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Abstract: In practice, it is desired to have estimates that are invariant
under reparameterization. The invariance property of the estimators helps
to formulate a unified solution to the underlying estimation problem. In
robust Bayesian analysis, a frequent criticism is that the optimal estimators
are not invariant under smooth reparameterizations. This paper considers
the problem of posterior regret gamma-minimax (PRGM) estimation of the
natural parameter of the exponential family of distributions under intrinsic
loss functions with Kullback-Leibler distance. We show that under the class
of Jeffrey’s Conjugate Prior (JCP) distributions, PRGM estimators are
invariant to smooth one-to-one reparameterizations. We apply our results
to several distributions and different classes of JCP, as well as the usual
conjugate prior distributions. We observe that, in many cases, invariant
PRGM estimators in the class of JCP distributions can be obtained by
some modifications of PRGM estimators in the usual class of conjugate
priors. Moreover, when the class of priors are convex or dependant on a
hyper-parameter belonging to a connected set, we show that the PRGM
estimator under the intrinsic loss function could be Bayes with respect
to a prior distribution in the original prior class. Theoretical results are
supplemented with several examples and illustrations.
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1. Introduction

Suppose x is a realization of a random sample X with a sampling model given
by a family of densities {f(·|θ) : θ ∈ Θ} with respect to a σ-finite measure
ν on a sample space χ where θ is the unknown parameter of interest with
θ ∈ Θ. Let π(·) be a prior distribution on Θ and π(·|x) denote the posterior
distribution of θ given x. In standard Bayesian analysis, one needs to specify a
prior distribution π(·). However, in practice, elicitation of the prior distribution
can never be done without error. Hence, we usually need to consider a class Γ
of prior distributions which reflects (approximately) true prior beliefs, i.e., the
prior distribution π(·) is an unknown element of Γ. Robust Bayesian analysis is
designed to acknowledge such a prior uncertainty by considering the class Γ of
plausible prior distributions instead of a single prior distribution π and studying
the corresponding range of Bayesian solutions. See [1, 14] for comprehensive
overview of different robust Bayesian analysis methods and their applications.
One may also attempt to determine an optimal estimator δ by minimizing some
measures of robustness. Several criteria have been proposed for the selection
of procedures in robust Bayesian studies. In this paper, we study the maximal
posterior regret method (e.g., [14, 15]) to obtain the posterior regret gamma-
minimax (PRGM) estimator of the unknown parameter for the one-parameter
exponential family of distributions. The PRGM criterion has been used recently
by many people from both theoretical and practical points of view. For example,
[9] investigated the use of PRGM for credibility premium estimation in Actuarial
Science, [4, 5] in insurance for collective risk model analysis, and [12] in statistical
inference based on record data.

For an observed value x, a prior distribution π and the corresponding pos-
terior distribution π(·|x), we denote the posterior risk of an estimate δ(x) of
the unknown parameter θ under L(θ, δ) by r(x, δ) = E[L(θ, δ(x))|x]. The Bayes
estimator of θ under the loss function L(θ, δ) is then given by a δπ(X) such that
r(x, δπ) = infδ r(x, δ).

Definition 1. The PRGM estimator of θ under the loss function L(θ, δ) and a
class Γ of prior distributions is defined as an estimator δPR such that

sup
π∈Γ

ρ(δπ, δPR) = inf
δ
sup
π∈Γ

ρ(δπ, δ), (1.1)

where ρ(δπ, δ) = r(x, δ) − r(x, δπ) is the posterior regret, measuring the loss
entailed in choosing the action δ(x) instead of the optimal Bayes action δπ(x)
(under prior π and loss L).

In this paper, we study the construction of PRGM estimators under the
so-called intrinsic loss functions. These loss functions shift attention from the
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distance between the estimator δ and the true parameter value θ, to the more
relevant distance between statistical models they label. More specifically, the
intrinsic loss of using δ as a proxy for θ is the intrinsic distance between the
true model f(x|θ) and the model f(x|δ) when θ = δ, that is

L(θ, δ) = d (f(x|θ), f(x|δ)) , (1.2)

where d(·, ·) is a suitable distance measure. In practice, intrinsic loss functions
could be used as benchmark losses when the utility function related to the
underlying statistical problem cannot be obtained by practitioners. A desired
property of intrinsic loss functions is that they are invariant under one-to-one
smooth reparameterizations. The invariance property of intrinsic loss functions
provides a very convenient tool for statistical application.

Given two densities f(·|θ) and f(·|δ) with respect to the σ-finite measure ν,
there are many choices of the distance d(f(·|θ), d(·|δ)) in (1.2). In this paper,
we consider the Kullback-Leibler distance and we show that, under suitable
conditions, it can be used to formulate a unified set of solutions to the problem
of PRGM estimation of the unknown parameter of the exponential family of
distributions. As mentioned by [2], an estimator intended for general use should
surely be invariant under one-to-one transformations, especially when we merely
wish to report an estimate for some quantity of interest. For example, suppose
one obtains the PRGM estimate of the variance of the normal model. It would
be very difficult to sell to a practitioner that he/she can not use the square
root of this estimate as the PRGM estimate of the standard deviation. This is a
rather obvious requirement, which unfortunately many statistical methods fail
to satisfy. We provide a solution to this problem in Section 3.

The outline of this paper is as follows. In Section 2, we obtain the PRGM
estimator of the natural parameter θ of the exponential family of distributions
under the intrinsic loss function (1.2) when d(·, ·) is chosen to be the Kullback-
Leibler distance. We consider different classes of conjugate priors on the natural
parameter θ and show how to obtain the PRGM estimator of θ in each class.
We provide an automated and unified solution to the PRGM estimation of the
unknown parameter of the exponential family of distributions under different
loss functions, including, but not limited to, quadratic, LINEX, entropy and
Stein loss functions.

