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Abstract: In the present paper we consider the problem of estimating a
periodic (r+1)-dimensional function f based on observations from its noisy
convolution. We construct a wavelet estimator of f , derive minimax lower
bounds for the L2-risk when f belongs to a Besov ball of mixed smoothness
and demonstrate that the wavelet estimator is adaptive and asymptotically
near-optimal within a logarithmic factor, in a wide range of Besov balls.
We prove in particular that choosing this type of mixed smoothness leads
to rates of convergence which are free of the “curse of dimensionality” and,
hence, are higher than usual convergence rates when r is large.

The problem studied in the paper is motivated by seismic inversion
which can be reduced to solution of noisy two-dimensional convolution
equations that allow to draw inference on underground layer structures
along the chosen profiles. The common practice in seismology is to recover
layer structures separately for each profile and then to combine the derived
estimates into a two-dimensional function. By studying the two-dimensional
version of the model, we demonstrate that this strategy usually leads to esti-
mators which are less accurate than the ones obtained as two-dimensional
functional deconvolutions. Indeed, we show that unless the function f is
very smooth in the direction of the profiles, very spatially inhomogeneous
along the other direction and the number of profiles is very limited, the
functional deconvolution solution has a much better precision compared to
a combination of M solutions of separate convolution equations. A limited
simulation study in the case of r = 1 confirms theoretical claims of the
paper.
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1. Introduction

Consider the problem of estimating a periodic (r + 1)-dimensional function
f(u, x) with u = (u1, . . . , ur) ∈ [0, 1]r x ∈ [0, 1], based on observations from
the following noisy convolution

y(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx + εz(u, t), u ∈ [0, 1]r, t ∈ [0, 1]. (1.1)

Here, ε is a positive small parameter such that asymptotically ε→ 0, Function
g(., .) in (1.1) is assumed to be known and z(u, t) is an r+1-dimensional Gaussian
white noise, i.e., a generalized r+ 1-dimensional Gaussian field with covariance
function

E[z(u1, t1)z(u2, t1)] = δ(t1 − t2)

r∏

l=1

δ(u1l − u2l),

where δ(·) denotes the Dirac δ-function and uil = (ui1, . . . , uir) ∈ [0, 1]r, i = 1, 2.
Denote

h(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx.

Then, equation (1.1) can be rewritten as

y(u, t) = h(u, t) + εz(u, t) (1.2)
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In order to simplify the narrative, we start with the two dimensional version
of equation (1.1)

y(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx + εz(u, t), u, t ∈ [0, 1]. (1.3)

The sampling version of problem (1.3) appears as

y(ul, ti) =

∫ 1

0

g(ul, ti−x)f(ul, x)dx+σzli, l = 1, . . . ,M, i = 1, . . . , N, (1.4)

where σ is a positive constant independent of N and M , ul = l/M , ti = i/N
and zli are i.i.d normal variables with E(zli) = 0, and E(zl1i1zl2i2) = δ(l1 −
l2)δ(i1 − i2).

Equation (1.4) seems to be equivalent to M separate convolution equations

yl(ti) =

∫ 1

0

fl(x)gl(ti − x)dx+ σzli, l = 1, . . . ,M, i = 1, . . . , N, (1.5)

with yl(ti) = y(ul, ti), fl(x) = f(ul, x) and gl(ti − x) = g(ul, ti − x). This is,
however, not true since the solution of equation (1.4) is a two-dimensional
function while solutions of equations (1.5) are M unrelated functions fi(t).
In this sense, problem (1.3) and its sampling equivalent (1.4) are functional
deconvolution problems.

Functional deconvolution problems have been introduced in Pensky and Sap-
atinas (2009) [19] and further developed in Pensky and Sapatinas (2010, 2011)
[20, 21]. However, [19, 20, 21] considered a different version of the problem where
f(u, t) was a function of one variable, i.e. f(u, t) ≡ f(t). Their interpretation
of functional deconvolution problem was motivated by solution of inverse prob-
lems in mathematical physics and multichannel deconvolution in engineering
practices. Functional deconvolution problem of types (1.3) and (1.4) are moti-
vated by experiments where one needs to recover a two-dimensional function
using observations of its convolutions along profiles u = ui. This situation oc-
curs, for example, in geophysical explorations, in particular, the ones which rely
on inversions of seismic signals (see, e.g., monographs of Robinson et al. (1986)
[24] and Robinson (1999) [23] and, e.g., papers of Wason et al. (1984) [27],
Berkhout (1986) [2] and Heimer and Cohen (2008) [8]).

In seismic exploration, a short duration seismic pulse is transmitted from the
surface, reflected from boundaries between underground layers, and received by
an array of sensors on the Earth surface. The signals are transmitted along
straight lines called profiles. The received signals, called seismic traces, are an-
alyzed to extract information about the underground structure of the layers
along the profile. Subsequently, these traces can be modeled under simplifying
assumptions as noisy outcomes of convolutions between reflectivity sequences
which describe configuration of the layers and the short wave like function (called
wavelet in geophysics) which corresponds to convolution kernel. The objective
of seismic deconvolution is to estimate the reflectivity sequences from the mea-
sured traces. In the simple case of one layer and a single profile, the boundary
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will be described by an univariate function which is the solution of the convo-
lution equation. The next step is usually to combine the recovered functions
which are defined on the set of parallel planes passing through the profiles into
a multivariate function which provides the exhaustive picture of the structure
of the underground layers. This is usually accomplished by interpolation tech-
niques. However, since the layers are intrinsically anisotropic (may have different
structures in various directions) and spatially inhomogeneous (may experience,
for example, sharp breaks), the former approach ignores the anisotropic and
spatially inhomogeneous nature of the two-dimensional function describing the
layer and loses precision by analyzing each profile separately.

The paper carries out the following program:

i) Construction of a feasible procedure f̂(u, t) for estimating the (r + 1)-
dimensional function f(u, t) which achieves optimal rates of convergence

(up to inessential logarithmic terms). We require f̂(u, t) to be adaptive
with respect to smoothness constraints on f . In this sense, the paper is
related to a multitude of papers which offered wavelet solutions to decon-
volution problems (see, e.g., Donoho (1995) [5], Abramovich and Silverman
(1998) [1], Pensky and Vidakovic (1999) [22], Walter and Shen (1999) [26],
Fan and Koo (2002) [7], Kalifa and Mallat (2003) [13], Johnstone, Kerky-
acharian, Picard and Raimondo (2004) [11], Donoho and Raimondo (2004)
[6], Johnstone and Raimondo (2004) [12], Neelamani, Choi and Baraniuk
(2004)[17] and Kerkyacharian, Picard and Raimondo (2007) [16]).

ii) Identification of the best achievable accuracy under smoothness constraints
on f . We focus here on obtaining fast rates of convergence. In this context,
we prove that considering multivariate functions with ‘mixed’ smoothness
and hyperbolic wavelet bases allows to obtain rates which are free of di-
mension and, as a consequence, faster than the usual ones. In particular,
the present paper is related to anisotropic de-noising explored by, e.g.,
Kerkyacharian, Lepski and Picard (2001, 2008) [14, 15]. We compare our
functional classes as well as our rates with the results obtained there.

iii) Comparison of the two-dimensional version of the functional deconvolu-
tion procedure studied in the present paper to the separate solutions of
convolution equations. We show especially that the former approach de-
livers estimators with higher precision. For this purpose, in Section 5,
we consider a discrete version of functional deconvolution problem (1.4)
(rather than the continuous equation (1.3)) and compare its solution with
solutions ofM separate convolution equations (1.5). We show that, unless
the function f is very smooth in the direction of the profiles, very spatially
inhomogeneous along the other direction and the number of profiles is very
limited, functional deconvolution solution has a better precision than the
combination of M solutions of separate convolution equations.

The rest of the paper is organized as follows. In order to make the paper
more readable and due to the application to seismic inversion, we start, in Sec-
tion 2, with the two-dimensional version of the functional deconvolution problem
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(1.3), describe the construction of a two-dimensional wavelet estimator of f(u, t)
given by equation (1.3). In Section 3, we give a brief introduction on spaces of
anisotropic smoothness. After that, we derive minimax lower bounds for the
L2-risk, based on observations from (1.3), under the condition that f(u, t) be-
longs to a Besov ball of mixed regularity and g(u, x) has certain smoothness
properties. In Section 4, we prove that the hyperbolic wavelet estimator derived
in Section 2 is adaptive and asymptotically near-optimal within a logarithmic
factor (in the minimax sense) in a wide range of Besov balls. Section 5 is devoted
to the discrete version of the problem (1.4) and comparison of functional de-
convolution solution with the collection of individual deconvolution equations.
Section 6 extends the results to the (r + 1)-dimensional version of the problem
(1.1). Section 7 contains a limited simulation study which supports theoretical
claims of the paper. We conclude the paper by discussion of the results in Sec-
tion 8. Finally, Section 9 contains the proofs of the theoretical results obtained
in the earlier sections.

