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Abstract: In the present paper we consider Laplace deconvolution prob-
lem for discrete noisy data observed on an interval whose length Tn may
increase with the sample size. Although this problem arises in a variety
of applications, to the best of our knowledge, it has been given very little
attention by the statistical community. Our objective is to fill the gap and
provide statistical analysis of Laplace deconvolution problem with noisy dis-
crete data. The main contribution of the paper is an explicit construction of
an asymptotically rate-optimal (in the minimax sense) Laplace deconvolu-
tion estimator which is adaptive to the regularity of the unknown function.
We show that the original Laplace deconvolution problem can be reduced
to nonparametric estimation of a regression function and its derivatives on
the interval of growing length Tn. Whereas the forms of the estimators re-
main standard, the choices of the parameters and the minimax convergence
rates, which are expressed in terms of T 2

n/n in this case, are affected by the
asymptotic growth of the length of the interval.

We derive an adaptive kernel estimator of the function of interest, and
establish its asymptotic minimaxity over a range of Sobolev classes. We
illustrate the theory by examples of construction of explicit expressions
of Laplace deconvolution estimators. A simulation study shows that, in
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addition to providing asymptotic optimality as the number of observations
tends to infinity, the proposed estimator demonstrates good performance
in finite sample examples.
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1. Introduction

1.1. Formulation and motivation

Mathematical modeling of a variety of problems in population dynamics, math-
ematical physics, theory of superfluidity and many others fields leads to the
convolution type Volterra equation of the first kind of the form

q(t) =

∫ t

0

g(t− τ)f(τ)dτ, t ≥ 0, (1.1)

where q(t) is the known or observed function, g(t) is the known kernel and f(t)
is the unknown function to be solved for.

Note that the LHS of equation (1.1) is well defined for any t ≥ 0 if functions f
and g are Riemann integrable on any finite sub-interval of [0,∞). In particular,
f and g do not need to be absolutely or square integrable on the nonnegative
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half-line. Assume the existence of their Laplace transforms f̃(s) and g̃(s) for all
s ≥ 0, where

f̃(s) =

∫ ∞

0

e−sxf(x)dx, and g̃(s) =

∫ ∞

0

e−sxg(x)dx, s ≥ 0. (1.2)

In the Laplace domain, equation (1.1) becomes q̃(s) = g̃(s)f̃(s) and, therefore,
the problem (1.1) is also known as Laplace deconvolution problem.

In practice, however, one typically has only discrete observations of the func-
tion q in (1.1) which are available only on a finite interval and, in addition, are
corrupted by noise, that leads to the following discrete noisy version of equa-
tion (1.1)

y(ti) =

∫ ti

0

g(ti − τ)f(τ)dτ + σǫi, i = 1, . . . , n, (1.3)

where 0 ≤ t1 ≤ · · · ≤ tn ≤ Tn, ǫi are i.i.d. N(0, 1) variates, σ is the known
constant variance and Tn may grow with n.

Equations of the form (1.3) appear in many practical applications. Inves-
tigations in this paper have been motivated by analysis of dynamic contrast
enhanced imaging data and modeling of time-resolved measurements in fluores-
cence spectroscopy.

Example 1. Dynamic contrast enhanced imaging data (DCE-imaging).
DCE-imaging is widely used in cancer research (see, e.g., [5, 22, 23, 11, 12, 37, 39]
and [3]). Such imaging procedures have great potential for tumor detection and
characterization, as well as for monitoring in vivo the effects of treatments.
DCE-imaging follows the diffusion of a bolus of a contrast agent injected into a
vein. At the microscopic level, for a given unit volume voxel of interest, denote
by Y (t) the number of particles in the voxel at time t and by F (t) the c.d.f. of
a random lapse of time during which a particle sojourns in the voxel of interest.
Then, F (t) satisfies the following equation which can be viewed as a particular
case of equation (1.3):

Y (ti) =

∫ ti

0

AIF (t− τ)(1 − F (τ))dτ + σǫi, (1.4)

where AIF (t) is the Arterial Input Function which measures concentration of
particles within a unit volume voxel inside a large artery and can be estimated
relatively easily. Physicians are interested in a reproducible quantification of the
blood flow inside the tissue which is characterized by f(t) = 1−F (t), since this
quantity is independent of the number of particles of contrast agent injected
into the vein.

