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1. Introduction

In statistics, researchers are often interested in how a variable response Y may be
concomitant with an explanatory variable X . Studying the relationship between
Y given a new value of the explanatory variable X is an important task in non-
parametric statistics. For instance, regression function provides the mean value
that takes Y given X = x. Some other characteristics of the conditional dis-
tribution, such as conditional median, conditional quantiles, conditional mode,
may be quite interesting in practice. Furthermore, it is widely acknowledged
that quantiles are more robust to outliers than regression function.

Conditional quantiles are widely studied when the explanatory variable X
lies within a finite dimensional space. There are many references on this topic
(see [20]).

During the last decade, thanks to progress of computing tools, there is an
increasing number of examples coming from different fields of applied sciences
for which the data are curves. For instance, some random variables can be ob-
served at several different times. This kind of variables, known as functional
variables (of time for instance) in the literature, allows us to consider the data
as curves. The books by [7] and [37] propose an interesting description of the
available procedures dealing with functional observations whereas [17] present
a completely non-parametric point of view. These functional approaches mainly
rely on generalizing multivariate statistical procedures in functional spaces and
have been proved to be useful in various areas such as chemiomertrics ([24] and
[34]), economy [27], climatology [5], biology [26], Geoscience [34] or hydrology
([12]). These functional approaches are generally more appropriate than longi-
tudinal data models or time series analysis when there are, for each curve, many
measurement points [38].

In the univariate case (i.e. Y ∈ R and X is a functional covariable), among
the lot of papers dealing with the nonparametric estimation of conditional quan-
tiles, one may cite papers by [9] which introduced univariate quantile regression
with functional covariate and [18] estimates conditional quantile by inverting
the conditional cumulative distribution function. [16] establish the almost com-
plete convergence and the asymptotic normality in the setting of independent
and identically distributed (i.i.d.) data as well as under α-mixing condition.
[14] stated the convergence in Lp-norm. In the same framework, [31] estimated
the conditional quantile nonparametrically, by adapting the L1-norm method.
Recently [35] have used the same approach proposed by [18] to predict future
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stratospheric ozone concentrations and to estimate return levels of extreme val-
ues of tropospheric ozone.

Over the past decades, researchers have shown increasing interest in study-
ing multivariate location parameters such as multivariate quantiles in order to
find suitable analogs of univariate quantiles that used to construct descriptive
statistics and robust estimations of location. In contrast to the univariate case,
the order of observations Yi laying in R

d (with d ≥ 2) is not total. Consequently,
several quantiles-type multivariate definitions have been formulated. The pio-
neer paper of [23] considered a multivariate extension of the median defined as
an M -estimator (also called spatial or L1-median). The reader is referred to
[39] for historical reviews and comparisons. [11] and [28] defined the geometric
quantile as an extension of multivariate quantiles based on norm minimization
and on the geometry of multivariate data clouds.

In contrast, relative little attention has been paid to the multivariate con-
ditional quantiles (Y ∈ R

d and X ∈ R
s) and their large sample properties.

[8] defined the conditional L1-median and provided its uniform consistency on a
compact subsets of Rs. Recently, [15] have introduced a multivariate conditional
quantile notion, which extends the definition of unconditional quantiles by [1],
to predict tails from bivariate time series. [13] have generalized the notion of
geometric quantiles, defined by [11], to the conditional setting. They have estab-
lished a Bahadur-type linear representation of the u-th geometric conditional
estimator as well as the asymptotic normality in the i.i.d. case.

The purpose of this paper is to add some new results to the non-parametric
estimation of the conditional L1-median when Y is a random vector with val-
ues in R

d while the covariable X take its values in some infinite dimensional
space F . As far as we know, this problem has not been studied in literature
before and the results obtained here are believed to be novel. Moreover, our
motivation for studying this type of robust estimator is due to its interest in
some practical applications. Note also that, it would be better to predict all
components of a vector of random variables simultaneously in order to take into
account the correlation between them rather than predicting each of component
separately. For instance, in EDF (French electricity company) the estimation of
the minimum and the maximum of the electricity power demand represents an
important research issue for both economic and security reasons. Because an
underestimation of the maximum consumed quantity of electricity (especially
in winter) may require importation of electricity from other European countries
with high prices, while an over estimation of this maximum quantitiy may in-
duce a negative effect on the electricity distribution network. The estimation
of the minimum power demand is also an important task for the same reasons.
Notice that the minimum and the maximum of the electricity power demand
are strongly correlated. Thus, it is more appropriate to predict these variables
simultaneously rather than predicting each of them separately. On the other
hand, weather variables, like temperature curves, can play a key role to explain
the minimum and the maximum of power demand. Due to its robust properties,
the conditional L1-median may be used to solve this prediction problem using
a temperature curve as covariate.
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The paper is organized as follows. Section 2 outlines notations and the form
of the new estimator. Section 3 presents the main results concerning the asymp-
totic behavior of the estimator, including consistency, asymptotic normality and
evaluation of the bias term. An estimation of the conditional confidence region
is then deduced. Section 4 is devoted to a simulation study giving an example of
the estimated confidence region. An application to chemiometrical real data is
proposed in Section 5, where we compare three approaches: L1-median regres-
sion, the vector of marginal conditional median and non-functional multivariate
median to predict a random vector. The proofs of the results in Section 3 are
relegated to the Appendix.

2. Notations and definitions

Let us consider a random pair (X,Y ) where X and Y are two random variables
defined on the same probability space (Ω,A,P). We suppose that Y is Rd-valued
and X is a functional random variable (f.r.v.) takes its values in some infinite
dimensional vector space (F , d(·, ·)) equipped with a semi-metric d(·, ·). Let x be
a fixed point in F and F (.|x) be the conditional cumulative distribution function
(cond. c.d.f) of Y given X = x. The conditional L1-median, µ : F −→ R

d, of Y
given X = x, is defined as the miminizer over u of

arg min
u∈Rd

E[(‖Y − u‖ − ‖Y ‖) | X = x] = arg min
u∈Rd

∫
(‖y − u‖ − ‖y‖) dF (y | x).

(2.1)

The general definition (2.1) does not assume the existence of the first order
moment of ‖Y ‖. However, when Y has a finite expectation, µ(x) becomes a
minimizer over u of E[‖Y − u‖ | X = x]. Notice that the existence and the
uniqueness of µ(x) is guaranteed, for d ≥ 2, provided that the conditional dis-
tribution function F (·|x) is not supported on a single straight line (see theorem
2.17 of [25]). Hence, uniqueness holds whenever Y has an absolutely continuous
conditional distribution on R

d with d ≥ 2.

Without loss of generality, we suppose in the sequel, that E‖Y ‖ <∞. There-
fore for any fixed x ∈ F , the conditional L1-median µ(x) may be viewed as a
minimizer of the function Gx : Rd 7−→ R defined, for all u ∈ R

d, by

Gx(u) := E[‖Y − u‖ | X = x], (2.2)

which is assumed to be differentiable and uniformly bounded with respect to u.

We introduce now some further definitions and notations. Denote by At the
transpose of the matrix A, and let ‖A‖ =

√
tr(At A) be the norm trace. Notice

that for any y ∈ R
d, the function y 7−→ ‖y‖ is differentiable everywhere except

at z = 0Rd , one may then define (by continuity extension) its derivative as
U(y) = y/‖y‖ when y 6= 0 and U(y) = 0 whenever y = 0. For any y 6= u, define

M(y, u) = (1/‖y − u‖)(Id − U(y − u)U t(y − u)),



L1-median regression with functional covariates 1557

where Id is the d×d identity matrix. We denote by ∇uG
x(u) the gradian of the

function Gx(u) and by Hx(u) its Hessian functional matrix (with respect to u).
According to [28], it is easy to see that

∇uG
x(u) = −E [U(Y − u) | X = x] and (2.3)

Hx(u) = E [M(Y, u) | X = x] . (2.4)

Notice thatHx(u) is bounded whenever E
[
‖Y − u‖−1 | X = x

]
<∞. According

to (2.1) and (2.3), the conditional L1-median may be then implicitly defined as
a zero with respect to u of the following equation:

∇uG
x(u) = 0. (2.5)

To build our estimator, let (Xi, Yi)i=1,...,n be the statistical sample of pairs
which are independent and identically distributed as (X,Y ). Let us denote by

wn,i(x) =
∆i(x)∑n
i=1 ∆i(x)

,

the so-called Nadaraya-Watson weights, where ∆i(x) = K (d(x,Xi)/h), with K
a kernel function, h := hn is a sequence of positive real numbers which decreases
to zero as n tends to infinity.

A kernel estimator of the function Gx(u) is given by

Gx
n(u) =

n∑

i=1

wn,i(x) ‖Yi − u‖ =

∑n
i=1 ‖Yi − u‖ ∆i(x)∑n

i=1 ∆i(x)
:=

Gx
n,2(u)

Gx
n,1

, (2.6)

when the denominator is not equal to 0 and where, for j = 1, 2,

Gx
n,j((j − 1)u) =

1

nE(∆1(x))

n∑

i=1

‖Yi − u‖j−1∆i(x), with Gx
n,1(0) := Gx

n,1.

