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Abstract: A common problem in the sciences is that a signal of interest
is observed only indirectly, through smooth functionals of the signal whose
values are then obscured by noise. In such inverse problems, the functionals
dampen or entirely eliminate some of the signal’s interesting features. This
makes it difficult or even impossible to fully reconstruct the signal, even
without noise. In this paper, we develop methods for handling sequences
of related inverse problems, with the problems varying either systemati-
cally or randomly over time. Such sequences often arise with automated
data collection systems, like the data pipelines of large astronomical in-
struments such as the Large Synoptic Survey Telescope (LSST). The LSST
will observe each patch of the sky many times over its lifetime under vary-
ing conditions. A possible additional complication in these problems is that
the observational resolution is limited by the instrument, so that even with
many repeated observations, only an approximation of the underlying signal
can be reconstructed. We propose an efficient estimator for reconstructing
a signal of interest given a sequence of related, resolution-limited inverse
problems. We demonstrate our method’s effectiveness in some representa-
tive examples and provide theoretical support for its adoption.

Keywords and phrases:Deconvolution, signal processing, complex Gaus-
sian.
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1. Introduction

In many applications, a signal of interest can only be indirectly observed. Exam-
ples of such inverse problems include astronomical imaging from ground-based
telescopes, where atmospheric turbulence and instrument effects blur the im-
ages; Positron Emission Tomography, where measured photon intensities are
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averages over lines; and seismic reconstruction, where the measured quake ef-
fects, observed at the surface, represent the integrated properties of the seismic
waves along their path through the Earth. As in these examples, the basic mea-
surements in an inverse problem are smooth functionals of the parameter of
interest that dampen or entirely eliminate many interesting features, making it
difficult to estimate those features from noisy data.

There is a long and rich literature on estimation methods for inverse prob-
lems. We cannot hope to provide a comprehensive list, but see O’Sullivan (1986);
Wahba (1990); Donoho (1995); Tenorio (2001); Candés and Donoho (2002);
Cavalier et al. (2002) and the references contained therein for an introduction
and Cavalier (2008) for a modern review of the state of the field. In addition,
many specialized techniques have been developed for particular classes of in-
verse problems that arise frequently in specific applications, such as astronomy
(Starck, Pantin and Murtagh, 2002; van Dyk et al., 2006), geophysics (Backus
and Gilbert, 1968), and tomography (Ólafsson and Quinto, 2005).

One implicit assumption of most existing work on inverse problems is that the
effective resolution of the observational device increases as more data is gathered.
In this paper, we consider a different regime in which we seek to recover a signal
given a sequence of related, but varying, inverse problems. Recent technological
advances allowing automated data-collection have revealed situations in which
this scenario occurs. All of the data is collected by the same device and hence the
resolution of the entire sequence of observations is fixed. However, the conditions
under which the data is collected varies.

Our motivating example is image reconstruction by the Large Synoptic Sur-
vey Telescope (LSST), a multi-year, Earth-based astronomical survey of the
entire sky. The LSST will produce images of the sky at unprecedented depth,
eventually cataloging billions of astronomical objects. Each patch of sky will
be repeatedly observed over the lifetime of the instrument, roughly once every
3–4 days. The goal is to obtain an accurate estimate of the underlying scene,
as a baseline for detecting transient phenomena and answering other scientific
questions. While these repeated observations can improve accuracy, there are
potentially significant variations across images in exact position, orientation,
and atmospheric turbulence (“seeing”). This variation in the underlying inverse
problem complicates estimation, for instance, making simple averaging tend to
perform poorly. There are two other important features of LSST data. First, the
spatial resolution of the images remains fixed throughout, which fundamentally
limits the resolution of any reconstruction even with an arbitrarily long period
of data collection. Second, the data are collected and must be processed in near
real-time with limited access to past observations. (All the data are stored but
are not all available in a timely fashion.) Thus an important consideration for an
estimation procedure here is that it be computable in an on-line manner, using
a small store to quickly update the estimate with each new image obtained.

More generally, we consider the following problem. We want to recover an
unknown signal/parameter θ ∈ Rp from indirect measurements of the form

Yi = Kiθ + σWi, for i = 1, 2, . . . . (1)
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Here, each Yi is a measured signal, such as an audio recording or a (vectorized)
image. Each forward operator Ki embodies the indirectness in the measurement
process, and typically acts as a smoothing operator in some sense. In addition,
we assume that Ki also captures the discretization (e.g., pixelization) due to
the resolution-limited nature of the instruments, which is assumed fixed however
many repeated observations are obtained. Finally, the Wi’s represent stochastic
noise in the observations. We take them here to be independent, mean zero
Gaussian p-vectors with variance-covariance matrix Ip, the order p identity.
We begin by assuming a known noise level. In this case, if the noise level σi
varies across observations, we can simply rescale the problem to a constant
noise level, so without loss of generality we take σ to be constant. For some
applications, like astronomical imaging, the assumption of known noise level
can be practically reasonable as there are often reliable noise level estimates
available, but we consider the problem of estimating an unknown noise variance
in Section 3.2.

The goal of this paper is to develop an effective estimator of θ from a sequence
of varying, resolution-limited inverse problems of the form in equation (1). We
develop an estimator that has many favorable features, such as (i) all tuning pa-
rameters must be selected in a data-dependent way, (ii) the resulting procedure
(including the choice of tuning parameters) has good statistical performance,

and (iii) the estimator θ̂n based on an n-sequence can be efficiently updated to

produce the estimator θ̂n+1 after observing Yn+1. Such an estimator is novel
in the literature. Additionally, we show that this estimator has good theoretical
properties and relies on weaker assumptions than the previous literature. Lastly,
in analyzing our estimator, we develop some theory for estimation of the mean
of a complex Gaussian random variable, which, to our knowledge, is new in that
literature.

To clarify the key ideas, we begin with a brief example highlighting the se-
quential and resolution-limited aspects of the inverse problem. During satellite
imaging operations, a location on Earth is imaged many times over the life span
of the satellite. The quality of the recorded observations can be low and vari-
able due to changing atmospheric and/or weather conditions giving a sequential
problem. Additionally, the pixelization induced by the instrument is fixed, no
matter how many repeated observations are observed. Hence, for each i, Ki is
a mapping represents both the effects of the atmosphere and pixelization.

The left column of Figure 1 offers a representative panel of four such images
taken of the White House and surrounding buildings. Note that the amount of
blurring, corresponding to the forward operators Ki, can vary quite widely. Our
proposed estimator θ̂n builds an estimate of the unknown scene θ via sequential
updating. After each observation in the left-hand column of Figure 1, we update
the previous estimate, which is given in the right-hand column in the same row.
Within a few observations the reconstruction has become quite sharp, but the
gain from each observation depends strongly on its level of blurring. We em-
phasize that all tuning parameters are chosen in an automatic, data-dependent
way throughout this procedure.
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Observations Estimates

Fig 1. Example of images of the White House from a satellite and associated recovery of
the unknown signal θ using our proposed estimator. In the left column (Observations) the
different amounts of blurring are due to varying atmospheric conditions and correspond to
the forward operators Ki in equation (1). In the right column (Estimates) we report the
output of our estimator using the data in the left column. Each row corresponds to making
another observation Yi and updating our estimator with this new data.

Sequential inverse problems have been analyzed in the literature. In work on
analog-to-digital conversion, the recovery of the original analog signal is an in-
verse problem as there is not a unique analog signal corresponding to each digital
signal. If the signal is instead sampled multiple times at different, carefully cho-



2102 D. Homrighausen and C. R. Genovese

sen sampling rates, Berenstein and Patrick (1990) and Casey and Walnut (1994)
find conditions under which the original signal can be reconstructed in a loss-less
way. Note that, as opposed to our paper, these approaches deal with only the
case where σ = 0 and the Ki, which correspond to the sampling rate, can be
chosen by the experimenter. Subsequent work on sequential inverse problems,
beginning with Piana and Bertero (1996), develop two methods. The first adapts
Tikonov-Phillips regularization (known in statistics as ridge regression) to the
sequential context. The second is a method based on Landwieber iterations (see
Bertero and Boccacci (1998) for an overview of Landwieber iterations). These
methods have been implemented in the software package AIRY (Bertero and
Boccacci, 2000a,b; Correia et al., 2002).