Example 2. Time-resolved measurements in fluorescence spectroscopy.
Time-resolved measurements in fluorescence spectroscopy are widely used for
studies of biological macromolecules and for cellular imaging (see, e.g., [1, 2, 20,
35, 38], and also the monograph of [27] and references therein). At present, in
fluorescence spectroscopy, most of the time-domain measurements are carried
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out using time-correlated single-photon counting. The measured intensity decay
is represented by the number of photons N(tk) that were detected within the
time interval (tk, tk + ∆t), and appears as a noisy convolution of the impulse
response function I(t) with a known lamp function L(t)

N(tk) =

∫ tk

0

L(tk − τ)I(τ)dτ + σǫk.

The objective is to determine the impulse response function I(x) that best
matches the experimental data.

1.2. Difficulty of the problem

The mathematical theory of (noiseless) convolution type Volterra equations is
well developed (see, e.g., [25]) and the exact solution of (1.1) can be obtained
through Laplace transform. However, direct application of Laplace transform for
discrete measurements faces serious conceptual and numerical problems. The
inverse Laplace transform is usually found by application of tables of inverse
Laplace transforms, partial fraction decomposition or series expansion (see, e.g.,
[41]), neither of which is applicable in the case of the discrete noisy version of
Laplace deconvolution.

Formally, by extending g(t) and f(t) to the negative values of t by setting
f(t) = g(t) = 0 for t < 0, equation (1.1) can be viewed as a particular case of
the Fredholm convolution equation

h(t) =

∫ ∞

−∞

g(t− τ)f(τ)dτ, (1.5)

whose discrete stochastic version

y(ti) =

∫ ∞

−∞

g(ti − τ)f(τ)dτ + σǫi, i = 1, . . . , n, (1.6)

known also as Fourier deconvolution problem, has been extensively studied in
the last thirty years (see, for example, [6, 9, 10, 13, 15, 16, 17, 26, 40, 42] among
others; see also monograph by [36] and references therein).

Unfortunately, the existing approaches to Fourier deconvolution cannot be
easily extended to solution of noisy discrete version of Laplace convolution equa-
tion (1.3). The body of work cited above addresses one of three situations: the
case when functions f and g are periodic with period T , density deconvolution,
and the case of random design, where ti in (1.6) are random variables generated
by some density function.

In the first setup, convolution (1.5) becomes circular convolution and mea-
surements in equation (1.6) are taken on an interval of fixed length T , so that
the problem can be solved by application of discrete Fourier transform. How-
ever, since the functions f and g are not periodic on [0, Tn], the integral in the
RHS of equation (1.3) is not a circular convolution and the discrete Fourier
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transform cannot be directly applied. Furthermore, the length of the interval
Tn may grow with n that affects the convergence rates. For relatively small Tn

(e.g., Tn ∼ logn), approximation of Fourier transform by its discrete version
will be very poor which results in low convergence rates of the estimator of f .

Density deconvolution problem and nonparametric regression estimation with
random measurements ti typically assume that, as n → ∞, the measurements
ti in (1.6) adequately represent the domain of h(t) in (1.5). In these setups
observations are absent on a particular part of the domain only if the density
which generates those observations is very low. This, however, is not at all
true for equation (1.3) where lack of observations for t > Tn is due entirely to
experimental design and has no relation to the values of the estimated function.

To the best of our knowledge, nobody tackled the problem of Fourier de-
convolution (1.6) when observations ti are non-random fixed quantities on an
interval of length Tn which grows with the number of observations. In addi-
tion, we should also mention the important causality property of the Laplace
deconvolution not shared by its Fourier counterpart, where the values of q(t) for
0 ≤ t ≤ Tn depend on values of f(t) for 0 ≤ t ≤ Tn only and vice versa. Finally,
we show that under mild conditions, the solution of the equation (1.3) can be
represented explicitly via derivatives of the RHS q(t) that implies computational
advantages of the proposed approach.

1.3. Existing results

Only few applied mathematicians took an effort to tackle the problem with
discrete measurements in the LHS of (1.1). [1] applied Laplace deconvolution
for the analysis of fluorescence curves and used a parametric presentation of
the solution f as a sum of exponential functions with parameters evaluated
by minimizing discrepancy with the RHS. In a somewhat similar manner, [34]
proposed to expand the unknown solution over a wavelet basis and find the
coefficients via the least squares algorithm. [33], following [44], studied numerical
inversion of the Laplace transform using Laguerre functions. Finally, [28] and
[7] used discretization of the equation (1.1) and applied various versions of the
Tikhonov regularization technique. However, in all of the above papers, the
noise in the measurements was either ignored or treated as deterministic. The
presence of random noise in (1.3) makes the problem even more challenging.