(2.7)
A kernel estimate of ∇uG

x(u) may be defined by

∇uG
x
n(u) := −

n∑

i=1

wn,i(x) U(Yi − u), u ∈ R
d. (2.8)

According to the statement (2.2), the estimator of the conditional L1-median,
µn(x), may be viewed as a minimizer over u of the function Gx

n(u), that is

µn(x) = arg min
u∈Rd

Gx
n(u), (2.9)

or as a zero with respect to u of the equation ∇uG
x
n(u) = 0.

Similar to the Fact 2.1.1 in [11] and Remark 2.3 in [13], the existence of the es-
timator µn(x) is guaranteed by the fact that the function u 7−→∑n

i=1 wn,i(x)‖Yi−
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u‖ explodes to infinity as ||u|| → ∞. On the other hand, since this func-
tion is continuous with respect to u, then µn(x) must be a minimizer over
u of

∑n
i=1 wn,i(x)‖Yi − u‖. Next comes the question of uniqueness, since R

d

is equipped with the Euclidean norm that is a strictly convex Banach space
for d ≥ 2, it follows from Theorem 2.17 of [25] that unless all the data points
Y1, . . . , Yn fall on a straight line in R

d,
∑n

i=1 wn,i(x)‖Yi − u‖ must be a strictly
convex function of u. This guarantees the uniqueness of the minimizer µn(x) in
R

d, for any d ≥ 2.

3. Main results

3.1. Further notations and hypotheses

Let x be a given point in F and Vx a neighbourhood of x. Denote by B(x, h)
the ball of center x and radius h, namely B(x, h) = {x′ ∈ F : d(x, x′) ≤ h}.
For (ℓ, u) ∈ R×R

d, denote by Gx′

ℓ (u) = E
[
‖Y − u‖ℓ | X = x′

]
, for x′ ∈ F . Our

hypotheses are gathered here for easy reference.

(H1) K is a nonnegative bounded kernel of class C1 over its support [0, 1] such
that K(1) > 0. The derivative K ′ exists on [0, 1] and satisfy the condition

K ′(t) < 0, for all t ∈ [0, 1] and |
∫ 1

0 (K
j)′(t)dt| <∞ for j = 1, 2.

(H2) For x ∈ F , there exists a deterministic nonnegative bounded function g
and a nonnegative real function φ tending to zero, as its argument tends
to 0, such that

(i) Fx(h) := P(X ∈ B(x, h)) = φ(r) · g(x) + o(φ(h)) as h→ 0.

(ii) There exists a nondecreasing bounded function τ0 such that, uni-
formly in s ∈ [0, 1],
φ(hs)

φ(h)
= τ0(s)+o(1), as h ↓ 0 and, for j ≥ 1,

∫ 1

0
(Kj(t))′τ0(t)dt <∞.

(H3) (i) For x ∈ F , |Gx(u) − Gx′

(u)| ≤ c1d
β(x, x′) uniformly in u, for some

β > 0 and a constant c1 > 0, whenever x′ ∈ Vx,

(ii) For x′ ∈ F , the Hessian matrix Hx′

(u) is continuous in Vx:

supx′∈B(x,h) ‖Hx(u)−Hx′

(u)‖ = o(1).

(iii) For some integer m ≥ 2, Gx
−m(µ(x)) < ∞ and Gx′

−m(µ(x)) is contin-
uous in Vx.

(iv) For some integer m ≥ 1 and any (k, j), 1 ≤ k ≤ d, 1 ≤ j ≤ d,
E
[
Mm

k,j(Y, µ) | X)
]
<∞ and

sup
{x′:d(x,x′)≤h}

∣∣E
(
Mm

k,j(Y, µ) | x′)
)
− E

(
Mm

k,j(Y, µ) | x)
)∣∣ = o(1).

(H4) (i) For each x′ ∈ F , supuG
x′

m(u) < ∞ and Gx′

m(u) is continuous in Vx

uniformly in u:

sup
u∈Rd

sup
{x′:d(x,x′)≤h}

|Gx′

m(u)−Gx
m(u)| = o(1).
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(ii) For some δ > 0, i = 1, 2 and j = 0, 1, we consider, for ℓ ∈ R
d, the real

function W x′

i+jδ(µ) := E
[
|ℓtU(Y − µ)|i+jδ | X = x′

]
is continuous in Vx.

(H5) For any i ≥ 1, E [U(Y − µ) | d(x,X) = v] =: ψ(v)), where v ∈ R and
ψ : R → R

d is a differentiable function such that ∇ψ(0) 6= 0.

Remark 3.1. Notice that, d(·, ·) is a semi-metric, then ψ(0) = E [U(Y − µ)|X = x].
As a consequence, it follows from the definition of µ that ψ(0) = 0.

Comments on the Hypotheses

The above conditions are fairly mild. Condition (H1) is standard in the con-
text of functional non-parametric estimation. Contrarily to the real and vectorial
cases (for which we generally suppose the strict positivity of the explanatory
variable’s density, the concentration hypothesis (H2)-(i) acts directly on the dis-
tribution of the functional random variable rather than on its density function).
The idea of writing the small ball probability Fx(h) as a product of two in-
dependent functions g(x) and φ(h) was adopted by [33] who reformulated the
[22] one. This assumption has been used by many authors where g(x) is in-
terpreted as a probability density, while φ(h) may be interpreted as a volume
parameter. In the case of finite-dimensional space, that is F = R

d, it can be
seen that Fx(h) = C(d)hdg(x)+o(hd), where C(d) is the volume of the unit ball
in R

d. Furthermore, in infinite dimensions, there exist many examples fulfilling
the decomposition mentioned in assumption (H2)-(i) (see [19] and [16] for more
details). The function τ0(·), introduced in assumption (H2)-(ii), plays a deter-
minant role in asymptotic properties, in particular when we give the order of
the conditional bias and the asymptotic variance term.

Conditions (H3) and (H4) are mild smoothness assumptions on the func-
tionals G(·)(u) and H(·)(u) and continuity assumptions on certain second-order
moments. A similar assumption to (H3)-(iii) has been supposed in [13] (see
condition 6 in their paper). Condition (H5) is used to evaluate the bias term.

3.2. Almost sure consistency

The following result states the almost surely (a.s.) convergence (with rate) of
the functional estimator Gx

n(u). This result plays an instumental role to prove
the almost sure consistency of µn(x) for a fixed x ∈ F .

Proposition 3.1. Assumes that conditions (H1)-(H2), (H3)(i) and (H4)(i)
hold true and

(i)
logn

nφ(h)
→ 0 and (ii)

nφ(h)h2β

logn
→ 0 as n→ ∞, where β is given in (H3),

(3.1)
lim||u||→∞||u||Gx(u) <∞. (3.2)

Then, we have

sup
u∈Rd

|Gx
n(u)−Gx(u)| = Oa.s(h

β) +Oa.s

(√
log n

nφ(h)

)
.
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Notice that the condition (3.2) is standard when we deal with the uniform
consistency of the density function on the whole space (see, for instance, Corol-
lary 2.2 of [6]).

Here then, we give our first result of the conditional L1-median estimator
µn(x).

Theorem 3.1. Assume (H1)-(H2), (H3)(i) and (H4)(i) and condition (3.1)
hold true. Then, we have

lim
n→∞

µn(x) = µ(x) a.s. (3.3)

3.3. Asymptotic normality

To state the asymptotic normality of our estimator, some notations are required.
Let us first denote by

G̃x
n(u) =

∑n
i=1 ‖Yi − u‖∆i(x)

n E(∆1(x))
and ∇uG̃

x
n(u) = −

∑n
i=1 U(Yi − u)∆i(x)

nE(∆1(x))
.

Set µ(x) =: µ = (µ1, . . . , µd)
t and µn(x) =: µn = (µn,1, . . . , µn,d)

t. We have by
the definition of µn that

∇uG
x
n(µn) = −

∑n
i=1 U(Yi − µn)∆i(x)∑n

i=1 ∆i(x)
= 0. (3.4)

Obviously the equation (3.4) is satisfied when the numerator is null. Then, we
can say also that

∇uG̃
x
n(µn) = −

∑n
i=1 U(Yi − µn)∆i(x)

n E(∆1(x))
= 0. (3.5)

Thereafter, one may write

∇uG̃
x
n(µn)−∇uG̃

x
n(µ) = −∇uG̃

x
n(µ). (3.6)

For each j ∈ {1, . . . , d}, Taylor’s expansion applied to the real-valued function
∂G̃x

n

∂uj
implies the existence of ξn(j) = (ξn,1(j), . . . , ξn,d(j))

t such that





∂G̃x
n

∂uj
(µn)−

∂G̃x
n

∂uj
(µ) =

d∑

k=1

∂2G̃x
n

∂uj∂uk
(ξn(j))(µn,k − µk),

|ξn,k(j)− µk| ≤ |µn,k(j)− µk|.