2. Estimation Algorithm

In what follows, 〈·, ·〉 denotes the inner product in the Hilbert space L2([0, 1])
(the space of squared-integrable functions defined on the unit interval [0, 1]),

i.e., 〈f, g〉 =
∫ 1

0
f(t)g(t)dt for f, g ∈ L2([0, 1]). We also denote the complex

conjugate of a by ā. Let em(t) = ei2πmt be a Fourier basis on the interval
[0, 1]. Let hm(u) = 〈em, h(u, ·)〉, ym(u) = 〈em, y(u, ·)〉, zm(u) = 〈em, z(u, ·)〉,
gm(u) = 〈em, g(u, ·)〉 and fm(u) = 〈em, f(u, ·)〉 be functional Fourier coefficients
of functions h, y, z, g and f respectively. Then, applying the Fourier transform
to equation (1.2), one obtains for any u ∈ [0, 1]

ym(u) = gm(u)fm(u) + εzm(u)

and

hm(u) = gm(u)fm(u). (2.1)

Consider a bounded bandwidth periodized wavelet basis (e.g., Meyer-type)
ψj,k(t) and finitely supported periodized s0-regular wavelet basis (e.g., Daubechies)
ηj′,k′(u). The choice of the Meyer wavelet basis for t is motivated by the fact
that it allows easy evaluation of the the wavelet coefficients in the Fourier do-
main while finitely supported wavelet basis gives more flexibility in recovering
a function which is spatially inhomogeneous in u. Let m0 and m′

0 be the low-
est resolution levels for the two bases and denote the scaling functions for the
bounded bandwidth wavelet by ψm0−1,k(t) and the scaling functions for the
finitely supported wavelet by ηm′

0−1,k′(u). Then, f(u, x) can be expanded into
wavelet series as

f(u, x) =

∞∑

j=m0−1

∞∑

j′=m′
0−1

2j−1∑

k=0

2j
′
−1∑

k′=0

βj,k,j′,k′ψj,k(x)ηj′,k′(u). (2.2)
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Denote βj,k(u) = 〈f(u, ·), ψj,k(·)〉, then, βj,k,j′,k′ = 〈βj,k(·), ηj′,k′(·)〉. If ψj,k,m =
〈em, ψj,k〉 are Fourier coefficients of ψj,k, then, by formula (2.1) and Plancherel’s
formula, one has

βj,k(u) =
∑

m∈Wj

fm(u)ψj,k,m =
∑

m∈Wj

hm(u)

gm(u)
ψj,k,m, (2.3)

where, for any j ≥ j0,

Wj = {m : ψjkm 6= 0} ⊆ 2π/3[−2j+2,−2j] ∪ [2j, 2j+2], (2.4)

due to the fact that Meyer wavelets are band-limited (see, e.g., [11], Section
3.1). Therefore, βj,k,j′,k′ are of the form

βj,k,j′,k′ =
∑

m∈Wj

ψj,k,m

∫
hm(u)

gm(u)
ηj′,k′(u)du, (2.5)

and allow the unbiased estimator

β̃j,k,j′,k′ =
∑

m∈Wj

ψj,k,m

∫
ym(u)

gm(u)
ηj′,k′(u)du. (2.6)

We now construct a hard thresholding estimator of f(u, t) as

f̂(u, t) =

J−1∑

j=m0−1

J′−1∑

j′=m′
0−1

2j−1∑

k=0

2j
′
−1∑

k′=0

β̂jk,j′k′ψjk(t)ηj′k′(u) (2.7)

where
β̂j,k,j′,k′ = β̃j,k,j′,k′1

(∣∣∣β̃j,k,j′,k′

∣∣∣ > λjε

)
. (2.8)

and the values of J, J ′ and λjε will be defined later.
In what follows, we use the symbol C for a generic positive constant, inde-

pendent of ε, which may take different values at different places.

3. Smoothness classes and minimax lower bounds

3.1. Smoothness classes

It is natural to consider anisotropic multivariate functions, i.e., functions whose
smoothness is different in different directions. It is, however, much more diffi-
cult to construct appropriate spaces of mixed regularity which are meaningful
for applications. One of the objectives of the present paper is to prove that
classes of mixed regularity allow to obtain rates of convergence which are free
of dimension. This is specifically due to the application of hyperbolic wavelets,
i.e., wavelets which allow different resolution levels for each direction (see, e.g.,
Heping (2004) [9]).
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Although comprehensive study of functional classes of mixed regularity is not
the purpose of this paper, below we provide a short introduction of functional
classes that we are going to consider. Due to relation of this paper to anisotropic
de-noising explored by [14, 15], we also compare classes of mixed regularity used
therein to the Nikolski classes considered in the papers cited above.

First, let us recall definition of the Nikolski classes N (s1,...,sd)
(p1,...,pd),∞

(see Nikolskii

(1975) [18]). In this section we consider d dimensional multivariate functions.
In what follows, we set d = r + 1 or d = 2.

Let f be a measurable function defined on R
d. For any x, y ∈ R

d, we define

∆yf(x) = f(x+ y)− f(x).

If l ∈ N then ∆l
y is the l−iterated version of the operator ∆y. (Of course ∆0

y = Id
where Id is the identity operator.) Then, Nikolski classes can be defined as
follows:
(recall that ‖g‖Lp(Rd,dx) = ‖g‖p denotes

[∫
Rd |g(x1, . . . , xd)|pdx1 . . . dxd

]1/p
for

1 ≤ p <∞, with the usual modification for p = ∞.)

1. Let e1, . . . ed be the canonical basis of Rd. For 0 < si < ∞; 1 ≤ pi ≤ ∞,
we say that f belongs to N si

pi,∞ if and only if there exists l ∈ N, si <
l, and C(si, l) <∞, such that for any h ∈ R one has

‖∆l
heif‖Lpi(Rd,dx) ≤ C(si, l)|h|si .

2. N (s1,...,sd)
(p1,...,pd),∞

= ∩d
i=1N si

pi,∞

The Nikolski classes defined above were investigated by [14, 15], they are
anisotropic but do not involve mixed smoothness. Quite differently, in the present
paper we shall consider classes of mixed regularity defined as follows. Denote
h = (h1, . . . , hd), t = (t1, . . . , td), s = (s1, . . . , sd) and let ti > 0, si > 0,
i = 1, . . . , d. For a subset e ⊂ {1, . . . , d}, we set he to be the vector with co-
ordinates hi when i belongs to e, and 0 otherwise. For a fixed integer l and
1 ≤ p ≤ ∞, we denote

∆l,e
hef(x) :=



∏

j∈e

∆l
hjej


 f(x), Ωl,e(f, te)p := sup

|hj |≤tj

‖∆l,e
hef‖p.

Now, in order to construct Besov classes of mixed regularity, we choose l ≥
maxj sj and define

Bs1,...,sd
p,∞ =



f ∈ Lp,

∑

e⊂{1,...,d}

sup
t>0

sup
j∈e

t
−sj
j Ωl,e(f, te)p <∞



 . (3.1)

It is proved in, e.g. [9], that under appropriate (regularity) conditions which we
are omitting here, classes (3.1) can be expressed in terms of hyperbolic-wavelet
coefficients, thus, providing a convenient generalization of the one-dimensional
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Besov Bs
p,∞ spaces. Furthermore, [9] considers more general Besov classes of

mixed regularity Bs1,...,sd
p,q that correspond to q < ∞ rather than q = ∞. In

this paper, we shall assume that the hyperbolic wavelet basis satisfies required
regularity conditions and follow [9] for the definition of Besov spaces of mixed
regularity

Bs1,...,sd
p,q =




f ∈ L2(U) :

∑

j1,...,jd

2ℵ



∑

k1,...,kd

|βj1,k1...,jdkd
|p



q
p

<∞




, (3.2)

where ℵ =
∑d

i=1 ji(si + 1/2 − 1/p)q. Besov classes (3.2) compare quite easily
to the Nikolski classes: it is easy to prove that the former form a subset of the
latter.

3.2. Lower bounds for the risk: Two-dimensional case

Denote U = [0, 1]× [0, 1] and

s∗i = si + 1/2− 1/p, s′i = si + 1/2− 1/p′, i = 1, 2, p′ = min{p, 2}. (3.3)

In what follows, we assume that the function f(u, t) belongs to a two-dimensional
Besov ball as described above (d = 2), so that wavelet coefficients βj,k,j′k′ satisfy
the following condition

Bs1,s2
p,q (A) =




f ∈ L2(U) :



∑

j,j′

2(js
∗
1+j′s∗2)q


∑

k,k′

|βj,k,j′k′ |p



q
p




1/q

≤ A




.

