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Abstract: One major goal in clinical applications of multi-state models is
the estimation of transition probabilities. The usual nonparametric estima-
tor of the transition matrix for non-homogeneous Markov processes is the
Aalen-Johansen estimator (Aalen and Johansen 1978 [1]). In this paper we
propose a modification of the Aalen-Johansen estimator in the illness-death
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illustration is included.
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1. Introduction

The analysis of survival data may be described by the Markov process with two
states, ‘alive’ and ‘dead’ and a single transition between them. This is known as
the multi-state mortality model. Multi-state models (Andersen et al., 1993 [3];
Meira-Machado et al., 2009 [25]) may be considered a generalization of survival
analysis where survival is the ultimate outcome of interest but where interme-
diate (transient) states are identified. For example, in cancer studies more than
one endpoint may be defined such as ‘local recurrence’, ‘distant metastasis’ and
‘dead’. A simple multi-state model is obtained by splitting the ‘alive’ state of the
mortality model into two transient states. For example, the illness-death model
is fully characterized by three states and three transitions between them, see
Figure 1. Graphically, multi-state models are represented by diagrams with rect-
angular boxes and arrows between them indicating respectively possible states
and possible transitions for a given patient.

A multi-state model is a stochastic process (X(t), t ∈ T ) with a finite state
space, where X(t) represents the state occupied by the process at time t ≥ 0.
For two states i,j and s < t, introduce the so-called transition probabilities

pij(s, t) = P (X(t) = j|X(s) = i) .

Estimating these quantities is interesting, since they allow for long-term pre-
dictions of the process. The inference in multi-state models is traditionally per-
formed under the Markov assumption, which states that past and future are in-
dependent given the present state. Aalen and Johansen (1978) [1] introduced a
nonparametric estimator of pij(s, t) for non-homogeneous Markov models. Their
estimation method extends the time-honored Kaplan-Meier estimator (Kaplan
and Meier, 1958 [22]) to Markov chains. As for the Kaplan-Meier, the standard
error of the Aalen-Johansen estimator may be large when censoring is heavy,
particularly with a small sample size.

Interestingly, the variance of the Kaplan-Meier estimator may be reduced by
presmoothing. The idea of presmoothing (Dikta, 1998 [15]) involves replacing
the censoring indicators by some smooth fit before the Kaplan-Meier formula
is applied. This preliminary smoothing may be based on a certain parametric
family such as the logistic (thus leading to a semiparametric estimator), or on a
nonparametric estimator of the binary regression curve. Successful applications
of presmoothed estimators include nonparametric curve estimation (Cao and
Jácome, 2004 [6]), regression analysis (de Uña-Álvarez and Rodŕıguez-Campos,

Fig 1. Illness-death model.
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2004 [12]; Yuan, 2005 [27]), and the estimation of the bivariate distribution of
censored gap times (de Uña-Álvarez and Amorim, 2011 [11]). The main goal of
the present work is to propose a presmoothed version of the Aalen-Johansen
estimator for the transition matrix of a Markov illness-death model, and to in-
vestigate its statistical properties. The proposed estimator is different to that
in Amorim et al. (2011) [2], who considered presmoothed transition probabili-
ties for possibly non-Markov models. In general, Markov and non-Markov ap-
proaches lead to completely different estimators, so markovian estimators can
not be obtained as particular cases of non-markovian estimators, and vice-versa.

The rest of the paper is organized as follows. In Section 2 we introduce the
new estimator and we formally establish its consistency. In Section 3 we compare
by simulations the proposed estimator to the original Aalen-Johansen curve. In
Section 4 we illustrate the proposed method using data from the Stanford heart
transplant study. Main conclusions and discussion are reported in Section 5.
The Appendix contains the technical proofs.

2. The estimator: Main result

In this paper we consider the (progressive) illness-death model depicted in Fig-
ure 1. We assume that all subjects are in State 1 (‘healthy’) at time t = 0, and
that they may either visit State 2 (‘diseased’) at some time point; or not, going
directly to the absorbing (‘dead’) state. Given two time points s < t, there are
in essence three different transition probabilities to estimate: p11(s, t), p12(s, t),
and p22(s, t). The two other transition probabilities (p13(s, t) and p23(s, t)) can
be obtained from p13(s, t) = 1− p11(s, t)− p12(s, t) and p23(s, t) = 1− p22(s, t).

The irreversible illness-death model is fully characterized by three transitions
represented by the arrows in Figure 1. Let Tij denote the potential transition
time from State i to State j. In this model we have two competing transitions
1 → 2 and 1 → 3. Therefore, we denote by ρ = I(T12 ≤ T13) the indicator of
visiting state 2 at some time, and introduce Z = T12 ∧ T13, the sojourn time
in state 1. A subject visiting State 2 will arrive at the absorbing ‘dead’ state
at time T12 + T23, while this time will be T13 for those not visiting State 2
(i.e. ρ = 0). Finally, let T = Z + ρT23 denote the total survival time of the
process. However, because of follow-up limitations, lost cases and so on, rather
than (Z, T, ρ) one observes (Z̃, T̃ ,∆1,∆,∆1ρ) where Z̃ = Z ∧ C, T̃ = T ∧ C,
∆1 = I(Z ≤ C) and ∆ = I(T ≤ C). Here C denotes the potential censoring
time, which we assume to be independent of the process (that is, C and (Z, T )
are assumed to be independent). Under continuity, the information provided by

∆1ρ is superfluous since we have ∆1ρ = I(Z̃ < T̃ ). With this notation, the
transition probabilities are written as

p11(s, t) =
P (Z > t)

P (Z > s)
, p12(s, t) =

P (s < Z ≤ t, T > t)

P (Z > s)
,

p22(s, t) =
P (Z ≤ s, T > t)

P (Z ≤ s, T > s)
.
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Under the Markov assumption, all these quantities are estimated nonpara-
metrically using Aalen-Johansen estimators. Explicit formulae of the Aalen-
Johansen estimator for the illness-death model are available (Borgan, 1998 [5]).
Here we give alternative expressions for this estimator suitable to motivate our
method of presmoothing below. Assume that we have a sample of n individuals
from the population under study.