Define the d× d matrix H̃x
n(ξn(j)) = (H̃x

n,k,j(ξn(j)))1≤k,j≤d by setting

H̃x
n,k,j(ξn(j)) =

∂2G̃x
n

∂uj∂uk
(ξn(j)),
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where, for all u ∈ R
d and x ∈ F ,

H̃x
n,k,j(u) =

n∑

i=1

1

‖Yi − u‖

[
δk,j −

(Y j
i − uj)(Y k

i − uk)

‖Yi − u‖2

]
× ∆i(x)

n E(∆1(x))

=

∑n
i=1 Mk,j(Yi, u)∆i(x)

n E(∆1(x))
,

with δk,j = 1 if k = j and zero otherwise and the (k, j)-th element of the

matrix M(Yi, u) is denoted Mk,j(Yi, u) = [δk,j − (Y j
i −uj)(Y k

i −uk)

‖Yi−u‖2 ]/‖Yi−u‖. The
following proposition provides the consistency, in probability, of the Hessian
matrix H̃x

n(ξn(j)) to H
x(µ).

Proposition 3.2. Under assumptions (H1)-(H3) and (H4)(i) and condition
(3.1)(i), we have

‖H̃x
n(ξn(j))−Hx(µ)‖ = oP(1), as n→ ∞.

Using Remark 4 and Lemma 5.3 of [10], we know that both matrix Hx(·)
(resp. H̃x

n(·)) itself and its inverse matrix exist whenever d ≥ 2. It follows
then that from equation (3.6) and the Taylor expansion given obove µn − µ =

−[H̃x
n(ξn(j))]

−1∇uG̃
x
n(µ). Consequently, Proposition 3.2 allows us to write

√
nφ(h) (µn − µ)

= [Hx(µ)]−1 ×
√
nφ(h)

[
−
(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
− B̃n(x)

]
, (3.7)

where B̃n(x) = E

[
∇uG̃

x
n(µ)

]
.

By Slutsky Theorem the limiting law of the left hand side part of equation
(3.7) is given by the second term of the right hand side part.

The asymptotic behavior of the conditional biais term, Bn(x) = − [Hx(µ)]
−1 ×

B̃n(x), is given by the following proposition.

Proposition 3.3. Under assumptions (H1), (H2) and (H5), and the fact that

g(x) > 0 and |
∫ 1

0
(sK(s))′τ0(s)ds| <∞, we have:

Bn(x) =
h [Hx(µ)]

−1 ∇ψ(0)
M1

[∫ 1

0

(sK(s))′τ0(s)ds−K(1) + oa.s.(1)

]
,

where for j = 1, 2, Mj = Kj(1)−
∫ 1

0
(Kj)′τ0(z)dz.

The Theorem below gives the asymptotic normality of our estimator.

Theorem 3.2. Suppose assumptions (H1)-(H5) and condition (3.1)(i) hold.
If (nφ(h))δ/2 → ∞, for some δ > 0, then:

(i)
√
nφ(h) (µn(x) − µ(x)− Bn(x))

D−→ Nd (0,Γ
x(µ)) ,
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where

Γx(µ) =
M2

M2
1 g(x)

[Hx(µ)]
−1

Σx(µ) [Hx(µ)]
−1

and

Σx(µ) = E
{
U(Y − µ) U t(Y − µ)| X = x

}
.

(ii) If in addition we impose the following stronger conditions on the bandwidth
hn: √

nφ(h)h −→ 0 as n→ ∞,

one gets √
nφ(h) (µn(x) − µ(x))

D−→ Nd (0,Γ
x(µ)) .

Remark 3.2. (i) Notice that the constants M1 and M2 are strictly positive.
Indeed making use of the condition (H1) and the fact that the function τ0(·) is
nondecreasing, it suffices to perform a simple integration by parts. Also, from the
point that the conditional distribution Y given X = x is absolutely continuous,
we know that Σx(µ) is definite positive matrix.
(ii) Whenever F = R

s, s ≥ 1, and if the probability density of the random
variable X , say gs(·), is of class C1, then φ(h) = V (s)hs, where V (s) is the
volume of the unit ball of Rs. In such case, the asymptotic variance expression
takes the form

Γx(µ) =
1

sgs(x)

∫ 1

0 K
2(u)us−1du

(∫ 1

0 K(u)us−1du
)2 × [Hx(µ)]−1 Σx(µ) [Hx(µ)]−1 .

In such case the central limit theorem has the form given in the above theo-
rem with convergence rate (nhsn)

1/2. Notice that in the finite dimensional case,
the function φ(h) could decrease to zero as h → 0 exponentially fast and the
convergence rate becomes effectively (nφ(h))1/2. This fact may be used to solve
the problem of the curse of dimensionality (see [33], for details). As an example,
consider in an infinite dimensional space setting, the random process defined by

Xt = θt+Wt, 0 ≤ t ≤ 1,

where θ is a N (0, 1)-random variable independent of the Winer process W =
{Wt : 0 ≤ t ≤ 1}. It is well-known (see [32]) that the distribution νX of X is
absolutely continuous with respect to the Wiener measure νX , which admets a
Radon-Nikodym density f(x). In this case, hypothesis (H2)(i) is satisfied with

φ(h) = 4
π exp(− π2

8h2 ) (see [30] for details). The convergence rate in Theorem 3.2

being O(n
1−2α

2 ) (with 0 < α < 1/2) by taking hn := h = π
2
√
2

1
lognα .

Observe now in Theorem 3.2 that the limiting variance contains the unknown
function g(x), therefore the normalization depends on the function φ which is
not identifiable explicitly. To make this result operational in practice, we have
to estimate the quantities Σ, H and τ0.
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For this purpose, we estimate the conditional variance matrix Σx(µ) of

∇uG̃
x
n(µ) by

Σx
n(µn) =

n∑

i=1

wn,i(x) U(Yi − µn) U t(Yi − µn),

and the matrix Hx(µ) by

Hx
n(µn) =

n∑

i=1

wn,i(x)M(Yi, µn).

Making use of the decomposition of Fx(u) in (H2)(i), one may estimate τ0(u)
by

τn(u) =
Fx,n(uh)

Fx,n(u)
, where Fx,n(u) =

1

n

n∑

i=1

1{d(x,Xi)≤u}.

Subsequently, for a given kernel K, the quantities M1 and M2 are respectively
estimated by M1,n and M2,n replacing τ0 by τn in their respective expressions.

Corollary 3.1 below, which is a slight modification of Theorem 3.2, allows to
obtain usefull form of our results in practice.

Corollary 3.1. Assume that conditions of Theorem 3.2 hold true, K ′ and (K2)′

are integrable functions. If in addition we suppose that

nFx(h) → ∞ and hβ(nFx(h))
1/2 → 0, as n→ ∞,

where β is specified in the condition (H3), then, for any x ∈ F such that g(x) >
0, we have

M1,n√
M2,n

√
nFx,n(h) [Σx

n(µn)]
−1/2

Hx
n(µn) (µn(x) − µ(x))

D−→ N (0, Id).

3.4. Building conditional confidence region of µ(x)

From Corollary 3.1, we can easily see that

(µn(x)− µ(x))
t
[Γx

n(µn)]
−1

(µn(x)− µ(x))
D−→ χ2

d,

where

[Γx
n(µn)]

−1 =
M2

1,nnFx,n(h)

M2,n
Hx

n(µn) [Σ
x
n(µn)]

−1Hx
n(µn).

Then, the asymptotic 100(1−α)% (α ∈ (0, 1)) conditional confidence region for
µ(x) is given by

(µn(x) − µ(x))
t
[Γx

n(µn)]
−1

(µn(x) − µ(x)) ≤ χ2
d(α), (3.8)

where χ2
d(α) denotes the 100(1− α)-th percentile of a chi-squared distribution

with d degrees of freedom.
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Fig 1. Sample of 200 simulated couples of observations (Xi,Yi)i=1,...,200. The left box con-
tains the covariates Xi and in the right one we present their associated vectors Yi.

4. Numerical study

This section is divided in two parts, in the first one we are interesting in the
estimation of conditional confidence ellipsoid of the multivariate L1-median re-
gression. The second part is devoted to an application to chemiometrical real
data and it consists in predicting a three-dimensional vector.

4.1. Simulation example

Let us consider a bi-dimensional vector Y = (Y 1, Y 2) ∈ R
2 and X(t) is a Brow-

nian motion trajectories defined on [0, 1]. The eigenfunctions of the covariance
operator of X are known to be (see [3]), for j = 1, 2, . . .

fj(t) =
√
2 sin{(j − 0.5)πt}, t ∈ [0, 1].

Let (f1(t))t∈[0,1] (resp. (f2(t))t∈[0,1]) be the first (resp. the second) eigenfunction
corresponding to the first (resp. second) greater eigenvalue of the covariance op-
erator of X . It is well known that f1(t) and f2(t) are orthogonal by construction,

i.e. < f1, f2 >:=
∫ 1

0
f1(t)f2(t) = 0.