Unlike Fourier deconvolution that has been intensively studied in statisti-
cal literature (see references above), Laplace deconvolution received virtually
no attention within statistical framework. To the best of our knowledge, the
only paper which tackles the problem is [14] which considers a noisy version
of Laplace deconvolution with a very specific kernel of the form g(t) = be−at.
The authors use the fact that, in this case, the solution of the equation (1.1)
satisfies a particular linear differential equation and, hence, can be recovered
using q(t) and its derivative q′(t). For this particular kind of kernel, the authors
derived convergence rates for the quadratic risk of the proposed estimators, as n
increases, under the assumption that the m-th derivative of f is continuous on
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(0,∞). However, they assume that data is available on the whole nonnegative
half-line (i.e. Tn = ∞) and that m is known (i.e., the estimator is not adaptive).

1.4. Objectives and organization of the paper

For the reasons listed above, estimation of f from discrete noisy observations y
in (1.3) requires development of a novel approach. The objective of the present
paper is to fill the gap and to develop general statistical methodology for
Laplace deconvolution problem which allows to circumvent lack of observations
for t > Tn and leads to effective representation of f on the interval (0, Tn), no
matter what value Tn takes. We establish minimax convergence rates for Laplace
deconvolution setup over Sobolev classes and derive the adaptive estimator of
f which is rate-optimal over the entire range of Sobolev classes. The proposed
estimator is based on estimating q and its derivatives from noisy data y in (1.3),

where q(t) = (f ∗ g)(t) =
∫ t

0
g(t− τ)f(τ)dτ is the convolution of f and g. Thus,

one can use the numerous existing techniques for nonparametric estimation of
a function and its derivatives. In particular, we employ kernel estimators with
the global bandwidth adaptively selected by Lepski procedure.

An attractive feature of the estimation technique proposed in this paper is
that estimator of f is expressed explicitly via q and its derivatives. Another
interesting aspect of the considered model (1.3) is that the data is observed on
the interval of asymptotically increasing length, where Tn → ∞ as n → ∞.
This is indeed a reasonable assumption since, as n is growing, demands on
the improvements of the estimation precision require to decrease the bias by
sampling q(t) for larger and larger values of t. Dependence of T on n may
not significantly affect estimation procedures but evidently leads to different
convergence rates that are formulated in terms of T 2

n/n.
The rest of the paper is organized as follows. Section 2 delivers main results of

the paper. In particular, Section 2.1 introduces notations and assumptions used
throughout the paper. In Section 2.2 we derive the lower bounds on the mini-
max risk of estimating f in (1.3). Section 2.3 reviews some mathematical results
for noiseless Laplace deconvolution relevant for constructing the proposed esti-
mator. Section 2.4 is dedicated to explicit derivation of Laplace deconvolution
estimator in model (1.3), while Section 2.5 establishes its asymptotic adaptive
minimaxity over the entire range of Sobolev classes. Section 3.1 contains exam-
ples of explicit estimators of Laplace deconvolution for various types of kernels
g. The results of a simulation study are presented in Section 3.2. Section 4
concludes the paper with discussion. All the proofs are given in Appendix.

2. Main results

2.1. Notations and assumptions

In this section we introduce notations and assumptions used throughout the
paper.
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The Lk(R
+)-norm of the function h is denoted by ‖h‖k and ‖h‖∞ is the

supremum norm of h. If k = 2 and there is no ambiguity, we shall omit the
subscript in the notation of the norm, i.e. ‖h‖ = ‖h‖2. We use the standard
notation W r,p(R+) for a Sobolev space of functions on [0,∞) that have r weak
derivatives with finite Lp-norms and omit p in this notation if p = 2, that is,
W r(R+) = W r,2(R+). In addition, we shall omit R+ in the notations of the
norms and functional spaces and, unless the opposite is stated, assume that all
functions are defined on the nonnegative part of the real line.