Let (Z̃i, T̃i,∆1i,∆i,∆1iρi), i = 1, . . . , n be the corresponding sampling infor-
mation. The Aalen-Johansen estimate of the transition probability p11(s, t) is
the Kaplan-Meier estimator

p̂AJ
11 (s, t) =

∏

s<Z̃i≤t

[
1−

∆1i

nM̃0n(Z̃i)

]
(2.1)

where

M̃0n(y) =
1

n

n∑

j=1

I(Z̃j ≥ y).

Then, Aalen-Johansen estimate of the transition probability p22(s, t) is the
Kaplan-Meier estimator

p̂AJ
22 (s, t) =

∏

s<T̃i≤t,Z̃i<T̃i

[
1−

∆i

nM̃1n(T̃i)

]
(2.2)

where

M̃1n(y) =
1

n

n∑

j=1

I(Z̃j < y ≤ T̃j).

Finally, the estimator for p12(s, t) is given by

p̂AJ
12 (s, t) =

1

n

n∑

i=1

p̂AJ
11 (s, Z̃−

i )p̂AJ
22 (Z̃i, t)I(s < Z̃i ≤ t, Z̃i < T̃i)

nM̃0n(Z̃i)
(2.3)

where

p̂AJ
11 (s, t−) = limu↑tp̂

AJ
11 (s, u)

Now, we discuss how to introduce modified estimators based on presmooth-
ing. Presmoothing the Aalen-Johansen (AJ) involves replacing the censoring
indicators (in the transition probabilities p11(s, t) and p22(s, t)) by a smooth
fit. The presmoothed version of p11(s, t) is obtained by replacing the ∆1i’s in
(2.1) by some smooth fit to the binary regression function m0(z) = P

(
∆1 =

1|Z̃ = z
)
(see e.g. Dikta, 1998 [15]). Then, the corresponding presmoothed

Aalen-Johansen (P-AJ) estimator is given by

p̃PAJ
11 (s, t) =

∏

s<Z̃i≤t

[
1−

m0n(Z̃i)

nM̃0n(Z̃i)

]
(2.4)
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where m0n(z) stands for an estimator of the binary regression function m0(z).

Then, m0(Z̃) is the conditional probability of the event ∆1 = 1 given Z̃. Since

the pair Z̃,∆1 is observable, the function m0(z) can be estimated by standard
methods. For example, logistic regression may be performed. Consider now the
presmoothed version of (2.2) given by

p̃PAJ
22 (s, t) =

∏

s<T̃i≤t,Z̃i<T̃i

[
1−

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
(2.5)

where m1n(z, t) stands for an estimator of the binary regression function

m1(z, t) = P
(
∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1

)
. Then, m1(Z̃, T̃ ) is the condi-

tional probability of the event ∆ = 1 given (Z̃, T̃ ) and given that transition
1 → 2 is observed (∆1ρ = 1). Amorim et al. (2011) [2] discussed the role of
the function m1(z, t) as a suitable presmoothing strategy for p22(s, t); although
these authors considered a different context in which the Markov assumption
may not hold, their discussion on the presmoothing issue remains valid here.
As before, Z̃, T̃ ,∆ and ∆1ρ are observable, allowing the function m1(z, t) to be
estimated by standard methods. Finally the transition probability p12(s, t) can
be estimated by plugging (2.4) and (2.5) into equation (2.3).

The estimator m0n(z) is based on the whole sample, while m1n(z, t) is based
on the subsample i : ∆1iρi = 1. We assume that these two empirical functions
approximate well their targets in a uniform sense; more specifically, set

U1 : sup
z

|m0n(z)−m0(z)| → 0 w. p. 1,

and
U2 : sup

z,t
|m1n(z, t)−m1(z, t)| → 0 w. p. 1.

Conditions under which U1 and U2 can be fulfilled were investigated in a
number of papers, including Dikta (1998 [15], 2000 [16]), Devroye (1978a [13],
b [14]), Mack and Silverman (1982) [23] and Härdle and Luckhaus (1984) [19].
The uniform consistency of p̂PAJ

11 (s, t) will hold on 0 ≤ s < t ≤ τ , where τ is

strictly smaller than the upper bound of the support of Z̃. Put M̃1(y) = P (Z̃ <

y ≤ T̃ ). For the uniform consistency of p̂PAJ
22 (s, t) and p̂PAJ

12 (s, t) we will refer
to the following assumption:

M : M̃1 is bounded from below on [τ0, τ1] .

This condition allows to handle some denominators which appear in the proofs.
It can be interpreted as a ǹon empty risk set’ assumption for the transition
from State 2 to State 3. By force, τ0 > 0, while τ1 is (similarly as for τ) strictly

smaller than the upper bound of the support of T̃ . We have the following result.
The proof is deferred to the Appendix.

Theorem 1. (a) Under U1 we have w. p. 1

sup
0≤s<t≤τ

∣∣p̂PAJ
11 (s, t)− p11(s, t)

∣∣ → 0.
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(b) Besides, under U2 and M , we have w. p. 1

sup
τ0≤s<t≤τ1

∣∣p̂PAJ
22 (s, t)− p22(s, t)

∣∣ → 0.