We modelize then the dependence between Y and X by the following model:

• Y 1 =
∫ 1

0
f1(t)X(t) dt+ ǫ

• Y 2 =
∫ 1

0
f2(t)X(t) dt+ ǫ

where ǫ is a standard normal random variable.
We have simulated n = 200, 700 independent realizations (Xi,Yi), i =

1, . . . , n. To deal with the Brownian random functions Xi(t), their sample were
discretized by 100 points equispaced in [0, 1]. In Figure 1, we plot a 200 simulated
couples (Xi,Yi)i=1,...,200 as described above. The left box contains the covari-
ates Xi and in the right one we present the associated vectors Yi = (Y 1

i , Y
2
i ).
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We aim to assess, for a fixed curve X = x, the performance of the asymptotic
conditional confidence ellipsoid given by (3.8) in finite sample. For that we have
first to estimate µ(x). Three parameters should be fixed in this step: the kernel
K, the bandwidth h and the semimetric d(·, ·) which measure the similarity
between curves.

Choice of the kernel: there are many possible density kernel functions. Spe-
cialists in non-parametric estimation agree that the exact form of the kernel
function does not greatly affect the final estimate with regard to the choice of
the bandwidth. In this section, the so-called Gaussian kernel will be used, which
is defined by K(u) = (2π)−1/2 exp(−u2/2), for u ∈ R.

Choice of the bandwidth hn: the bandwidth determines the smoothness of
the estimator. The problem of the choice of the bandwidth has been widely
studies in non-parametric literature. Recently [36] have proposed a data-driven
criterion for choosing this smoothing parameter. The proposed criterion can be
formulated in terms of a functional version of cross-validation ideas. [2] treated
the same problem in the context of time series prediction. In the following, the
bandwidth hn is selected by L1 cross-validation method:

ĥn,opt = argmin
h>0

n∑

i=1

∥∥Yi − µ̂(−i)(xi)
∥∥ . (4.1)

Choice of the semi-metric d(·, ·): because of the roughness of our covariate
curves we chose a semi-metric computed with the functional principal compo-
nents analysis with dimension q = 2.

In Figure 2, we plot the 95% confidence ellipses of µ(x) when x = 0F . We
can remark from Figure 2 that the lengths of the major and the minor axes of
the confidence ellipse decrease when the sample size n increases. Similar results
were obtained for other sample sizes n and values of the curve x.

4.2. Application to chemiometrical data prediction

The purpose of this section is to apply our method based on multivariate L1-
median regression to some chemiometrical real data and to compare our results
to those obtained by other definitions of conditional median studied in literature.
For that, we used a sample of spectrometric data available on the web site:
http://lib.stat.cmu.edu/datasets/tecator. We have a sample of n = 215
pieces of meat and for each unit i, we observe one spectrometric discretized
curve Xi(λ) which corresponds to the absorbance measured at a grid of 100
wavelengths (i.e. Xi(λ) = (Xi(λ1), Xi(λ2), . . . , Xi(λ100))). Figure (3) plots the
spectrometric curves. Moreover, for each unit i, we have at hand its Moisture
content (Y 1), Fat content (Y 2) and Protein content (Y 3) obtained by analytical
chemical processing.

Let us denote by Y = (moisture, fat, protein)t := (Y 1, Y 2, Y 3)t the vector
of specific chemical contents of meat. Given a new spectrometric curve Xnew(λ),

http://lib.stat.cmu.edu/datasets/tecator
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Fig 2. Confidence ellipsoid of µ(x) when n = 200 (solid lines) and n = 700 (dashed lines); the
centers of the ellipses at (µ1

n(x), µ
2
n(x)) are denoted by triangle (n=200) and cross (n=700).

Fig 3. The 215 spectrometric curves.

our purpose is to predict simultaneously the corresponding vector of chemical
contents Ŷ using the multivariate L1-median regression. Obtaining a spectro-
metric curve is less expensive (in terms of time and cost) than analytical chem-



L1-median regression with functional covariates 1567

30

40

50

60

70

80

0

10

20

30

40

50

10

12

14

16

18

20

22

Moisture
Fat

P
ro
te
in

Fig 4. The sample of 215 piece of meat.

istry needed for determining the percentage of chemical contents. So, it is an
important economic challenge to predict the hole vector Y from the spectro-
metric curve.

Let us consider 215 observations (X1(λ),Y1), . . . , (X215(λ),Y215) split into
two samples: learning sample (160 observations) and test sample (55 observa-
tions). We compare the following three methods, based on multivariate condi-
tional median, to predict the vector of chemical contents Y of the test sample.
In the following three approaches, we choose the quadratic kernel K defined by:

K(u) =
3

2
(1 − u2)1[0,1].

(i) Non-functional approach (NF)

This method is based on the definition of conditional spatial median studied by
[21] and [13]. This approach does not consider the covariate X as a function but
a vector of dimension 100 while the response variable Y is a vector. For each
i = 1, . . . , 160 in the learning sample, the ith vector Yi is predicted as follow:

Ŷi = µ̂NF (Xi),
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where

µ̂NF (Xi) = argmin
u∈R3

160∑

j=1

wNF
n,j (Xi)‖Yj − u‖,

and wNF
n,j (Xi) = K

(Xi−Xj

hn

)/∑n
j=1K

(Xi−Xj

hn

)
are the so-called Nadaraya-Watson

weights. For the choice of the bandwidth hn, [13] gave the exact expression of
the optimal bandwidth that minimizes the asymptotic mean square error. In this
case hn is of the rate n(−1/104+ǫ), where ǫ > 0 is a sufficiently small constant.

(ii) Vector Coordinate Conditional Median (VCCM)

This approach supposes that the covariate X is considered as functional. For
each i = 1, . . . , 160 in the learning sample, we predict each component of its
vector response Yi by the one-dimensional conditional median. Then we obtain
the vector of coordinate conditional medians (VCCMs) defined as

Ŷi = (µ̂1(Xi), µ̂
2(Xi), µ̂

3(Xi)),

where each component µ̂j(Xi) = (F̂ j)−1(1/2 | Xi) is the one-dimensional con-
ditional median estimator.
F̂ j(· | Xi) is the conditional distribution function estimator of the component

Y j givenX = Xi. [17], p. 56, have proposed a Nadaraya-Watson kernel estimator
of the conditional distribution, F j(· | X = Xi), when covariate takes values in
some infinite dimensional space. This estimator is given by

F̂ j(yj |X = Xi) =

160∑

k=1

1{Y j
k
≤yj}K(d(Xi, Xk)/hn)

/ 160∑

k=1

K(d(Xi, Xk)/hn), y
j ∈ R.

To apply this approach, we used the Ferraty and Vieu’s R/routine funopare.
quantile.lcv1 to estimate µ̂j(Xi). The optimal bandwidth is chosen by the cross-
validation method on the k nearest neighbours (see [17], p.102 for more details).

(iii) Conditional Multivariate Median (CMM)

The approach that we propose here supposes the covariate X is a curve and the
response Y is a vector. For each i = 1, . . . , 160 in the learning sample we take

Ŷi = µ̂(Xi),

where

µ̂(Xi) = argmin
u∈R3

160∑

j=1

wn,j(Xi)‖Yj − u‖. (4.2)

To estimate the conditional multivariate median, µ̂(Xi), we have adapted
the algorithm proposed by [40] to the conditional case and used the function
spatial.median from the R package ICSNP. As in the previous approach, the

1Available at the website www.lsp.ups-tlse.fr/staph/npfda.

www.lsp.ups-tlse.fr/staph/npfda
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optimal bandwidth is chosen by the cross-validation method on the k nearest
neighbours.

A common evaluation procedure:

We have adapted, to the multivariate case, the algorithm proposed by [4] and
[17], p.103) in order to get the optimal smoothing parameter hn for each Xi in
the test sample.

Step1. We compute the kernel estimator µ̂(Xj) (resp. µ̂
k(Xj)), for all j by using

the training sample.
Step2. For each Xi in the test sample, we set i⋆ = argminj=1,...,160 d(Xi, Xj).
Step3. For each i = 161, . . . , 215, we take

µ̂(Xi) = µ̂(Xi⋆) and µ̂k(Xi) = µ̂k(Xi⋆).

The used bandwidth for each curve Xi in the test sample is the one obtained
for the nearest curve in the learning sample. Because the spectrometric curves
presented in Figure (3) are very smooth, we can choose as semi-metric d(·, ·) the
L2 distance between the second derivative of the curves. This choice has been
made by [4] and [19] for the same spectrometric curves.

Both (CMM) and (NF) methods take into account the covariance structure
between variables of of the vectorY. In fact, the correlation coefficients between
Y1 = moisture, Y2 = fat and Y3 = protein are given by ρ1,2 = −0.988, ρ1,3 =
0.814 and ρ2,3 = −0.860. As we can see moisture, fat and protein contents in
meat are strongly correlated then it will be more appropriate to predict these
variables simultaneously rather than each one separately.
To compare (CMM), (NF) and (VCCM) methods, we are based on the following
criterias:

• The Absolute Error (AE) gives idea about the prediction of each compo-
nent of Y

AEj
i = |Y j

i − L̂j(Xi)|, ∀i = 161, . . . , 215 and j = 1, 2, 3.