In Bayesian statistical analysis, as pointed out by [8], transformations of the
parameter typically suggest new families of prior distributions. Therefore, the
usual robust Bayesian inferences are not invariant under reparameterizations.
For example, if δPR(X) is the PRGM estimator of θ, then it is not necessarily
true that h(δPR(X)) is the PRGM estimator of η = h(θ), when h is a one-to-
one smooth function. A solution to this problem is proposed in Section 3. To
this end, we obtain invariant PRGM estimators of θ under the intrinsic loss
function and different classes of Jeffrey’s Conjugate Prior (JCP) distributions.
We show that the resulting PRGM estimates are invariant under one-to-one
smooth transformations of θ. Theoretical results are augmented with several
examples and illustrations. In Section 4, we provide some general results show-
ing that, under general conditions, PRGM and intrinsic PRGM estimators are
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Bayes with respect to prior distributions in the underlying class of priors. We
study two cases of convex classes of prior distributions as well as the case where
the underlying class of priors depends on a hyper-parameter belonging to a
connected set. We provide a sufficient condition under which the PRGM and
intrinsic PRGM estimators are Bayes with respect to data independent prior dis-
tributions within the underlying class of priors. In Section 5, we present some
examples to show how the PRGM and intrinsic PRGM results can be extended
to a multi-parameter exponential family of distributions. Finally, in Section 6,
we give some concluding remarks.

2. PRGM estimation under intrinsic loss functions

Suppose X is a random variable, where its distribution belongs to the one-
parameter exponential family of distributions F = {f(x|θ) : x ∈ χ ⊆ R, θ ∈
Θ ⊆ R}, with probability density function (pdf)

f(x|θ) = β(θ)t(x)e−θr(x), (2.1)

where r(x) > 0, β(θ)t(x) > 0 and θ is the unknown real-valued natural parame-
ter of the model. The density is considered with respect to the Lebesgue measure
for continuous and the counting measure for discrete distributions. Suppose δ is
an estimate of θ with both θ, δ ∈ Θ. We define the intrinsic loss function (1.2),
using the Kullback-Leibler measure between f(x|θ) and f(x|δ), as follows

L(θ, δ) = Eθ

[
log

(
f(X |θ)

f(X |δ)

)]
=

∫

χ

log

(
f(x|θ)

f(x|δ)

)
f(x|θ)dν(x). (2.2)

Loss function (2.2) can be interpreted as the expected log-likelihood ratio in
favour of the true model. Thus, the intrinsic loss function (2.2) not only has
the desired invariance property but it is also related to the relevant measure of
evidence in the Neyman-Pearson Lemma. Note that the intrinsic loss function
(2.2) is invariant under reparameterization since the parameters affect the loss
function only via the probability distributions they label, which are independent
of the particular parameterization. For more details on intrinsic loss functions,
we refer to [13] who studied the Bayesian estimation of the unknown parame-
ters of the exponential family of distributions under intrinsic loss functions with
Kullback-Leibler and Hellinger distances with respect to conjugate class of pri-
ors. Similar results for symmetric intrinsic loss functions under reference priors
are given by [2] and references cited therein.

First, we give a lemma which identifies the intrinsic loss function for the
exponential family of distributions.

Lemma 1. For the exponential family of distributions (2.1), the intrinsic loss
function (2.2) reduces to

L(θ, δ) = log

(
β(θ)

β(δ)

)
+ (δ − θ)

β′(θ)

β(θ)
, (2.3)

where β′(θ) = d
dθβ(θ).
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Let H(t) := β′(t)/β(t). A straightforward calculation shows that the posterior
risk associated with δ, under the loss function (2.3), is

r(x, δ) = E(log β(θ)|x) − log β(δ(x)) + δ(x)E
(
H(θ)

∣∣x
)
− E

(
θH(θ)

∣∣x
)
. (2.4)

The Bayes estimator of θ can therefore be obtained by minimizing (2.4) in δ as
follows

δπ(X) = H−1{E
(
H(θ)

∣∣X
)
}. (2.5)

Following the decreasing monotone likelihood ratio property of densities (2.1)
in r(X), and since E[r(X)] = H(θ), H(·) is a decreasing function. Therefore,
the Bayes estimator δπ(X) is unique. Furthermore, the posterior regret for es-
timating θ using δ instead of the optimal estimator δπ is obtained by

ρ(δπ, δ) = log
β(δπ)

β(δ)
+ (δ − δπ)H(δπ). (2.6)

Note that ρ(δπ , δ), as a function of δπ, decreases then increases with a unique
minimum at δπ = δ. The main result of this section is given in the follow-
ing theorem which obtains the PRGM estimator of θ under the intrinsic loss
function (2.3).

Theorem 1. Let δ(x) = infπ∈Γ δπ(x) and δ(x) = supπ∈Γ δπ(x) and suppose
that δ(x) and δ(x) are finite almost everywhere. The PRGM estimator of θ in
the exponential family (2.1) under the loss function (2.3) and in the class of
prior distributions Γ is given by

δPR(X) =
δ(X)H(δ(X))− δ(X)H(δ(X))− log β(δ(X))

β(δ(X))

H(δ(X))−H(δ(X))
. (2.7)

Proof. First, note that

inf
δ
sup
π∈Γ

ρ(δπ, δ) = min

{
inf
δ≤δ

sup
π∈Γ

ρ(δπ, δ), inf
δ<δ<δ

sup
π∈Γ

ρ(δπ , δ), inf
δ≥δ

sup
π∈Γ

ρ(δπ , δ)

}
.

So, we consider the following three cases:
Case 1. When δ ≤ δ, we have supπ∈Γ ρ(δπ, δ) = ρ(δ, δ). Let f1(δ) = ρ(δ, δ) =

log β(δ)
β(δ) + (δ − δ)H(δ) with f ′

1(δ) = H(δ) −H(δ) < 0, following the decreasing

property of H(·). Hence, f1(δ) is a decreasing function of δ for δ ≤ δ and
infδ≤δ f1(δ) = f1(δ). Therefore,

inf
δ≤δ

sup
π∈Γ

ρ(δπ, δ) = ρ(δ, δ).