(c) Finally, under U1, U2 and M we have w. p. 1

sup
τ0≤s<t≤τ

∣∣p̂PAJ
12 (s, t)− p12(s, t)

∣∣ → 0.

3. Simulation study

In this section, we compare by simulations the presmoothed Aalen-Johansen
estimator for the transition probabilities to the original Aalen-Johansen estima-
tor. More specifically, the AJ and P-AJ type estimators p̂11 (s, t), p̂12 (s, t) and
p̂22 (s, t) introduced in Section 2 are considered. As presmoothing function we
always take a parametric (logistic) family, so we actually have a semiparametric
Aalen-Johansen estimator.

To simulate the data in the illness-death model, we followed the work of
Amorim et al. (2011) [2]. We assume that all individuals are in State 1 (“healthy”)
at time t = 0. Therefore, the patient’s history (or course) may be divided into
two groups according to whether the disease occurred (that is, passing through
State 2) (1 → 2 → 3) or not (1 → 3). We separately consider these two pos-
sible subgroups of individuals. For the first subgroup of individuals (ρ = 1),
the successive gap times (Z, T − Z) are simulated according to the bivariate
distribution

F12(x, y) = F1(x)F2(y) [1 + θ {1− F1(x)} {1− F2(y)}]

with unit exponential margins. The parameter θ controls for the amount of
dependency between the gap times (Z, T − Z) and was set to 0 and 1, cor-
responding to 0 and 0.25 correlation between Z and T − Z. For the second
subgroup of individuals (ρ = 0), the value of Z is simulated according to an
exponential with rate parameter 1. In summary the simulation procedure is as
follows:

Step 1 Draw ρ ∼ Ber(p) where p is the proportion of subjects passing through
State 2.

Step 2 If ρ = 1 then:

1. V1 ∼ U(0, 1), V2 ∼ U(0, 1) are independently generated;

2. U1 = V1, A = θ(2U1 − 1)− 1, B = (1− θ(2U1 − 1))2 + 4θV2(2U1 − 1)

3. U2 = 2V2√
B−A

4. Z = log( 1
1−U1

), T = log( 1
1−U2

) + Z

Step 3 If ρ = 0 then:

1. Z = log( 1
1−U(0,1) ).
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In our simulation we consider that 70% of the individuals were in the first
group. The follow-up time was subjected to right censoring, C, according to
uniform models U [0, 4] and U [0, 3]. The first model results in 24% of censoring
on the first gap time Z, and in 47% of censoring on the second gap time T −Z,
for those individuals with ρ = 1. The second model increases these censoring
levels to 32% and about 57%, respectively.

After some algebra, it is seen that the function m1(z, t) = P
(
∆ = 1|Z̃ = z,

T̃ = t,∆1ρ = 1
)
is written as

m1(z, t) =
1

1 + η1(z, t)
, where η1(z, t) =

λG(t)

λ1
T |Z=z

(t|z)

and where λG(.) and λ1
T |Z=z(.|z) stand respectively for the hazard rate of the

censoring variable and the hazard rate of T given Z = z under restriction ρ = 1.
Note that λG(t) = 1/(τG − t) when C ∼ U [0, τG] and that λ1

T |Z=z
(t|z) is given

by

λ1
T |Z=z(t|z) =

2 + 4 exp(−t)− 2 exp(−z)− 2 exp(−t+ z)

2 + 2 exp(−t)− 2 exp(−z)− exp(−t+ z)
if θ = 1,

being 1 when θ = 0. The function m1(z, t) belongs to the logistic family with
some preliminary transformation of the conditioning variables, namely we have
(for β0 = 0 and β1 = 1)

m1(z, t;β) =
1

1 + exp(β0 + β1 ln(η1(z, t)))
.

This is the parametric model we fit tom1(z, t) in the simulations. Form0(z) =

P
(
∆1 = 1|Z̃ = z

)
, we have

m0(z) =
1

1 + η0(z)
, where η0(z) =

λG(z)

λZ(z)

and where λZ(z) stands for the hazard function of Z.
Similarly as above, we also perform logistic presmoothing for the function

m0(z), with the variable Z̃ transformed by −ln(τG − Z̃). This function belongs
to the logistic family with some preliminary transformation. To estimate the
function m0(z) in the simulations, we fit the logistic model

m0(z; γ) =
1

1 + exp(γ0 + γ1 ln(η0(z)))

which contains the true presmoothing function m0 as a special case (γ0 = 0,
γ1 = 1).

The β parameter in model m1(.;β) is estimated via maximization of the

conditional likelihood of the ∆i’s given the (Z̃i, T̃i)’s, for those subjects with
∆1ρ = 1 (see Dikta (1998 [15], 2000 [16])). Similarly, the γ parameter in model
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m0(.; γ) is estimated via maximization of the conditional likelihood of the ∆1i’s

given the Z̃i’s. Note that the β parameter is needed for estimating p22(s, t)
and p12(s, t), while γ enters the estimation of p11(s, t) and (again) p12(s, t).
The aim of this simulation study is to compare the Aalen-Johansen estimator
(1978) [1] and the new estimator based on presmoothing (P-AJ). Again, for
measuring the estimates’ relative performance, we followed the work of Amorim
et al. (2011) [2]. As in Amorim et al. (2011) [2], we computed the integrated
absolute bias, integrated variance and the integrated MSE of the estimates. For
each simulated setting (θ = 0 and θ = 1) we derived the analytic expression of
pij(s, t) so that the bias and the MSE of the estimator could be examined. K =
1000 data sets were generated, with three different sample sizes n = 50, n = 100
and n = 200.