Our method has two major advantages over these previous proposals. First,
the diagonalization condition we make (assumption (A3) in Section 2) contains
as a special case the convolutional assumption which is standard in the field.
More importantly, our method comes with a data-driven method for choosing
the tuning parameter. This is extremely important in many applications, where
completely automated estimation is crucial.

This paper is organized as follows. We outline our method in Section 2,
discuss computational considerations and explore strategies for estimating the
noise level in Section 3. Lastly, we describe the results of a simulation study in
Section 4. We defer all proofs to the appendix.

Notation. In the development of our technique, we use complex-valued vectors
and random variables, so it may be useful to clarify the notation we use. For
a ∈ C and A ∈ Cp×q, define a∗ and A∗ to be the Hermitian adjoint of a and
A, respectively. Correspondingly, define |a|2 = a∗a and |A|2 = A∗A to be the
squared complex modulus of a scalar and matrix, respectively. Likewise, for any
vector x ∈ Cp, ||x||2 = x∗x. If AA∗ = Ip = A∗A, then we say that A is unitary.
We utilize a bold faced font for vectors, bn ∈ C

p, and denote its jth entry as bnj ,
where the subscript n indicates dependence on the sample size. Similarly, Anj

is the jth element of the main diagonal of the matrix An. We abuse notation
slightly by using λ as both a vector in C

p and as a function from C
p to C

p given
by component-wise multiplication.

2. Methodology

The model introduced in equation (1) reflects that the observations we gather
from modern scientific devices are often sequential, noisy, and blurred from dif-
ferent forward operators. Our methodology leverages an equivalence between
certain families of these forward operators that allows for the data to be trans-
formed to a common coordinate system whereby an estimator can be developed
via minimizing an estimate of the risk.

We begin this section by stating the following assumptions under which our
method can be derived.

(A1) The noise parameter σ > 0 is known.
(A2) The (Ki)

n
i=1 are known smoothing matrices.
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(A3) There exists a unitary matrix Ψ ∈ Cp×p and diagonal matrices Di such
that Ki = ΨDiΨ

∗ for all i = 1, . . . , n, . . .
(A4) There exists an N <∞ such that for all j there exists an 1 ≤ i∗ ≤ N such

that |Di∗j | > 0.
(A5) Define ∆nj :=

∑n
i=1 |Dij |2. Then the (Di) are such that

lim
n→∞

maxj ∆nj

minj ∆nj
<∞.

Assumptions (A1) and (A2) are very standard in the statistical inverse prob-
lem literature. We discuss a strategy for estimating σ in Section 3.2. Assump-
tion (A4) is also commonly made and it ensures that, at some point, the en-
tire signal θ is identified and loosely corresponds to the intersection of the
null spaces of the (Ki)

n
i=1 eventually only containing the zero vector. Assump-

tion (A5) merely prevents a pathological case where the Ki are becoming more
ill-conditioned without bound as n → ∞. Assumption (A3) is crucial to our
method and while the reason for it will become clear, the following theorem
provides a general family of matrices that satisfy it.

Theorem 1. If the (Ki)
n
i=1 all correspond to the discrete convolution opera-

tion, then there exists a unitary matrix Ψ and a sequence of diagonal matrices
(Di)

n
i=1, all of which could have complex entries, such that (A3) holds. If θ is

a one (two)-dimensional signal, then the Ki are (block) circulant and the en-
tries of the matrix Ψ are the discrete one (two)-dimensional Fourier basis and
the entries of Di are the corresponding discrete one (two)-dimensional Fourier
coefficients.

Hence, we see that assumption (A3) is more general than the convolutional
assumption made in Piana and Bertero (1996) and many other works concerning
statistical inverse problems. See Appendix A for a proof of Theorem 1.

2.1. Overview and main results

An overview of our procedure is as follows. The parameter θ and each ob-
servation Yi is rotated by Ψ∗. The rotated Yi’s are combined together to
form a sufficient statistic Bn. The estimators we consider are of the form
θ̂ = Ψλ(Bn) := Ψ(λjBnj)

p
j=1. Define this set of estimators to be

E = {θ̂ = Ψλ(Bn) : λ ∈ C
p}. (2)

We choose from the estimators in E using a combination of minimizing an empir-
ical estimator of the risk and adding some additional regularization. We notate
our estimator as θ̂n = Ψλ̂(Bn) (distinguishing it from a generic estimator θ̂ by

the subscript n), where the weights λ̂ are defined in the text containing and
preceding equation (12). Additionally, we define our loss function to be the l2

norm with associated risk

R(θ̂, θ) := E||θ̂ − θ||2 (3)
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and set Θ := {θ : ||θ||22 ≤ T 2} for any 0 < T 2 < ∞ as the parameter space.
Then

Theorem 2. Under assumptions (A1)–(A5),

lim sup
n→∞

sup
θ∈Θ

γ−1
n R

(

θ̂n, θ
)

<∞

where

γn = min
j

σ2

∆nj
.

Remark 2.1. If all Dij ≡ Dj for some Dj ∈ C, then γn ≍ 1/n; that is the
parametric rate. However, the forward operators (Ki) in effect ensure that each
observation doesn’t decrease the risk equally. The quantity ∆nj relates to how
much information is present in the first n observations about the jth component
of Ψ∗θ.

Additionally, we compare our estimator to the E-oracle with the following
result.

Theorem 3. Suppose assumptions (A1)–(A5) and let

R∗(θ) := min
θ̂∈E

R(θ̂, θ)

be the risk of the E-oracle. Then

R
(

θ̂n, θ
)

≤ R∗(θ)(1 + O(1)),

where the term O(1) does not depend on θ.

An interesting extension of this model is to when the (Ki) are considered
random. We answer this question in an interesting case.

Random eigenvalues Suppose that the (Ki) are random operators such that

Ki = ΨDiΨ
∗ for all i = 1, 2, . . . and diag(Di)

i.i.d∼ D, where D is any p-variate
complex distribution that doesn’t have too much mass near zero. Specifically,

(B4) The distribution D is such that there exists an a, τ, and ρ > 1, where for
0 ≤ τ ≤ a

PD

(

|D1j |2 < τ
)

= (τ)ρ.

This is a stochastic extension of assumption (A4) as it allows the random
eigenvalues to be arbitrarily close to zero in magnitude but with the probabil-
ity of them being small going to zero. Lastly, let (Wi) and (Di) be mutually
independent.

Theorem 4. Suppose assumption (B4) holds. Then

lim
n→∞

sup
θ∈Θ

E(Di),(Yij)

∣

∣

∣

∣

∣

∣θ̂n − θ
∣

∣

∣

∣

∣

∣

2

= 0,

where E(Di),(Yij) corresponds to integration with respect to the joint distribution
of (Di) and (Yij).
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2.2. Rotations and degenerate complex Gaussians

Returning to equation (1) and using assumption (A3), for i = 1, 2, . . . we define
Xi := Ψ∗Yi, β := Ψ∗θ, and Ui := Ψ∗Wi. Then it follows that

Xi = Diβ + σUi. (4)

Note that in this case Ui
i.i.d∼ CN(0, Ip,Ψ

∗Ψ)1. It is also convenient to look at
equation (4) component-wise,

Xij = Dijβj + σUij (5)

for j = 1, . . . , p. Note that for these multiplications to be defined, we have to
think about Rp being embedded in Cp by having imaginary part equal to zero.
We follow this convention without comment in what follows.

Remark 2.2. Commonly, the sequence space formulations found in equations
(4) and (5) are accomplished by a real, orthogonal matrix instead of a complex,
unitary one. Allowing for the sequence (Ki)

n
i=1 to share the same eigenvectors

necessitates permitting Ψ to be complex.