(3.4)
Below, we construct minimax lower bounds for the L2-risk. For this purpose,
we define the minimax L2-risk over the set V as

Rε(V ) = inf
f̃

sup
f∈V

E‖f̃ − f‖2,

where ‖g‖ is the L2-norm of a function g(·) and the infimum is taken over
all possible estimators f̃(·) (measurable functions taking their values in a set
containing V ) of f(·).

Assume that functional Fourier coefficients gm(u) of function g(u, t) are uni-
formly bounded from above and below, that is, there exist positive constants ν,
and C1 and C2, independent of m and u such that

C1 |m|−2ν ≤ |gm(u)|2 ≤ C2 |m|−2ν . (3.5)

Then, the following theorem gives the minimax lower bounds for the L2-risk of
any estimator f̃n of f .
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Theorem 1. Let min{s1, s2} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞, let A > 0
and s′i, i = 1, 2, be defined in (3.3). Then, under assumption (3.5), as ε→ 0

Rε(B
s1,s2
p,q (A)) ≥ CA2

(
ε2

A2

)d

(3.6)

where

d = min

(
2s2

2s2 + 1
,

2s1
2s1 + 2ν + 1

,
2s′1

2s′1 + 2ν

)
. (3.7)

Note that the value of d in (3.7) can be re-written as

d =





2s2
2s2+1 , if s1 > s2(2ν + 1),

2s1
2s1+2ν+1 , if ( 1p − 1

2 )(2ν + 1) ≤ s1 ≤ s2(2ν + 1),
2s′1

2s′1+2ν , if s1 < ( 1p − 1
2 )(2ν + 1).

(3.8)

Remark 1. Note that the rates obtained here are in fact the worst rate associ-
ated to the one dimensional problem in each direction, which is not surprising
since a function of only one variable and constant in the other direction, e.g.,
f(u1, u2) = h(u1) belongs to Bs1,s2

p,q (A) as soon as h belongs to a ball of the
usual one-dimensional Besov space Bs1

p,q, for any s2.

Also it is worthwhile to observe that the third rate (involving s′1) corresponds
in dimension one to a “sparse” rate. Hence we observe here the so-called “elbow
phenomenon” occurring only along the direction 2, because we are considering
an L2-loss and the problem has a degree of ill-posedness ν precisely in this
direction.

4. Minimax upper bounds

Before deriving expressions for the minimax upper bounds for the risk, we for-
mulate several useful lemmas which give some insight into the choice of the
thresholds λjε and upper limits J and J ′ in the sums in (2.7).

Lemma 1. Let β̃j,k,j′,k′ be defined in (2.6). Then, under assumption (3.5), one
has

Var
(
β̃j,k,j′,k′

)
≍ ε222jν . (4.1)

Lemma 1 suggests that thresholds λjε should be chosen as

λjε = Cβ

√
ln(1/ε) 2jν ε (4.2)

where Cβ is some positive constant independent of ε. We choose J and J ′ as

2J = (ε2)−
1

2ν+1 , 2J
′

= (ε2)−1. (4.3)

Note that the choices of J , J ′ and λjε are independent of the parameters, s1,
s2, p, q and A of the Besov ball Bs1s2

p,q (A), and therefore our estimator (2.7) is
adaptive with respect to those parameters.
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The next two lemmas provide upper bounds for the wavelet coefficients and
the large deviation inequalities for their estimators.

Lemma 2. Under assumption (3.4), one has

2j−1∑

k=0

2j
′
−1∑

k′=0

|βj,k,j′,k′ |2 ≤ A22−2(js′1+j′s′2)

for any j, j′ ≥ 0.

Lemma 3. Let β̃j,k,j′,k′ and λjε be defined by formulae (2.6) and (4.2), respec-
tively. For some positive constant α, define the set

Θj,k,j′k′,α = {Θ :
∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣ > αλjε}. (4.4)

Then, under assumption (3.5), as ε→ 0, one has

Pr (Θj,k,j′k′,α) = O

(
ε

α2C2
β

2σ2
0 [ln(1/ε)]

− 1
2

)
(4.5)

where σ2
0 =

(
8π
3

)2ν 1
C1

and C1 is defined in (3.5).

Using the statements above, we can derive upper bounds for the minimax
risk of the estimator (2.7).

Theorem 2. Let f̂(., .) be the wavelet estimator defined in (2.7), with J and J ′

given by (4.3). Let condition (3.5) hold and min{s1, s2} ≥ max{1/p, 1/2}, with
1 ≤ p, q ≤ ∞. If Cβ in (4.2) is such that

C2
β ≥ 80(C1)

−1(2π/3)2ν (4.6)

where C1 is defined in (3.5), then, as ε→ 0,

sup
f∈B

s1,s2
p,q (A))

E‖f̂ − f‖2 ≤ CA2

(
ε2 ln(1/ε)

A2

)d

ln

(
1

ε

)d1

(4.7)

where d is defined in (3.7) and

d1 = 1(s1 = s2(2ν + 1)) + 1(s1 = (2ν + 1)(1/p− 1/2)). (4.8)

Remark 2. Looking at the previous results, we conclude that the rates ob-
tained by the wavelet estimator defined in (2.7) are optimal, in the minimax
sense, up to logarithmic factors. These factors are standard and coming from
the thresholding procedure.
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5. Sampling version of the equation and comparison with separate
deconvolution recoveries

Consider now the sampling version (1.4) of the problem (1.3). In this case, the
estimators of wavelet coefficients βj,k,j′,k′ can be constructed as

β̃j,k,j′,k′ =
1

M

∑

m∈Wj

ψj,k,m

M∑

l=1

ym(ul)

gm(ul)
ηj′,k′(ul). (5.1)

In practice, β̃j,k,j′,k′ are obtained simply by applying discrete wavelet transform
to vectors ym(·)/gm(·).

For any two sequences an and bn, one says that an ≍ bn as n→ ∞ if 0 < C1 <
an/bn < C2 < ∞ for some constants C1 and C2 independent of n. Recall that

the continuous versions (2.6) of estimators (5.1) have Var(β̃j,k,j′,k′) ≍ ε222jν

(see formula (4.1)). In order to show that equation (1.4) is the sampling version
of (1.3) with ε2 = σ2/(MN), one needs to show that, in the discrete case,

Var(β̃j,k,j′,k′) ≍ σ2(MN)−122jν . This indeed is accomplished by the following
Lemma.

Lemma 4. Let β̃j,k,j′,k′ be defined in (5.1). Then, under assumption (3.5), as
MN → ∞, one has

Var
(
β̃j,k,j′,k′

)
≍ σ2(MN)−122jν . (5.2)

Using tools developed in [19] and Lemma 4, it is easy to formulate the lower

and the upper bounds for convergence rates of the estimator (2.7) with β̂j,k,j′k′

given by (2.8) and the values of λjε and J, J ′ defined in (4.2) and (4.3), respec-
tively. In particular, we obtain the following statement.

Theorem 3. Let min{s1, s2} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞, let A > 0
and s∗i be defined in (3.3). Then, under assumption (3.5), as MN → ∞, for
some absolute constant C > 0 one has

R(MN)(B
s1,s2
p,q (A)) ≥ C(σ2(MN)−1)d. (5.3)

Moreover, if f̂(., .) is the wavelet estimator defined in (2.7), min{s1, s2} ≥
max{1/p, 1/2}, and J and J ′ given by (4.3), then, under assumption (3.5),
as MN → ∞,

sup
f∈B

s1,s2
p,q (A))

E‖f̂ − f‖2 ≤ C(σ2(MN)−1 ln(MN))d (ln(MN))d1 . (5.4)

where d and d1 are defined in (3.7) and (4.8), respectively.

Now, let us compare the rates in Theorem 3 with the rates obtained by re-
covering each deconvolution fl(t) = f(ul, t), ul = l/M , l = 1, . . . ,M , separately,
using equations (1.5). In order to do this, we need to determine in which space
functions fl(x) are contained. The following lemma provides the necessary con-
clusion.
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Lemma 5. Let f ∈ Bs1,s2
p,q (A) with s1 ≥ max{1/p, 1/2}, s2 > max{1/p, 1/2}

and 1 ≤ p, q ≤ ∞. Then, for any l = 1, . . . ,M , we have

fl(t) = f(ul, t) ∈ Bs1
p,q(Ã).

Using Lemma 5 and standard arguments (see, e.g., [11]), we obtain for each fl

sup
fl∈B

s1
p,q(Ã)

E‖f̃l − fl‖2 ≍





CN−
2s1

2s1+2ν+1 , if s1 ≥ ( 1p − 1
2 )(2ν + 1),

CN
−

2s′1
2s′1+2ν , if s1 < ( 1p − 1

2 )(2ν + 1).