Case 2. For δ ≥ δ, we have supπ∈Γ ρ(δπ, δ) = ρ(δ, δ). Let f2(δ) = ρ(δ, δ) =

log β(δ)
β(δ)+(δ−δ)H(δ) with f ′

2(δ) = H(δ)−H(δ) > 0. Hence, f2(δ) is an increasing

function of δ for δ ≥ δ and infδ≥δ f2(δ) = f2(δ). Therefore,

inf
δ≥δ

sup
π∈Γ

ρ(δπ, δ) = ρ(δ, δ).
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Case 3. If δ < δ < δ, then supπ∈Γ ρ(δπ, δ) = max{ρ(δ, δ), ρ(δ, δ)}. Let f3(δ) =
f1(δ)−f2(δ) where f

′
3(δ) = H(δ)−H(δ) < 0. Since f3(δ) is a decreasing function

of δ with f3(δ) < 0 and f3(δ) > 0, there exists a unique δ∗ ∈ (δ, δ) (as the root of
f3(δ) = 0) such that ρ(δ, δ∗) = ρ(δ, δ∗). Hence, for δ < δ < δ∗, supπ∈Γ ρ(δπ, δ) =
ρ(δ, δ) and for δ∗ < δ < δ, supπ∈Γ ρ(δπ, δ) = ρ(δ, δ). Note that, for δ < δ < δ,
ρ(δ, δ) is a decreasing function in δ with infδ<δ<δ∗ supπ∈Γ ρ(δπ, δ) = ρ(δ, δ∗) and
ρ(δ, δ) is an increasing function in δ with infδ∗<δ<δ supπ∈Γ ρ(δπ , δ) = ρ(δ, δ∗).
Therefore,

inf
δ<δ<δ

sup
π∈Γ

ρ(δπ, δ) = ρ(δ, δ∗) = ρ(δ, δ∗).

Following the above cases, we conclude that

inf
δ∈D

sup
π∈Γ

ρ(δπ, δ) = inf
δ<δ<δ

sup
π∈Γ

ρ(δπ, δ) = ρ(δ, δ∗) = ρ(δ, δ∗).

That is, the PRGM estimator of θ is given by δPR = δ∗ ∈ (δ, δ), as the solution
of

log
β(δ)

β(δ)
+ δPR

(
H(δ)−H(δ)

)
+ δH(δ)− δH(δ) = 0,

in δPR which results in the estimator (2.7).

We give some applications of Theorem 1.

Example 1 (Normal distribution). Suppose X ∼ N(µ, 1) is a normally dis-
tributed random variable with unknown parameter µ ∈ R and pdf f(x|µ) =
1√
2π
e−

1
2 (x−µ)2 , −∞ < x <∞. The pdf f(x|µ) belongs to the exponential family

(2.1) with θ = µ, and β(θ) = e−
θ2

2 . Also, H(θ) = −θ, and the intrinsic loss
function (2.3) reduces to L(θ, δ) = 1

2 (δ − θ)2 which is proportional to the usual

squared error loss function. Let δ and δ be defined as in Theorem 1. Using (2.7),
subject to the existence of δ and δ, the PRGM estimator of θ in the class Γ of
prior distributions is given by

δPR(X) =
1

2
(δ(X) + δ(X)),

which is also obtained in [1, 15]. [1] provides an excellent overview of robust
Bayesian analysis, including the PRGM estimation under squared error loss
function.

Example 2 (Exponential distribution). Suppose X ∼ Exp(σ) is an exponential
random variable with pdf f(x|σ) = 1

σ e
−x/σ, x > 0, where σ > 0 is the unknown

parameter. The pdf f(x|σ) belongs to the exponential family (2.1) with θ = 1
σ ,

and β(θ) = θ. In this case, H(θ) = θ−1, and the intrinsic loss function (2.3)
reduces to the Stein loss

L(θ, δ) =
δ

θ
− log

δ

θ
− 1.
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Using (2.7), subject to the existence of δ and δ, the PRGM estimator of θ under
the Stein loss function is given by

δPR(X) =
log 1

δ(X)
− log 1

δ(X)

1
δ(X)

− 1
δ(X)

.

The PRGM estimator of σ is also obtained in Example 5.

Example 3 (Binomial distribution). Suppose X ∼ Bin(n, p) is a binomial
random variable with probability mass function (pmf) f(x|p) =

(
n
x

)
px(1−p)n−x,

where n is known, x = 0, 1, . . . , n, and p ∈ [0, 1] is the unknown parameter. The
pmf f(x|p) is a member of the exponential family (2.1) with θ = log(1−p

p ) and

β(θ) = (1 + e−θ)−n. We also have H(θ) = n
1+eθ which results in the intrinsic

loss function

L(θ, δ) = n

{
log

(
eθ

eδ
·
1 + eδ

1 + eθ

)
+

δ − θ

1 + eθ

}
. (2.8)

Using (2.7), subject to the existence of δ and δ, the PRGM estimator of θ is
given by

δPR(X) =

δ(X)

1+eδ(X)
− δ(X)

1+eδ(X) − log
{

eδ(X)

eδ(X)
1+eδ(X)

1+eδ(X)

}

1
1+eδ(X)

− 1
1+eδ(X)

. (2.9)

In Example 7, we obtain the PRGM estimator of p.

We now consider the PRGM estimation of θ under conjugate classes of prior
distributions. For the exponential family (2.1) and a conjugate prior distribution

πα,λ(θ) ∝ {β(θ)}α e−θ λ, (2.10)

the posterior distribution is given by π(θ|x) ∝ {β(θ)}1+α e−(λ+r(x))θ, and

π(θ|x) = πα+1,λ+r(x)(θ). Also, as established by [6], E[H(θ)|x] = λ+r(x)
α+1 . Now,

the Bayes estimator of θ under the intrinsic loss function (2.3) is obtained by
(e.g., [3, 10, 13])

δπ(X) = H−1

(
λ+ r(X)

α+ 1

)
. (2.11)

Furthermore, the posterior regret for estimating θ with δ(x) is ρ(δπ, δ) =

log β(δπ(x))
β(δ(x)) + (δ(x) − δπ(x))

λ+r(x)
α+1 . Now, suppose that the prior distribution

πα,λ belongs to the following class of conjugate prior distributions:

Γ = {πα,λ(θ) : α ∈ [α1, α2], λ ∈ [λ1, λ2]},

with suitable choices of α1 < α2 and λ1 < λ2 leading to proper posterior

distributions for θ. A straightforward calculation shows that H(δ(x)) = λ2+r(x)
α1+1

and H(δ̄(x)) = λ1+r(x)
α2+1 . Hence, we can state the following result.
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Corollary 1. Suppose H(t) = β′(t)/β(t). The PRGM estimate of θ for the
exponential family (2.1) under the intrinsic loss function (2.3) and in the class
Γ of prior distributions is given by

δΓPR(x) =

λ1+r(x)
α2+1 H−1

(
λ1+r(x)
α2+1

)
− λ2+r(x)

α1+1 H−1
(
λ2+r(x)
α1+1

)
− log

(
β(H−1(

λ1+r(x)
α2+1 ))

β(H−1(
λ2+r(x)
α1+1 ))

)

λ1+r(x)
α2+1 − λ2+r(x)

α1+1

.