Let r ≥ 1 be such that

g(j)(0) =

{
0, if j = 0, . . . , r − 2,
Br 6= 0, if j = r − 1,

(2.1)

with obvious modification g(0) = B1 6= 0 for r = 1.
Assume now the following conditions on the unknown f and the known kernel

g in (1.1):

(A1) g ∈ W r,1 ∩W ν , ν ≥ r.
(A2) Let Ω be the collection of distinct zeros of the Laplace transform g̃ of g.

Then all zeros s’s of g̃ have negative real parts, i.e.,

s∗ = max
s∈Ω

Re(s) < 0.

(A3) f ∈ Wm where m ≤ ν + 1− r.

Finally, we impose the following assumption on Tn and design points ti,
i = 1, . . . , n:

(A4) Let Tn be such that Tn → ∞ but n−1 T 2
n → 0 as n → ∞ and there exist

1 ≤ µ < ∞ such that maxi |ti − ti−1| ≤ µn−1Tn.

In what follows, we use the symbol C for a generic positive constant, in-
dependent of the sample size n, which may take different values at different
places.

2.2. Lower bounds for the minimax risk

In order to establish a benchmark for an estimator of an unknown function
f from its noisy Laplace convolution (1.3) we derive the asymptotic minimax
lower bounds for the L2([0, Tn])-risk over a Sobolev ballWm

A of radius A. It turns
out that, unlike in the density deconvolution problem or Fourier deconvolution
setup, the rates of convergence depend on the length of the interval Tn and are
expressed in terms of the ratio T 2

n/n:

Theorem 1. Let condition (2.1) and Assumptions (A1)–(A4) hold. Then, there
exists a constant C > 0 such that

inf
f̂n

sup
f∈Wm

A

E||f̂n − f ||2L2([0,Tn])
≥ C

(
T 2
n

n

) 2m
2(m+r)+1

, (2.2)
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where the infimum is taken over all possible estimators f̂n of f , and, therefore,

inf
f̂n

sup
f∈Wm

A

E||f̂n − f ||2L2([0,∞)) ≥ C

(
T 2
n

n

) 2m
2(m+r)+1

.

2.3. Solution of noiseless Volterra equation

As we have already mentioned, unlike Fourier deconvolution, an estimator f̂n
of the unknown f in (1.3) can be obtained explicitly in the closed form. To

understand the motivation for the proposed f̂n we find first the exact solution
of the noiseless Volterra equation (1.1).

Taking derivatives of both sides of (1.1) under (2.1) and Assumptions (A1),
(A3), one obtains

q(j)(t) =

∫ t

0

g(j)(t− τ)f(τ)dτ, j = 1, . . . , r − 1;

· · ·

q(r)(t) = Brf(t) +

∫ t

0

g(r)(t− τ)f(τ)dτ, (2.3)

which is the Volterra equation of the second kind. Taking higher-order deriva-
tives, (2.3) yields

q(r+1)(t) = Brf
′(t) + g(r)(t)f(0) +

∫ t

0

g(r)(t− τ)f ′(τ)dτ,

· · ·

q(r+m)(t) = Brf
(m)(t) +

m−1∑

j=0

g(r+j)(t)f (j)(0) +

∫ t

0

g(r)(t− τ)f (m)(τ)dτ.

Then, under Assumptions (A1) and (A3), one has q(r+m) ∈ L2 and, hence,
q ∈ W r+m.

In addition, due to Assumptions (A1) and (A3), condition (2.3) implies that
q(r) ∈ L1 and, therefore, one can use the following known facts from the theory
of Volterra equations of the second kind:

1. there exists a unique solution φ of the equation

g(r)(t) = Brφ(t) +

∫ t

0

g(r)(t− τ)φ(τ)dτ (2.4)

called a resolvent of g(r) (see Theorem 3.1 of [25]);
2. there exists a unique solution f of (2.3) and, therefore, of the original

equation (1.1), which can be written as

f(t) = B−1
r q(r)(t)−B−1

r

∫ t

0

q(r)(t− τ)φ(τ)dτ (2.5)

(see Theorem 3.5 of [25]).
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Remark 1. Assumption (A2) ensures that the solution f(t) of the noiseless
Laplace convolution equation (1.1) is numerically stable. By Half-Line Paley-
Wiener theorem (see Theorem 2.4.1 of [25]), the resolvent φ(τ) of g in (2.4) is
absolutely integrable if and only if Assumption (A2) is satisfied. If g̃ has roots
with positive real parts, then, by Corollary 2.4.2 from the same book, φ(τ) is
growing at an exponential rate, so that e−sτφ(τ) is absolutely integrable for any
s > s∗, where s∗ is defined in assumption (A2).