Now, consider estimator f̃ of f with f̃(ul, ti) = fl(ti). If fu = ∂f/∂u and
fuu = ∂2f/∂u2 exist and uniformly bounded for u ∈ [0, 1], then rectangle
method for numerical integration yields

E‖f̃ − f‖2 =M−1
M∑

l=1

E‖f̃l − fl‖2 +RM ,

where

RM ≤ (12M2)−1

[
E‖f̃u − fu‖2 +

√
E‖f̃ − f‖2 E‖f̃uu − fuu‖2

]
.

If M is large enough, then RM = o
(
E‖f̃ − f‖2

)
as M → ∞ and we derive

E‖f̃ − f‖2 ≍





CN−
2s1

2s1+2ν+1 , if s1 ≥ ( 1p − 1
2 )(2ν + 1),

CN
−

2s′1
2s′1+2ν , if s1 < ( 1p − 1

2 )(2ν + 1).
(5.5)

By straightforward calculations, one can check that the only case when con-
vergence rates of separate deconvolution recoveries can possibly be better than
that of the simultaneous estimator is when s1 > s2(2ν + 1). In this case,
s1 > ( 1p − 1

2 )(2ν + 1), so that comparing the rates, by straightforward cal-
culations we derive that simultaneous recovery delivers better precision than
separate ones unless

lim
M→∞

N→∞

MN
−

s1−s2(2ν+1)

s2(2s1+2ν+1) < 1, s1 > s2(2ν + 1). (5.6)

It is easy to see that relation (5.6) holds only if s1 is large, s2 is small and M is
relatively small in comparison with N .

6. Extension to the (r + 1)-dimensional case

In this section, we extend the results obtained above to the (r+1)-dimensional
version of the model (1.1). In this case, expanding both sides of equation (1.1)
over Fourier basis, as before, we obtain for any u ∈ [0, 1]r

ym(u) = gm(u)fm(u) + εzm(u).
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Construction of the estimator follows the path of the two-dimensional case. With
ψj,k(t) and ηj′,k′(u) defined earlier, we consider vectors j′ = (j′1, . . . , j

′
r), k

′ =
(k′1, . . . , k

′
r), m

′ = (m′
1, . . . ,m

′
r) and J′ = (J ′

1, . . . , J
′
r), and subsets Υ(m′,J′)

and K(j′) of the set of r-dimensional vectors with nonnegative integer compo-
nents:

Υ(m′,J′) = {j′ : m′
l ≤ j′l ≤ J ′

l , l = 1, . . . , r},
K(j′) = {k′ : 0 ≤ k′l ≤ j′l − 1, l = 1, . . . , r}.

If ∞ is the r-dimensional vector with all components being ∞, one can expand
f(u, t) into wavelet series as

f(u, t) =

∞∑

j=m0−1

2j−1∑

k=0

∑

j′∈Υ(m′,∞)

∑

k′∈K(j′)

βj,k,j′,k′ψjk(t)

r∏

l=1

ηj′
l
,k′

l
(ul), (6.1)

where coefficients βj,k,j′,k′ are of the form

βj,k,j′,k′ =
∑

m∈Wj

ψj,k,m

∫

[0,1]d

hm(u)

gm(u)

r∏

l=1

[ηj′
l
,k′

l
(ul)] du, (6.2)

the setWj is defined by formula (2.4) and hm(u) = 〈(f∗g)(·,u), em(·)〉. Similarly
to the two-dimensional case, we estimate f(u, t) by

f̂(u, t) =

J−1∑

j=m0−1

2j−1∑

k=0

∑

j′∈Υ(m′,J′)

∑

k′∈K(j′)

β̂j,k,j′,k′ ψjk(t)

r∏

l=1

ηj′
l
,k′

l
(ul) (6.3)

with
β̂j,k,j′,k′ = β̃j,k,j′,k′1

(∣∣∣β̃j,k,j′,k′

∣∣∣ > λj,ε

)
. (6.4)

Here

β̃j,k,j′,k′ =
∑

m∈Wj

ψj,k,m

∫
ym(u)

gm(u)

r∏

l=1

[ηj′
l
,k′

l
(ul)]du (6.5)

are the unbiased estimators of βj,k,j′,k′ , J is defined in (4.3), J ′
l are such that

2J
′
l = ε−2, l = 1, . . . , r, and λj,ε is given by formula (4.2).
Assume, as before, that functional Fourier coefficients gm(u) of function

g(u, t) are uniformly bounded from above and below

C1 |m|−2ν ≤ |gm(u)|2 ≤ C2 |m|−2ν (6.6)

and that function f(u, t) belongs to an (r + 1)-dimensional Besov ball. As
described in section 3.1 to define these Besov balls, we introduce the vec-
tor s2 = (s21, . . . , s2r) and denote by s′2 and s∗2 vectors with components
s′2l = s2l + 1/2 − 1/p′ and s∗2l = s2l + 1/2 − 1/p, l = 1, . . . , r, respectively,
where p′ = min{p, 2}. If s0 ≥ maxl s2l, then the (r + 1)-dimensional Besov ball
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of radius A is characterized by its wavelet coefficients βj,k,j′,k′ as follows (see,
e.g. [9] )

Bs1,s2
p,q (A) =




f ∈ L2([0, 1]r+1) :



∑

j,j′

2[js
∗
1+j′

T
s∗
2
]q



∑

k,k′

|βj,k,j′,k′ |p



q
p




1/q

≤ A




.

(6.7)
It is easy to show that, with the above assumptions, similarly to the two-
dimensional case, as ε→ 0, one has

Var
(
β̃j,k,j′,k′

)
≍ ε222jν ,

2j−1∑

k=0

2j
′
−1∑

k′=0

|βj,k,j′,k′ |2 ≤ A22−2(js′1+j′
T
s∗
2
), (6.8)

Pr
(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣ > αλjε

)
= O

(
ε

α2C2
β

2σ2
0 [ln(1/ε)]−

1
2

)
. (6.9)

The upper and the lower bounds for the risk are expressed via

s2,0 = min
l=1,...,r

s2,l = s2,l0 , (6.10)

where l0 = argmin s2,l. In particular, the following statements hold.

Theorem 4. Let min{s1, s2,l0} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞. Then,
under assumption (6.6), as ε→ 0,

Rε(B
s1,s2
p,q (A)) ≥ CA2

(
ε2

A2

)D

(6.11)

where

D = min

(
2s2,0

2s2,0 + 1
,

2s1
2s1 + 2ν + 1

,
2s′1

2s′1 + 2ν

)
. (6.12)

or,

D =





2s2,0
2s2,0+1 , if s1 > s2,0(2ν + 1),

2s1
2s1+2ν+1 , if ( 1p − 1

2 )(2ν + 1) ≤ s1 ≤ s2,0(2ν + 1),
2s′1

2s′1+2ν , if s1 < ( 1p − 1
2 )(2ν + 1).

(6.13)

Theorem 5. Let f̂(., .) be the wavelet estimator defined in (6.3), with J defined
in (4.3), J ′

l such that 2J
′
l = (ε2)−1, l = 1, . . . , r, and λj,ε given by formula (4.2).

Let condition (3.5) hold and min{s1, s2,0} ≥ max{1/p, 1/2}, with 1 ≤ p, q ≤ ∞.
If Cβ in (4.2) satisfies condition (4.6), then, as ε→ 0,

sup
f∈B

s1,s2
p,q (A))

E‖f̂ − f‖2 ≤ CA2
(
A−2 ε2 ln(1/ε)

)D
ln (1/ε)

D1 (6.14)
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where D is defined in (6.12) and

D1 = 1(s1 = s2,0(2ν + 1)) + 1(s1 = (2ν + 1)(1/p− 1/2)) +
∑

l 6=l0

1(s2,l = s2,0).

(6.15)

Remark 3. Observe that convergence rates in Theorems 4 and 5 depend on
s1, p, ν and minl s2l but not on the dimension r.

It could be also natural to ask what would the corresponding results be if s1
itself was multidimensional, that is, if one considers the case of convolution in
more than one direction where

h(u, t) =

∫

[0;1]d
g(u, t− x)f(u, x)dx, t ∈ [0; 1]d; u ∈ [0; 1]r.

Although this is beyond the scope of this paper, let us just mention that, as soon
as one establishes upper bounds for the variances of the wavelet coefficients like
(6.8) as well as concentration inequalities for the wavelet coefficients estimators
like in (6.9), one expects to obtain convergence rates similar to Theorems 4 and
5 with s1 replaced with mink s1k.