(2.12)

Remark 1. One can also consider other classes of conjugate priors such as Γ1 =
{πα,λ0(θ) : α ∈ [α1, α2], λ0 is fixed} or Γ2 = {πα0,λ(θ) : α = α0 is fixed, λ ∈
[λ1, λ2]}. The PRGM estimator of θ in Γ1 or Γ2 can be obtained using (2.12)
and by letting λ1 = λ2 = λ0 or α1 = α2 = α0, respectively.

Example 4. In Example 2, let πα,λ(θ) ∝ θα−1e−θλ with the posterior distribu-
tion π(θ|x) = πα+1,λ+x(θ), and δπ(x) =

α+1
λ+x . Using (2.12), the PRGM estimator

of θ under the Stein loss function L(θ, δ) = δ
θ − log δ

θ − 1 in Γ = {πα,λ(θ) : α ∈
[α1, α2], λ ∈ [λ1, λ2]}, with 0 < α1 < α2 and 0 < λ1 < λ2 is given by

δΓPR(X) = log

(
α1 + 1

α2 + 1

λ1 +X

λ2 +X

)/(
λ1 +X

α2 + 1
−
λ2 +X

α1 + 1

)
.

In Γ1, as defined in Remark 1, we have

δΓ1

PR(X) =
(α1 + 1) (α2 + 1)

α1 − α2
log

(
α1 + 1

α2 + 1

)
1

λ0 +X
.

Similarly, in Γ2, we have

δΓ2

PR(X) =

(
α0 + 1

λ2 − λ1

)
log

(
λ2 +X

λ1 +X

)
.

3. Intrinsic PRGM estimation

In Section 2, we obtained the PRGM estimator of the natural parameter θ of
the exponential family under the intrinsic loss function. In some applications,
there may be interest in finding PRGM estimation of the original parameter of
the underlying model rather than the natural parameter θ. Unfortunately, like
many other estimators, PRGM estimators are not necessarily invariant under
reparameterization. Although results of this nature, that are not invariant under
reparameterization, can sometimes be interesting in theory, they tend to be less
useful in practice. Indeed, it is difficult to sell to a practitioner that the PRGM
estimator of h(θ) is not necessarily h(δPR). In this section, we obtain PRGM es-
timators that are invariant under one-to-one smooth reparameterizations, hence
the name intrinsic PRGM estimators.

For the exponential family (2.1), as opposed to the well known and commonly
used conjugate prior (2.10), consider the following conjugate prior distribution
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for θ

πJ
α,λ(θ) ∝ {β(θ)}α e−λθ

√
Iθ(θ), (3.1)

where Iθ(θ) is the Fisher information for θ. [7] introduced (3.1) and referred
to it as the Jeffrey’s Conjugate Prior (JCP). It is easy to see that the JCP
is invariant under smooth reparameterizations, and the necessary conditions
on α and λ in (3.1), leading to proper posterior distributions, do not depend
on the choice of reparameterizations. The invariance property of JCP under
any smooth and one-to-one reparameterization η = h(θ) can be shown by the
following relationship

Iη(η) = Iθ(h
−1(η)) ×

∣∣dh
−1(η)

dη

∣∣2.

Remark 2. For the exponential family (2.1), since Iθ(θ) = −H ′(θ), the JCP is
given by πJ

α,λ(θ) ∝ {β(θ)}α e−λθ
√
−H ′(θ).

First, we give the following result.

Lemma 2. Suppose δJπ is the Bayes estimator of the natural parameter θ of the
exponential family (2.1) under the intrinsic loss function (2.2) with respect to
the JCP distribution (3.1). For every one-to-one smooth transformation h(θ),
the Bayes estimator of h(θ) is h(δJπ ).

Proof. The proof is similar to the proof of Lemma 6.2 of [13] and hence omitted.

Now, we state the main result of this section which can easily be proved using
the invariance property of both the class of JCP distributions and the intrinsic
loss functions under smooth reparameterization of θ.

Theorem 2. Suppose δΓ
J

IPR(X) is the PRGM estimator of the unknown param-
eter θ for the exponential family (2.1) under the intrinsic loss function (2.3)
with respect to a class ΓJ of JCP distributions for θ. Then, for any one-to-one

smooth transformation h(θ), the PRGM estimator of h(θ) is h(δΓ
J

IPR(X)).

Proof. By definition, the PRGM estimator of h(θ) in the class ΓJ of JCP dis-
tributions is given by the solution of

inf
δ

sup
π∈ΓJ

ρ(δhπ , δ) = inf
δ

sup
π∈ΓJ

{
log

β(δhπ)

β(δ)
+ (δ − δhπ)H(δhπ)

}
,

where δhπ is the Bayes estimator of h(θ). Note that ρ(δhπ , δ) = L(δhπ, δ) where L
is defined in (2.3). Now, using the invariance property of L and Lemma 2, since
δhπ = h(δπ), with δπ being the Bayes estimator of θ, we have

inf
δ

sup
π∈ΓJ

ρ(δhπ , δ) = inf
δ

sup
π∈ΓJ

ρ(h(δπ), δ)

= inf
t:h(t)=δ

sup
π∈ΓJ

ρ(h(δπ), h(t))

= inf
t:h(t)=δ

sup
π∈ΓJ

ρ(δπ, t).
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Therefore, if δΓ
J

IPR(X) is the PRGM estimator of θ, i.e., δΓ
J

IPR minimizes (in

t) supπ∈ΓJ ρ(δπ, t), then, the transform h(δΓ
J

IPR(X)) is the PRGM estimator of

h(θ), that is, h(δΓ
J

IPR) minimizes (in δ) supπ∈ΓJ ρ(δhπ , δ) and this completes the
proof.

