
we get the influence function of the estimator Tα with contamination at the
direction i0 which is given by

IFi0(ti0 , Tα, G1, . . . , Gn) =











1
ζα
(XTX)−1 (ti0−xT

i0
β)

σ2 xi0fi0(ti0 ; θ)
α

1
nςα

[{

(ti0−xT
i0
β)2

2σ4 − 1
2σ2

}

fi0(ti0 ; θ)
α + α

2 ζα

]











.

(6.14)
Simplifying, the influence function for the estimator T β

α of the regression coef-
ficients with contamination only in i0-th data-point only becomes

IFi0(ti0 , T
β
α , G1, . . . , Gn) = (1 + α)

3
2 (XTX)−1xi0(ti0 − xT

i0β)e
−

α(ti0
−xT

i0
β)2

2σ2

(6.15)
and the influence function for the estimator T σ

α of the error variance with con-
tamination in the i0-th data-point only becomes

IFi0(ti0 , T
σ
α , G1, . . . , Gn) =

2(1 + α)
5
2

n(2 + α2)

{

(ti0 − xT
i0β)

2 − σ2
}

e−
α(ti0

−xT
i0

β)2

2σ2

+
2α(1 + α)2

n(2 + α2)
. (6.16)

Since the functions se−s2 and s2e−s2 are both bounded in s ∈ R, both the
influence functions in (6.15) and (6.16) are bounded in ti0 for all α > 0 and for
any i0. This implies that the minimum density power divergence estimators with
α > 0 will be robust with respect to the outliers in any data-point. However the
influence functions are clearly unbounded for α = 0 which corresponds to the
non-robust maximum likelihood estimators.

Similarly the influence function for the estimator T β
α of the regression coeffi-

cients with contamination in all data-point can be shown to be

IF (t1, . . . , tn, T
β
α , G1, . . . , Gn) = (1+α)

3
2 (XTX)−1

n
∑

i=1

xi(ti−xT
i β)e

−α(ti−xT
i β)2

2σ2

(6.17)
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and the influence function for the estimator T σ
α of the error variance with con-

tamination in all data-point will be

IF (t1, ·, tn, T σ
α , G1, ·, Gn) =

2(1 + α)
5
2

n(2 + α2)

n
∑

i=1

{

(ti − xT
i β)

2 − σ2
}

e−
α(ti−xT

i β)2

2σ2

+
2α(1 + α)2

(2 + α2)
. (6.18)

Here also the influence functions (6.17) and (6.18) are bounded in ti’s for all
α > 0 and unbounded for α = 0.

Now let us derive the sensitivities of the estimator of the regression coeffi-
cient β to explore the extent of robustness of the estimator with respect to the
value of α. Using the form given in Section 4, the gross-error sensitivity of the
estimator T β

α of β in the case of contamination only in ith0 direction can be found
to be

γu
i0(T

β
α , G1, . . . , Gn) =

(1 + α)
3
2

√
α

σe−
1
2 ||(XTX)−1xi0 || if α > 0

(6.19)

= ∞ if α = 0

And the self-standardized sensitivity of the estimator T β
α in the case of contam-

ination only in ith0 direction is given by

γs
i0(T

β
α , G1, . . . , Gn) =

(1 + α)
3
2

√

αυβ
α

σe−
1
2

√

xT
i0
(XTX)−1xi0 if α > 0

(6.20)

= ∞ if α = 0

or,

γs
i0(T

β
α , G1, . . . , Gn) =

(1 + 2α)
3
4

√
α

e−
1
2

√

xT
i0
(XTX)−1xi0 if α > 0

(6.21)

= ∞ if α = 0

It is easy to see that both the sensitivities γu
i0

and γs
i0

are decreasing function
of α > 0 for any given xi’s. This implies that in the presence of the outliers in
only one direction the robustness of the estimator T β

α increases as α increases.
However, we have seen in Section 6.1 that the asymptotic relative efficiency of

the estimator T β
α of the regression coefficient β decreases as the tuning parameter

α increases. Thus the parameter α gives a trade-off between the efficiency and
the robustness of the estimator of regression coefficients.

It is interesting to note that besides the tuning parameter α, the sensitivities
also depend on the values of the explanatory variable xis. Thus the robustness of
the estimator T β

α also depends on the values of xi’s. Moreover, from the expres-
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sion of sensitivities, whenever the value of a xi0 becomes far from the center of
the data-cloud, the value of both the gross-error sensitivity and self-standardized
sensitivity increases implying that the robustness decreases. This fact is quite
intuitive from the basic concept of outliers in the explanatory variable.

6.4. Breakdown point of the estimator of regression coefficient

Now we consider the breakdown point of the estimator of the regression co-
efficients β using the theory developed in Section 5. Note that the regression
set-up exactly matches with the set-up considered in Section 5 with f(·) = φ(·),
the standard normal density, µ = β, and li(µ) = li(β) = xT

i β for all i. Since
here we are mainly interested about the breakdown of the estimator of β, as in
Section 5, we will assume that the error variance σ2 to be fixed. In practice, we
may replace it by any robust estimator that may be assumed to be the same as
the true value of σ2 asymptotically.