Let p̂kij(s, t) denote the estimated transition probability based on the kth gen-
erated data set. For each fixed (s, t) we obtained the mean for all generated data

sets, p̂ij(s, t) =
1
K

∑K
k=1 p̂

k
ij(s, t). We then computed the pointwise estimates of

the bias, variance, MSE and L1 distance as:

b̂ias(s, t) = pij(s, t)− p̂ij(s, t)

v̂ar(p̂ij(s, t)) =
1

K − 1

K∑

k=1

[p̂kij(s, t)− p̂ij(s, t)]
2

M̂SE(p̂ij(s, t)) =
1

K

K∑

k=1

[p̂kij(s, t)− pij(s, t)]
2

L̂1(p̂ij(s, t)) =
1

K

K∑

k=1

|p̂kij(s, t)− pij(s, t)|

To summarize the results we also calculated the integrated absolute bias
(BIAS), integrated variance (VAR), integrated MSE (IMSE) and the integrated
L1 distance (L1), defined in Table 1. We fixed the values of s using the quantiles
0.25, 0.5 and 0.75 of the exponential distribution with rate 1. The results given
in Tables 3 to 6 were obtained by numerical integration on the interval [s, t1]
with t1 = 4, taking a grid of step δ = 0.05.

Table 1

Summary statistics measuring bias, variance, mean square error and L1 distance

Statistic Definition Estimator

Integrated Absolute Bias
∫ t1
s

|bias(s, t)|dt
∑t1

t=s |b̂ias(s, t)|δ

Integrated Variance
∫ t1
s

var(p̂ij (s, t))dt
∑t1

t=s v̂ar(p̂ij(s, t))δ

Integrated MSE
∫ t1
s

MSE(p̂ij(s, t))dt
∑t1

t=s M̂SE(p̂ij(s, t))δ

Integrated L1
∫ t1
s

L1(p̂ij(s, t))dt
∑t1

t=s L̂1(p̂ij(s, t))δ
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In Tables 3 to 6 we report the results for the summary statistics attained by
the proposed estimator when based on several presmoothing functions (P-AJ),
for all scenarios. In all tables, the row labeled with m corresponds to presmooth-
ing with the true function which is unrealistic in practice, because this function
will be typically unknown. However, this row represents a ‘gold standard’ the
other methods can be compared to. The row labeled with m(.;β, γ) corresponds
to a semiparametric estimator which is obtained using a presmoothing based
on a parametric family which contains the true m. Specifically, we consider a
logistic model with the preliminary transformation of the conditioning variables
Z̃ = z, T̃ = t shown before. In order to investigate the robustness of the pro-
posed estimator with respect to misspecifications of the binary regression family,
we considered also presmoothing via standard logistic models, without any pre-
liminary transformation of the gap times. This is labeled with m(., ξ). Note that
the true m does not belong to this parametric family. Finally, we also report
the results pertaining to the Aalen-Johansen estimator, which corresponds to
the situation with no presmoothing at all. This is labeled in the Tables as AJ.

It is obvious from the analysis of Tables 3 to 6, that presmoothing leads to
estimators with smaller variance and thus attaining better results with regard to
the integrated MSE also true for the L1 distance. As expected, the (integrated)
MSE, bias, L1 norm and variance of the estimated transition probabilities always
decrease with an increasing sample size, while they increase with the censoring
degree. The estimator which makes use of the true m is the one with the best
performance. However, this estimator is unrealistic since in practice one has to
estimate the functionm. In general, the lowest errors among the realistic versions
of the estimators correspond to the estimator based on the correctly specified
parametric family, m(.;β, γ). However, the presmoothed estimator based on the
wrong parametric model m(.; ξ) is still (much) better than AJ. This means that
it is worthwhile doing some presmoothing even when we are not completely sure
about the parametric family.

Results shown in the Tables 3 to 6 support the idea that presmoothing leads to
variance improvement. When compared to the estimators based on presmooth-
ing, the relative efficiency (defined as the quotient between the two integrated
MSEs) of the Aalen-Johansen estimator is always below 1. For higher values
of s, where the censoring effects are stronger, the relative efficiency can drop
below 50%. These findings agree with the results obtained by Amorim et al.
(2011) [2] and support the intuition that the use of presmoothing for the esti-
mation of transition probabilities will be more clearly seen in the presence of
large censoring degrees.

In general, presmoothing introduces some bias in estimation, while reducing
the variance. This bias component is larger when there is some misspecification
in the chosen parametric model. Our simulation results serve to illustrate this
issue too. Indeed, it is seen that, despite of offering a smaller IMSE, the bias
associated to the semiparametric Aalen-Johansen estimator is sometimes larger
than that of the original Aalen-Johansen.