Example 5. Suppose X ∼ Exp(σ) with σ, x > 0. In Example 2, we showed
that the intrinsic loss for estimating θ = σ−1 by δ reduces to the Stein loss
function

L(θ, δ) =
δ

θ
− log

δ

θ
− 1.

Under the JCP distribution πJ
α,λ(θ) ∝ θα−2e−θλ, α > 1, the posterior distri-

bution is a Gamma(α, 1
λ+x ) with π

J (θ|x) ∝ θα−1e−(λ+x)θ which results in the
Bayes estimator of θ as δπ(X) = α

λ+X . Also, the intrinsic PRGM estimator of θ
under L(θ, δ) is given by

δΓ
J

IPR(X) =
log 1

δ(X)
− log 1

δ(X)

1
δ(X)

− 1
δ(X)

.

Now, for the estimation of η = σ = 1
θ using δ̃, it is easy to see that the Bayes

estimator of η under the entropy loss function

L(η, δ̃) =
η

δ̃
− log

η

δ̃
− 1,

is given by δ̃π(X) = λ+X
α = 1

δπ(X) . To see this, note that πJ(η) ∝ η−αe−λ/η

with πJ (η|x) ∝ η−(α+1)e−
λ+x
η and δ̃π(x) = E[η|x]. Also, the intrinsic PRGM

estimator of η is given by

δ̃Γ
J

IPR(X) =
δ̃(X)− δ̃(X)

log δ̃(X)− log δ̃(X)

=

1
δ(X)

− 1
δ(X)

log 1
δ(X)

− log 1
δ(X)

=
1

δΓ
J

IPR(X)
.

For the PRGM estimation of θ under the entropy loss function and its applica-
tion to record data analysis we refer to [12]. Similarly, if η∗ = − 1

a log θ, a 6= 0,
then the intrinsic PRGM estimator of η∗ under the LINEX loss function

L(η∗, δ∗) = ea (η∗−δ∗) − a (η∗ − δ∗)− 1,

is given by

δ∗Γ
J

IPR(X) = δ∗(X) +
1

a
log

{
ea (δ∗(X)−δ∗(X)) − 1

a (δ∗(X)− δ∗(X))

}

=
1

a
log δΓ

J

IPR(X),

which is the PRGM estimator obtained in [5].
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For the exponential family (2.1), suppose that the prior distribution belongs
to the following class of JCP distributions:

ΓJ = {πJ
α,λ(θ) : α ∈ [α1, α2], λ ∈ [λ1, λ2]}, (3.2)

for suitable choices of α1 < α2 and λ1 < λ2. We continue with some applications
of Theorem 2 under the above class of priors. Similar results can be obtained in
other classes of JCP distributions (see Remark 1), which we do not present here.
In view of Theorem 2, and to obtain an intrinsic PRGM estimator, the critical
condition is that the elements of the underlying class of prior distributions are in
the form of (3.1) and the underlying loss function is intrinsic. We observe that, in
many cases (see Examples 6 and 7) intrinsic PRGM estimators under ΓJ can be
obtained using the PRGM estimators under the usual class Γ of conjugate priors
with modified values of αis and λis in Γ, i = 1, 2. One can easily check that this
will happen whenever the mean-value parameter is conjugate for the natural
parameter in the sense of [11]. In the one-parameter case, a sufficient condition
for this is that the exponential family have a quadratic variance function (see
Section 3.3 of [11]).

Example 6. In Example 5, we showed that πJ
α,λ(θ) ∝ θα−2e−θλ and δπ(x) =

α
λ+x . Since π

J
α,β(θ|x) is equal to π(θ|x), the posterior distribution of θ, given the

usual conjugate prior πα−1,λ+x(θ), the intrinsic PRGM estimator of θ under the
Stein loss function and the class of JCP distributions can be obtained using the
PRGM estimator of θ under the usual class of conjugate priors (as in Example
4), by replacing αi with αi − 1, i = 1, 2. For example, the intrinsic PRGM
estimator of θ in ΓJ with 0 < α1 < α2 and 0 < λ1 < λ2 is given by

δΓ
J

IPR(X) = log

(
α1

α2

λ1 +X

λ2 +X

)/(
λ1 +X

α2
−
λ2 +X

α1

)
.

Let ΓJ
1 = {πJ

α,β(θ) : α ∈ [α1, α2] and λ = λ0}. Then, the intrinsic PRGM

estimator of θ in ΓJ
1 , with 0 < α1 < α2 and λ0 > 0, is given by

δ
ΓJ
1

IPR(X) =

(
α1 α2

α1 − α2

)
log

(
α1

α2

)
1

λ0 +X
.

Similarly, in ΓJ
2 = {πJ

α,β(θ) : α = α0 fixed and λ ∈ [λ1, λ2]}, the intrinsic

PRGM estimator of θ in ΓJ
2 , with α0 > 0 and 0 < λ1 < λ2, is given by

δ
ΓJ
2

IPR(X) =
α0

λ2 − λ1
log

{
λ2 +X

λ1 +X

}
.

Similar results can be obtained for estimating any smooth and one-to-one func-
tion of θ under corresponding class of JCP distributions.