Note that by Remark 5.1.3, the assumption (BP2) required for the break-
down result in Theorem 5.2 is satisfied trivially. Thus from Theorem 5.2 it
follows that under assumption (BP1) and (BP3) about the contaminating den-
sities, the asymptotic breakdown point of the minimum density power divergence
estimator of β is at least 1

2 at the model for all α > 0.
Further it was proved in Theorem 6.2 that the minimum DPD estimator of β

is regression equivariant. And it follows from Rousseeuw and Leroy (1987 [12],
Theorem 4, page 125) that the finite sample breakdown point of any regression
equivariant estimator of β is at most

[(n− p)/2] + 1

n

at all sample Z of size n. Hence the asymptotic breakdown point of β can be
at most 1

2 . Thus we get the following theorem giving the maximum asymptotic
breakdown of the minimum density power divergence estimator of the regression
coefficient β at the model.

Theorem 6.4. Assume the contaminating densities are such that (BP1) and
(BP3) hold. Then for any α > 0, the asymptotic breakdown point of the mini-
mum density power divergence estimator of the regression coefficient β is exactly
1
2 at the model.

Also if we assume that the contamination densities also belongs to the model
family, i.e., ki,m is the N(xT

i βm, σ2) density with |βm| → ∞, then by Remark 5.1
the assumptions (BP1) and (BP3) again hold true and the above breakdown
result follows.

6.5. Comparison with other methods

We believe that in many ways the method described in this paper represents a
significant addition to the literature of density-based minimum distance infer-
ence. Minimum distance type methods often have a natural robustness property
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which we have tried to exploit in this paper. In particular, the property that
the implementation of this technique requires no nonparametric smoothing and
numerical integration over the range of the variable makes this method partic-
ularly appealing. We are not aware of another density-based minimum distance
technique which, on the whole, combines the property of robustness with ease
of implementation in such a natural way as the present technique.

While the effort we have made has been for developing a simple method useful
for non-homogeneous data, our primary illustration in this paper has been in the
area of robust regression. We briefly provide a comparison of our method with
the leading robust regression techniques available at present. Andersen (2008) [1]
provides a useful discussion of the existing robust linear regression methods
including Least Absolute Deviation (LAD), Least Median of Squares (LMS),
Least Trimmed Squares (LTS), Bounded influence R-estimates, M-estimates,
S-estimates, Generalized M-estimates, generalized S-estimates, MM-estimates
etc. Except the M-estimates all other mentioned robust regression estimates
have bounded influence functions like the minimum DPD estimates with α > 0.
However, among all the above estimators LAD and M-estimators have break-
down point 0 and the bounded influence R-estimates has a breakdown point
less than 0.2 and hence their robustness performances are not alway satisfactory.
Some of the high breakdown regression estimates like LMS, LTS and S-estimates
(each having an asymptotic breakdown point of 1

2 ) have very low asymptotic
efficiencies compared to the OLS (ordinary least squares) method. Indeed, LMS
and LTS are not

√
n-consistent. The Generalized M-estimates, generalized S-

estimates and MM-estimates have high asymptotic breakdown point of 1
2 and

also relatively higher efficiency of 95%, 67% and 95%, although their desirable
properties are partially tempered by their complicated computational structure.
Considering all these factors we believe, on the basis of the properties of the
minimum DPD estimators developed in this paper, that this technique is com-
petitive with most of the existing techniques in the robust regression literature.

7. Real data examples

Durio and Isaia (2011) [4] illustrated the robustness performance of the mini-
mum density power divergence estimators of the regression coefficients through
simulation studies. However, they did not compare it with any of the other ro-
bust regression methods. Besides the theoretical comparison presented earlier,
in this section we will present some real data examples of linear regression and
compare the robustness performance of the minimum DPD estimators with the
popular LMS estimators. All the real data sets examined below are taken from
Rousseeuw and Leroy (1987) [12].

In a real situation it is important to have a technique which leads to the
selection of an “optimum” value of α that applies to the given data set. Durio
and Isaia (2011) [4] has provided an algorithm to find such an optimum value
of α. However, their criterion is complicated, and involves developing a test
of hypothesis about the regression parameters. As we restrict ourselves to the
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estimation problem in this case, we consider an adaptation of the Warwick and
Jones (2005) [15] algorithm for the selection of the DPD tuning parameter for
the independent and identically distributed data. The details of this method are
given in Ghosh and Basu (2013) [5]. The selection depends on the choice of an
initial pilot estimator; here we consider the minimum density power divergence
estimators corresponding to α = 0.3 and α = 0.5 as our pilot estimators.