• A global criteria (R) gives idea about error made to predict the vector Yi

(for i = 161, . . . , 215)

R(Ŷi) = ‖Yi − L̂(Xi)‖Eucl

where L̂ := (L̂1, L̂2, L̂3)t represents the estimator of each component of the vec-
tor Y obtained by (VCCM), (NF) or (CMM) method.

We can conclude from table 1 that our method is more appropriate to predict
meat components than (VCCM). In fact, the (VCCM) approach predicts each
component of Y separately using conditional univariate median. This method
supposes independence of the components of Y and doesn’t take into account
the correlation structure between variables. The Non-Functional approach gives
the most important prediction errors and this is because of the dimension of
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Table 1

Distribution of absolute errors for Moisture, Fat and Protein and global estimation error of
the vector Y

CMM VCCM NF
Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75 Mean Q0.25 Q0.5 Q0.75

Moist. 1.301 0.479 1.100 2.202 1.776 0.460 1.879 2.383 7.222 1.663 6.374 11.44
Fat 1.565 0.430 1.500 2.401 2.343 0.925 1.716 2.867 9.758 2.328 8.4 15.24
Prot. 1.125 0.300 0.800 1.437 1.313 0.518 1.182 1.806 2.446 0.787 2.329 3.394

R(Ŷ ) 2.638 1.349 2.530 3.623 3.561 1.877 2.909 3.799 12.6 3.523 10.6 19.27

the covariate (100 in this case). This problem is well-known in nonparametric
estimation as curse of dimensionality. Taking into account the functional aspect
of the covariate seems to be necessary in such case.

5. Concluding remarks

In this paper, we have introduced a kernel-based estimator for the L1-median of
a multivariate conditional distribution when covariates take values in an infinite-
dimensional space. Prediction using the least square estimates of regression pa-
rameters is highly sensitive to outlying points. Therefore, there is no doubt that
conditional L1-median can be used to make prediction. We have shown that our
estimator is well adapted to predict a multivariate response vector. In fact, in
contrast to the Vector Coordinate Conditional Median method, the multivariate
conditional L1-median takes into account the inter-dependance of the coordi-
nates of the response vector. Asymptotic results, i.e., almost sure consistency
and asymptotic normality, has been given under some regularity conditions.
Many extensions can be given to this work. For instance, the same type of theo-
retical results could be obtained in a non-independence framework (e.g. mixing
dependence). Furthermore, it is well known that quantiles are very useful tools
to detect outliers and to modelize the dependence of the covariates in lower and
upper tails of the response distribution. In future work, we aim to generalize
our study to the multivariate quantiles regression when covariates take values
in some infinite dimensional space.
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Appendix: Proofs

In order to prove our results we have to introduce some further notations. Let

G
x

n,2(u) = E
(
Gx

n,2(u)
)
:=

1

E∆1(x)
E [‖Y1 − u‖∆1(x)] ,



L1-median regression with functional covariates 1571

and define the bias of Gx
n(u) as

Bx
n(u) = G

x

n,2(u)−Gx(u).

Consider now the following quantities

Rx
n(u) = −Bx

n(u)
(
Gx

n,1 − 1
)

and
Qx

n(u) =
(
Gx

n,2(u)−G
x

n,2(u)
)
−Gx(u)

(
Gx

n,1 − 1
)
.

It is then clear that the following decomposition holds

Gx
n(u)−Gx(u) = Bx

n(u) +
Rx

n(u) +Qx
n(u)

Gx
n,1

. (5.1)

Since Gx
n,1 is independent of u, it follows from decomposition (5.1) that

sup
u∈Rd

|Gx
n(u)−Gx(u)| ≤ sup

u∈Rd

|Bx
n(u)|+

supu∈Rd |Rx
n(u)|+ supu∈Rd |Qx

n(u)|
Gx

n,1

.

The proof of Proposition 3.1 is split up into several lemmas, given hereafter,
establishing respectively the convergence almost surely (a.s.) of Gx

n,1 to 1 and
that of Bx

n(u), R
x
n(u) and Q

x
n(u) (with rate) to zero.

We start by the following technical lemma whose proof my be found in Ferraty
et al. (2007).

Lemma 5.1. Assume that conditions (H1),(H2) hold true. For any real numbers
j ≥ 1 and k ≥ 1, as n→ ∞, we have

(i)
1

φ(h)
E[∆j

1(x)] =Mjg(x) + o(1)

(ii)
1

φk(h)
(E(∆1(x)))

k =Mk
1 g

k(x) + o(1).

Lemma below gives the convergence rate of the quantity Gx
n,1.

Lemma 5.2. Under assumptions (H1)-(H2) and condition (3.1)(i), we have

Gx
n,1 − 1 = Oa.s

(√
logn

nφ(h)

)
.

Proof of Lemma 5.2. Let us denote by

Rx
n,1 = Gx

n,1 − 1 :=
1

n

n∑

i=1

Ln,i(x),

where Ln,i(x) = ∆⋆
i (x) − E(∆⋆

i (x)) and ∆⋆
i (x) = ∆i(x)

E(∆1(x))
. To apply the ex-

ponential inequality given by Corollary A.8(i) of Ferraty and Vieu (2006) in
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Appendix A, we have first to show that for all m ≥ 2 there exist a positive
constant Cm such that E|Lm

n,1(x)| ≤ Cma
2(m−1). We have

E (|Ln,1(x)|m) ≤ C

m∑

k=0

(
m

k

)
E

[
(∆⋆

1(x))
k
]
[E(∆⋆

1(x))]
m−k

.

Then using Lemma 5.1 we get E (|Ln,1(x)|m) ≤ Cm maxk=0,1,...,m(φ(h))1−k ≤
Cm(φ(h))1−m. Therefore, a2 = (φ(h))−1. Now, for all ǫ > 0, observe that

P(|Rx
n,1| > ǫ) ≤ 2 exp

{
− nǫ2

2φ(h)(1 + ǫ)

}
.

The desired result follows from Borel Cantelli Lemma by choosing ǫ = ǫ0

√
logn
nφ(h)

where ǫ0 is a large enough positive constant.

The following lemma describes the uniform asymptotic behavior of the con-
ditional bias term Bx

n(u) as well as that of R
x
n(u) and Q

x
n(u) with respect to u.

Lemma 5.3. (i) Under conditions (H1)-(H2) (H3)(i), we have

sup
u∈Rd

|Bx
n(u)| = Oa.s.(h

β). (5.2)

(ii) If in addition that (H1)-(H2) hold true and condition (3.1) is satisfied,
then

sup
u∈Rd

|Rx
n(u)| = Oa.s.

(
hβ

√
logn

nφ(h)

)
(5.3)

Proof of Lemma 5.3. Recall that

Bx
n(u) = G

x

n,2(u)−Gx(u).

Conditioning by X and using the definition of Gx(u) and condition (H3)(i), one
has

|Bx
n(u)| =

∣∣∣∣
1

E∆1(x)
E {∆1(x)E[‖Y1 − u‖ | X ]} −Gx(u)

∣∣∣∣

=

∣∣∣∣
1

E∆1(x)
E
{
∆1(x)(G

X(u)−Gx(u))
}∣∣∣∣

≤ sup
x′∈B(x,h)

|Gx′

(u)−Gx(u)| = Oa.s.(h
β).

The later quantity is independent of u, this leads to supu∈Rd |Bx
n(u)| = Oa.s.(h

β).
Now, to deal with the quantityRx

n(u), write it asR
x
n(u) = −Bx

n(u)
(
Gx

n,1 − 1
)
.

Therefore
sup
u∈Rd

|Rx
n(u)| = sup

u∈Rd

|Bx
n(u)||Gx

n,1 − 1|.

The statement (5.3) follows from (5.2) combined with Lemma 5.2.
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Lemma 5.4. Under assumptions (H1)-(H2), (H4)(i), conditions (3.1) and
(3.2) we have

sup
u∈Rd

|Gx
n,2(u)−G

x

n,2(u)| = Oa.s.

(√
logn

nφ(h)

)
.

Proof of Lemma 5.4. For u ∈ R
d and r > 0, let

S(u, r) = {u′ : u′ ∈ R
d, ||u′ − u|| ≤ r},

be the sphere of radius r centered at u. For 1/2 < γ < 2, let [−nγ , nγ ]d be an
interval of Rd. Divide [−nγ , nγ ] into kn subintervals each of length bn = [2nγ/kn]
(where [t] is the integer part of t). Since the set S(0, nγ) = {u′ : ||u′|| ≤ nγ} is
compact, it can be covered by kdn bounded hypercubes of the form

Sn,j := S(uj, bn) = {u′ : ||u′ − uj || ≤ bn}, j = 1, . . . , kdn.

We have

sup
||u||≤nγ

|Gx
n,2(u)−G

x

n,2(u)|

≤ max
1≤j≤kd

n

sup
u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)|+ max
1≤j≤kd

n

|Gx
n,2(uj)−G

x

n,2(uj)|

+ max
1≤j≤kd

n

sup
u∈Sn,j

|Gx

n,2(u)−G
x

n,2(uj)| := In,1 + In,2 + In,3. (5.4)

Observe now that

sup
u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)| ≤
1

nE(∆1(x))

n∑

i=1

sup
u∈Sn,j

∣∣∣||Yi − u|| − ||Yi −uj||
∣∣∣∆i(x)

≤ 1

nE(∆1(x))

n∑

i=1

∆i(x) sup
u∈Sn,j

||u − uj|| = bnG
x
n,1,

and

sup
u∈Sn,j

|Gx

n,2(u)−G
x

n,2(uj)| ≤ E

[
sup

u∈Sn,j

|Gx
n,2(u)−Gx

n,2(uj)|
]
= bn.