Tables 3 and 4 show a systematic bias for all estimators of the transition
probabilities p12(s, t) and p22(s, t). This is because these tables report the re-
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Fig 2. True p22(s, t) (dotted line), average estimator (solid line), and 95% oscillation limits
of the AJ estimates (first row) and P-AJ (second row) for s = 0.2877, s = 0.6931 and
s = 1.3863. Estimates with n = 200 and U[0,3] censoring. Dependency scenario.

sults attained when generating data from a dependency scenario and therefore
reflects the failure of the Markov assumption. To illustrate these features we
present in Figures 2 and 3 the graphical average results for the two methods (AJ
and P-AJ corresponding to presmoothing via standard logistic models, m(., ξ)).
These figures plot the data generating functions and pointwise 95% oscillation
limits of the estimates p22(s, t), for sample sizes of n = 200 with percentages of
censored data obtained using C ∼ U [0, 3]. The good performance of the result-
ing estimates (for both methods) is evident for independent gap times (θ = 0),
recovering the functional forms of the corresponding true curves very success-
fully. However, a systematic bias of p12(s, t) (not shown) and p22(s, t) in the
dependent scenario (θ = 1) is also clear, see Figure 2. This bias is much more
evident when s is large, in agreement with the amount of false information in-
troduced by the Markov condition (which increases with s). In all scenarios,
the use of the presmoothing yields estimators with less variability. We have also
considered different scenarios with different proportions of individuals passing
through state 2. A larger value of p = P (ρ = 1) is favorable for the estimation of
p22(s, t) (lower values for IMSE, BIAS, L1 norm and variance), whereas a smaller
value of p lead to better estimates for p12(s, t). When comparing the two meth-
ods (with and without presmoothing) similar conclusions were obtained and
therefore they are not reported here.
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Fig 3. True p22(s, t) (dotted line), average estimator (solid line), and 95% oscillation limits
of the AJ estimates (first row) and P-AJ (second row) for s = 0.1438, s = 0.3466 and
s = 0.6931. Estimates with n = 200 and U[0,3] censoring. Independency scenario.

4. An example from Heart Transplant data

For illustration purposes, we apply the proposed methods of Section 2 to data
from the Stanford Heart Transplant Study. The data are available as part of the
R survival package, and they are also reported in Crowley and Hu (1977) [8].
This study covers the period from October 1967 to April 1974. It includes 103
patients enrolled in the Stanford Heart transplant program, from which 69 re-
ceived a heart transplant and among these 45 died. The total number of deaths
was 75 (30 without transplantation); the remaining 28 patients contributed with
censored survival times. The transplant can be considered as an associated state
of risk, and we may use the so-called illness-death model with states “own heart”,
“new heart” (or transplant) and “dead”. In most applications, a Markov model
is often assumed for the multi-state model. A Cox model (Cox, 1972 [7]) can be
used to test this assumption (Hougaard, 1999 [21]; Andersen et al., 2000 [4]).
This is usually performed by including covariates depending on the history, such
as the time of transition to the current state or the time since entry into the
current state. This assumption was verified for the Stanford Transplant Study,
e.g. by Hougaard (1999) [21], which conclude that there is no effect of time since
transplant on mortality, and thus that the Markov model is satisfactory. This is
important, because otherwise, the consistency of the Aalen-Johansen estimator
and the new estimator based on presmoothing cannot be ensured. On the other



1502 A. Moreira et al.

0 200 400 600 800 1000 1200 1400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sojourn time in state 1

P
ro

ba
bi

lit
y 

of
 u

nc
en

so
rin

g

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Total time

P
ro

ba
bi

lit
y 

of
 u

nc
en

so
rin

g

Fig 4. Presmoothing functions m0 (left) and m1 (right) estimated by logistic models. Stanford
Heart Transplant data.

hand, if markovianity is fulfilled, the use of these methods is a wise choice. To
deal with ties, a re-definition of the empiricals M0n(y) and M1n(y) is needed.

Put Z̃i:n for the i-th ordered Z-statistics. Similarly, put T̃i:n for the i-th ordered
T-statistics. For y = Z̃k:n we define M̃0n(y) = 1

n

∑n
i=k I(Z̃i:n ≥ y) while for

y = T̃k:n we define M̃1n(y) =
1
n

∑n
i=k I(Z̃[i:n] < y ≤ T̃i:n) where Z̃[i:n] is the i-th

concomitant (i.e. the Z-value attached to T̃i:n). When there are no ties, these
empiricals reduce to those introduced in section 2.

Our aim with this application is to illustrate the differences between the es-
timated transition probabilities from Aalen-Johansen estimator (AJ) and the
semiparametric estimator based on presmoothing (P-AJ). The semiparametric

estimator was obtained using standard logistic regression for m0n(z) = P̂ (∆1 =

1|Z̃ = z) and m1n(z, t) = P̂ (∆ = 1|Z̃ = z, T̃ = t,∆1ρ = 1). Figure 4 displays
these functions for the Stanford heart data. The noise around displayed line
comes from the fact that the variable z is omitted in the plot while it is present
in the model. In Table 2 we present the summary (coefficients, standard errors
between brackets and p-value) of the two presmoothing functions. In this case

the influence of Z̃ is not statistically significant on m1(z, t). The goodness-of-
fit test that we used for testing the parametric presmoothing functions is an
application of the Kolmogorov-Smirnov type version of the model-based boot-
strap approach described in Dikta et al (2006) [18]. The Kolmogorov-Sminorv
test was used for testing the parametric logistic presmoothing functions m0n(z),
m1n(z, t). In both cases the test was not able to reject the logistic model (re-
spectively p-values of 0.638 and 0.237). We also show the goodness-of-fit test
proposed by Hosmer and Lemeshow (1989) [20] was used for testing the para-
metric logistic presmoothing functions m0n(z), m1n(z, t). In both cases the test
was not able to reject the logistic model (without reaching statistical signifi-
cance, p-value=0.218 and p-value=0.566).
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Fig 5. Estimated transition probabilities for pij(s, t) with s = 16 based on the Aalen-Johansen
estimator (on the left) and based on the presmoothed Aalen-Johansen estimator (on the right)
with the corresponding 95% pointwise confidence bands. Stanford Heart Transplant data.