7.1. Hertzsprung-Russell data of the star cluster

As our first example, we consider the data for the Hertzsprung-Russell diagram
of the star cluster CYG OB1 containing 47 stars in the direction of Cygnus
(Table 3, Chapter 2, Rousseeuw and Leroy, 1987 [12]). For this data the inde-
pendent variable x is the logarithm of the effective temperature at the surface of
the star (Te), and the dependent variable y is the logarithm of its light intensity
(L/L0). The data were thoroughly studied by Rousseeuw and Leroy (1987) [12]
who inferred that there are two groups of data-points — the four stars in the
upper right corner of the scatter plot (Figure 1) clearly form a separate group
from the rest of the data-points. In fact these four stars (with indices 11, 20,
30 and 34) are known as giants in astronomy. So, these outliers are actually not

Fig 1. Plots of the data-points and fitted regression lines for Hertzsprung-Russell Data of
the Star Cluster using Least Square (LS), Least Median Square (LMS) and minimum DPD
estimators for several α.
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Table 2

The parameter estimates of the linear regression model for the Hertzsprung-Russell data
using several minimum density power divergence methods and the LMS method

α

0 0.05 0.1 0.25 0.4 0.5 0.6 0.8 1 LMS
β1 6.69 6.74 6.78 −5.16 −6.57 −7.22 −7.57 −7.89 −8.03 −12.30
β2 −0.39 −0.40 −0.41 2.30 2.62 2.76 2.84 2.91 2.95 3.90
σ 0.61 0.60 0.60 0.42 0.40 0.40 0.40 0.40 0.41 —

recording errors and can not be discarded. They are indeed leverage points with
the interpretation that the data are coming from two different groups.

The estimates of the regression coefficients for the regression of y on x and
the error variance obtained the minimum density power divergence estimation
for various α are presented in Table 2 and some of the fitted models are plotted
in Figure 1. It is clear that the estimators corresponding to α = 0 (which
are the ordinary least square estimators also) are pulled away significantly by
the four leverage points and hence it is not possible to separate out the two
group of data by looking at the corresponding residuals. However, like the most
robust (but inefficient) LMS estimators, the minimum DPD estimators with
α ≥ 0.25 can successfully ignore the outliers to give excellent robust fits and are
much closer to the fit generated by the LMS estimates. Based on the residuals
of these minimum DPD estimators, we can also separate out the two group
of observations – four large residuals correspond to the four giant stars. The
selection of the “optimum” tuning parameters following Warwick and Jones
(2005) [15] lead to α = 0.786 and 0.932 respectively corresponding to the pilot
estimators at α = 0.3 and 0.5. In either case the respective line will lie in the
extremely narrow region between the minimum DPD lines at α = 0.5 and α = 1
presented in Figure 1.

If we delete the four large leverage points, the OLS estimators of the intercept
and slope parameters are −4.770 and 2.204 respectively; this slope parameter
and the resulting fit is quite close to the robust minimum DPD fit for the full
data at α = 0.25. If we further delete the outlying point (3.85, 4.6) along with
the four large outliers, the OLS estimators of the intercept and slope parameters
become −8.544 and 3.057, close to the MDPDE for the full data at α = 1.

7.2. Belgium telephone call data

The real data set (Table 2, Chapter 2, Rousseeuw and Leroy, 1987 [12]) for
our second example is from the Belgian Statistical Survey by the Ministry of
Economy and contains the total number (in tens of millions) of international
phone calls made in a year from 1950 to 1973. However, due to the use of another
recording system (giving the total number of minutes of these calls) from the
year 1964 to 1969, the data contains heavy contamination in the y-direction in
that range. The years 1963 and 1970 are also partially affected for the same
reason.
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Table 3

The parameter estimates of the linear regression model for the Belgium Telephone Call data
using several minimum density power divergence methods and the LMS method

α

0 0.05 0.1 0.25 0.4 0.5 0.6 0.8 1 LMS
β1 −26.01 −25.53 −24.94 −21.97 −5.24 −5.26 −5.28 −5.31 −5.36 −5.61
β2 0.50 0.50 0.48 0.43 0.11 0.11 0.11 0.11 0.11 0.12
σ 5.38 5.40 5.41 5.29 0.11 0.11 0.12 0.12 0.12 —

Fig 2. Plots of the data-points and fitted regression lines for Belgium Telephone Call data
using Least Square (LS), Least Median Square (LMS) and minimum DPD estimation for
several α.

The estimators of the regression coefficients for the different methods are
presented in Table 3. Some of the fitted lines are also shown in Figure 2 along
with the data points. It is clear that the estimators corresponding to α = 0
(which are the ordinary least square estimators) are heavily affected by the
outliers; however, like the LMS estimator, the minimum DPD estimators with
α ≥ 0.4 are strongly robust with respect to the outliers giving excellent fits to
the rest of the observations. In fact the slope parameter is practically constant
for all α ≥ 0.4 (and the LMS). The Warwick and Jones optimal α parameters in
this case are 0.486 and 0.631, and the corresponding estimators are well within
the robust band described above. The least square estimators of the regression
coefficients, after deleting the outlying observations corresponding to the years
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Table 4

The parameter estimates for the Salinity data using minimum density power divergence
approach for various values of the tuning parameter α and the LMS approach

α

0 0.05 0.1 0.25 0.4 0.5 0.6 0.8 1 LMS
β1 9.59 9.96 10.51 18.01 18.37 18.40 18.46 18.89 19.19 36.70
β2 0.78 0.78 0.77 0.72 0.72 0.72 0.72 0.72 0.71 0.36
β3 −0.03 −0.03 −0.04 −0.18 −0.20 −0.20 −0.20 −0.19 −0.18 −0.07
β4 −0.30 −0.31 −0.33 −0.61 −0.63 −0.63 −0.63 −0.65 −0.66 −1.30
σ 1.23 1.23 1.22 0.97 0.91 0.87 0.83 0.76 0.71 —

1963 to 1970, are −5.1644 and 0.1085 respectively, quite close to all our robust
estimators.