If we denote by αn =
√
nφ(h)/ logn the convergence rate, one gets by Lemma 5.2

αn(In,1 + In,3) = O(αnbn(1 +Gx
n,1)) = O(αnbn) = O(αnn

γ/kdn).

The choice of kdn = [αnn
γ logn] implies that

αn(In,1 + In,3) = o(1). (5.5)

In order to evaluate the term In,2, let us denote by

∆⋆
i (x) =

∆i(x)

E∆1(x)
,



1574 M. Chaouch and N. Läıb

and
Zn,i(x) = ‖Yi − uj‖∆⋆

i (x) − E [‖Y1 − uj‖∆⋆
1(x)] .

Then, we have

Gx
n,2(uj)−G

x

n,2(uj) =
1

n

n∑

i=1

Zn,i(x).

For all m ∈ N− {0}, observe that

Zm
n,i(x) =

m∑

k=0

(
m

k

)
(‖Yi − uj‖∆⋆

i (x))
k
(−1)m−k [E(‖Y1 − uj‖∆⋆

1(x))]
m−k

.

In order to apply an exponential type inequality, we have to give an upper bound
for E (|Zn,1(x)|m). It follows from the above inequality that

E (|Zn,1(x)|m) ≤ C

m∑

k=0

(
m

k

)
E

[
(‖Y1 − uj‖∆⋆

1(x))
k
]
[E(‖Y1 − uj‖∆⋆

1(x))]
m−k

.

On the other hand, we have for any k ≥ 2

E

[
(‖Y1 − uj‖∆⋆

1(x))
k
]

= E
[
(∆⋆

1(x))
k
E
(
‖Y1 − uj‖k | X1

)]

= E

[
(∆⋆

1(x))
kGX1

k (uj)
]
.

Using the first part of condition (H4)(i), which implies that Gx
k(uj) is bounded

uniformly for all j, one may write

E

[
(‖Y1 − uj‖∆⋆

1(x))
k
]

≤ E

[
(∆⋆

1(x))
k |GX1

k (uj)−Gx
k(uj)|

]
+Gx

k(uj)E((∆
⋆
1(x))

k)

≤ E((∆⋆
1(x))

k)

[
max

j
sup

x′∈B(x,h)

|Gx′

k (uj)−Gx
k(uj)|+max

j
Gx

k(uj)

]

≤ C0E
[
(∆⋆

1(x))
k
]
,

where C0 is a positive constant. Moreover, we have E (‖Y1 − uj‖∆⋆
1(x)) = O(1)

uniformly in j since E [∆⋆
1(x)] = 1 and supu E(||Y1 − u|| |X) < ∞ in view of

condition (2.2).
Therefore [E (‖Y1 − uj‖∆⋆

1(x))]
m−k = O(1).

Next, applying Lemma 5.1, one may write

E
[
(∆⋆

1(x))
k
]

= (φ(h))1−k

[
Mk

Mk
1

g1−k(x) + o(1)

]
.

Thus

E (|Zn,1(x)|m) ≤ Cm max
k=0,1,...,m

(φ(h))1−k
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where Cm is a real positive constant depending on m. Because φ(h) tends to
zero as n goes to infinity, it comes that

E (|Zn,1(x)|m) = O
(
(φ(h))1−m

)
.

Now, applying Corollary A.8 − i in Ferraty & Vieu (2006) kdn times with
a2 = (φ(h))−1 we obtain, by choosing

ǫ = ǫn = 3ǫ0
√
vn where vn = (a2 log n)/n = logn/(nφ(h)) −→ 0 as n→ ∞,

that

P (|In,2| ≥ ǫ) ≤ 2kdn exp

(
−ǫ20 logn

[
1

2(1 + ǫ0
√
vn)

])
≤ 2kdnn

−ǫ20 .

One may choose ǫ0 large enough such that
∑

n

P (|In,2| ≥ ǫ) <∞.

We conclude by Borel-Cantelli lemma and (5.5) that

αn sup
||u||≤nγ

|Gx
n,2(u)−G

x

n,2(u)| = Oa.s(αn
√
vn) = Oa.s(1).

Next, we have

sup
u∈Rd

αn|Gx
n,2(u)−G

x

n,2(u)|

≤ sup
||u||≤nγ

αn|Gx
n,2(u)−G

x

n,2(u)|+ sup
||u||>nγ

αn|Gx
n,2(u)−G

x

n,2(u)|

= sup
||u||>nγ

αn|Gx
n,2(u)−G

x

n,2(u)|+Oa.s.(1),

in view of the above result. Now, we have

αn sup
u:||u||≥nγ

|Gx
n,2(u)−G

x

n,2(u)|

≤ αn sup
u:||u||≥nγ

|Gx
n,2(u)|+ αn sup

u:||u||≥nγ

|Gx(u)|+ αn sup
u

|Gx(u)−G
x

n,2(u)|.

(5.6)

The last term in (5.6) is zero for large n, since conditioning by X , one may
write

αn|G
x

n,2(u)−Gx(u)| = αn|Bx
n(u)| = Oa.s.(h

β
nαn) =a.s. (1)

in view Lemma 5.3 (i) whenever condition (3.1)(ii) is satisfied. For the second
term in (5.6), we have

αn sup
||u||>nγ

Gx(u) ≤ αn

nγ
sup

||u||>nγ

||u||Gx(u) = o(1),

whenever γ > 1/2 and the condition (3.2) is satisfied.
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Moreover, we have for any ǫ > 0

P

{
αn sup

u:||u||≥nγ

|Gx
n,2(u)| ≥ ǫ

}

≤ P



αn sup

u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||>nγ/2

||Yi − u||∆i(x)|| ≥ ǫ/2





+ P



αn sup

u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ǫ/2





:= Jn,1 + Jn,2.

To treat Jn,1, denote by

An(ω) := {ω : αn sup
||u||>nγ

1

n

n∑

i=1:||Yi−u||>nγ/2

||Yi − u||∆i ≥ ǫ/2}.

The eventAn(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n)
such that ||Yi0 − u|| > nγ/2. Thus “An(ω) 6= ∅” ⊂ ∪n

i=1{ω : ||Yi − u|| ≥ nγ/2}.
It follows from Markov’s inequality, if E(||Y1 − u||) <∞, that

P (An(ω) 6= ∅) = O(n−(γ−1)) and
∑

n

P (An(ω) 6= ∅) <∞,

whenever γ > 1, which implies that Jn,1 = oa.s.(1) by Borel-Cantelli Lemma.
To deal with Jn,2, let us denote by

Bn(ω) := {ω : αn sup
u:||u||≥nγ

1

nE(∆1)

∑

i:||Yi−u||≤nγ/2

||Yi − u||∆i(x)|| ≥ ǫ/2}.

Bn(ω) is nonempty if and only if there exists at least i0 (1 ≤ i0 ≤ n) such
that ||Yi0 − u|| ≤ nγ/2. The later inequality implies that ||Yi0 − u|| − ||u|| ≤ 0
whenever ||u|| ≥ nγ . Moreover, we have (by triangle inequality), whenever the
above conditions are hold, that

||Yi0 || ≥
∣∣∣||Yi0 − u|| − ||u||

∣∣∣ = −||Yi0 − u||+ ||u|| > nγ/2.

Therefore,

“Bn(ω) 6= ∅” ⊂ {∃i0 : 1 ≤ i0 ≤ 1, ||Yi0 || ≥ nγ/2}.
We conclude as above that Jn,2 = oa.s.(1) whenever E(||Y1||) >∞ and γ > 1.
This ends the proof of Lemma 5.4.

Lemma 5.5. Under assumptions (H1)-(H2), (H4)(i) and condition (3.1)(i),
we have

Qx
n(u) = Oa.s.

((
logn

nφ(h)

)1/2
)
. (5.7)
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Proof of Lemma 5.5. In order to check the statement (5.7), recall that

Qx
n(u) =

(
Gx

n,2(u)−G
x

n,2(u)
)
−Gx(u)

(
Gx

n,1 − 1
)
.

The result follows then from Lemmas 5.2 and 5.4.

Proof of Proposition 3.1. The proof follows from Lemmas 5.2, 5.3, 5.4 and 5.5.

Proof of Theorem 3.1. We have from the definitions of µ(x) and µn(x) and the
existence and the uniqueness of these quantities that:

Gx(µ(x)) = inf
u∈Rd

Gx(u) and Gx
n(µn(x)) = inf

u∈Rd
Gx

n(u).