Figure 5 plot, for the two methods, the estimated transition probabilities
pij(s, t), 1 ≤ i ≤ j ≤ 3 together with pointwise confidence bands based on the
bootstrap. The bootstrap estimates were obtained for B = 1000 replicates, by
randomly sampling the n items from the original data set with replacement.
The bootstrap estimates were used to obtain the 95% limits for the confidence
interval of p11(s, t), p12(s, t) and p22(s, t). The value s was chosen to be the
median of the total time (s = 90 days). As expected, the P-AJ estimator has
less variability than the AJ estimator, which has fewer jump points as t in-
creases. For example, the extra jump points of the presmoothed AJ estimator
of p22(s, t) correspond to transplanted patients with censored values of the total
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Table 2

Summary of the two presmoothing functions m0n and m1n based on logistic models

Presmoothing functions Estimated coefficients p-value
m0n(z) = (1 + exp(γ̂0 + γ̂1z))−1 γ̂0 = 4.2605(0.8310) 2.94e-07

γ̂1 = −0.0093(0.0042) 0.0283

m1n(z, t) = (1 + exp(β̂0 + β̂1z + β̂2t))−1 β̂0 = 2.1148(0.5052) 2.83e-05

β̂1 = −0.0089(0.0058) 0.1281

β̂2 = −0.0025(0.0007) 0.0006

time. However, both methods provide similar point estimates for all values of
time. In sum, the new approach provides more reliable curves with less variabil-
ity and accordingly narrower pointwise confidence bands.

5. Conclusions and final remarks

There has been several recent contributions for the estimation of the transition
probabilities in the context of multi-state models. However, the Aalen-Johansen
estimator is still the standard method for estimating these quantities in Markov
models. In this paper we propose a modification of Aalen-Johansen estimator
in the illness-death model, based on a preliminary estimation (presmoothing) of
the censoring probability for the total time (respectively, of the sojourn time in
state 1), given the available information. An interesting open question is if this
idea can be generalized (and how) to more complex multi-state models.

We have derived the consistency of the proposed estimators. The consistency
result is not restricted to parametric presmoothing, but it also includes the pos-
sibility of using some nonparametric estimators to this end. We verified through
simulations that the method based on the presmoothing may be much more
efficient than the original Aalen-Johansen estimators, even when there is some
misspecification in the chosen parametric family. To this regard, it is worth
mentioning that possible misspecifications in the presmoothing model will in-
troduce some bias, while still allowing for a variance reduction. The size of the
bias will depend on the misspecification level of the chosen presmoothing model,
and on the amount of censored information. Dikta et al. (2005) [17] studied this
problem under a misspecified parametric model, showing that the bias compo-
nent increases with the model’s misspecification degree and the proportion of
censored observations.

In a different context, the relative importance of introducing parametric in-
formation with censored data was investigated by Miller (1983) [26]. Similarly,
in our scenario, relative advantages of presmoothing are more clearly seen with
an increasing censoring degree and at the distribution’s right tail. In such a case,
standard corrections for censoring typically exhibit a large variance; however,
presmoothing functions, when accurately estimated, offer a joint control of both
the bias and the variance in estimation. Importantly, the validity of a given
model for presmoothing can be checked graphically or formally, by applying a
goodness-of-fit tests (e.g. Dikta et al., 2006 [18] and Hosmer and Lemeshow,
1989 [20] for the logistic model). This implies that the risk of introducing a
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large bias through a misspecified model can be controlled in practice. We illus-
trated the proposed methodology and all this preliminary investigation of the
presmoothing model using data from the Stanford Heart transplant study.

We have not investigated the semiparametric efficiency of the proposed pres-
moothed Aalen-Johansen estimator. Indeed, there is some lack of research in
this line even for the basic estimators introduced in the seminal papers on semi-
parametric censorship models (Dikta, 1998 [15]; Dikta et al., 2005 [17]). As an
exception, we point out that efficiency results are available for some partic-
ular family of semiparametric censorship models (see e.g. Zhang, 2004 [28]).
We wonder if these type of results can be derived also for the semiparametric
Aalen-Johansen estimator. This is an interesting topic for our future research.

In this paper we have not dealt with the possible effect of covariates on
the transition probabilities. However, it is possible to include covariates in the
presmoothed estimator following the usual approach for Markov models. For
this, one just considers each transition probability as a certain transformation
of the transition intensity functions. Then, transition intensities may be allowed
to depend on covariates following Cox-type regression models. See e.g. Andersen
et al. (2000) [4]. In order to estimate the regression parameters and the baseline
transition intensities, one needs however to adapt the likelihood function to
the new setting of presmoothing in which some parametric information on the
conditional probability of uncensoring is available. Details are not obvious and
will be considered in our future research.

The original and the presmoothed AJ estimators are consistent in Markov
models. If the Markov property is violated, then the consistency of the time-
honored Aalen-Johansen estimator and of its presmoothed version can not be
ensured in general. Exceptions to this are the estimator for p11(s, t) (for which
the Markov assumption is empty) or for pij(0, t) (the so-called stage occupation
probabilities, see Datta and Satten, 2001 [9]). Alternative estimators of the tran-
sition probabilities not relying on the Markov condition were recently proposed
(Meira-Machado et al., 2006 [24]; Amorim et al., 2011 [2]). As a drawback, these
alternative methods will suffer from a larger variance in estimation, particularly
when the sample size is small and there is a large censoring degree. Conse-
quently, AJ-type estimators will be preferred when there is no strong evidence
against the Markov condition.
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Appendix: Technical proofs