7.3. Salinity data

Finally, as an example of the multiple regression model with masking effects,
we consider the “Salinity data” (Table 5, Chapter 3, Rousseeuw and Leroy,
1987 [12]) that were originally presented by Ruppert and Carroll (1980)[13].
The data set contains measurements of the salt concentration of the water and
the river discharge taken in North Carolina’s Pamlico Sound. Rousseeuw and
Leroy (1987) [12] consider this data as a multiple linear model with salinity as
the dependent variable and the independents variables being salinity lagged by
two weeks (x1), the number of biweekly periods elapsed since the beginning of
the spring season (x2), and the volume of river discharge into the sound (x3).
According to the physical description of the data given by Carroll and Ruppert
(1985) [3], cases 5 and 16 in the data correspond to periods of very heavy
discharge but Rousseeuw and Leroy contend that the cases 3 and 16 conspire
to hide the discrepant number 5 producing the masking effect in the data.

Table 4 presents the estimators of the regression coefficients obtained by
the minimum DPD estimators for several α. To get a clear understanding of
the robustness properties of the estimators, we also present the residual plots
for some of the estimators along with the LMS estimators for comparison in
Figure 3.

It was already observed by Rousseeuw and Leroy (1987) [12] that the ordi-
nary least square (OLS) estimators of the regression parameters (which are also
the MLEs and correspond to α = 0 within the DPD class) can not separate
out the influential 5th and 16th observations due to the masking effect. How-
ever the robust LMS estimator remains unaffected by the masking effect. The
16th observation clearly stands out as a major outlier while the 5th observation
is among the other high residual observations. In case of the minimum DPD
estimators also the 16th observation clearly stands out unlike the OLS case.
The 5th observation also has a large residual although it is less prominent than
the LMS case. The minimum DPD estimator also produces residuals which are
more evenly spread on either side of zero compared to the LMS residuals which
are somewhat biased on the positive side.
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Fig 3. Residual Plots of the fitted regression models for Salinity data using Least Squares
(LS), Least Median of Squares (LMS) and minimum DPD estimation for several α.

If we fit the linear regression ignoring the influential 5th and 16th obser-
vations, the OLS estimators of the regression coefficients are (23.3862, 0.6998,
−0.2500,−0.8356). These results are again very similar to those obtained by the
minimum DPD estimators obtained for the full data when α ≥ 0.25. For both
our pilot estimators the Warwick and Jones optimal value of α for this data set
is equal to 1.

8. Concluding remarks

Problems which involve non-homogeneous independent data frequently arise in
real life situations but are not always straightforward to deal with. Depending
on the area of application, the number or robust options for inference may be
limited. We trust that this work provides a general robust technique for the
experimenter to deal with such situations.

In this paper we have chosen to illustrate the method developed on the most
obvious domain of application, which is linear regression with normal errors.
This, however, is by way of illustration only and the method applies generally



2446 A. Ghosh and A. Basu

to any other domain where robust methods could be of use in case of non-
homogeneous data. Among possible extensions which we propose to undertake
in the near future is the Poisson regression problem; in terms of practical ne-
cessity it is another important area of application but, unlike the normal linear
regression case where robust methods abound, has few options for robust infer-
ence.

Another obvious case of interest, which has not been addressed in the present
paper, is the other fundamental paradigm of statistical inference – the hypothesis
testing problem. In future we propose to extend the method to develop robust
and efficient tests of hypothesis involving the common parameter of interest.

This paper has implicitly assumed that the case being dealt with involves in-
dividual observations from different distributions. Another situation where this
method can be easily made useful is the multiple sample case where indepen-
dent and identically distributed samples are obtained from different populations
which involve the same parameter in their distribution. It is obvious, however,
the overall divergence constructed in such situations must be a weighted average
with weights proportional to individual the sample sizes.
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Appendix A: Proofs of the results

A.1. Proof of Theorem 3.1

Proof of consistency. To prove the consistency, we will consider the behavior of
the density power divergence or equivalently Hn(θ) on a sphere Qa with the
center at the best fitting parameter θg and radius a. We will show that for any
sufficiently small a the probability tends to 1 that Hn(θ) > Hn(θ

g) for all points
θ on the surface of Qa, and hence that Hn(θ) has a local minimum in the interior
of Qa. Since at a local minimum the estimating equation (2.4) must be satisfied
it will follow that for any a > 0 with probability tending to 1 as n → ∞, the
estimating equation (2.4) has a solution θ̂n(a) within Qa.

To study the behavior of Hn(θ) on Qa, we expand Hn(θ) by the Taylor series
expansion around θg to get

[Hn(θ
g)−Hn(θ)]

1 + α

=
∑

j

(−Aj)(θj − θgj )

+
1

2

∑

j

∑

k

(−Bjk)(θj − θgj )(θk − θgk)
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+
1

6

∑

j

∑

k

∑

l

(θj − θgj )(θk − θgk)(θl − θgl )
1

n

n
∑

i=1

γ
(i)
jkl(yi)M

(i)
jkl(yi)

= S1 + S2 + S3

where

Aj =
1

1 + α
∇jHn(θ)|θ=θg =

1

1 + α

1

n

n
∑

i=1

∇jVi(Yi; θ)|θ=θg ,

Bjk =
1

1 + α
∇jkHn(θ)|θ=θg =

1

1 + α

1

n

n
∑

i=1

∇jkVi(Yi; θ)|θ=θg ,

with ∇j and ∇jk representing the partial derivatives with the indicated com-
ponents of θ and 0 ≤ |γjkl(x)| ≤ 1.