7. Simulations

In order to investigate finite-sample performance of our estimator, we carried out
a limited simulation study. We used WaveLab package for Matlab and carried
out simulations using degree 3 Meyer wavelet and degree 6 Daubechies wavelets.
We generated data using equation (1.4) with kernel q(u, t) = 0.5 exp(−|t| (1 +
(u − 0.5)2)), various functions f(u, t) and various values of M , N and σ. In
particular, we used N = 512, M = 128 or M = 256, σ = 0.5 or σ = 1.0 and
f(u, t) = f1(u)f2(t) where f1(u) and f2(t) are standard test functions routinely
used in testing signal processing techniques (see, e.g., introduced by Donoho
& Johnstone (1994) [4]). In particularly, we utilize functions blip, bumps, and
quadratic with quadratic just being a quadratic function (y− 0.5)2 scaled to
have a unit norm. Note that, though f(u, t) is a product of two dimensional func-
tions, the method does not “know” this and, therefore, cannot take advantage
of this information.

Graphs of all test functions are presented in Figure 1.
Table 1 contains simulations results. We generated data and constructed func-

tional deconvolution estimator (2.7) and also M Fourier-wavelet deconvolution

estimators of [11]). We evaluated mean integrated square error (MISE)E‖f̂−f‖2
of the functional deconvolution estimator and the average MISE of M Fourier-
wavelet deconvolution estimators. Table 1 reports the averages of those errors
over 100 simulation runs together with their standard deviations (in the paren-
theses).

Simulation results confirm that, as M grows, functional deconvolution be-
comes more advantageous than M separate deconvolutions. Indeed, while the
error of a functional deconvolution estimator declines as M grows, the average
error of M deconvolution estimators remains the same.
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Fig 1. Test functions: bumps (left), blip (middle), quadratic (right)

Table 1

MISE averaged over 100 runs. Third and fifth columns: average MISE of the functional
deconvolution estimator. Fourth and sixth columns: average MISE of separate estimators for

every u. Standard deviations of the errors are listed in the parentheses

Functional deconvolution and M separate deconvolutions

M σ MISE (functional) MISE (separate) MISE (functional) MISE (separate)
N = 512 f1 = Quadratic, f2 = Blip f1 = Quadratic, f2 = Bumps

128 0.5 0.0535 (0.00148) 0.0450 (0.00197) 0.0534 (0.00123) 0.0455 ( 0.00175)
128 1.0 0.213 (0.00614) 0.181 (0.00816) 0.212 (0.00589) 0.179 (0.00757)
256 0.5 0.0363 (0.00105) 0.0452 (0.00148) 0.0363 (0.000801) 0.0451 (0.00133)
256 1.0 0.145 (0.00331) 0.181 (0.00454) 0.145 (0.00343) 0.180 (0.00458)

N = 512 f1 = Blip, f2 = Blip f1 = Blip, f2 = Bumps

128 0.5 0.0539 (0.00160) 0.0453 (0.00190) 0.0531 (0.00149) 0.0447 (0.00208)
128 1.0 0.214 (0.00695) 0.180 (0.00756) 0.214 (0.00661) 0.180 (0.00836)
256 0.5 0.0364 (0.000887) 0.0452 (0.00120) 0.0364 (0.00107) 0.0452 (0.00149)
256 1.0 0.145 (0.00381) 0.180 (0.00572) 0.145 (0.00420) 0.180 (0.00591)

N = 512 f1 = Bumps, f2 = Blip f1 = Bumps, f2 = Bumps

128 0.5 0.0535 (0.00145) 0.0452 (0.00144) 0.0537 (0.00145) 0.0454 (0.00197)
128 1.0 0.213 (0.00551) 0.179 (0.00727) 0.214 (0.00683) 0.181 (0.00751)
256 0.5 0.0363 (0.000925) 0.0452 (0.00135) 0.0364 (0.00101) 0.0451 (0.00144)
256 1.0 0.144 (0.00366) 0.180 (0.00467) 0.146 (0.00355) 0.181 (0.00479)

8. Discussion

i) In the present paper, we constructed functional deconvolution estimators
based on the hyperbolic wavelet thresholding procedure. We derived the
lower and the upper bounds for the minimax convergence rates which con-
firm that estimators derived in the paper are adaptive and asymptotically
near-optimal, within a logarithmic factor, in a wide range of Besov balls
of mixed regularity.

ii) Although results of [14, 15] have been obtained in a slightly different frame-
work (no convolution), they can nevertheless be compared with the results
presented above. Set ν = 0 to account for the absence of convolution,
pi = p and d = r + 1. Then, convergence rates in the latter can be iden-
tified as rates of a one-dimensional setting with a regularity parameter
which is equal to the harmonic mean

s̄ =

(
1

s1
+ · · ·+ 1

sd

)−1

< min
i=1,...,d

si.
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In our case, the rates can also be identified as the rates in the one-
dimensional setting with a regularity parameter mini si which is always
larger than s̄. Moreover, if si = s, one obtains s̄ = sd > s = min si,
showing that estimators of [14, 15] in the Nikolski spaces are affected by
“the curse of dimensionality” while the estimators in the anisotropic Besov
spaces of mixed regularity considered in this paper are free of dimension
and, therefore, have higher convergence rates.

iii) The problem studied in the paper is related to seismic inversion which can
be reduced to solution of noisy convolution equations which deliver under-
ground layer structures along the chosen profiles. The common practice
in seismology, however, is to recover layer structures separately for each
profile and then to combine them together. Usually, it is, however, not
the best strategy and leads to estimators which are inferior to the ones
obtained as two-dimensional functional deconvolutions. Indeed, as it is
shown above, unless function f is very smooth in the direction of the
profiles, very spatially inhomogeneous along another dimension and the
number of profiles is very limited, functional deconvolution solution has
precision superior to combination of M solutions of separate convolution
equations. The precise condition when separate recoveries are preferable
to the two-dimensional one is given by formula (5.6) which, essentially, is
very reasonable. Really, if the number M of profiles is small, there is no
reason to treat f as a two-dimensional function. Small value of s2 indicates
that f is very spatially inhomogeneous and, therefore, the links between
its values on different profiles are very weak. Finally, if s1 is large, decon-
volutions are quite precise, so that combination of various profiles cannot
improve the precision.

9. Proofs

9.1. Proof of the lower bounds for the risk

In order to prove Theorem 1, we consider two cases, the case when f(u, t) is
dense in both variables (the dense-dense case) and the case when f(u, t) is dense
in u and sparse in t. The proof is based on Lemma A.1 of Bunea, Tsybakov and
Wegkamp (2007) [3] which we reformulate here for the case of squared risk.

Lemma 6 ([3], Lemma A.1). Let Ω be a set of functions of cardinality card(Ω) ≥
2 such that
(i) ‖f − g‖2 ≥ 4δ2, for f, g ∈ Ω, f 6= g,
(ii) the Kullback divergences K(Pf , Pg) between the measures Pf and Pg satisfy
the inequality K(Pf , Pg) ≤ log(card(Ω))/16, for f, g ∈ Ω.
Then, for some absolute positive constant C, one has

inf
Tn

sup
f∈ Ω

Ef‖Tn − f‖2 ≥ Cδ2.
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The dense-dense case. Let ω be the matrix with components ωk,k′ =

{0, 1}, k = 0, . . . , 2j − 1, k′ = 0, . . . , 2j
′ − 1. Denote the set of all possible values

ω by Ω and let the functions fj,j′ be of the form

fjj′ (t, u) = γjj′
2j−1∑

k=0

2j
′
−1∑

k′=0

ωk,k′ψjk(t)ηj′k′(u). (9.1)

Note that matrix ω has N = 2j+j′ components, and, hence, cardinality of
the set of such matrices is card(Ω) = 2N . Since fjj′ ∈ Bs1s2

p,q (A), direct cal-

culations show that γjj′ ≤ A2−j(s1+1/2)−j′(s2+1/2), so that we choose γjj′ =

A2−j(s1+1/2)−j′(s2+1/2). If f̃jj′ is of the form (9.1) with ω̃k,k′ ∈ Ω instead of
ωk,k′ , then, the L2-norm of the difference is of the form

‖f̃jj′ − fjj′‖2 = γ2jj′

2j−1∑

k=0

2j
′
−1∑

k′=0

1 (ω̃k,k′ 6= ωk,k′) = γ2jj′ρ(ω̃, ω)

where ρ(ω̃, ω) =
∑2j−1

k=0

∑2j
′
−1

k′=0 1 (ω̃k,k′ 6= ωk,k′) is the Hamming distance be-
tween the binary sequences ω and ω̃. In order to find a lower bound for the
last expression, we apply the Varshamov-Gilbert lower bound (see Tsybakov
(2008), page 104) which states that one can choose a subset Ω1 of Ω, of cardi-
nality at least 2N/8 such that ρ(ω̃, ω) ≥ N/8 for any ω, ω̃ ∈ Ω1. Hence, for any
ω, ω̃ ∈ Ω1 one has ‖f̃jj′ − fjj′‖2 ≥ γ2jj′2

j+j′/8. Note that Kullback divergence
can be written as

K(f, f̃) = (2ε2)−1‖(f̃ − f) ∗ g‖2. (9.2)

Since |ωjj′ − ω̃jj′ | ≤ 1, plugging f and f̃ into (9.2), using Plancherel’s formula
and recalling that |ψj,k,m| ≤ 2−j/2, we derive

K(f, f̃) ≤ (2ε2)−12−jγ2jj′

2j−1∑

k=0

2j
′
−1∑

k′=0

∑

m∈Wj

∫ 1

0

η2j′k′(u) g2m(u) du.