We can rearrange equation (5) to define

Bnj :=
n
∑

i=1

D∗
ijXij

∆nj
, (6)

where ∆nj :=
∑n

i=1 |Dij |2. Then Bn := (Bnj)
p
j=1 is distributed

Bn ∼ CN

(

β, σ2∆−1
n , σ2∆−2

n

n
∑

i=1

D∗
iΨ

∗ΨD∗
i

)

. (7)

To develop an automatic procedure for signal estimation in sequential inverse
problems, we begin by regularizing the unbiased estimator Bn of β through the
use of a tuning parameter vector. We choose this tuning parameter by minimiz-
ing an estimator of the risk. This type of procedure, known generally as unbiased
risk estimation, has been revisited regularly in many fields for solving various
problems related to denoising (Stein, 1981; Donoho and Johnstone, 1995, for
example). However, as inverse problems generally result in unstable estimators
of both the parameter β and the risk R, we compensate by including additional
regularization.

The formulation in equation (7) is related to the (real-valued) normal means
problem. In particular, a p-dimensional complex normal can be thought of 2p-
dimensional real Gaussian with a complicated covariance matrix. This real-
valued Gaussian vector actually only has values in a p-dimensional subspace of

1A complex normal has an extra parameter compared with a real normal. For a zero mean
complex normal random variable U, this is denoted CN(0,EUU∗,EUU⊤).
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R2p and hence is degenerate. Therefore, we choose to analyze the sequence (Bn)
as complex random Gaussian.

Complex Gaussian random variables have been studied in statistics and re-
lated fields for many years (see Wooding (1956); Goodman (1963) for early
papers). However, most of the literature, e.g. Gallager (2008), focuses on the
circularly symmetric case; that is, when Ψ∗Ψ is diagonal. In this case, the real-
valued version is no longer degenerate and is hence much easier to manipulate.
However, this assumption does not hold for our purposes. More modern liter-
ature, such as Schreier and Scharf (2003); Schreier, Scharf and Mullis (2005),
consider the more general case of improper complex Gaussians; that is when
Ψ∗Ψ is not diagonal. However, these works consider forming minimum variance
unbiased estimators, which is not appropriate for our purposes.

Additionally, owing to the presence of the D′
is, this model is heteroskedastic,

with complex variance parameter. In general, considering the heteroskedastic
model leads to a much more involved theory than in the homoscedastic case,
such as in Brown (1975), and is still the topic of contemporary research (Brown,
Nie and Xie, 2012).

Remark 2.3. Note that our approach is fundamentally different from attempt-
ing to estimate β using D−1

i Xi. First, assuming D−1
i exists for all i necessitates

a stronger assumption than (A4). More importantly, if Yi is an extremely low
quality observation, then |Dij | is very close to zero for some j. In this case, sup-
pose we are estimating β with the linear estimator

∑

i aiD
−1
i Xi, for constants ai.

Then the variance of this estimator is extremely high (due to inverting the very
small elements of Di). Compare this to estimators based on Bnj , where these
low quality observations do not have any negative effect.

2.3. Estimators and tuning parameter selection

The specifics of our approach are related to the procedure found in Beran (2000).
However, the goal in Beran (2000), unlike our paper, is the estimation of the
regression function in an assumed linear model instead of the coefficients them-
selves. That is, referring to the notation in equation (1), the estimation of Kiθ
instead of the estimation of θ. This is an important distinction as both estimat-
ing θ is intrinsically harder than estimating Kiθ and θ is the object of actual
interest. Also, the theoretical justification that appears in Beran (2000) is es-
sentially entirely asymptotic in p. This is a regime we do not consider relevant
for the problem at hand.

As Ψ is unitary, we can define an equivalent risk to the one defined in equation
(3) in terms of β

R(θ̂, θ) := E||θ̂ − θ||2 = E||Ψ∗(θ̂ − θ)||2 = E||β̂ − β||2 =: R(β̂, β). (8)

Under the model introduced in equation (1) and assumptions (A1)–(A4), the
random vector Bn is sufficient for β in equation (4). This claim can be seen by
noting that the map Ψ∗ is measure preserving.
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Any risk computations made under the data, which is (Xi)
n
i=1 in our nota-

tion, are equivalent to those made under a sufficient statistic (Bahadur, 1954,
Theorem 7.1). Hence, the expectations in equation (8) are equal whether under
(Xi)

n
i=1 or Bn, which implies that for each n, we can treat Bn as the data.

To begin to formulate an estimator of β, and therefore θ, we use the following
result.

Proposition 5. Define ψ̂j := (|Bnj |2 − σ2/∆nj)/|Bnj |2. Then the random
function

R̂n(λ) :=

p
∑

j=1

(λj − ψ̂j)
2|Bnj |2 (9)

provides, up to a constant independent of λ, an unbiased estimate of R(λ).
Additionally,

min
λ∈Cp

R(λ) = min
λ∈L

R(λ)

where L = [0, 1]p is the p-dimensional hypersquare.

The first part of the proposition provides an unbiased estimate of the risk
while the second part implies that we gain no improvement in risk by allowing
λ to have values outside of L.

Using R̂n from equation (9), define for any G ⊆ L

λ̂
G
:= argmin

G
R̂n(λ), (10)

which produces an estimator of β, β̂G := λ̂
G
(Bn), and likewise an estimator of

θ, θ̂G := Ψβ̂G .
There are many possible choices for G. We focus on G = L, which by inspec-

tion of equation (9), results in

λ̂Lj =

(

1− σ2

∆nj |Bnj |2
)

+

(11)

where as usual (·)+ = max(·, 0) is the soft thresholding function. We modify
these weights further to help stabilize its behavior for smaller sample sizes

λ̂j =

(

1− Ω2
nσ

2

∆nj |Bnj |2
)

+

, (12)

where Ω2
n := (p−2)(1+

maxj ∆nj

minj ∆nj
). Note this choice of Ω2

n is motivated by Brown,

Nie and Xie (2012) in which it is shown that in heteroscedastic case, the soft
thresholded James-Stein type estimator is ensemble minimax with this added
term. Lastly, define our estimator of θ to be

θ̂n := Ψλ̂(Bn). (13)

Other choices of G can and should be explored in further research into estima-
tion in sequential inverse problems such as M := {λ ∈ L : λ1 ≥ λ2 ≥ · · · ≥ λp},
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which induces a monotonicity constraint on the estimated coefficients, or block
methods of piecewise constant weights (Cavalier and Tsybakov, 2002). Alter-
natively, the aforementioned Tikonov-Phillips and Landwieber estimators cor-
respond to specific subsets of L. The Tikonov-Phillips estimator takes the form

β̂γ
j :=

n
∑

i=1

D∗
ijXij

|Dij |2 + γ
(14)

which can be rewritten as an element of E by defining

λγj :=
∆nj

∆nj + γ
(15)

with associated estimator β̂γ = λ
γ(Bn). The Landwieber estimator can be

reformulated in the following, non-iterative form

λ
(γ,τ)
j = 1− [1− τ∆nj ]

γ , (16)

where γ corresponds to the number of iterations and τ is a relaxation parameter.
The associated estimator is β̂(γ,τ) = λ

(γ,τ)(Bn).
It can be shown that, for example, supγ |R̂n(λ

γ)−R(λγ)| → 0 in probability

and therefore, by van der Vaart (1998), argminγ R̂n(λ
γ) → argminγ Rn(λ

γ) in
probability as well. A similar discussion holds for the Landwieber estimator as
well. Hence, Proposition 5 in principle could provide a data-driven method for
choosing the tuning parameters in these estimators.

3. Computational properties, variance estimation, and alternate

methods

3.1. Computations

The specifics of the computation of an estimator θ̂G depend upon the subset G.
However, as R̂n is strictly convex and G is compact, then if G is convex, the
solution can be found uniquely. Of the estimators mentioned above, all exceptM
have a closed form solution and therefore trivial computation. The minimization
of R̂n over M can be accomplished by a well known algorithm called Pooled
Adjacent Violators (PAV) (Robertson, Wright and Dykstra, 1988).