In this Section we give the proof to Theorem 1. Throughout this Section p̂ij(s, t)
stands for the presmoothed Aalen-Johansen estimator p̂PAJ

ij (s, t). Theorem 1(a)
is a consequence of Dikta (1998) [15]. Now we prove Theorem 1(b), that is, the
uniform strong consistency of

p̂22(s, t) =
∏

s<T̃i≤t

[
1−

m1n(Z̃i, T̃i)I(Z̃i < T̃i)

nM̃1n(T̃i)

]

where (recall)m1n(z, t) is an estimator ofm1(z, t) = P (∆ = 1|Z̃ = z, T̃ = t, Z̃ <

T̃ ) and where (recall) M̃1n(y) = n−1
∑n

j=1 I(Z̃j < y ≤ T̃j) is the empirical

counterpart of M̃1(y) = P (Z̃ < y ≤ T̃ ). Since continuity is assumed throughout,

note that ∆1ρ = I(Z̃ < T̃ ). The following notation will be used: I(s, t) =
{
i :

s < T̃i ≤ t, Z̃i < T̃i} and I∗(s, t) =
{
i : s < T̃i ≤ t, Z̃i < T̃i,m1n(Z̃i, T̃i) > 0

}
.

With this notation, we have

p̂22(s, t) =
∏

i∈I(s,t)

[
1−

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
=

∏

i∈I∗(s,t)

[
1−

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

]
.

Note that p̂22(s, t) = 0 may happen; indeed, this is the case whenever

nM̃1n(T̃i) = 1 and m1n(Z̃i, T̃i) = 1 for some i ∈ I(s, t). In order to avoid prob-
lems when taking logarithms, introduce the following approximation to p̂22(s, t):

p22(s, t) =
∏

i∈I(s,t)

nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)
.

Since
∣∣∏

j aj −
∏

bj
∣∣ ≤ ∑

j |aj − bj| for |aj | , |bj | ≤ 1, we have

|p̂22(s, t)− p22(s, t)| ≤
∑

i∈I(s,t)

m1n(Z̃i, T̃i)
2

n2M̃1n(T̃i)2
.

We will refer to the following Lemma, which follows from e.g. Corollary 5.2.3 in
de la Peña and Giné (1999) [10].

Lemma 1. We have w.p. 1 supy

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣ → 0.

Under condition M , from Lemma 1 we have eventually for y ∈ [τ0, τ1] and
some constant c > 0

M̃1n(y) ≥ inf
τ0≤y≤τ1

M̃1(y)− sup
τ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣ ≥ c.
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Hence we have w.p. 1

sup
τ0≤s<t≤τ1

|p̂22(s, t)− p22(s, t)| = O(n−1). (A.1)

Now write

p22(s, t)− p22(s, t) = exp(log p22(s, t))− exp(−Ψn(s, t))

+ exp(−Ψn(s, t))− exp(−Ψ(s, t))

where

Ψ(s, t) =

∫ t

s

H1(dy)

M̃1(y)
, with H1(y) = P (T̃ ≤ y,∆ = 1, Z̃ < T̃ ),

and

Ψn(s, t) =
∑

i∈I(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)
.

Note that p22(s, t) = exp(−Ψ(s, t)) because of the Markov condition, and that

Ψ(s, t) = E

[
I(s < T̃ ≤ t)∆I(Z̃ < T̃ )

M̃1(T̃ )

]
= E

[
I(s < T̃ ≤ t)m1(Z̃, T̃ )I(Z̃ < T̃ )

M̃1(T̃ )

]
.

It will be shown that p22(s, t) = exp(−Ψ(s, t)) is indeed the limit of exp(−Ψn(s,
t)). This will follow from the mean-value theorem after proving the uniform
strong consistency of Ψn(s, t), which is the goal of the following Lemma.

Lemma 2. Under U2 and M we have w.p. 1 supτ0≤s<t≤τ1
|Ψn(s, t)−Ψ(s, t)|→ 0.

Proof. Write

Ψn(s, t) =
∑

i∈I(s,t)

m1(Z̃i, T̃i)

nM̃1(T̃i)
+

1

n

∑

i∈I(s,t)

[
m1n(Z̃i, T̃i)

M̃1n(T̃i)
−

m1(Z̃i, T̃i)

M̃1(T̃i)

]

≡ Ψ0
n(s, t) +Rn(s, t).

By the SLLN we have Ψ0
n(s, t) → Ψ(s, t) w.p. 1. Furthermore, under M we have

w.p. 1
sup

τ0≤s<t≤τ1

∣∣Ψ0
n(s, t)−Ψ(s, t)

∣∣ → 0. (A.2)

To see this, note that for s, t ∈ [τ0, τ1] we have under M

Ψ(s, t) ≤
1

infτ0≤y≤τ1 M̃1(y)
E
[
I(τ0 < T̃ ≤ τ1)∆I(Z̃ < T̃ )

]
< ∞.

Introduce

ϕs,t(u, v) =
I(s < v ≤ t)m1(u, v)I(u < v)

M̃1(v)
.
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Now, {ϕs,t : τ0 ≤ s < t ≤ τ1} is a VC-subgraph class (see Proposition 5.1.12
and comments following Definition 5.1.14 in de la Peña and Giné, 1999 [10]),
and ϕτ0,τ1 is an integrable envelope for that class. Hence, (A.2) follows from
Corollary 5.2.3 in de la Peña and Giné (1999) [10].

Now,

m1n(Z̃i, T̃i)

M̃1n(T̃i)
−

m1(Z̃i, T̃i)

M̃1(T̃i)
=

1

M̃1n(T̃i)

[
m1n(Z̃i, T̃i)−m1(Z̃i, T̃i)

]

+
m1(Z̃i, T̃i)

M̃1n(T̃i)M̃1(T̃i)

[
M̃1(T̃i)− M̃1n(T̃i)

]
.