It follows then

|Gx(µ(x)) −Gx(µn(x))|
≤ |Gx(µ(x)) −Gx

n(µn)|+ |Gx
n(µn(x)) −Gx(µn(x))|

= | − (− inf
u∈Rd

Gx(u) + inf
u∈Rd

Gx
n(u))|+ |Gx

n(µn(x)) −Gx(µn(x))|

= | − sup
u∈Rd

Gx(u) + sup
u∈Rd

Gx
n(u)|+ |Gx

n(µn(x)) −Gx(µn(x))|

≤ sup
u∈Rd

|Gx(u)−Gx
n(u)|+ |Gx

n(µn(x)) −Gx(µn(x))|

≤ 2 sup
u∈Rd

|Gx
n(u)−Gx(u)|. (5.8)

Moreover, since for any fixed x ∈ F , the function Gx(·) is uniformly continuous
and because µ(x) is the unique minimizer of the function Gx(·), we have then,
for any ǫ > 0,

inf
u:‖µ(x)−u‖≥ǫ

Gx(u) > Gx(µ(x)), (5.9)

which means that there exists for every ǫ > 0, a number η(ǫ) > 0 such that
Gx(u) > Gx(µ(x)) + η(ǫ) for every u such that ‖µ(x) − u‖ ≥ ǫ. This implies
that the event {‖µ(x) − µn(x)‖ > ǫ} is included in the event {Gx(µn(x)) >
Gx(µ(x)) + η(ǫ)}.

Using inequality (5.8) we get

∑

n≥1

P (‖µn(x) − µ(x)‖ > ǫ) ≤
∑

n≥1

P (Gx(µn(x)) > Gx(µ(x)) + η(ǫ))

≤
∑

n≥1

P

(
sup
u∈Rd

|Gx
n(u)−Gx(u)| > η(ǫ)/2

)
<∞,

similarly to the proof of the Proposition 3.1. The statement (3.3) follows then
from an application of Borel-Cantelli Lemma.
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Proof of Proposition 3.2. To prove Proposition 3.2, it suffices to see that

‖H̃x
n(ξn(j))−Hx(µ)‖ ≤ ‖H̃x

n(ξn(j))− H̃x
n(µ)‖ + ‖H̃x

n(µ)−Hx(µ)‖. (5.10)

Concerning the first term, observe that

‖H̃x
n(ξn(i))− H̃x

n(µ)‖ ≤ 1

n E(∆1(x))

n∑

i=1

‖M(Yi, ξn(j))−M(Yi, µ)‖ ∆i(x)

:= An + Bn, (5.11)

where

An :=

√
d

nE(∆1(x))

n∑

i=1

∣∣∣‖Yi − µ‖ − ‖Yi − ξn(j)‖
∣∣∣∆i(x)

‖Yi − µ‖ ‖Yi − ξn(j)‖
and

Bn :=
1

nE(∆1(x))
×

n
∑

i=1

∆i(x)
∣

∣

∣

∣

∣

∣
‖Yi−ξn(j)‖ U(Yi−µ) UT (Yi−µ)−‖Yi−µ‖ U(Yi−ξn(j)) U

T (Yi−ξn(j))
∣

∣

∣

∣

∣

∣

‖Yi − µ‖ ‖Yi − ξn(j)‖
.

Using Theorem 3.1 and the triangular inequality we can easily see that An =

oa.s.(1)× 1
nE(∆1(x))

∑n
i=1

∆i(x)
‖Yi−µ‖2 .

Combining Markov and Cauchy-Schwarz inequalities and making use of the

assumption H3-(iii), we can easily prove that 1
nE(∆1(x))

∑n
i=1

∆i(x)
‖Yi−µ‖2 = OP(1).

Then we conclude that An = oP(1).
For the second term Bn of the inequality (5.11), we have by triangular in-

equality and the fact that ‖U(Yi − θ)‖ = 1, that
∣∣∣
∣∣∣‖Yi−ξn(j)‖ U(Yi−µ) UT (Yi − µ)− ‖Yi − µ‖ U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣

≤
∣∣∣‖Yi − ξn(j)‖ − ‖Yi − µ‖

∣∣∣

+‖Yi − µ‖
∣∣∣
∣∣∣U(Yi − µ) UT (Yi − µ)− U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣

≤ ‖µ− ξn(j)‖ + ‖Yi − µ‖
×
∣∣∣
∣∣∣U(Yi − µ) UT (Yi − µ)− U(Yi − ξn(j)) UT (Yi − ξn(j))

∣∣∣
∣∣∣.

Since

U(Yi − µ)UT (Yi − µ)− U(Yi − ξn(j))UT (Yi − ξn(j))

= [U(Yi − µ)− U(Yi − ξn(j)) ] UT (Yi − µ)

+ U(Yi − ξn(j))
[
UT (Yi − µ)− UT (Yi − ξn(j))

]
,

and ‖U(Yi − µ) − U(Yi − ξn(j))‖ ≤ 2 ‖µ−ξn(j)‖
‖Yi−ξn(j)‖ , we can conclude, by using

Theorem 3.1, that

Bn = oa.s.(1)×
1

nE(∆1(x))

n∑

i=1

∆i(x)

‖Yi − µ‖2
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Finally, using the same arguments as above (concerning the proof of the term

An), we get Bn = oP(1) and this is allows us to conclude that ‖H̃x
n(ξn(i)) −

H̃x
n(µ)‖ = oP(1). Now we are interesting to the second term of the right side

term of (5.10). Write

H̃x
n(µ)−Hx(µ) = H̃x

n(µ)− E[H̃x
n(µ)]︸ ︷︷ ︸

Kn,1

+E[H̃x
n(µ)]−Hx(µ)︸ ︷︷ ︸

Kn,2

.

We have to show that each term Kn,i (i = 1, 2) is asymptotically negligible. We
have

‖Kn,1‖2 = tr(KT
n,1Kn,1) =

d∑

k=1

d∑

j=1

Z2
k,j

where (Zk,j)1≤k,j≤d is the general term of the matrix KT
n,1Kn,1 which may be

can be written as

Zk,j =
1

nE(∆1(x))

n∑

i=1

[Mk,j(Yi, µ)∆i(x)− E (Mk,j(Yi, µ)∆i(x))] .

Using the assumption (H3)-(iv), Lemma 5.1 and corollary A.8 of [17], we can
easily prove that for all 1 ≤ k, j ≤ d, Zk,j = oP(1).

To handle Kn,2, observe that

‖Kn,2‖ =

∥∥∥∥E
[∑n

i=1 M(Yi, µ) ∆i(x)

n E(∆1(x))

]
−Hx(µ)

∥∥∥∥

≤ 1

E(∆1(x))
E
(
‖HX1(µ)−Hx(µ)‖∆1(x)

)

≤ sup
x′∈B(x,h)

‖Hx′

(µ)−Hx(µ)‖ = oa.s.(1)

in view of condition (H3)(ii).

Lemma 5.6. Under hypothesis (H1)-(H2) and (H4)(ii), and if for any δ > 0,
(nφ(h))−δ/2 → 0, we have

√
nφ(h)

(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
D−→ Nd(0, Σ̃x(µ)).

where Σ̃x(µ) is the limiting covariance matrix of ∇uG̃
x
n(µ)− E

[
∇uG̃

x
n(µ)

]
.

Proof of Lemma 5.6. Let’s denote by

Ai =

√
φ(h)

E(∆1(x))
× U(Yi − µ) ∆i(x)

Then

√
nφ(h)

(
∇uG̃

x
n(µ)− E

[
∇uG̃

x
n(µ)

])
=

1√
n

n∑

i=1

(Ai − E(Ai)) :=
1√
n

n∑

i=1

Ãi.
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From the Cramer-Wold device, Lemma 5.6 can be proved by finding the limit
distribution of the real variables sequence 1√

n

∑n
i=1 ℓ

t Ãi, for all ℓ ∈ R
d satisfy-

ing ‖l‖ 6= 0.

Because the random variables ℓtÃ1, . . . , ℓ
tÃn are i.i.d. with zero mean and

asymptotic variance

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

ℓt Ãi

)
.

The result may be obtained by applying the Liapounov Central Theorem Limit.
For this propose, we have to prove the following Lindeberg condition:

∀δ > 0
[
n ℓtΣ̃x(µ)ℓ

]−(2+δ)/2 n∑

i=1

E|ℓtÃi|2+δ −→ 0 as n −→ ∞.

It is easy to see that:

[
n ℓtΣ̃x(µ)ℓ

]−(2+δ)/2 n∑

i=1

E|ℓtÃi|2+δ = n−δ/2
(
ℓtΣx(µ)ℓ

)−(2+δ)/2
E|ℓtÃ1|2+δ.

Moreover, using Cr and Jensen inequalities, we obtain

E|ℓtÃ1|2+δ ≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
E

∣∣∣ℓt (U(Y1 − µ))
2+δ ×∆2+δ

1 (x)
∣∣∣

≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
E




∆2+δ

1 (x) E

[∣∣ℓtU(Y1 − µ)
∣∣2+δ | X

]

︸ ︷︷ ︸
=WX

2+δ
(µ)





≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ

[
E(∆1(x))

2+δ sup
x′∈B(x,h)

|W x′

2+δ(µ)−W x
2+δ(µ)|

+ W x
2+δ(µ)E(∆1(x))

2+δ
]
.