Using (3.5), we obtain

2−j
∑

m∈Wj

∫ 1

0

η2j′k′ (u)g2m(u)du ≤ C22
−j

∑

m∈Wj

|m|−2ν

∫ 1

0

η2j′k′ (u)du ≤ C32
−2νj ,

so that

K(f, f̃) ≤ Cε−2γ2jj′2
j+j′2−2νj . (9.3)

Now, applying Lemma 6 with

δ2 = γ2jj′2
j+j′/32 = A22−2s1j−2s2j

′

/32 (9.4)
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one obtains constraint 2−j(2s1+2ν+1)−j′(2s2+1) ≤ Cε2/A2 on j, j′ and ε where C
is an absolute constant. Denote

τε = log2(CA
2ε−2). (9.5)

Thus, we need to choose combination of j and j′ which solves the following
optimization problem

2js1 + 2j′s2 ⇒ min j(2s1 + 2ν + 1) + j′(2s2 + 1) ≥ τε, j, j′ ≥ 0. (9.6)

It is easy to check that solution of this linear constraint optimization problem
is of the form {j, j′} =

{
(2s1 + 2ν + 1)−1τε, 0

}
if s2(2ν + 1) > s1, and {j, j′} ={

0, (2s2 + 1)−1τε
}
if s2(2ν + 1) ≤ s1. Plugging those values into (9.4), obtain

δ2 =

{
CA2 (ε2/A2)

2s2
2s2+1 , if s1 > s2(2ν + 1),

CA2 (ε2/A2)
2s1

2s1+2ν+1 , if s1 ≤ s2(2ν + 1).
(9.7)

The sparse-dense case. Let ω be the vector with components ωk′ = {0, 1}.
Denote Ω the set of all possible ω and let the functions fj,j′ be of the form

fjj′ (t, u) = γjj′
2j

′
−1∑

k′=0

ωk′ψjk(t)ηj′k′(u) (9.8)

Note that vector ω has N = 2j
′

components, and, hence, its cardinality is
card(Ω) = 2N . Since fjj′ ∈ Bs1s2

p,q (A), direct calculations show that γjj′ ≤
A2−js∗1−j′(s2+1/2), so we choose γjj′ = A2−js∗1−j′(s2+1/2). If f̃jj′ is of the form
(9.8) with ω̃k,k′ ∈ Ω instead of ωk,k′ , then, calculating the L2 norm of the
difference similarly to dense-dense case, obtain

‖f̃jj′ − fjj′‖2 = γ2jj′

2j
′
−1∑

k′=0

1 (ω̃k′ 6= ωk′) ≥ γ2jj′2
j′/8.

Similarly to dense-dense case, using formulae (3.5) and (9.2), Plancherel’s for-
mula and |ψj,k,m| ≤ 2−j/2, derive

K(f, f̃) ≤ (2ε2)−1γ2jj′

2j
′
−1∑

k′=0

2−j
∑

m∈Wj

∫ 1

0

η2j′k′(u)g2m(u)du ≤ C(2ε2)−1γ2jj′2
j′2−2νj .

Now, applying Lemma 6 with

δ2 = γ2jj′2
j′/32 = A22−2s′1j−2s2j

′

/32 (9.9)

one obtains constraint 2−j(2s′1+2ν)−j′(2s2+1) ≤ Cε2/A2 on j, j′ and ε where C is
an absolute constant. Thus, we need to choose combination of j and j′ which
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delivers solution to the following linear optimization problem min{2js1+2j′s2}
subject to constraint

2js1 + 2j′s2 ⇒ min s.t. j(2s′1 + 2ν) + j′(2s2 + 1) ≥ τε, j, j′ ≥ 0. (9.10)

It is easy to check that solution of this linear constraint optimization prob-
lem is of the form {j, j′} =

{
(2s′1 + 2ν)−1τε, 0

}
if 2νs2 > s′1, and {j, j′} ={

0, (2s2 + 1)−1τε
}
if 2νs2 ≤ s′1. Plugging those values into (9.9), obtain

δ2 =





CA2 (ε2/A2)
2s2

2s2+1 , if 2νs2 ≤ s′1,

CA2 (ε2/A2)
2s′1

2s′
1
+2ν , if 2νs2 > s′1.

(9.11)

In order to complete the proof, recall expressions (3.7) and (3.8) for d.

9.2. Proofs of supplementary lemmas

Proof of Lemma 1. Let us derive an expression for the upper bound of the vari-
ance of (2.6). Subtracting (2.5) from (2.6) we obtain

β̃j,k,j′,k′ − βj,k,j′,k′ = ε
∑

m∈Wj

ψj,k,m

∫ 1

0

zm(u)

gm(u)
ηj′,k′(u)du. (9.12)

Now, before we proceed to the derivation of the upper bound of the variance, let
us first state a result that will be used in our calculation. Recall from stochastic
calculus that for any function F (t, u) ∈ L2([0, 1]× [0, 1]), one has

E

[∫ 1

0

∫ 1

0

F (t, u)dz(t, u)du

]2
=

∫ 1

0

∫ 1

0

F 2(t, u)dtdu. (9.13)

Hence, recalling that zm(u) =
∫
z(u, t)em(t)dt, choosing

F (t, u) =
∑

m∈Wj

ψj,k,m
em(t)

gm(u)
ηj′,k′(u),

squaring both sides of (9.12), taking expectation and using the relation (9.13),
we obtain

Var
(
β̃j,k,j′,k′

)
= ε2 E

∣∣∣∣∣∣

∑

m∈Wj

ψj,k,m

∫ 1

0

∫ 1

0

ηj′,k′(u)

gm(u)
em(t)dz(u, t)du

∣∣∣∣∣∣

2

= ε2
∫ 1

0

∫ 1

0

∑

m

∑

m′

ψj,k,mψj,k,m′

gm(u)gm′(u)
em(t)em′(t)|ηj′,k′(u)|2dtdu

= ε2
∑

m∈Wj

|ψj,k,m|2
∫ 1

0

|ηj′,k′(u)|2
|gm(u)|2 du,
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since in the double summation above, all terms involving m 6= m′ vanish due

to
∫ 1

0 em(t)em′(t)dt = 0. Consequently, Taking into account (2.4), (3.5) and the

fact that |ψj,k,m| ≤ 2−j/2, obtain

Var
(
β̃j,k,j′,k′

)
≍ ε2

∑

m∈Wj

|ψj,k,m|2|m|2ν
∫ 1

0

∣∣η2j′,k′(u)
∣∣ du ≍ ε222jν (9.14)

so that (4.1) holds.

Proof of Lemma 2. First note that, under assumption (3.4), one has

∑

k,k′

|βj,k,j′,k′ |p ≤ Ap2−p[(js1+j′s2)+( 1
2−

1
p
)(j+j′)]

If p ≤ 2, one has p′ = p, s′i = si + 1/2− 1/p, i = 1, 2, and

∑

k,k′

|βj,k,j′,k′ |2 ≤
∑

k,k′

|βj,k,j′,k′ |p
{
max
k,k′

|βj,k,j′,k′ |p
}(2−p)/p

≤ A22−2(js′1+j′s′2).

If p ≥ 2, then p′ = 2, s′i = si, i = 1, 2, and, applying the Cauchy-Schwarz
inequality, one obtain

∑

k,k′

|βj,k,j′,k′ |2 ≤


∑

k,k′

|βj,k,j′,k′ |p



2/p
∑

k,k′

1




(1−2/p)

≤ A22−2[(js1+j′s2)],

which completes the proof.