Under U2 and M we have

sup
τ0≤s<t≤τ1

|Rn(s, t)|

≤


supz<t,τ0≤t≤τ1

|m1n(z, t)−m1(z, t)|

c
+

supτ0≤y≤τ1

∣∣∣M̃1n(y)− M̃1(y)
∣∣∣

c′




×
1

n

n∑

i=1

I(τ0 < T̃i ≤ τ1)I(Z̃i < T̃i) = o(1) w.p. 1.

Then the assertion of Lemma 2 follows.

By the mean-value theorem,

exp(log p22(s, t))− exp(−Ψn(s, t))

= (Ψn(s, t) + log p22(s, t)) exp(−ξ∗n(s, t))

for some ξ∗n between Ψn and − log p22. Now:

log p22(s, t) =
∑

i∈I∗(s,t)

log

[
nM̃1n(T̃i)

nM̃1n(T̃i) +m1n(Z̃i, T̃i)

]

=
∑

i∈I∗(s,t)

log

[
1−

1

xi

]

where

xi =
nM̃1n(T̃i)

m1n(Z̃i, T̃i)
+ 1.

Note that xi is well defined for i ∈ I∗(s, t) and that xi > 1 (because nM̃1n(T̃i) ≥
1 for i ∈ I∗(s, t)). Use

log

(
1−

1

x

)
= −

∞∑

k=1

1

kxk
, x > 1,
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to write

log p22(s, t) = −
∑

i∈I∗(s,t)

∞∑

k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
.

Hence

Ψn(s, t) + log p22(s, t) =
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)

−
∑

i∈I∗(s,t)

∞∑

k=1

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k

=
∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))

−
∑

i∈I∗(s,t)

∞∑

k=2

m1n(Z̃i, T̃i)
k

k(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k
≡ I + II.

Under M we have, uniformly in τ0 ≤ s < t ≤ τ1, I = O(n−1) w.p. 1. Besides,
by noting

∞∑

k=2

xk =
1

1− x
− 1− x =

x2

1− x
, x < 1,

we have that the absolute value of II is bounded by (take x = m1n(Z̃i, T̃i)/

(nM̃1n(T̃i) +m1n(Z̃i, T̃i)) )

∑

i∈I∗(s,t)

∞∑

k=2

m1n(Z̃i, T̃i)
k

(nM̃1n(T̃i) +m1n(Z̃i, T̃i))k

=

n∑

i∈I∗(s,t)

m1n(Z̃i, T̃i)
2

nM̃1n(T̃i)(nM̃1n(T̃i) +m1n(Z̃i, T̃i))
= O(n−1)

w.p. 1. uniformly in τ0 ≤ s < t ≤ τ1. This shows that

sup
τ0≤s<t≤τ1

|Ψn(s, t) + log p22(s, t)| = O(n−1) w.p. 1

and consequently

sup
τ0≤s<t≤τ1

|exp(log p22(s, t))− exp(−Ψn(s, t))| = O(n−1) w.p. 1. (A.3)

Now, use the mean-value theorem to write

exp (−Ψ(s, t))− exp (−Ψn(s, t)) = [Ψn(s, t)−Ψ(s, t)] exp(−ξn(s, t))
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from which

sup
τ0≤s<t≤τ1

|exp (−Ψ(s, t))− exp (−Ψn(s, t))| ≤ sup
τ0≤s<t≤τ1

|Ψn(s, t)−Ψ(s, t)| .

Then Theorem 1(b) follows from Lemma 2, (A.3), (A.1), and the decomposition

p̂22(s, t)− p22(s, t) = p̂22(s, t)− p22(s, t)

+ exp(log p22(s, t)) − exp (−Ψn(s, t))

+ exp (−Ψn(s, t)) − exp (−Ψ(s, t)) .

In order to prove Theorem 1(c) write, with J(s, t) =
{
i : s < Z̃i ≤ t, Z̃i < T̃i

}
,

p̂12(s, t) =
1

n

∑

i∈J(s,t)

p̂11(s, Z̃
−
i )p̂22(Z̃i, t)

M̃0n(Z̃i)

=
1

n

∑

i∈J(s,t)

[
p̂11(s, Z̃

−
i )− p11(s, Z̃i)

] p̂22(Z̃i, t)

M̃0n(Z̃i)

+
1

n

∑

i∈J(s,t)

[
p̂22(Z̃i, t)− p22(Z̃i, t)

] p11(s, Z̃i)

M̃0n(Z̃i)

+
1

n

∑

i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

[
1

M̃0n(Z̃i)
−

1

M̃0(Z̃i)

]

+
1

n

∑

i∈J(s,t)

p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)

≡ I(s, t) + II(s, t) + III(s, t) + IV (s, t)

where M̃0(y) = P (Z̃ ≥ y). Since, because of the Markov condition,

E

[
p11(s, Z̃i)p22(Z̃i, t)

M̃0(Z̃i)
I(s < Z̃i ≤ t, Z̃i < T̃i)

]
= p12(s, t),

the SLLN gives IV (s, t) → p12(s, t) w.p. 1. Furthermore, by using Proposition
5.1.12 in de la Peña and Giné (1999) [10] as in Lemma 2 above we get w.p. 1

sup
0≤s<t≤τ

|IV (s, t)− p12(s, t)| → 0.

It remains to show that I(s, t), II(s, t), and III(s, t) go to zero w.p. 1 uniformly
on [0, τ ]. But this is easily seen by using Theorem 1(a),(b), Glivenko-Cantelli,

and the fact that M̃0 is bounded away from zero on [0, τ ].
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