First note that for each i, j,

Egi [∇jVi(Yi; θ)] |θ=θg = ∇jHi(θ
g) = 0.

Thus by Assumption (A6), Equation (3.8) and a generalized version of the
Khinchin’s weak law of large numbers it follow that, for each j,

Aj → 0 in L1 and hence in probability.

Therefore for any given a we have |Aj | < a2, and hence |S1| < pa3 with proba-
bility tending to 1.

Similarly, by Assumption (A6), Equation(3.9) and by the definition of the
matrix Ψn, it follows that for any j, k, Bjk − (Ψn)jk → 0 with probability
tending to one. Consider the representation

2S2 =
∑∑

[−(Ψn)jk(θj − θgj )(θk − θgk)]

+
∑∑

{−Bjk + (Ψn)jk}(θj − θgj )(θk − θgk).

For the second term in the above equation it follows from an argument similar
to that for S1 that its absolute value is less than p2a3 with probability tending
to 1. The first term is a negative (nonrandom) quadratic form in the variables
(θj − θgj ) by Assumption (A4). By an orthogonal transformation this can be

reduced to a diagonal form
∑

i λi(ξi)
2 with

∑

i(ξi)
2 = a2. The quantities λi

and ξi are also function of n, which has been suppressed here for brevity. As
each λi is negative, by ordering them and using Assumption (A4), one gets
∑

i λi(ξi)
2 ≤ −λ0a

2. Combining the first and the second terms, there exist
c > 0, a0 > 0 such that for a < a0, S2 < −ca2, with probability tending to 1.

Finally, by Assumption (A5), with probability tending to 1, | 1n
∑

M
(i)
jkl(Yi)| <

2mjkl < ∞, and hence |S3| < ba3 on Qa where b = 1
3

∑∑∑

mjkl. Combining
these inequalities, we see that

max(S1 + S2 + S3) < −ca2 + (b + s)a3,

which is less than zero if a < c/(b+ s).
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Thus, for sufficiently small a there exists a sequence of roots θ̂ = θ̂(a) such

that P (||θ̂−θ||2 < a) → 1 where ||·||2 represents the L2 norm. It remains to show
that we can determine such a sequence independently of a. Let θ∗ be the root
closest to θ. This exists because the limit of a sequence of roots is again a root
by the continuity ofHn(θ) as a function of θ. Then clearly P (||θ∗−θ||2 < a) → 1
for all a > 0. This concludes the proof of the existence of a sequence of consistent
solutions to the estimating equation (2.4) with probability tending to 1.

Proof of asymptotic normality. Now for the proof of the asymptotic normality
of the minimum density power divergence estimator θ̂n, we expand Hj

n(θ) =
∇jHn(θ) about θ

g to obtain:

Hj
n(θ) = Hj

n(θ
g) +

∑

k

(θk − θgk)H
jk
n (θg) +

1

2

∑

k

∑

l

(θk − θgk)(θl − θgl )H
jkl
n (θ∗)

where θ∗ is a point on the line segment connecting θ and θg, and Hjk
n and

Hjkl
n denote the indicated second and third partial derivatives of Hn. But since

Hj
n(θ̂) = 0, evaluating the above at θ = θ̂n, we get

n1/2
∑

k

(θ̂k − θgk)

[

Hjk
n (θg) +

1

2

∑

l

(θ̂l − θgl )H
jkl
n (θ∗)

]

= −n1/2Hj
n(θ

g).

This has the form
∑

AjknZkn = Tjn (A.1)

with

Zkn = n1/2(θ̂k − θgk),

Ajkn =

[

Hjk
n (θg) +

1

2

p
∑

l=1

(θ̂l − θgl )H
jkl
n (θ∗)

]

,

and

Tjn = −n1/2Hj
n(θ

g).

In vector notation, we can rewrite equation (A.1) as

AnZn = Tn, (A.2)

Zn = (Z1n, . . . , Zpn)
′, Tn = (T1n, . . . , Tpn)

′ and An = ((Ajkn))j=1,...,p;k=1,...,p.
Note that Tn = 1√

n

∑n
i=1 ∇Vi(Yi; θ

g). A simple calculation shows that Egi [Vi(Yi;

θg)] = 0 ∀i and each Vi(Yi; θ
g) are independent with zero mean and finite

variances. So by Assumption (A7) and a multivariate extension of the Lindebarg-
Levy CLT, it follows that

1

1 + α
Ω

− 1
2

n Tn
D→Np(0, Ip).
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Thus using equation (A.2), we get

1

1 + α
Ω

− 1
2

n AnZn
D→Np(0, Ip). (A.3)

Next from Assumption (A5) it follows that Hjkl
n (θ∗) is bounded with proba-

bility tending to 1, so that the consistency of θ̂ implies that the second term of
Ajkn converges to zero in probability. Further as in the proof of the consistency
part, 1

1+αH
jk
n (θg)− (Ψn)jk →P 0 for all j, k, and thus it follows that

Ω
− 1

2
n

[

1

1 + α
An − (Ψn)

]

Zn
P→ 0.