It follows from the above that, in order to solve the noiseless Volterra equation
(1.1), one only needs to determine a resolvent φ in (2.4) defined entirely by the
r-th derivative g(r) of the (known) kernel g. Taking Laplace transform of both
sides of (2.4) yields

g̃(r)(s) = Brφ̃(s) + g̃(r)(s)φ̃(s)

where, due to (2.1), one has g̃(r)(s) = sr g̃(s) − Br. Therefore, φ(t) can be
obtained as an inverse Laplace transform of φ̃, where

φ̃(s) =
sr g̃(s)−Br

sr g̃(s)
. (2.6)

Behavior of the resolvent function φ is thus determined by the properties g̃. It
turns out (see, e.g., [25], Chapter 7) that, under Assumption (A2) and (2.1), g̃ is
analytic and, hence, all its zeros are well separated. Moreover, φ can be presented
as the sum of a polynomial of degree (r−1) and an absolutely integrable function.
In a variety of practical applications, the kernel g is represented by a combination
of some elementary functions and, hence, g̃ is not an oscillating function. Hence,
the number of zeros of g̃ is finite and, since g̃ is an analytic function, these zeros
are of finite orders. In this case, solution f can be written explicitly as it follows
from the following theorem:

Theorem 2. Let condition (2.1) and Assumptions (A1)–(A3) hold. Then, the
resolvent φ in (2.6) is of the form

φ(t) =

r−1∑

j=0

a0,j
j!

tj + φ1(t), (2.7)

where φ1 ∈ L1. Hence, by (2.5), f in (1.1) can be recovered as

f(t) = B−1
r


q(r)(t)−

r−1∑

j=0

a0,r−1−jq
(j)(t)−

∫ t

0

q(r)(t− τ)φ1(τ)dτ


 . (2.8)

If, in addition, g̃ has a finite number M of distinct zeros sl of orders αl, respec-
tively, l = 1, . . . ,M , then f is of the form

f(t) = B−1
r


q(r)(t)−

r−1∑

j=0

bjq
(r−1−j)(t)−

∫ t

0

q(t− x)φ
(r)
1 (x)dx


 , (2.9)
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where s0 = 0, α0 = r and

φ1(x) =
M∑

l=1

αl−1∑

j=0

al,jx
jeslx

j!
, (2.10)

al,j =
1

(αl − 1− j)!

dαl−j−1

dsαl−j−1

[
(s− sl)

αl φ̃(s)
] ∣∣∣∣∣

s=sl

, (2.11)

bj = a0,j +

M∑

l=1

min(j,αl−1)∑

i=0

(
j

i

)
al,is

j−i
l . (2.12)

Remark 2. Note that in Theorem 2, Assumption (A1) and condition (2.1) are
essential for explicit construction of estimators. However, calculations in (2.7)–
(2.12) can be carried out without Assumption (A2) being valid. Assumption
(A2) is only needed to ensure that φ1 ∈ L1. In particular, if the number of
zeros is finite, then Re(sl) < 0, l = 1, . . . ,M , implies that φ1 in (2.10) is a
sum of products of polynomials and exponentials with powers having negative
real parts and, hence, φ1 ∈ L1 ∩ L2. If some of zeros have positive real parts,

expansions (2.11) and (2.12) in Theorem 2 will still be valid but φ
(r)
1 will contain

exponential terms with positive powers that will grow and magnify the errors
of estimating q as t tends to infinity.

2.4. Adaptive estimation of Laplace deconvolution

Theorem 2 leads to an estimator f̂n in (1.3) of the semi-explicit form

f̂n(t) = B−1
r


q̂(r)(t)−

r−1∑

j=0

a0,r−1−j q̂(j)(t)−
∫ t

0

q̂(r)(t− τ)φ1(τ)dτ


 , (2.13)

where q̂(j)(t) are some estimators of q(j)(t), j = 0, . . . , r, and the function φ1

is expressed in terms of the inverse Laplace transform of the completely known
function φ̃ defined in (2.6). Under the additional (usually satisfied) condition
that g̃ has a finite number of zeros, the second statement of Theorem 2 leads to
an explicit expression for the estimator with φ1 defined by (2.10):

f̂n(t) = B−1
r


q̂(r)(t)−

r−1∑

j=0

bj ̂q(r−1−j)(t)−
∫ t

0

q̂(t− x)φ
(r)
1 (x)dx.