Example 7 (Binomial Distribution). In Example 3, we showed that pmf of X

can be written as f(x|θ) =
(
n
x

)
( eθ

1+eθ
)ne−xθ with θ = log(1−p

p ). Here Iθ(θ) =

eθ

(1+eθ)2
and the JCP for θ is obtained as πJ

α,λ(θ) ∝ ( eθ

1+eθ
)αe−λθ eθ/2

1+eθ
. This results
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in the posterior distribution πJ (θ|x) ∝ ( eθ

1+eθ
)α+n+1e−(x+λ+ 1

2 )θ. Since πJ(θ|x)
is equal to π(θ|x), the posterior distribution of θ, given the usual conjugate

prior πα+1,λ+ 1
2
(θ), the intrinsic PRGM estimator δΓ

J

IPR(X) of θ in ΓJ can be

obtained using (2.9) and by replacing αi and λi with αi+1 and λi+
1
2 , i = 1, 2,

respectively. Also, the intrinsic PRGM estimator of p = 1
1+eθ

under the loss
function

L(p, δ̃) = p log

(
p

δ̃

)
+ (1− p) log

(
1− p

1− δ̃

)
,

is given by δ̃Γ
J

IPR(X) = {1 + eδ
ΓJ

IPR(X)}−1.

Remark 3. It is possible to generalize the results of Sections 2 and 3 to another
class of intrinsic loss functions using the reverse Kullback-Leibler loss, which is
defined by

Lr(θ, δ) = Eδ

[
log

(
f(X |θ)

f(X |δ)

)]
=

∫

χ

log

(
f(x|θ)

f(x|δ)

)
f(x|δ) dν(x). (3.3)

Using (2.1), the loss function (3.3) reduces to the following class of intrinsic loss
functions

Lr(θ, δ) = log

(
β(θ)

β(δ)

)
+ (δ − θ)

β′(δ)

β(δ)
,

which includes many interesting loss functions (such as the Stein loss function,
etc.) as its special case.

4. PRGM, Intrinsic PRGM and Bayes estimators

In this section, we provide some general results concerning the Bayesianity of
the PRGM and intrinsic PRGM estimators of θ for the exponential family dis-
tribution (2.1) under the intrinsic loss function (2.3) with respect to priors in
the underlying class of prior distributions. The results are only presented for
PRGM estimators of θ, but they can also be used for intrinsic PRGM estima-
tors by simple modifications. Our framework in this section closely resembles the
one introduced by [15], who considered similar problem for the quadratic loss
function. Results of this nature are also obtained by [16] under the quadratic
loss function for the binomial distribution. Several of the following preliminary
results are reported here for the sake of completeness. The idea is to check the
continuity of the underlying Bayes estimator with respect to the prior. Similar
to [15] we study two cases, when (a) the class of prior distributions is convex,
or (b) the underlying class of prior distributions depends on a hyper-parameter
belonging to a connected set.

First, consider the situation where the class Γ of priors is convex. That is, if
π0, π1 ∈ Γ, then πt = tπ0+(1−t)π1 belongs to Γ, for any t ∈ [0, 1]. Suppose that
X is a random variable whose density belongs to the family of distributions (2.1).
Let ψ(t) = H(δπt(x)) which is a decreasing function of δπt for any t ∈ [0, 1].
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In the next lemma we show that ψ(t) is a continuous function in its domain
t ∈ [0, 1].

Lemma 3. Suppose ψ(t), the posterior expectation of H(θ) = β′(θ)
β(θ) when πt =

tπ0 + (1− t)π1, t ∈ [0, 1], is finite. Then, ψ(t) is continuous in t, t ∈ [0, 1].

Now, we use the continuity of ψ(t) to prove that, under the conditions of
Lemma 3, the PRGM estimator δPR is Bayes if the class of priors is convex.

Proposition 1. Suppose Γ is a convex class of prior distributions on the un-
known parameter θ of the exponential family of distributions (2.1). Then, there
exists a prior distribution π ∈ Γ such that δPR = δπ, where δPR is defined
in (2.7).

A shortcoming of the result in Theorem 1 is that it is not applicable to the
cases where the class of prior distributions depends on a hyper-parameter whose
range is connected. For this case, we need Lemma 4 and Proposition 2 which
are simple extensions of Lemma 3.2 and Proposition 3.2 of [15]. The proofs of
Lemma 4 and Proposition 2 are essentially similar to the proofs of Lemma 3.2
and Proposition 3.2 of [15] and hence they are omitted. Let

ψ(π) =

∫
ΘH(θ)f(x|θ)π(θ)dθ∫

Θ
f(x|θ)π(θ)dθ

=
r(π)

s(π)
. (4.1)

Consider d(π, π′) = supΘ |π(θ) − π′(θ)| to be the usual l∞ distance between
prior densities π and π′, where H(t) = β′(t)/β(t) is defined as before.

Lemma 4. Suppose that
∫
Θ

∣∣H(θ)
∣∣f(x|θ)dθ exists and it is finite. Then, ψ(π)

is continuous in π, in the topology generated by the l∞ distance.

Proposition 2. Let Γ = {πα : α ∈ Λ}, where Λ is a connected set and πα’s are
densities. Under the conditions of Lemma 4 and the assumption that αn → α
implies d(παn , πα) → 0, there exists a prior distribution π ∈ Γ such that δPR =
δπ, that is, the PRGM estimator (2.7) is Bayes.

In the following lemma, we provide a sufficient condition under which the
PRGM (or intrinsic PRGM) estimator is Bayes with respect to the same prior
in the underlying class of prior distribution, regardless of the observed value
of x.

Lemma 5. Let Γ = {πα : α ∈ [α1, α2]} be the class of prior distributions. Sup-
pose the Bayes estimator Ψ(α, x) = H−1{E[H(θ)|x)} is a differentiable function
of the hyper-parameter α and the observed value x. Assume that we are under
the conditions of Proposition 2. If

∂

∂x
Ψ(α, x) =

∂

∂x




Ψ(α1, x)H(Ψ(α1, x))−Ψ(α2, x)H(Ψ(α2, x))−log β(Ψ(α1,x))

β(Ψ(α2,x))

H(Ψ(α1, x)) −H(Ψ(α2, x))



,

(4.2)
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has a constant solution in α, then there is a data independent prior πα ∈ Γ
resulting in the PRGM estimate as the Bayes estimate of the natural parameter
θ of the exponential family (2.1) under the intrinsic loss function (2.2).