Combining this with equation(A.3), we finally get

Ω
− 1

2
n ΨnZn

D→Np(0, Ip).

A.2. Proof of Lemma 5.1

Since both gi and hi belongs to the location-scale model family as specified

above, we can assume that hi(x) = f(y−li(µ1)
σ ) and gi(x) = f(y−li(µ2)

σ ). Then
we need to show that

∫

Dα(ǫgi, hi) is minimized when µ1 = µ2. Now note that

∫

Dα(ǫgi, hi) =

∫

h1+α
i − 1 + α

α
ǫα
∫

hα
i gi +

ǫ1+α

α

∫

g1+α
i . (A.4)

Because of the special form of the densities gi and hi the first and the last integral
of the above will be independent of the parameter µ2 and µ1 respectively. Thus
it is enough to prove that the middle integral

∫

hα
i gi is maximized at µ1 = µ2.

But

∫

hα
i gi =

1

σ1+α

∫

f

(

y − li(µ1)

σ

)α

f

(

y − li(µ2)

σ

)

dy =
1

σα

∫

f(y)αf(y+η)dy

where η = li(µ1)−li(µ2)
σ . Since α > 0, an application of Holder’s inequality gives

∫

f(y)αf(y + η)dy ≤
(∫

f(y)1+αdy

)
α

1+α
(∫

f(y + η)1+αdy

)
1

1+α

=

∫

f1+α

with equality iff η = 0 or li(µ1) = li(µ2) or µ1 = µ2 by the one-to-one property
of li(.). This proves the lemma. �

A.3. Proof of Theorem 5.2

As mentioned before let n be fixed and µn = T µ
α (H1,ǫ,m, . . . , Hn,ǫ,m) and θm =

(µm, σ) where ǫ denotes a fixed level of contamination. If breakdown occurs at
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the model, there exists sequences {Ki,m} of model densities such that |θm| → ∞
as m → ∞. Now, fix an i and consider

dα(hi,ǫ,m(·), fi(·; θm)) =

∫

Ai,m

Dα(hi,ǫ,m(·), fi(·; θm))

+

∫

Ac
i,m

Dα(hi,ǫ,m(·), fi(·; θm)) (A.5)

where Ai,m = {x : gi(x) > max(ki,m(x), fi(x; θm))} and D(g, f) is as defined
before.

Now since gi belongs to the model family Fi,θ, from (BP1),
∫

Ai,m
ki,m(x) → 0,

and from (BP2),
∫

Ai,m
fi(x; θm) → 0, so under ki,m(·) and fi(·; θm), the set Ai,m

converges to a set of zero probability as m → ∞. Thus, on Ai,m,

Dα(hi,ǫ,m(·), fi(·; θm)) → Dα((1− ǫ)gi, 0) as m → ∞

and so by the dominated convergence theorem (DCT)

∣

∣

∣

∣

∣

∫

Ai,m

Dα(hi,ǫ,m(x), fi(x; θm))dx −
∫

Ai,m

Dα((1− ǫ)gi(x), 0)dx

∣

∣

∣

∣

∣

→ 0. (A.6)

And further by (BP1) and (BP2) we have

∣

∣

∣

∣

∣

∫

Ai,m

Dα((1 − ǫ)gi, 0)−
∫

gi>0

Dα((1− ǫ)gi, 0)

∣

∣

∣

∣

∣

→ 0. (A.7)

Thus by (A.6) and (A.7) above

∣

∣

∣

∣

∣

∫

Ai,m

Dα(hi,ǫ,m(x), fi(x; θm))dx−
∫

gi>0

Dα((1 − ǫ)gi(x), 0)dx

∣

∣

∣

∣

∣

→ 0. (A.8)

But we have Dα((1 − ǫ)gi, 0) =
(1−ǫ)1+α

ασα Mα
f . Hence

∫

Ai,m

Dα(hi,ǫ,m(x), fi(x; θm))dx → (1− ǫ)1+α

ασα
Mα

f . (A.9)

Next by (BP1) and (BP2),
∫

Ac
i,m

gi(x) → 0 as n → ∞, so under gi(.), the set

Ac
i,m converges to a set of zero probability. Hence similarly, we get

∣

∣

∣

∣

∣

∫

Ac
i,m

Dα(hi,ǫ,m(x), fi(x; θm))dx−
∫

Dα(ǫki,m(x), fi(x; θm))dx

∣

∣

∣

∣

∣

→ 0. (A.10)

Now by (BP3), we have

∫

Dα(ǫki,m(x), fi(x; θm))dx ≥
∫

Dα(ǫfi(x; θm), fθm)
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=

∫

fi(x; θm)1+αCα(ǫ − 1)

=
Cα(ǫ− 1)

σα
Mα

f .

Using (A.8), (A.9) and (A.10), we get

lim inf
m→

dα(hi,ǫ,m(.), fi(.; θm)) ≥ Cα(ǫ − 1)

σα
Mα

f +
(1− ǫ)1+α

ασα
Mα

f .