Given a sequence of data (Yi)
n
i=1, our proposed estimator θ̂n can be computed

via equations (12) and (13). After obtaining an additional observation Yn+1,

θ̂n+1 can be formed using only Bn, ∆n, Dn+1, and Xn+1 as input. As ∆n can
be readily updated to ∆n+1 and θ̂n+1 can be computed from ∆n+1 and Bn+1,
it suffices to show that Bn can be updated. Observe,

Bn+1,j =

∑n
i=1D

∗
ijXij

∆n+1,j
+
D∗

n+1,jXn+1,j

∆n+1,j

=

(

∆n,j

∆n+1,j

)

Bnj +
D∗

n+1,jXn+1,j

∆n+1,j
.
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In this way, our estimator θ̂n can updated to θ̂n+1 efficiently in a storage sense
by maintaining summary statistics ∆n and Bn instead of accessing the entire
data-stream.

For computational complexity, there are two possible situations. First, if the
(Ki) are convolution operators, then by Theorem 1, Ψ and Di are the Fourier

basis and Fourier coefficients, respectively, of Ki. In this case, θ̂n can be com-
puted via the Fast Fourier Transform, which implies O(p log p) computations,
which is highly efficient. However, there are Ki that do not satisfy Theorem 1
but do satisfy assumption (A3). For these Ki, the eigenvectors and eigenvalues
must be computed via a conventional eigenvector solver, which necessarily has
computational complexity O(p3). Though this could potentially become pro-
hibitive for large scale problems, there do exist modern approximation methods
for eigenvalues and eigenvectors that could be used instead, such as in Halko,
Martinsson and Tropp (2009). However, we do not explore this idea further in
this paper.

3.2. Estimating the variance parameter

To derive the theoretical results of this paper we assume that σ is known. In
practice, this not usually the case (though, in the case of the LSST, the noise
properties of the telescope are known to a certain extent due to the physics of
the device). There are two main properties of the model in equation (1) that
are of interest for variance estimation. First, we have access to a long sequence
of observations (Yi)

n
i=1 and second, each Yi is gathered after begin corrupted by

a forward operator Ki that is ill-conditioned.

Due to the first property, σ can be consistently estimated by identifying a
subsequence N of N and using the observations (Yi)i∈N for σ estimation and
(Yi)i∈N\N for θ estimation. If we define N ′ to be the set comprised of the first
n′ entries in N then we have the following estimator of σ

σ̂2
con :=

1

pn′

∑

i∈N

p
∑

j=1

(

Y 2
ij − Y

2

j

)

.

By the (strong) law of large numbers, 1/n′
∑

i∈N ′ Y 2
ij converges almost surely

to σ2 + limn′→∞ 1/n′
∑

i∈N ′(EYij)
2 and Y

2

j converges to almost surely to
limn′→∞ 1/n′

∑

i∈N ′(EYij)
2. Hence, σ̂2

con converges almost surely to σ2.

This approach is unsatisfying as we are potentially using high-quality ob-
servations (low amounts of smoothing) for doing σ estimation and low quality
observations (high amount of smoothing) for estimating θ. As an alternative, we
can use an adaptation of the usual variance estimator from least-squares linear
regression (Seber and Lee, 2003, Chapter 3.3) to estimate σ. Due to the second
property, there is usually no null-space of the forward operator, which is where
the variance estimation usually occurs. However, as the forward operators are
ill-conditioned, there is ‘almost’ a null-space.
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Suppose for some i∗ that Yi∗ is an extremely low quality observation in the
sense that the signal θ is highly smoothed. This is equivalent to the forward
operator Ki∗ being more ill-conditioned, which in turn implies the existence of
a p′ such that for j = p′, . . . , p, |Di∗j |2 is nearly zero. Suppose now that N is
the set of all such indices i∗. Assume for simplicity that p′ is the same for all
observations in N and form the following statistic

σ̂2
i :=

1

p− p′

p
∑

j=p′

|Xij |2.

Then Eσ̂2
i = σ2 + 1

p−p′

∑p
j=p′ |Dij |2|βj |2 and we report σ̂2 := 1/n′

∑

i∈N ′ σ̂2
i as

our estimator of σ2. This is in general a biased estimator of the variance, and the
bias doesn’t disappear asymptotically. This is the price that must be paid for
there not existing an exact null space for the forward operatorsKi. Nevertheless,
σ̂2 is still useful. First, it is conservative as it has a positive bias. Perhaps more
importantly, this estimator provides an interesting situation where the lowest
quality parts (those with index p′ ≤ j ≤ p) of the lowest quality observations
(those with index in N ) provide the best performance (σ̂2 has a small bias).

As alluded to after the introduction of the model in equation (1), the vari-
ance parameter σ could change between observations. In this case, there is no
straightforward σ to estimate. However, suppose the (σi) are generally centered
on some value σ. Then, Yi = Kiθ+σWi+(σi−σ)Wi and, by the same derivation
that produces equation (6),

Bn = β + σ∆−1
n

n
∑

i=1

D∗
iΨ

∗Wi +∆−1
n

n
∑

i=1

(σi − σ)D∗
iΨ

∗Wi. (17)

Under assumption (A5), it is possible to show that with high probability that
the remainder term goes to zero if 1/n

∑n
i=1 |σi − σ| → 0; that is, if σi are

suitably centered around σ in an asymptotic way. Hence, equations (6) and (17)
are asymptotically the same and we should expect that the variance estimators
introduced in this section will behave reasonably well in the varying σ situation
as well.

3.3. Overview of alternate approaches

In equation (1), it is tempting to average the observations (Yi) directly. This
leads to the following model

Y n = Knθ +
σ√
n
W (18)

where, under assumption (A3), Kn := 1/n
∑n

i=1Ki = ΨDnΨ
∗,

Dn := 1/n
∑n

i=1Di, Y n := 1/n
∑n

i=1 Yi, and W ∼ N(0, Ip). This can also be
equivalently expressed as

Bn = |Dn|−2D
∗
nXn = β +

σ√
n
|Dn|−2D

∗
nΨ

∗W. (19)
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Here, Xn = Ψ∗Y n. We define the corresponding set of linear estimators to be
E := {θ̂ = Ψλ(Bn) : λ ∈ Cp}.

Note that we can write equation (18) without any assumptions about the
eigenvectors of the forward operators; that is, without assumption (A3). How-
ever, under assumption (A3), the following theorem supports forming estimators
based on equation (6) instead of equation (18).

Theorem 6. Suppose for any fixed θ,

R1 = inf
θ̂∈E

E||θ̂ − θ||22 and R2 = inf
θ̂∈E

E||θ̂ − θ||22,

where the expectations in R1 and R2 are under Bn and Bn, respectively. Then

R1 <
∗ R2

where ‘<∗’ means ‘strictly less than except when Di ≡ D for all i and some D.’
That is, the oracle linear risk based on equation (6) is strictly less than the
oracle linear risk based on equation (18).

Remark 3.1. Note that the classic Tikonov-Phillips estimator based on the
Y n is of the form

θ̂ridge = (K
⊤
nKn + τI)−1K

⊤
n Y n.

This is equivalent to

θ̂ridge = Ψ(|Dn|2 + τI)−1|Dn|2|Dn|−2D
∗
nXn = Ψ(|Dn|2 + τI)−1|Dn|2Bn, (20)

and hence the Tikonov-Phillips estimator is in E , among many others.

Alternatively, we could form Kn := [K⊤
1 , . . . ,K

⊤
n ]⊤,

Yn := [Y ⊤
1 , . . . , Y ⊤

n ]⊤, and Wn ∼ N(0, In·p). Then it follows that

Yn = Knθ + σWn.

However, estimators based on this approach, such as spline-type estimators, rely
on accessing the entire history of observations (Yi) and forward operators (Ki).
This is computationally infeasible as this means both keeping and repeatedly
accessing the entire sequence of observations. Hence, this approach doesn’t sat-
isfy our requirement of an estimate at time n being efficiently updatable to a
new estimate after recording Yn+1.