It follows then, by hypothesis (H4)(ii) and Lemma 5.1, that

E|ℓtÃ1|2+δ ≤ c
(φ(h))(2+δ)/2

(E∆1(x))2+δ
W x

2+δ(µ)E(∆1(x))
2+δ

≤ c′ (φ(h))(2+δ)/2

(φ(h))
(2+δ)

[M2+δ
1 (g(x))2+δ + o(1)]

[
φ(h)(M(2+δ)/2g(x) + o(1))

]

= O
(
(φ(h)−δ/2)

)
.

Finally, since (ℓtΣ̃x(µ)ℓ)−(2+δ)/2 is finite, it comes that

[
n ℓtΣ̃x(µ)ℓ

]−(2+δ)/2 n∑

i=1

E|ℓtÃi|2+δ = O
(
(nφ(h)−δ/2)

)
= o(1),
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because nφ(h) → ∞ as n → ∞. This implies the Lindeberg condition, which
completes the proof of the Lemma.

The following Lemma gives the analytic expression of the matrix Σx(µ).

Lemma 5.7. Under conditions (H1)-(H2) and (H4)(ii), we have

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

ℓt Ãi

)
=

M2

M2
1 g(x)

ℓtΣx(µ)ℓ.

Proof of Lemma 5.7. Since the random variables (ℓtÃi)i=1,...,n are i.i.d. with
mean zero, it follows that

σ2(x) = lim
n→∞

V ar

(
1√
n

n∑

i=1

ℓt Ãi

)
= lim

n→∞
V ar(ℓtÃ1) = lim

n→∞
E
(
(ℓtA1)

2
)
.

On the other hand, making use of the properties of conditional expectation one
may write

E

[(
ℓtA1

)2]
=

φ(h)

(E∆1)2
E
[
∆1ℓ

tU(Y1 − µ)
]2

=
φ(h)

(E∆1)2
E

[
∆2

1W
X1

2 (µ)
]

Making use of the condition (H4)(ii) and the fact that the functions W x
2 (·) is

bounded, we obtain

E

{
∆2

1W
X1

2 (µ)
}

= E
(
∆2

1

) [
W x

2 (µ) +O
(
sup
u∈Rd

|Wu
2 (µ)−W x

2 (µ)|
)]

= W x
2 (µ)E

(
∆2

1

)
+ o

(
E
(
∆2

1

))
.

Using Lemma 5.1, one may see that

φ(h)

(E∆1)2
E(∆2

1) =
M2

M2
1 g(x)

+ o(1).

Therefore,

σ2(x) =
M2

M2
1 g(x)

W x
2 (µ) + o(1).

Proof of Proposition 3.3. For each x ∈ F , since (Xi, Yi)i=1,...,n are i.i.d., we
have

B̃n(x) = E

[
∇uG̃

x
n(µ)

]
=

E [U(Y1 − µ)∆1(x)]

E(∆1(x))

By conditioning with respect to real variable d(x,X1) and using condition (H5),
we have

B̃n(x) =
E

[
K
(

d(x,X1)
h

)
ψ(d(x,X1))

]

E

(
K
(

d(x,X1)
h

)) .
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Integration with respect to the distribution of the real variable d(x,X1) shows
that

A1 := E

[
K

(
d(x,X1)

h

)
ψ(d(x,X1))

]
=

∫ 1

0

K(t)ψ(th)dF (th),

where F is the cumulative distribution function of the real random variable
d(x,X). On the other hand, Taylor series expansion of the function ψ up to
the order one in the neighborhood of t = 0 gives ψ(th) = th∇ψ(0) + od(h). Let
us denote by od(1) (resp. Od(1)) a d-dimensional vector where each component
equal to o(1) (resp. O(1)).

Therefore, we have

A1 = h∇ψ(0)
∫ 1

0

tK(t)dFx(th) + od(h)

∫ 1

0

K(t)dF (th)

= h∇ψ(0)
[
K(1)F (h)−

∫ 1

0

(sK(s))′F (sh)ds

]

+ od(h)

[
K(1)F (h)−

∫ 1

0

K ′(s)F (sh)ds

]
.

Using hypothesis (H2)(i)− (ii) we get

A1 = h∇ψ(0)K(1) (φ(h)g(x) + o(φ(h)))

− h∇ψ(0)
∫ 1

0

(sK(s))′ (φ(sh)g(x) + o(φ(hs))) ds

+ o(h)K(1) (φ(h)g(x) + o(φ(h)))

− od(h)

∫ 1

0

K ′(s) (φ(sh)g(x) + o(φ(sh))) ds

= hφ(h)g(x)∇ψ(0)
[
K(1)−

∫ 1

0

(sK(s))′ (τ0(s) + o(1)) ds

]
+ hφ(h)K(1)od(1)

− od(hφ(h))

∫ 1

0

K ′(s)(τ0(s)g(x) + o(1))ds

= hφ(h)g(x)∇ψ(0)
[
K(1)−

∫ 1

0

(sK(s))′τ0(s)ds

]
+Oa.s.

d (hφ(h))

Thus, making use of the Lemma 5.1, we obtain

B̃n(x) =
h∇ψ(0)
M1

[
K(1)−

∫ 1

0

(sK(s))′τ0(s)ds+ oa.s.(1)

]

Proof of Theorem 3.2. Part (i) follows from Proposition 3.2, decomposition (3.7),
Proposition 5.6 and Lemma 5.7.

Part (ii) follows from Proposition 3.3 combined with the condition√
nφ(h)h −→ 0 as n→ ∞.



L1-median regression with functional covariates 1583

Proof of Corollary 3.1. Let us denote by

T x(µ) = [Σx(µ)]−1/2Hx(µ), T x
n (µn) = [Σx

n(µn)]
−1/2Hx

n(µn)

and

V x
n (µn) =

M1,n√
M2,n

√
nFx,n(h) T x

n (µn) (µn − µ) .

Write

V x
n (µn) =

M1,n

√
M2

M1

√
M2,n

√
nFx,n(h) (nφ(h)g(x))

−1
T x
n (µn) [T x(µ)]

−1

× M1√
M2

√
nφ(h)g(x) T x(µ) (µn − µ)

:= V x
n,1 × V x

n,2. (5.12)

Making use of Theorem 3.2 part (ii), the term V x
n,2 converges in distribution to

N (0, Id).
Now to get the result of the corollary it suffices to show that the first term V x

n,1

converges to 1 in probability. Following the same arguments as in [29] combined
with (H1),(H2), one gets

M1,n

√
M2

M1

√
M2,n

√
nFx,n(h) (nφ(h)g(x))

−1 P−→ 1, M1,n
P−→M1 and

M2,n
P−→M2, as n→ ∞.

Now, we have to establish the consistency of T x
n (µn). To do that, we will study

separately the consistency of each term of T x
n (µn). Let us start by H

x
n(µn). For

this, write

Hx
n(µn)−Hx(µ) =

H̃x
n(µn)

Gx
n,1

−Hx(µ)

=
H̃x

n(µn)−H(µ)

Gx
n,1

+
Hx(µ)(1 −Gx

n,1)

Gx
n,1

.

According to Theorem 3.1, Proposition 3.2, Lemma 5.2 and the fact that the
matrix Hx(µ) is bounded, we can conclude that Hx

n(µn) converges, in probabil-
ity, to Hx(µ).

The second term Σx
n(µn), can be treated similarly. Finally, this leads to the

convergence in probability of T x
n (µn) to T

x(µ).
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L1-approach for a kernel estimator of conditional quantile with functional
regressors: consistency and asymptotic normality. Statist. Probab. Lett.,
79(8), 1065–1073. MR2510768

[32] Lipster, R. and Shiryayev, A. (1972). On the absolute continuity of
measures corresponding to processes of diffusion type relative to awiener
measure. Izv. Akad. Nauk. Ser. Mat., 36, 839–882. MR2510768

http://www.ams.org/mathscinet-getitem?mr=2208895
http://www.ams.org/mathscinet-getitem?mr=2396496
http://www.ams.org/mathscinet-getitem?mr=2004656
http://www.ams.org/mathscinet-getitem?mr=2001682
http://www.ams.org/mathscinet-getitem?mr=1649539
http://www.ams.org/mathscinet-getitem?mr=2001682
http://www.ams.org/mathscinet-getitem?mr=2001682
http://www.ams.org/mathscinet-getitem?mr=949228
http://www.ams.org/mathscinet-getitem?mr=1009899
http://www.ams.org/mathscinet-getitem?mr=1946423
http://www.ams.org/mathscinet-getitem?mr=1439309
http://www.ams.org/mathscinet-getitem?mr=2719861
http://www.ams.org/mathscinet-getitem?mr=2719501
http://www.ams.org/mathscinet-getitem?mr=2510768
http://www.ams.org/mathscinet-getitem?mr=2510768


1586 M. Chaouch and N. Läıb
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[34] Quintela-del Ŕıo, A. and Francisco-Fernández, M. (2011). Non-
parametric functional data estimation applied to ozone data: Prediction
and extreme value analysis. Chemosphere, 82, 800–808. MR2105373
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