Proof of Lemma 3. Observe that β̃j,k,j′,k′ − βj,k,j′,k′ is a zero-mean Gaussian
random variable with variance given by (9.14), so that

Var
(
β̃j,k,j′,k′

)
≤ ε2

(
8π

3

)2ν
22νj

C1
= σ2

0ε
222νj (9.15)

Denoting by Φ̄(x) = 1 − Φ(x) where Φ(x) is the standard normal c.d.f. and
recalling that Φ̄(x) ≤ (x

√
2π)−1 exp(−x2/2) if x > 0, we derive

Pr (Ωjk,j′k′,α) = Pr (|ξj,k,j′,k′ | > αλjε) = 2Φ̄
(
αλjε(σ0ε2

νj)−1
)

≤ 2Φ̄
(
αCβ(σ0)

−1
√
ln(1/ε)

)
≤ 2σ0

αCβ

√
2π ln(1/ε)

ε

α2C2
β

2σ2
0

which completes the proof.
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9.3. Proof of upper bounds for the risk

Proof of Theorem 2. Denote

χε,A = A−2ε2 ln(1/ε), (9.16)

2j0 = (χε,A)
− d

2s′
1 , 2j

′
0 = (χε,A)

− d

2s′
2 (9.17)

and observe that with J and J ′ given by (4.3), the estimation error can be
decomposed into the sum of four components as follows

E‖f̂n − f‖2 ≤
∑

j,k,j′,k′

E‖β̂j,k,j′,k′ − βj,k,j′,k′‖2 ≤ R1 +R2 +R3 +R4

(9.18)

where

R1 =

2m0−1∑

k=0

2m
′
0−1∑

k′=0

Var(β̃m0,k,m′
0,k

′),

R2 =

J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣
2

1
(∣∣∣β̃j,k,j′,k′

∣∣∣ > λjε

)]
,

R3 =

J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

|βj,k,j′,k′ |2 Pr
(∣∣∣β̃j,k,j′,k′

∣∣∣ < λjε

)
,

R4 =




∞∑

j=J

J′−1∑

j′=m′
0

+

J−1∑

j=m0

∞∑

j′=J′

+

∞∑

j=J

∞∑

j′=J′



∑

k,k′

|βj,k,j′,k′ |2 .

For R1, using (4.1), derive, as ε→ 0,

R1 ≤ Cε2 = O
(
A2 χd

ε,A

)
. (9.19)

To calculate R4, we apply Lemma 2 and use (4.3), obtaining, as ε→ 0,

R4 = O




∑

j≥J

∑

j′≥m′
0

+
∑

j≥m0

∑

j′≥J′


A22−2js′1−2j′s′2




= O
(
A22−2Js1 +A22−2J′s2

)

= O

(
A2(ε2)

2s′1
2ν+1 +A2(ε2)2s

′
2

)
= O

(
A2χd

ε,A

)
. (9.20)

Then, our objective is to prove that, as ε→ 0, one hasRi = O
(
A2χd

ε,A[ln(1/ε)]
d1
)
.

Note that each R2 and R3 can be partitioned into the sum of two errors as
follows

R2 ≤ R21 +R22, R3 ≤ R31 +R32, (9.21)
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where

R21 =
J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣
2

1

(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣ > λjε
2

)]
,

R22 =

J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣
2

1

(
|βj,k,j′,k′ | > 1

2
λjε

)]
,

R31 =

J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

|βj,k,j′,k′ |2 Pr
(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′

∣∣∣ > λjε
2

)
,

R32 =
J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

|βj,k,j′,k′ |2 1
(
|βj,k,j′,k′ | ≤ 3λjε

2

)
.

Combining expressions for R21 and R31, and applying Cauchy-Schwarz inequal-
ity and Lemma 3 with α = 1/2, one derives

R21 +R31 = O




J−1∑

j=m0

J′−1∑

j′=m′
0

2j+j′ ε

C2
β

16σ2
0 [ln(1/ε)]−

1
4

√
ε424jν+j′




= O

(
2J(2ν+1) 23J

′/2 (ε)
2+

C2
β

16σ2
0

)
= O

(
(ε2)

C2
β

32σ2
0
− 3

2

)
.

Hence, due to condition (4.6), one has, as ε→ 0,

R21 +R31 ≤ Cε2 = O
(
A2χd

ε,A

)
. (9.22)

For the sum of R22 and R32, using (4.1) and (4.2), we obtain

∆ = R22 +R32 = O




J−1∑

j=m0

J′−1∑

j′=m′
0

∑

k,k′

min
{
β2
j,k,j′,k′ , ε2 ln(1/ε) 22jν

}

 . (9.23)

Then, ∆ can be partitioned into the sum of three components ∆1, ∆2 and ∆3

according to three different sets of indices:

∆1 = O







J−1∑

j=j0+1

J′−1∑

j′=m′
0

+
J−1∑

j=m0

J′−1∑

j′=j′0+1



A22−2js′1−2j′s′2


 , (9.24)

∆2 = O




j0∑

j=m0

j′0∑

j′=m′
0

ε2 ln(1/ε) 2j(2ν+1)+j′ 1
(
2j(2ν+1)+j′ ≤ χd−1

ε,A

)

 , (9.25)

∆3 = O




j0∑

j=m0

j′0∑

j′=m′
0

Ap′

2−p′js′1−p′j′s′2
(
ε2 ln(1/ε)22jν

)1−p′/2
1 (Ξ)


 . (9.26)
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where d is defined in (3.7) and Ξ = {Ξ : 2j(2ν+1)+j′ > χd−1
ε,A }. It is easy to see

that for ∆1 given in (9.24) and j0 and j′0 given by (9.17), as ε→ 0, one has

∆1 = O
(
A2 χd

ε,A

)
, (9.27)

For ∆2 defined in (9.25), obtain

∆2 = O
(
ε2 ln(1/ε)χd−1

ε,A

)
= O

(
A2 χd

ε,A

)
, ε→ 0. (9.28)

In order to construct upper bounds for ∆3 in (9.26), we need to consider three
different cases.

Case 1: s1 ≥ s2(2ν + 1). In this case, d = 2s2/(2s2 + 1) and

∆3 ≤ CA2(χε,A)
1−p′/2

j0∑

j=m0

2−j[p′s′1−2ν(1−p′/2)]

j′0∑

j′=m′
0

2−p′j′s′2 1 (Θ1)

≤ CA2(χε,A)
(1−p′/2)+p′s′2(1−d)

j0∑

j=m0

2−j[p′s′1−2ν(1−p′/2)−p′(2ν+1)s′2]

= CA2(χε,A)
d

j0∑

j=m0

2−j[p′s1−p′s2(2ν+1)],

where Θ1 = {Θ : 2j
′

> (χε,A)
d−12−j(2ν+1)}, so that, as ε→ 0,

∆3 = O
(
A2 χd

ε,A [ln(1/ε)]1(s1=s2(2ν+1))
)
. (9.29)

Case 2: ( 1p − 1
2 )(2ν + 1) < s1 < s2(2ν + 1). In this case, d = 2s1/(2s1+2ν+1)

and

∆3 ≤ CA2(χε,A)
1−p′/2

j0∑

j=m0

2−j[p′s′1−2ν(1−p′/2)]

j′0∑

j′=m′
0

2−p′j′s′2 1 (Θ2)

≤ CA2(χε,A)
(1−p′/2)+p′ (1−d)

1+2ν (s1−(2ν+1)(1/p′−1/2)

j′0∑

j′=m′
0

2−j′p′Υ

≤ CA2(χε,A)
d

j′0∑

j′=m′
0

2−j′p′[s2−s1/(2ν+1)],

where Θ2 = {Θ : 2j > (χε,A)
d−1
2ν+1 2−

j′

2ν+1 } and Υ = [s2 − s1/(2ν + 1)], so that,
as ε→ 0,

∆3 = O
(
A2 χd

ε,A

)
. (9.30)
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Case 3: s1 ≤ ( 1p − 1
2 )(2ν + 1). In this case, d = 2s′1/(2s

′
1+2ν) and p ≤ 2. Then,

since ps′1 − 2ν(1− p/2) = p[s1 − (1/p− 1/2)(2ν + 1)] ≤ 0, one has

∆3 ≤ CA2(χε,A)
1−p′/2

j0∑

j=m0

2−j[ps′1−2ν(1−p/2)]

≤ CA2(χε,A)
1−p′/2 2j0p[(1/p−1/2)(2ν+1)−s1] [ln(1/ε)]1(s1=(1/p−1/2)(2ν+1)).

Plugging in j0 of the form (9.17), obtain as ε→ 0

∆3 = O
(
A2 χd

ε,A [ln(1/ε)]1(s1=(1/p−1/2)(2ν+1))
)
. (9.31)

Now, to complete the proof, combine formulae (9.18)–(9.31).

9.4. Proofs of the statements in Section 5

Proof of Lemma 4. Subtracting βj,k,j′,k′ from (5.1), one obtains

β̃j,k,j′,k′ − βj,k,j′,k′ =
σ

M

∑

m∈Wj

ψj,k,m

M∑

l=1

zm(ul)

gm(ul)
ηj′,k′(ul). (9.32)

where zm(ul) = ym(ul) − hm(ul). Since Fourier transform is an orthogonal
transform, one hasE[zm1(ul1)zm2(ul2)] = 0 if l1 6= l2 and E[zm1(ul)zm2(ul)] = 0,
so that

E[zm1(ul1)zm2(ul2)] =
σ2

N
δ(m1 −m2)δ(l1 − l2).