4. Supporting simulations

4.1. Description

In this section, we present visual results of using our estimator θ̂n to reconstruct
various signals given access only to smoothed and noisy, but repeated, obser-
vations of that signal. For a quantitative comparison, we use the normalized
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relative risk (RR) given by

RR(θ̂, θ) :=

√

R(θ̂, θ)

||θ||2 . (21)

We estimate RR by averaging 100 runs of our simulations.
In the one-dimensional cases, we compare our estimator, θ̂n to θ̂ridge from

equation (20), with the smoothing parameter τ chosen by minimizing generalized

cross validation (GCV). This is a natural comparison as θ̂ridge represents a well-
understood type of estimator that a new estimator should outperform.

For the two-dimensional case, we compare our estimator to θ̂AIRY, which
appears in the software package AIRY (Bertero and Boccacci, 2000a,b; Correia
et al., 2002) and is well-known in the Astronomy community for processing
sequences of low-quality images. There does not exist an established method
for choosing the smoothing parameters in θ̂AIRY. Therefore, we set the tuning
parameters interactively to the level that minimizes equation (21). Note that

this implies that our estimator need only perform comparably to θ̂AIRY as it is
using oracle information not available in practice.

For each of the signals introduced below, we fix the noise parameter σ to
be such that the signal-to-noise := ||θ||1/(pσ) = 1. For the one-dimensional
examples, we admit Ki that are an equally weighted mixture of three Gaussians,
normalized to have l1 mass equal to 1, with means µ1 = −0.75, µ2 = 0.00, and

µ3 = 0.50, along with standard deviations σiq = 0.5 + Eqi, where Eqi
i.i.d.∼

exponential(1) and q = 1, 2, 3. For the two-dimensional example, we specify
the means to all be (0, 0) and the standard deviations are 2x2 matrices with
diagonal entries all i.i.d. shifted exponentials of the same form as σiq . Note
that this implies that the Ki are not symmetric. Also, note that Gaussian-like
smoothing represents one of the worst cases as it exponentially down-weights
the βj for large j.

We consider two one-dimensional signals for estimation, which we refer to
as θsmooth and θpeaked (Figure 2) with p = 256. The first signal, θsmooth, is the
sum of two Gaussians that are filtered by a Gaussian-tapered filter. This filter
is additionally enforced to be zero above the p/2 frequency. Hence, θsmooth is
very smooth and compactly supported in the frequency domain. This example is
instructive as a smooth function should be well represented by the eigenvectors
Ψ of the smoothing operators Ki. Also, a compact representation in frequency
domain will reveal the effectiveness of the soft-thresholding in zeroing out the
appropriate Bnj , ie: those that correspond to the βj that are zero. See the first
row of Figure 2 for a plot of θsmooth (left column) along with a typical example
of a noisy, smoothed version that comprises the recorded data (right column).

Additionally, we consider the opposite situation by defining a signal θpeaked

that is the sum of three sharp, non-smooth, peaks. This signal is difficult to
represent with the eigenvectors of smoothing matrices but is common in signal
processing as it corresponds to both spectra from biochemical analysis and nu-
clear magnetic resonance imaging (nMRI). Note that the smallest peak is com-
pletely obscured by the smoothing and noise. See the second row of Figure 2
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Fig 2. The left column corresponds to the unobserved signal we wish to recover (solid, red
line), along with the smallest and largest amount of smoothing considered (dashed and dashed-
dotted black lines, respectively) The right column is an example observed signal. The top row
corresponds to θsmooth and the bottom to θpeaked. Notice that in θpeaked, the smaller peak is
completely obscured in the observed data.

for a plot of θpeaked (left column) along with an example of a noisy, smoothed
version (right column).

Lastly, we consider a two-dimensional signal, θtext, that has dimension 1075×
1075 (which means θtext ∈ Rp, where p = 10752 = 1, 155, 625) which is a short
section of text. We choose this due to the relative ease of visually evaluating
the effect of an estimator at recovering the underlying signal. See Figure 3 for
a plot of θtext and an example of a noisy, smoothed version.

4.2. Results

In estimating either one-dimensional signal, θsmooth or θpeaked, the estimator θ̂n
converges rapidly to the truth. See Table 1 for the RR of θ̂n and θ̂ridge used
on both signals. In each case, for n = 50, the RR are approximately the same,
with θ̂ridge having a slight edge. Every sample size thereafter shows substantial

advantage of θ̂n over θ̂ridge, culminating with a factor of two improvement in
RR after n = 300 observations.

For estimating θsmooth, both estimators have substantial oscillations for low
sample sizes. However, due to θ̂n having a soft-thresholding effect, some of the
entries in our estimator of β are zeroed out. In contrast, θ̂ridge only shrinks the
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Fig 3. The left column corresponds to θtext and the right column corresponds to a noisy,
smoothed version of θtext.

Table 1

The RR for the considered simulations. These are estimated by averaging 100 runs of our
simulations

Sample Size
n = 50 n = 100 n = 200 n = 300

RR(θ̂n, θsmooth) 0.291 0.210 0.149 0.120

RR(θ̂ridge, θ
smooth) 0.288 0.223 0.199 0.173

RR(θ̂n, θpeaked) 0.148 0.116 0.092 0.079

RR(θ̂ridge, θ
peaked) 0.151 0.150 0.149 0.141

RR(θ̂n, θtext) 0.743 0.689 0.646 0.634

RR(θ̂AIRY, θtext) 0.636 0.609 0.590 0.585

coefficients and hence still has substantial fluctuations after n = 300 observa-
tions. See Figure 4 for graphical results.

For the signal θpeaked, θ̂n estimates the true height of the peaks accurately and
quickly. In particular, the secondary small peak is definitively identified with the
correct shape and height for n = 50 observations, while for θ̂ridge, the secondary
peak is much less clear. There are still some remaining oscillations at n = 300,
resulting from unavoidable consequence of using the eigenvector basis. This is a
well-known phenomenon in Fourier analysis known as the ‘Gibbs effect.’ Even
with this obstacle, θ̂n converges quickly to θpeaked. See Figure 5 for graphical
results.

Our method extends to the two-dimensional case in a straight-forward man-
ner. See Figure 6 for graphical results of θ̂n (left column) and θ̂AIRY with tuning
parameter chosen as the argmin of RR (right column) on reconstructing θtext for
n = 50, 100, 200, 300. Additionally, see Table 1 for a comparison of the methods’
RRs. The estimator θ̂AIRY has smaller RR than θ̂n. This is not surprising as
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Fig 4. Estimation of θsmooth by θ̂n (left column) and θ̂ridge (right column). The sample sizes

range from top to bottom, n = 50, 100, 200, 300. Our estimator, θ̂n, quickly converges to
θsmooth. However, θ̂ridge, which doesn’t zero out any coefficients, still has substantial fluctu-
ations after n = 300 observations. See Table 1 for RR results for this simulation.
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Fig 5. Estimation of θpeaked by θ̂n (left column) and θ̂ridge (right column). The sample sizes

range from top to bottom, n = 50, 100, 200, 300. Our estimator, θ̂n, estimates the true height
of the peaks accurately and quickly. In particular, the secondary small peak is definitively
identified with the correct shape and height. There are still some remaining oscillations at
n = 300, resulting from an unavoidable Gibbs effect from using the eigenvectors as a basis.
See Table 1 for RR results for this simulation.
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Fig 6. Estimation of θtext by θ̂n (left column) and θ̂AIRY (right column). The sample sizes

range from top to bottom, n = 50, 100, 200, 300. Our estimator, θ̂n, performs slightly worse
than θ̂AIRY (see Table 1). However, considering θ̂AIRY uses oracle information, θ̂n compares
very favorably, particularly for larger n.
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θ̂AIRY, in this case, has access to oracle information unavailable to θ̂n. However,
in practice, a data-dependent tuning parameter would need to be selected for
θ̂AIRY, necessarily decreasing its performance. Additionally, even with this ad-
vantage, the difference in the RR of the two methods decreases by a factor of
two as the sample size goes from n = 50 to n = 300 (0.107 to 0.049).