Since above is true for all i = 1, . . . , n, taking average over i, we get

lim inf
m→

1

n

n
∑

i=1

dα(hi,ǫ,m(.), fi(.; θm)) ≥ Cα(ǫ − 1)

σα
Mα

f +
(1− ǫ)1+α

ασα
Mα

f

= a1(ǫ) (say). (A.11)

We will have a contradiction to our assumption that {ki,m} are sequences for
which breakdown occurs if we can show that there exists a constant value θ∗ in
the parameter space such that for the same sequences {ki,m},

lim sup
m→∞

1

n

n
∑

i=1

dα(hi,ǫ,m(.), fi(.; θm)) < a1(ǫ) (A.12)

as then the {θm} sequence above could not minimize 1
n

∑n
i=1 dα(hi,ǫ,m(.), fi(.; θm))

for every m.
We will now show that equation (A.12) is true for all ǫ < 1/2 under the model

when we choose θ∗ to be the true value θg = (µg, σ) of the parameter. For any
fixed i and θ, let Bi,m = {x : ki,m(x) > max(gi(x), fi(x; θ))}. Since gi belongs
to the model Fi,θ, from (BP1) we get

∫

Bi,m
gi(x) → 0 and

∫

Bi,m
fθ(x) → 0.

Similarly from (BP1),
∫

Bc
i,m

ki,m → 0 as m → ∞. Thus, under ki,m, the set Bc
i,m

converges to a set of zero probability, while under gi and fi(·; θ), the set Bi,m

converges to a set of zero probability. Thus, on Bi,m, Dα(hi,ǫ,m(·), fi(·; θm)) →
Dα(ǫKi,m, 0) as m → ∞. So, by DCT

∣

∣

∣

∣

∣

∫

Bi,m

Dα(hi,ǫ,m(x), fi(x; θm))dx −
∫

ki,m>0

Dα(ǫki,m(x), 0)dx

∣

∣

∣

∣

∣

→ 0.

But as before for ki,m > 0 we have Dα(ǫki,m, 0) = ǫ1+α

α

∫

k1+α
i,m and hence

∣

∣

∣

∣

∣

∫

Bi,m

Dα(hi,ǫ,m(x), fi(x; θm))dx − ǫ1+α

α

∫

k1+α
i,m

∣

∣

∣

∣

∣

→ 0.

Similarly we have
∣

∣

∣

∣

∣

∫

Bc
i,m

Dα(hi,ǫ,m(x), fi(x; θm))dx −
∫

Dα((1− ǫ)gi(x), fi(x; θ))

∣

∣

∣

∣

∣

→ 0.
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Therefore,

lim sup
m→∞

dα(hi,ǫ,m(·), fi(·; θ)) =
∫

Dα((1−ǫ)gi(·), fi(·; θ))+
ǫ1+α

α
lim sup
m→∞

∫

k1+α
i,m .

Averaging over i = 1, . . . , n, we get

lim sup
m→∞

1

n

n
∑

i=1

dα(hi,ǫ,m(·), fi(·; θ)) =
1

n

n
∑

i=1

∫

Dα((1− ǫ)gi(·), fi(·; θ))

+
ǫ1+α

α
lim sup
m→∞

1

n

n
∑

i=1

∫

k1+α
i,m (A.13)

However note that since gi(y) = fi(y; θ
g), using Lemma 5.1, each Dα((1 −

ǫ)gi(·), fi(·; θ)) is minimized over θ at θ = θg and

Dα((1 − ǫ)gi(·), fi(·; θg)) = Dα((1 − ǫ)fi(·; θg), fi(·; θg)) =
Cα(−ǫ)

σα
Mα

f .

So taking θ = θg in above equation (A.13)and then using (BP3), we get

lim sup
m→∞

1

n

n
∑

i=1

dα(hi,ǫ,m(·), fi(v; θg))

=
Cα(−ǫ)

σα
Mα

f +
ǫ1+α

α
lim sup
m→∞

1

n

n
∑

i=1

∫

k1+α
i,m

≤ Cα(−ǫ)

σα
Mα

f +
ǫ1+α

ασα
Mα

f = a3(ǫ) say. (A.14)

Consequently, asymptotically there is no breakdown for ǫ level contamination
when a3(ǫ) < a1(ǫ). Notice that a1(ǫ) and a3(ǫ) are strictly decreasing and
increasing respectively in ǫ and a1(1/2) = a3(1/2), so that asymptotically there
is no breakdown and

lim sup
n→∞

|Tα(H1,ǫ,m), . . . , Tα(Hn,ǫ,m)| < ∞

for ǫ < 1/2. �

A.4. Proof of Lemma 6.1

Since the true density belongs to the model family and the model density is
normal with mean xT

i β and variance σ2, Assumptions (A1)–(A2) follow directly
from the property of the normal density function. Assumption (A4) follows
from Equation (6.12) of Assumption (R2). Considering the form of Vi(yi; θ, xi),
Assumption (A5) follows from equation (6.11) of assumption (R1). To prove
Equation (3.8), take any j = 1, . . . , p and consider