Proof. Under the conditions of Proposition 2, there exists a solution α(x) such
that the PRGM estimator (2.7) is Bayes with respect to the prior πα(x) ∈ Γ
under the intrinsic loss function (2.2). That is,

Ψ(α(x), x) =
Ψ(α1, x)H(Ψ(α1, x))−Ψ(α2, x)H(Ψ(α2, x)) − log β(Ψ(α1,x))

β(Ψ(α2,x))

H(Ψ(α1, x)) −H(Ψ(α2, x))
.

Now, differentiating the equation with respect to x leads to

∂

∂α
Ψ(α(x), x)

dα(x)

dx
+

∂

∂x
Ψ(α(x), x)

=
∂

∂x





Ψ(α1, x)H(Ψ(α1, x))−Ψ(α2, x)H(Ψ(α2, x))− log β(Ψ(α1,x))
β(Ψ(α2,x))

H(Ψ(α1, x))−H(Ψ(α2, x))



 .

If α(x) is data independent, i.e., α(x) = α, then dα(x)
dx = 0. Now, the desired

value for α is the constant solution to the equation (4.2) leading to a data
independent prior for the PRGM estimator to be Bayes.

Example 8. In Example 1, the condition (4.2) reduces to the condition (5) in
Proposition 3.3 of Rı́os Insua et al. (1995) as follows

2
∂

∂x
Ψ(α, x) =

∂

∂x
Ψ(α1, x) +

∂

∂x
Ψ(α2, x).

Now, consider the class Γ = {πα,λ0 : α ∈ [α1, α2], λ0 is fixed } of conjugate

priors where πα,λ0 is given by (2.10) with θ = µ and β(θ) = e−θ2/2. Here, the
Bayes estimator of θ is given by Ψ(α,X) = δπα,λ

(X) = X−λ0

α+1 . It is easy to see
that, the PRGM estimator of θ given by

δPR(X) =
1

2

{
X − λ0
α1 + 1

+
X − λ0
α2 + 1

}
,

is Bayes with respect to the data independent prior πα∗,λ0 ∈ Γ where α∗ is the
solution to the following equation

2

α∗ + 1
=

1

α1 + 1
+

1

α2 + 1
.

That is, α∗ = α1+α2+2α1α2

α1+α2+2 ∈ [α1, α2] and δPR(X) = X−λ0

α∗+1 = δπα∗,λ
(X).

Example 9. In Example 4, the condition (4.2) reduces to

∂

∂x
Ψ(α, x) =

∂

∂x

{
log 1

Ψ(α1,x)
− log 1

Ψ(α2,x)

1
Ψ(α1,x)

− 1
Ψ(α2,x)

}
.
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Now, consider the class Γ1 = {πα,λ0(θ) : α ∈ [α1, α2], λ0 is fixed} of conjugate
priors on θ. Here, the Bayes estimator of θ with respect to the prior πα,λ0(θ)
is Ψ(α,X) = δπα,λ0

(X) = α+1
λ0+X . The PRGM estimator of θ is then Bayes

with respect to a data independent prior πα∗,λ0(θ) ∈ Γ1, if there exists a data
independent solution α∗ to the equation

−
α∗ + 1

(λ0 +X)2
= − log

(
α1 + 1

α2 + 1

)
(α1 + 1) (α2 + 1)

α1 − α2

1

(λ0 +X)2
.

A straightforward calculation shows that

α∗ =
(α1 + 1) (α2 + 1)

α1 − α2
log

(
α1 + 1

α2 + 1

)
− 1 ∈ [α1, α2].

Therefore, the PRGM estimator of θ under the Stein loss function can be
obtained as the Bayes estimator of θ with respect to the prior distribution
πα∗,λ0(θ) ∈ Γ1 as follows

δΓ1

PR(X) =
(α1 + 1) (α2 + 1)

α1 − α2
log

(
α1 + 1

α2 + 1

)
1

λ0 +X
=

α∗ + 1

λ0 +X
= δπα∗,λ0

(X).

Similarly, in Example 6, one can easily show that the intrinsic PRGM estimator

δ
ΓJ
1

IPR(X) is the Bayes estimator of θ under the Stein loss function with respect
to the prior distribution πJ

α∗∗,λ0
∈ ΓJ

1 , when α∗∗ = α1 α2

α1−α2
log(α1

α2
). Note that

1/α∗∗ is the logarithmic mean of 1/α1 and 1/α2, and α
∗∗ ∈ [α1, α2].

5. PRGM and intrinsic PRGM estimation in multi-parameter case

It is straightforward to generalize the results of Sections 2 and 3 to the multi-
parameter exponential family of distributions. In this section, we study the
PRGM and intrinsic PRGM estimation of the unknown parameters of a mul-
tivariate normal distribution under intrinsic loss functions as two examples of
such problems. For the PRGM estimation of the regression coefficients in the
canonical normal regression model see [15]. For the case studied in [15], simi-
lar to Example 11 (below), one can easily check that the PRGM and intrinsic
PRGM estimators of the regression coefficients are equivalent.

Example 10. Suppose X
˜
= (X1, . . . ,Xn) is a sample of size n from a p-variate

normal distribution Np(µ,Σ) with the joint pdf

f(x
˜
;µ,Σ) = (2π)−

np
2 |Σ|−

n
2 exp{−

1

2

n∑

i=1

(xi − µ)′Σ−1(xi − µ)}, (5.1)

where µ is the p-dimensional vector of the population means, Σ is a p× p non-
singular covariance matrix and |Σ| is the determinant of Σ. Suppose µ = µ0

is known and Σ is unknown. It is easy to see that the intrinsic loss with the
Kullback-Leibler distance for estimating Σ is given by

L1(Σ, Σ̂) ∝ tr
(
Σ̂

−1
Σ
)
− log |Σ̂

−1
Σ| − p. (5.2)
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Consider the conjugate class of prior distributions Γ1 = {πα,V(Σ−1) : α0 ≤ α ≤
α1,V0 ≤ V ≤ V1}, where

πα,V(Σ−1) ∝ |Σ|−
1
2 (α−2) exp{−

1

2
tr(Σ−1V)},

V is a p×p positive definite and symmetric matrix, V0 ≤ V1 whenever V1−V0

is nonnegative definite and α0, α1 > 0 are scalars. In other word, we assume that
Σ−1 is distributed according to the Wishart distribution, W (α + p − 1,V−1).
It is easy to show that the posterior distribution of Σ−1 given x

˜
is W (n+ α+

p− 1, (U(x
˜
) +V)−1) where U(x

˜
) =

∑n
i=1(xi − µ0)

′(xi − µ0). Now, the Bayes
estimator of Σ with respect to πα,V and under the loss function (5.2) is given
by

Σ̂α,V(x
˜
) = E

[
Σ|x
˜
]
=

U(x
˜
) +V

n+ α− 2
.