5. Discussion

In this paper, we provide a general method for recovering an unknown signal
given a sequence of noisy observations that are only indirectly of that signal of
interest. Our estimator, θ̂n, has many favorable properties. It has computational
efficiency in the sense that it can be updated with a new observation without
need to reference the entire sequence of observations. Instead, it relies on only
a few summary statistics that need to be maintained and updated. Though its
computation is predicated on finding the eigenvectors and eigenvalues of poten-
tially large matrices, the implementation is straightforward and generalizable
to higher dimensional signals such as images. Additionally, there exist methods
for the approximate computation of the eigenvectors of matrices that could in
principle be used to speed up the computation of Ψ.

Also, θ̂n comes with theorectical support. The uniform consistency and oracle
inequality results show that it is making about as good of use of the data
as possible. Likewise, θ̂n has worked very well in our experiments so far, as
evidenced by the results in Figures 1, 4, 5, and 6.

The development of this estimator is a novel contribution to the field of
inverse problems by combining data-driven tuning parameter selection, com-
putational efficiency, and statistical guarantees. Additionally, we develop some
results about the estimation of a mean of a complex Gaussian random vector
that are interesting in their own right.

Interesting future work would be to more fully explore the relationship be-
tween θ̂n and the other methods that are defined in equation (10). Different
choices of the regularizing set G leads to different estimators, which encode
different assumptions about the signal, θ, we hope to recover. Particular appli-
cations might benefit from leveraging these varying assumptions.

Appendix A

This section gives warrant for assumption (A3) in Section 2. Although a slightly
weaker version of assumption (A3) is all that is actually required (that only the
right eigenvectors need be the same instead of both left and right eigenvectors)
we leave it in its current form for simplicity of exposition and conditions.

Two real matrices A,B share the same eigenvectors if they are simultaneously
unitarily diagonalizable; that is, if there exists two diagonal matrices Σ1,Σ2 and
a unitary matrix Ψ such that A = ΨΣ1Ψ

∗ and B = ΨΣ2Ψ
∗. Note that A and

B must of course be unitarily diagonalizable, which implies by the spectral
theorem that A and B are normal; that is A⊤A = AA⊤ and B⊤B = BB⊤. The
following theorem characterizes simultaneous diagonalizability.



Estimators for sequential inverse problems 2119

Lemma 7. Let K be a commuting family of normal matrices. Then K is also
simultaneously unitarily diagonalizable.

Proof of Lemma 7. By the Schur unitary triangularization theorem (Horn and
Johnson, 1985, Theorem 2.3.1) if K is a commuting family of matrices, then
there is a unitary Ψ such that ΨKΨ∗ is upper triangular for every K ∈ K.
Hence, as normality is preserved under unitary congruence and a triangular
normal matrix must be diagonal, the result follows.

Though all Toeplitz matrices commute asymptotically as the number of rows
and columns increases, not all Toeplitz matrices commute for a fixed size. Many
subsets of the family of Toeplitz matrices satisfy Lemma 7, however. In par-
ticular, all circulant matrices commute (Gray, 2001, Chapter 3.1). This shows
Theorem 1.

Appendix B

We use the following notation in several of the below proofs. We use. to indicate
‘less than or equal to up to a constant independent of n.’ Also, it is convenient
to think of a complex number a = a1 + a2i as an element (a1, a2) ∈ R2. In
this case, we use |||a|||2 = a21 + a22 as a norm on R2, as the complex modulus is
not technically defined on elements of R2. Additionally, Z ∼ N(0, I2) is the two
dimensional standard normal. Lastly, we define s2nj := Ω2

nσ
2/∆nj, where Ω2

n is
defined in equation (12).

We begin with a lemma that will be used in the proofs of Theorem 2 and
Theorem 3:

Lemma 8. Let µ ∈ R2 be a vector, Σ = diag(σ2
1 , σ

2
2) be a diagonal matrix with

positive entries, and c2 be a real, positive constant. Then

P(|||µ+Σ1/2Z|||2 ≤ c2) ≤ P(|||µ+ σmaxZ|||2 ≤ c2)

if |||µ||| > c and σmax = max{σ1, σ2}.
Here, we don’t give a formal proof but provide intuition. The probability

in Lemma (8) corresponds to the amount of the mass of an elliptical normal,
aligned with the canonical axis, that resides in a ball of radius c at the origin.
Hence, if |||µ||| > c (that is, the mean is outside the ball) a more spread out the
normal results in more mass inside the ball.

Proof of Theorem 2. For simplicity, write β̂n := λ̂(Bn). Then

sup
θ∈Θ

Rn(θ̂n, θ) = sup
β∈B

Rn(β̂n, β),

where B := {β : ||β||2 ≤ T 2} = Ψ∗Θ. Then we wish to show that

lim sup
n→∞

sup
β∈B

Rn(β̂n, β) = 0, (22)



2120 D. Homrighausen and C. R. Genovese

where the subscript n on R has been included to emphasize the dependence on
the sample size.

We begin by defining the following set

Aj := {ω : |Bnj(ω)|2 > s2nj}

where ω ranges over the measure space on which the random variable Bnj is
defined. The utility of defining Aj is

β̂nj1Aj
=

(

1− Ω2
nσ

2

∆nj |Bnj |2
)

Bnj1Aj
(23)

Additionally, write Bnj = βj + Znj as a mean term plus stochastic term,
where Znj is the jth entry in the complex normal σ∆−1

n

∑

i(D
∗
iΨ

∗Wi). Then
the following bound on the jth term in the loss holds:

|β̂nj − βj |2 = 1Aj
|β̂nj − βj|2 + 1Ac

j
|β̂nj − βj |2

= 1Aj

∣

∣

∣

∣

∣

(

1−
s2nj

|Bnj |2

)

Bnj − βj

∣

∣

∣

∣

∣

2

+ 1Ac
j
|βj |2

= 1Aj

∣

∣

∣

∣

∣

Znj −
(

s2nj(βj + Znj)

|βj + Znj |2

)∣

∣

∣

∣

∣

2

+ 1Ac
j
|βj |2 (24)

≤ 1Aj

(

|Znj|+
s2nj

|βj + Znj |

)2

+ 1Ac
j
|βj |2

≤ 1Aj
(|Znj |+ snj)

2
+ 1Ac

j
|βj |2.

To show that the expected value of the first term goes to zero in expectation,
observe:

E1Aj
(|Znj |+ snj)

2 ≤ E|Znj |2 + 2snjE|Znj |+ s2nj

≤ E|Znj |2 + 2snj

√

E|Znj |2 + s2nj

=
σ2

∆nj
+ 2snj

√

σ2

∆nj
+ s2nj

≤ σ2

∆nj

(

1 + 2Ωn +Ω2
n

)

.

As Ω2
n < C <∞ for n large enough for some C by assumption (A5),

E1Aj
(|Znj |+ snj)

2
= O(1/∆nj) (25)

uniformly in β.
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For the second term, 1Ac
j
|βj |2, we need to show

lim sup
n→∞

sup
β∈B

p
∑

j=1

P(Ac
j)|βj |2 = 0. (26)

First, we compute the eigenvalue matrix Λnj of the covariance matrix of Znj

as a vector in R2. By the properties of complex normals2

Znj ∼ N

((

0
0

)

,

(

σ2/∆nj ℑCjj

ℑCjj σ2/∆nj

))

where Cjj is the jth diagonal entry of the matrix σ2∆−1
n

∑

i(D
∗
iΨ

∗ΨDi)∆
−1
n .

Hence, the entries in Λnj are λ
2
nj,1 = σ2/∆nj+ℑCjj and λ

2
nj,2 = σ2/∆nj−ℑCjj ,

which are both strictly positive. Also, define U to be the associated eigenvector
matrix.