∇jVi(yi; θ, xi) = κe−
α(yi−xT

i β)2

2σ2 (yi − xT
i β)xij
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where κ = − 1+α
(2π)α/2σα+2 . Then

1

n

n
∑

i=1

Ei [|∇jVi(yi; θ, xi)|I(|∇jVi(yi; θ, xi)| > N)]

= |κ| 1
n

n
∑

i=1

Ei

[

e−
α(yi−xT

i β)2

2σ2 |yi − xT
i β||xij |

× I(e−
α(yi−xT

i β)2

2σ2 |yi − xT
i β||xij | >

N

|κ| )
]

≤ |κ| 1
n

n
∑

i=1

|xij |Ei



e−
αz2i
2σ2 |zi|I(e−

αz2i
2σ2 |zi| >

N

|κ|(sup
n>1

max
1≤i≤n

|xij |)
)





(zi = yi − xT
i β)

= |κ|E1



e−
αz21
2σ2 |z1|I(e−

αz21
2σ2 |z1| >

N

|κ|(sup
n>1

max
1≤i≤n

|xij |)
)





(

1

n

n
∑

i=1

|xij |
)

(zi’s are i.i.d.).

Now by DCT, we have

lim
N→∞

E1



e−
αz21
2σ2 |z1|I(e−

αz21
2σ2 |z1| >

N

|κ|(sup
n>1

max
1≤i≤n

|xij |)
)



 = 0

because supn>1 max1≤i≤n |xij | = O(1) by Assumption (R1). Also, we have

sup
n>1

(

1

n

n
∑

i=1

|xij |
)

≤ sup
n>1

max
1≤i≤n

|xij | = O(1).

Thus Equation (3.8) of (A6) follows for all j = 1, . . . , p. Similarly, it follows
for j = p + 1 also. Further the Assumption (A6), Equation (3.9) and Assump-
tion (A7) also holds similarly using Equation (6.10) and equation (6.13) respec-
tively. �

A.5. Proof of Theorem 6.2

The consistency part follows from Lemma 6.1 and Theorem 3.1. Also, in view
of Lemma 6.1, it follows from Theorem 3.1 that the asymptotic distribution

of Ω
− 1

2
n Ψn[

√
n(θ̂ − θ)] is (p+ 1)-dimensional normal with mean 0 and variance

I(p+1). Now using the form of the matrices Ψn and Ωn from equation (6.7) and
(6.9) respectively, we get that

Ω
− 1

2
n Ψn[

√
n(θ̂ − θ)] =







ζα√
ζ2α

(XTX)
1
2 (β̂ − β)

ςα
√

ς2α−α2

4 ζ2
α

√
n(σ̂2 − σ2)
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which asymptotically followsN(p+1)(0, I(p+1)) distribution. Hence it follows that

the asymptotic distributions of ζα√
ζ2α

(XTX)
1
2 (β̂−β) and ςα

√

ς2α−α2

4 ζ2
α

√
n(σ̂2−σ2)

are independent Np(0, Ip) and N(0, 1) respectively. The theorem now follows
immediately. �

A.6. Proof of Theorem 6.3

For α = 0, the minimum DPD estimator is the same as the maximum likelihood
estimator which is known to satisfy all the three equivariance properties in the
case of linear regression. So let α > 0. First note that

β̂({(xi, yi) : i = 1, . . . , n})

= argβ min
(βTσ)

[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i β)2

2σ2

]

Now, for any column vector v of the same dimension as β, we have

β̂({(xi, yi + xT
i v) : i = 1, . . . , n})

= argβ min
(βTσ)

[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i (β−v))2

2σ2

]

= arg(β−v) min
((β−v)Tσ)

[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i (β−v))2

2σ2

]

+ v

= β̂({(xi, yi) : i = 1, . . . , n}) + v

which shows that the estimator β̂ = β̂({(xi, yi) : i = 1, . . . , n}) is regression
equivariant.

Next, for any constant c, cYi follows normal distribution with mean xT
i β and

variance c2σ2 so that we have

β̂({(xi, cyi) : i = 1, . . . , n})

= argβ min
(βTσ)

[

1

(2π)α/2(|c|σ)α
√
1 + α

− 1 + α

α

1

(2π)α/2(|c|σ)α
1

n

n
∑

i=1

e−
α(cyi−xT

i β)2

2c2σ2

]

= c arg(β/c) min
((β/c)Tσ)

1

|c|α
[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i (β/c))2

2σ2

]

= cβ̂({(xi, yi) : i = 1, . . . , n})
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This implies that the estimator β̂ = β̂({(xi, yi) : i = 1, . . . , n}) is scale equivari-
ant.

Finally, for any non-singular square matrix A,we get

β̂({(ATxi, yi) : i = 1, . . . , n})

= argβ min
(βTσ)

[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i Aβ)2

2σ2

]

= A−1 arg(Aβ) min
((Aβ)Tσ)

[

1

(2π)α/2σα
√
1 + α

− 1 + α

α

1

(2π)α/2σα

1

n

n
∑

i=1

e−
α(yi−xT

i (Aβ))2

2σ2

]

= A−1β̂({(xi, yi) : i = 1, . . . , n})

proving the affine equivariance of the estimator β̂ = β̂({(xi, yi) : i = 1, . . . , n}).
�
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