Let

Σ̂(x
˜
) = inf

πα,V∈Γ1

Σ̂α,V(x
˜
) =

U(x
˜
) +V0

n+ α1 − 2

and

Σ̂(x
˜
) = sup

πα,V∈Γ1

Σ̂α,V(x
˜
) =

U(x
˜
) +V1

n+ α0 − 2
.

The PRGM estimator of Σ under the loss function (5.2) is now given as the
solution of

L1(Σ̂, Σ̂PR) = L1(Σ̂, Σ̂PR), (5.3)

or equivalently tr(Σ̂
−1

PR(Σ̂− Σ̂)) = log |Σ̂| − log |Σ̂| in Σ̂PR. To obtain intrinsic
PRGM estimator of Σ, we first note that the Fisher information matrix of Σ is
given by I(Σ) ∝ |Σ|−(p+1) and so the Jeffrey’s conjugate prior distribution is
given by

πJ
α,V(Σ−1) ∝ |Σ|−

1
2 (α+p−3) exp(−

1

2
tr(Σ−1V)),

which is equivalent to a πα+p−1,V(Σ−1) ∈ Γ1. Here, the posterior distribution
of Σ−1 given x

˜
is a W (n+ α+ 2p− 2, (U(x

˜
) +V)−1) and the intrinsic PRGM

estimator of Σ is obtained by replacing αi with αi+p−1, i = 0, 1, in the PRGM
estimator obtained from (5.3).

Example 11. In Example 10, suppose that Σ = Σ0 is known and µ is the
unknown parameter of interest. The intrinsic loss function for estimating µ by
µ̂ is given by

L2(µ, µ̂) ∝ (µ− µ̂)′Σ−1
0 (µ− µ̂), (5.4)

where the Bayes estimator of µ is E[µ|x
˜
]. Consider the following class Γ2 of

conjugate prior distributions for µ

Γ2 = {πθ,V0(µ) = Np(θ,V0) | θ0 ≤ θ ≤ θ1, θ0, θ1 ∈ R
p},
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where V0 is a known positive definite covariance matrix (e.g., V0 = σ2
0 Ip×p,

with known σ0 > 0). It is easy to see that the posterior distribution of µ given
x
˜
is a p-variate normal distribution Np(µθ,V0

(x
˜
),V∗) with

µθ,V0
(x
˜
) = (nΣ−1

0 +V−1
0 )−1(nΣ−1

0 x̄+V−1
0 θ) and V∗ = (nΣ−1

0 +V−1
0 )−1.

Now, the PRGM estimation of µ under L2 with respect to the class Γ2 of prior
distribution is given by

µ̂PR(x
˜
) =

1

2

(
inf

πθ,V0
∈Γ2

µ
θ,V0

(x
˜
) + sup

πθ,V0
∈Γ2

µ
θ,V0

(x
˜
)

)

=
1

2

(
µθ0,V0

(x
˜
) + µθ1,V0

(x
˜
)
)

= (nΣ−1
0 +V−1

0 )−1

(
nΣ−1

0 x̄+V−1
0 (

θ0 + θ1

2
)

)
.

Note that, in this case, since the Jeffrey’s conjugate prior distribution for µ is the
same as the usual conjugate prior (the Fisher information I(µ) is a constant),
then µ̂PR(x˜

) is also an intrinsic PRGM estimator of µ under the loss function
L2 and within the class Γ2 of prior distributions.

In Examples 10 and 11, when both µ and Σ are unknown, the intrinsic loss
with the Kullback-Leibler distance for estimating µ and Σ is given by

L3(µ,Σ, µ̂, Σ̂) ∝ tr
(
Σ̂

−1
Σ
)
+ (µ− µ̂)′Σ̂

−1
(µ− µ̂)− p− log |Σ̂

−1
Σ|. (5.5)

We note that the PRGM results of Sections 2 and 3 are not directly applicable in
this case. However, one can obtain the PRGM and intrinsic PRGM estimators
of the nature parameters θ1 = Σ−1µ and θ2 = − 1

2Σ
−1 by extending Theorems

1 and 2 to the multi-parameter exponential family of distributions

f(x|θ) = β(θ) t(x) e−
∑p

i=1 θiri(x),

under the corresponding intrinsic loss function, when θ = (θ1, . . . , θp) is the
vector of natural parameters.

6. Concluding remarks

Invariant estimators are usually demanding in practice. In this paper, we have
provided general results concerning the PRGM estimation of the natural param-
eter of the one-parameter exponential family of distributions under intrinsic loss
functions. The PRGM estimators are shown to be invariant to one-to-one smooth
reparameterizations under intrinsic loss functions and the class of Jeffrey’s con-
jugate prior distributions. Moreover, when the class of priors are convex or
dependant on a hyper-parameter belonging to a connected set, we show that
the obtained PRGM estimators are Bayes with respect to prior distributions in
the underlying class of priors. Examples are provided to show how the PRGM
and intrinsic PRGM results can be extended to a multi-parameter exponential
family of distributions.
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[5] Boratyńska, A. (2006). Robust Bayesian prediction with asymmetric loss
function in Poisson model of insurance risk. Acta Universitatis Lodziensis,
Folia Oeconomica, 196, 123–138.

[6] Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential
families. Annals of Statistics, 7, 269–281. MR0520238

[7] Druilhet, P. and Pommeret, D. (2012). Invariant conjugate analysis
for exponential families. Bayesian Analysis, 7, 235–248. MR3000019

[8] Gelman, A. (2004). Parameterization and Bayesian modelling. Journal of
the American Statistical Association, 99, 537–545. MR2109315
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