Therefore,

Var(β̃j,k,j′,k′) =
σ2

M2N

∑

m∈Wj

|ψj,k,m|2
M∑

l=1

1

|gm(ul)|2
|ηj′,k′(ul)|2

≍ σ222jν

MN

∑

m∈Wj

|ψj,k,m|2 1

M

M∑

l=1

|ηj′,k′(ul)|2 ≍ σ222jν

MN
,

which completes the proof.

Proof of Lemma 5. Recall that

f(u, t) =
∑

j,k

∑

j′,k′

βj,k,j′,k′ψj,k(t)ηj′ ,k′(u) and fl(t) =
∑

j,k

b
(l)
j,kψj,k(t)ηj′,k′(ul),

so that

b
(l)
j,k =

∞∑

j′=0

∑

k′∈Kl

βj,k,j′,k′2j
′/2η(2j

′

ul − k′),
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where the set Kl = {k′ : η(2j
′

ul − k′) 6= 0} is finite for any l due to finite
support of η.

Thus, since p ≥ 1, for any δ > 0, one has

2j−1∑

k=0

|b(l)j,k|p ≤ C

2j−1∑

k=0




∞∑

j′=0

∑

k′∈Kl

|βj,k,j′,k′ | 2j′(1+δ)/2 2−j′δ/2



2

≤ C

2j−1∑

k=0




∞∑

j′=0

∑

k′∈Kl

|βj,k,j′,k′ |p 2j′(1+δ)p/2






∞∑

j′=0

∑

k′∈Kl

(
2−j′δ/2

) p
p−1



p−1

Then, for any q ≥ 1, one has

Bj =




∞∑

j′=0

2j
′(1+δ)p/2

∑

k,k′

|βj,k,j′,k′ |p



q/p

.

If q/p ≥ 1, then, using Cauchy-Schwarz inequality again, it is straightforward
to verify that

Bj ≤ C̃δ

∞∑

j′=0


∑

k,k′

|βj,k,j′,k′ |p


q/p

2j
′(1+2δ)q/2.

Hence,

∞∑

j′=0

2js
′
1q




2j−1∑

k=0

|b(l)j,k|p



q/p

≤ C̃δ2
js′1q

∞∑

j′=0

2j
′(1+2δ)q/2


∑

k,k′

|βj,k,j′,k′ |p


q/p

≤ C̃δA
q = Ãq

provided s∗2 ≥ (1 + 2δ)/2. Since s2 > max{1/2, 1/p} implies s2 > 1/2, choose
δ = (s2 − 1/2)/2. If q/p < 1, then similar considerations yield

Bj ≤ C̃δ

∞∑

j′=0


∑

k,k′

|βj,k,j′,k′ |p


q/p

2j
′(1+δ)q/2,

so that the previous calculation holds with δ instead of 2δ, and the proof is
complete.

9.5. Proofs of the statements in Section 6

Proof of Theorem 4. Repeating the proof of Theorem 1 with j′ and k′ replaced
by j′ and k′, respectively, and s2j

′ replaced by j′
T
s′2, we again arrive at two

cases. Denote the r-dimensional vector with all unit components by e.
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In the dense-dense case, we use (r + 1)-dimensional array w, so that N =

2j+eT j′ . Choose γ2j,j′ = A22−j(2s1+1)−j′
T (2s2+e) and observe that K(f, f̃) ≤

Cε−2γ2jj′2
j+eT j′2−2νj. Now, applying Lemma 6 with

δ2 = γ2jj′2
j+eT j′/32 = A22−2s1j−2j′T s2/32 (9.33)

one arrives at the following optimization problem

2js1 + 2j′s2 ⇒ min j(2s1 + 2ν + 1) +
r∑

l=1

(2s2,l + 1)j′l ≥ τε, j, j′l ≥ 0, (9.34)

where τε is defined in formula (9.5). Setting j = τε/(2s1+2ν+1)−∑r
l=1(2sl +

1)/(2s1 + 2ν + 1), arrive at optimization problem

2s1τε
2s1 + 2ν + 1

+

r∑

l=1

2j′l[s2,l(2ν + 1)− s1]

2s1 + 2ν + 1
⇒ min, j′l ≥ 0, l = 1, . . . , r. (9.35)

If s2,l0(2ν + 1) ≥ s1, then each j′l is multiplied by a nonnegative number and
minimum is attained when j′l = 0, l = 1, . . . , r. Then, j = τε/(2s1 +2ν+1). On
the other hand, if s2,l0(2ν+1) < s1, then jl0 is multiplied by the smallest factor
which is negative. Therefore, minimum in (9.35) is attained if j = 0, j′l = 0,
l 6= l0 and jl0 = τε/(2s2,l0 + 1). Plugging those values into (9.33), obtain

δ2 =

{
CA2 (ε2/A2)

2s2,0
2s2,0+1 , if s1 > s2,0(2ν + 1),

CA2 (ε2/A2)
2s1

2s1+2ν+1 , if s1 ≤ s2,0(2ν + 1).
(9.36)

In the sparse-dense case, we use r-dimensional array w, so that N = 2e
T j′ .

Choose γ2j,j′ = A22−2js∗1−j′
T (2s2+e) and observe that

K(f, f̃) ≤ Cε−2γ2jj′2
j+eT j′2−2νj

Now, applying Lemma 6 with

δ2 = A22−2s∗1j−2j′T s2/32 (9.37)

one arrives at the following optimization problem

2js1 + 2j′s2 ⇒ min j(2s∗1 + 2ν + 1) +

r∑

l=1

(2s2,l + 1)j′l ≥ τε, j, j′l ≥ 0, (9.38)

Again, setting j = τε/(2s
∗
1+2ν)−∑r

l=1(2sl+1)/(2s∗1+2ν), arrive at optimization
problem

2s∗1τε
2s∗1 + 2ν

+

r∑

l=1

2j′l [2s2,lν − s∗1]

2s∗1 + 2ν
⇒ min, j′l ≥ 0, l = 1, . . . , r. (9.39)
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Repeating the reasoning applied in the dense-dense case, we obtain j = 0, j′l = 0,
l 6= l0 and jl0 = τε/(2s2,l0 +1) if 2s2,l0ν < s∗1, and j = τε/(2s1+2ν+1), j′l = 0,
l = 1, . . . , r, if 2s2,l0ν > s∗1. Plugging those values into (9.37), obtain

δ2 =





CA2 (ε2/A2)
2s2,0

2s2,0+1 , if 2νs2,0 ≤ s∗1,

CA2 (ε2/A2)
2s∗1

2s∗
1
+2ν , if 2νs2,0 > s∗1.

(9.40)

In order to complete the proof, combine (9.36) and (9.40) and note that s∗1 = s′1
if p ≤ 2.

Proof of Theorem 5. Repeat the proof of Theorem 2 with j′ and k′ replaced by
j′ and k′, respectively, s2j

′ replaced by j′
T
s′2 and

2j0 = (χε,A)
− d

2s′
1 , 2j

′
0,l = (χε,A)

− d

2s′
2,l , l = 1, . . . , r.

Then, formulae (9.18)–(9.22) are valid. One can also partition ∆ in (9.23) into
∆1, ∆2 and ∆3 given by expressions similar to (9.24), (9.25) and (9.26) with

r + 1 sums in (9.24) instead of two,
∑j′0

j′=m′
0
replaced by r respective sums

and 1
(
2j(2ν+1)+j′ > χd−1

ε,A

)
replaced by 1

(
2j(2ν+1)+eT j′ > χd−1

ε,A

)
. Then, upper

bounds (9.27) and (9.28) hold. In order to construct upper bounds for ∆3, we
again need to consider three different cases.

In Case 1, s1 ≥ s2,0(2ν + 1), replace
∑j′0

j′=m′
0
by
∑j′0,l0

j′
l0
=m′

l0

and
∑j0

j=m0
by

the sum over j, j′1, . . . , j
′
l0−1, j

′
l0+1, . . . , j

′
r. Repeating calculations for this case,

keeping in mind that s′2,l ≥ s′2,0 for any l and noting that, whenever s′2,l = s′2,0,
we gain an extra logarithmic factor, we arrive at

∆3 = O
(
A2 χd

ε,A [ln(1/ε)]1(s1=s2(2ν+1))+
∑

l 6=l0
1(s2,l=s2,0)

)
. (9.41)

In Case 2, (1/p−1/2)(2ν+1) < s1 < s2,0(2ν+1), replace
∑j′0

j′=m′
0
by
∑

j′∈Υ(m′,j′
0
)

where j′0 = (j′0,1, . . . , j
′
0,r) and arrive at (9.30). In Case 3, s1 ≤ ( 1p − 1

2 )(2ν + 1),

since the sum over j′ is uniformly bounded, calculations for the two-dimensional
case hold and (9.31) is valid. Combination of (9.41), (9.30) and (9.31) completes
the proof.
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