Though it is clear that P(Ac
j)|βj |2 goes to zero pointwise, the worst βj is

arbitarily close to zero. Hence, to show uniform convergence, we define a pa-
rameter τ2nj . For each j, define Bj := {βj : |||βj |||2 ≤ T 2} and split this set into
Bj = Bjn ∪ Bc

jn, where

Bc
jn := {βj : τ2nj ≤ |||βj |||2 ≤ T 2}.

Also, as ||| · ||| is invariant under orthogonal operations, we can rotate everything
by the eigenvectors U . Denote rotation by U by a tilde; that is, β̃j := Uβj . Then,

sup
β∈B

p
∑

j=1

P(Ac
j)|βj |2 ≤

p
∑

j=1

sup
βj∈Bj

P(Ac
j)|βj |2

≤
p
∑

j=1

max

{

sup
βj∈Bnj

Pβj
(Ac

j)|βj |2, sup
βj∈Bc

nj

P(Ac
j)|βj |2

}

≤
p
∑

j=1

max

{

τ2nj , sup
βj∈Bc

nj

P(Ac
j)|βj |2

}

=

p
∑

j=1

max

{

τ2nj , sup
βj∈Bc

nj

P(|||U(βj + Zn)|||2 ≤ s2nj)|||β̃j |||2
}

.

Then continuing on with the second term in the max, and using Lemma 8
with |||β̃j ||| > snj , which happens if τ2nj > s2nj ,

sup
β̃j∈Bc

nj

P(|||β̃j + Λ
1/2
nj Z|||2 ≤ s2nj)|||β̃j |||2

≤ sup
β̃j∈Bc

nj

P(|||β̃j + λmaxZ|||2 ≤ s2nj)|||β̃j |||2

2Technically, this covariance matrix is off by a constant, but this is not relevant for our
current purposes.
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≤ sup
β̃j∈Bc

jn

(

1− Φ
(

|||β̃j/λmax||| − snj/λmax

))

|||β̃j |||2

= sup
τ2

nj
≤u2≤T 2

(1− Φ (1/λmax(u− snj)))u
2

= sup
τnj

λmax
−snj≤t≤ T

λmax
−snj

(1− Φ(t))(λmax(t+ snj))
2

= λ2max sup
τnj

λmax
−snj≤t≤ T

λmax
−snj

(1− Φ(t))(t+ snj)
2

≤ λ2max sup
0≤t≤∞

(1 − Φ(t))(t+ 1)2 for n large enough

. λ2max

The last inquality needs some explanation. Letting g(t) = (1 − Φ(t))(t + 1)2,
then it is clear that g is continuous, g(0) = 0.5, and limt→∞ g(t) = 0 (this last
claim follows by an application of L’Hôpital’s rule). Therefore, g is uniformly
bounded in t by a finite constant, from which the claim follows.

Thus,
sup
β∈B

P(Ac
j)|βj |2 . max{τ2n, λ2max} (27)

Hence, it is sufficient to choose τ2nj = 2s2nj and to note that

λ2max ≍ s2nj ≍ σ2/∆nj.

This implies
sup
β∈B

P(Ac
j)|βj |2 = O(s2nj). (28)

As we are summing over j in the risk, we conclude that

lim sup
n→∞

sup
β∈B

γ−1
n R(β̂n, β) <∞

where

γn = min
j

σ2

∆nj
.

Proof of Theorem 3. We use the same notations and conventions as in the proof
of Theorem 2. Note that if we define ǫ2nj = σ2/∆nj , then the linear oracle risk
is

R(β∗, β) = min
β̃=λ(Bn)

R(β̃, β) =

p
∑

j=1

|βj |2ǫ2nj
ǫ2nj + |βj |2

=

p
∑

j=1

|βj |2s2nj
s2nj +Ω2

n|βj |2
. (29)

We can bound the jth term in the loss as follows

|β̂j − β|2

= 1Aj

[

|Znj |2 −
Znjs

2
nj(βj + Znj)

|βj + Znj|2
−
Znjs

2
nj(βj + Znj)

|βj + Znj |2
+

s4nj
|βj + Znj|2

]
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+ 1Ac
j
|βj |2

= 1Aj

[

|Znj |2 −
|Znj|2s2nj
|βj + Znj |2

−
s2nj(|Znj |2 + βjZnj + βjZnj)

|βj + Znj |2
+

s4nj
|βj + Znj |2

]

+ 1Ac
j
|βj |2

= 1Aj

[

|Znj |2 −
(

s2nj(|βj + Znj |2 − |βj |2)
|βj + Znj|2

)

+
s4nj

|βj + Znj |2

]

+ 1Ac
j
|βj |2

= 1Aj

[

|Znj |2 − s2nj +

(

s2nj |βj |2
|βj + Znj |2

)

+
s4nj

|βj + Znj|2

]

+ 1Ac
j
|βj |2

≤ |Znj |2 + 1Aj

(

s2nj |βj |2
|βj + Znj |2

)

+ 1Ac
j
|βj |2

= |Znj |2 + 1Aj

(

s2nj |βj |2
s2nj +Ω2

n|βj |2

)(

s2nj +Ω2
n|βj |2

|βj + Znj |2

)

+ 1Ac
j
|βj |2.

By the previous proof, we see that the expected value of the first and third
term go to zero uniformly over β ∈ B at rate O(1/∆nj); the same rate as the
oracle. For the second term, notice that

1Aj

(

s2nj +Ω2
n|βj |2

|βj + Znj |2

)

≤ 1Aj

(

1 +
Ω2

n|βj |2
|βj + Znj |2

)

.
1Aj

|βj |2
|βj + Znj|2

=: Gnj

for n large enough, by assumption (A5). Then our goal is to show that

lim sup
n→∞

sup
β∈B

EGnj <∞.

First, due to Gnj being rotationally symmetric (once we use ||| · ||| instead of

| · |), we renormalize to transform Znj into a vector Z̃ with independent standard
normal components

Gnj = 1Aj

( |||βj |||2
|||βj + Znj |||2

)

= 1Ãj

( |||U⊤βj |||2
|||U⊤βj + U⊤Znj|||2

)

= 1Ãj

(

|||β̃j |||2

|||β̃j + Λ
1/2
nj Z̃|||2

)

.

We define Λnj and U in the previous proof as the eigenvalues and eigenvectors,

respectively, of the covariance matrix of Znj and Ãj := {||β̃j +Λ
1/2
nj Z̃||2 > s2nj}.

We break bounding EGnj into cases.

Case 1. |||β̃j |||2 ≤ s2nj.
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We see from the definition of 1Ãj
that

Gnj ≤ 1Ãj

(

s2nj

|||β̃ + ΛnjZ̃|||2

)

< 1Ãj

(

s2nj
s2nj

)

≤ 1.

Case 2. |||β̃|||2 > s2nj.

Note that by the nonnegativity of Gnj

EGnj =

∫ ∞

0

P(Gnj > τ) dτ.

For τ > 0,

P(Gnj > τ) = P

(

s2nj ≤ |||β̃ + Λ
1/2
nj Z̃|||2 <

|||β̃|||2
τ

)

=







0 τ ≥ |||β̃|||2

s2
nj

P

(

s2nj ≤ |||β̃ + Λ
1/2
nj Z̃|||2 < |||β̃|||2

τ

)

o.w.

Therefore, for any c2 > 0,

EGnj =

∫ ∞

0

P(Gnj > τ) dτ

=

∫ c2

0

P(Gnj > τ) dτ +

∫
|||β̃|||2

s2
nj

c2
P(Gnj > τ) dτ

≤ c2 +

(

|||β̃|||2
s2nj

)

P(Gnj > c2)

≤ c2 +

(

|||β̃|||2
s2nj

)

P

(

|||β̃ + Λ
1/2
nj Z̃|||2 <

|||β̃|||2
c2

)

If c2 > 1, then the mean of of the random variable β̃ +Λ
1/2
nj Z̃ will be outside of

the circle centered at zero with radius ||β̃||/c. Hence, by Lemma 8, if we define
λ2max := max{diag(Λnj)}, then it follows that

P

(

|||β̃ + Λ
1/2
nj Z̃|||2 <

|||β̃|||2
c2

)

≤ P

(

|||β̃ + λmaxZ̃|||2 <
|||β̃|||2
c2

)

. (30)

Using this, observe
(

|||β̃|||2
s2nj

)

P

(

|||β̃ + Λ
1/2
nj Z̃|||2 <

|||β̃|||2
c2

)

≤
(

|||β̃|||2
s2nj

)

P

(

|||β̃/λmax + Z̃|||2 < |||β̃/λmax|||2
c2

)
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≤
(

|||β̃|||2
s2nj

)

(

1− Φ

((

1− 1

c

)

|||β̃/λmax|||
))

=

(

|||β̃|||2
s2nj

)

(

1− Φ

((

1− 1

c

)

|||β̃/λmax|||
))

=

(

(λmaxt)
2

s2nj

)

(

1− Φ

((

1− 1

c

)

t

))

=

(

λ2max

s2nj

)

[

t2
(

1− Φ

((

1− 1

c

)

t

))]

Where we have transformed t = |||β̃|||/λmax. Hence, as s
2
nj ≍ λ2max and

sup
snj

λmax
≤t≤ T

λmax

t2
(

1− Φ

((

1− 1

c

)

t

))

≤ sup
0≤t≤∞

t2
(

1− Φ

((

1− 1

c

)

t

))

≤ 1

we see that
(

|||β̃|||2
s2nj

)

P

(

|||β̃ + Λ
1/2
nj Z̃|||2 <

|||β̃|||2
c2

)

= O(1),

independent of β. And we conclude that

EGnj = O(1),

again, independent of β. This ends the proof.

Proof of Theorem 4. Observe

lim
n→∞

sup
β∈B

E(Di),Xn
||β̂ − β||2 = lim

n→∞
sup
β∈B

E(Di)EXn|(Di)||β̂ − β||2

≤ lim
n→∞

E(Di) sup
β∈B

R(β̂, β). (31)

Therefore, to show the result, it suffices to exchange the limit and integral. We
appeal to the following bound from equation (24). For this proof, we use the
following result. Let {Xt : t ∈ T } be a family of random variables. If Xt → X
with probability one and {Xt : t ∈ T } is uniformly integrable, then EXt → EX .
As a reminder, {Xt : t ∈ T } is uniformly integrable if

lim
x→∞

sup
t∈T

E|Xt|1|Xt|>x = 0.

Define fn := supβ∈BR(β̂, β). Then, if we can show that fn is uniformly inte-
grable, we can exchange the limit and integral. The result follows by Theorem 2.
Observe the following bound for fn

|fn| = sup
β∈B

EXn|(Di)

p
∑

j=1

|β̂j − βj |2



2126 D. Homrighausen and C. R. Genovese

≤ sup
β∈B

EXn|(Di)

p
∑

j=1

[

1Aj
(|Znj |+ snj)

2
+ 1Ac

j
|βj |2

]

≤
p
∑

j=1

(

σ2

∆nj
+ 2snj

√

σ2

∆nj
+ s2nj + T 2

)

≤
p
∑

j=1

(

σ2

∆nj

(

1 + 2Ω2
n + (Ω2

n)
2
)

+ T 2

)

=

p
∑

j=1

(

σ2

∆nj
(Ω2

n + 1)2 + T 2

)

=:

p
∑

j=1

gj =: gn.

Therefore, it is sufficient to show that gn is uniformly integrable in order to
show that fn is uniformly integrable. Note that

E|gj |1|gj |>x ≤ xP(gj > x) +

∫ ∞

x

P(gj > y)dy.

For large x, x > T 2 and for large n, Ωn ≍ 1. Therefore, we only need deal with
the term σ2/∆nj .

Using assumption (B4), continuing the above with relevant terms, and notic-
ing that supn fn occurs at n = 1, it follows that for x large enough

xP

(

1

|D1j |2
> x

)

+

∫ ∞

x

(

1

|D1j |2
> y

)

dy = x

(

1

xρ

)

+

∫ ∞

x

(

1

yρ

)

dy

=

(

1

xρ−1

)

+

∫ ∞

x

(

1

yρ

)

dy

→ 0.

This allows for the exchange of integration end hence shows the desired result.

Proof of Proposition 5. We can expand (8) for any λ(Bn) ∈ E as

R(λ) := Rβ(λ(Bn)) =

p
∑

j=1

[

(λj − 1)2|βj |2 +
σ2λ2j
∆nj

]

. (32)

To form an estimator of R, we notice that Eβj
(|Bnj |2−σ2/∆nj) = |βj |2. Hence,

R̂(λ) :=

p
∑

j=1

[

(λj − 1)2
(

|Bnj |2 −
σ2

∆nj

)

+
σ2λ2j
∆nj

]

(33)

is an unbiased estimate of R(λ). We can make a substitution

ψ̂j := (|Bnj |2 − σ2/∆nj)/|Bnj |2,
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which produces

R̂(λ) =

p
∑

j=1

[

(λj − ψ̂j)
2|Bnj |2

]

+ σ2

p
∑

j=1

(

ψ̂j

∆nj

)

. (34)

Finally, note that the second term in R̂ doesn’t depend on λ, so it can be ignored
for minimization purposes. Define

R̂n(λ) :=

p
∑

j=1

(λj − ψ̂j)
2|Bnj |2 (35)

which is proportional to R̂(λ). This is our objective function for formulating
estimators.

However, there are some natural restrictions. First, define L := [0, 1]p. If
we consider a transformed version of (32) by making the substitution ψj :=
|βj |2/(|βj |2 +∆nj), then

R(λ) =

p
∑

j=1

[

(λj − ψj)
2

(

|βj |2 +
σ2

∆nj

)

+ σ2

(

ψj

∆nj

)]

. (36)

By inspection, the minimizer of (36) falls in L as ψj ∈ [0, 1] for each j. Hence,
we cannot get a lower risk by considering any more general sets and thus confine
our attention to λ ∈ L.
Proof of Theorem 6. Direct computation shows that

R1 = min
λ





p
∑

j=1

(1− λj)
2|Bj |2 + σ2

p
∑

j=1

λ2j
∆nj





and

R2 = min
λ





p
∑

j=1

(1− λj)
2|Bj |2 +

σ2

n

p
∑

j=1

λ2j
|Dn|2j



 .

This implies that

R1 =

p
∑

j=1

σ2

∆nj
|βj |2

|βj |2 + σ2

∆nj

=

p
∑

j=1

|βj |2
∆nj

σ2 |βj |2 + 1

and

R2 =

p
∑

j=1

σ2

n|Dn|2j
|βj |2

|βj |2 + σ2

n|Dn|2j

=

p
∑

j=1

|βj |2
n|Dn|2j

σ2 |βj |2 + 1
.

Hence, the result reduces to comparing ∆nj to n|Dn|2j . Note

|Dn|2 = D∗
nDn =

1

n2

∑

i,q

D∗
iDq
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and therefore

n|Dn|2j =
1

n

∑

i,q

D∗
ijDqj .

Observe

n|Dn|2j −∆nj =
1

n

∑

i,q

D∗
ijDqj −

n
∑

i=1

|Dij |2

=

(

1

n
− 1

)

∆nj +
∑

i6=q

D∗
ijDqj

≤ 1

n



−(n− 1)∆nj +
∑

i6=q

D∗
ijDqj





.− (n− 1)

n
∑

i=1

|Dij |2 +
∑

i6=q

D∗
ijDqj

≤− (n− 1)

n
∑

i=1

|Dij |2 +
∑

i6=q

(|Dij |2 + |Dqj |2)/2

=− (n− 1)

n
∑

i=1

|Dij |2 + (n− 1)

n
∑

i=1

|Dij |2

≤0

where the last inequality follows as |Dij ||Diq| ≤ (|Dij |2 + |Dqj |2)/2 by the
arithmetic-geometric inequality.
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