 (2.14)

Note that, unlike (2.13), the integral term in (2.14) involves q rather than
q(r) and, hence, the boundary effects of estimating derivatives do not propagate
to interior points of the interval [0, Tn].

Laplace deconvolution can be therefore reduced to nonparametric estimation
of q = f ∗ g ∈ W r+m (see Section 2.3) and its derivatives of orders up to r from
the discrete noisy data in the model

y(ti) = q(ti) + σǫi, i = 1, . . . , n,
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where 0 ≤ t1 ≤ · · · ≤ tn ≤ Tn, ǫi are i.i.d. N(0, 1) variates and σ > 0 is known.
This is a well-studied problem, and estimation can be carried out by a number of
various approaches, e.g., kernel estimation, splines, local polynomials, wavelets,
etc.

It is important to note however that for the problem at hand, the data is
sampled on an interval of asymptotically increasing length that calls for neces-
sary modifications of traditional estimators and affects their global convergence
rates on the interval [0, Tn] which are expressed in terms of n−1T 2

n .
For illustration, we consider kernel estimation with the global bandwidth

selected adaptively by Lepski technique. To estimate the j-th derivative of q(t),
j = 0, . . . , r, t ∈ [0, Tn], choose a kernel function Kj (not to be confused with
the convolution kernel g) of order (L, j) with L > r satisfying the following
conditions:

(K1) supp (Kj) = [−1, 1],Kj is twice continuously differentiable and
∫
K2

j (t)dt <
∞.

(K2)
∫
tlKj(t)dt =

{
0, l = 0, . . . , j − 1, j + 1, . . . , L− 1,
(−1)jj!, l = j.

Construction of such kernels is described in, e.g., [19].
Define a well-known Priestley-Chao type kernel estimator of q(j) with a

(global) bandwidth λj :

q̂
(j)
λ (t) =

1

λj+1
j

n∑

i=1

Kj

(
t− ti
λj

)
(ti − ti−1)yi. (2.15)

Certain routine boundary corrections are required for t close to the boundaries
(see [18] for details).

We utilize a general methodology developed by Lepski (e.g., [31]) for data-
driven selection of a bandwidth λj in (2.15). In particular, we apply the global
bandwidth version of [32] procedure and modify it also for estimating deriva-
tives.

The resulting procedure for choosing λj in (2.15) can be described as follows.
For each j, 0 ≤ j ≤ r, and the corresponding kernel Kj of order (L, j), L > r,
consider the geometric grid of bandwidths Λj , where

Λj = {λl = a−l, l = 0, 1, . . . , Jn; Jn = (2j + 1)−1 loga(nσ−2 T−2
n )}, (2.16)

and a > 1 is an arbitrary constant. Smaller values of a allow a finer choice
of the optimal bandwidth but increase computational complexity. Note that
cardinality of Λj does not exceed loga n since card (Λj) = 1 + Jn ≤ loga n.
Define

λ̂j,n = max

{
λ ∈ Λj : ‖q̂(j)λ − q̂

(j)
h ‖2[0,Tn]

≤
4C2

j σ
2T 2

n

nh2j+1
for all h ∈ Λj ,

(
σ2T 2

n

n

) 1
2j+1

≤ h < λ

}
, (2.17)
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where constants Cj are such that

C2
j > µ2‖Kj‖2 (2.18)

and µ is defined in Assumption (A4).

We then estimate q(j) by

q̂
(j)

λ̂j,n

(t) =
1

λ̂j+1
j,n

n∑

i=1

Kj

(
t− ti

λ̂j,n

)
(ti − ti−1)yi, l = 0, . . . , r, (2.19)

and plug (2.19) into (2.13) or (2.14).

Note that the resulting estimators f̂n are inherently adaptive to the smooth-
ness of the underlying function f in (1.3) which is rarely known in practice.

2.5. Adaptive minimaxity

The following theorem establishes the upper bound for the L2([0, Tn])-risk of

the estimator f̂n defined in Section 2.4 over Sobolev classes:

Theorem 3. Let condition (2.1) and Assumptions (A1)-(A4) hold. Consider
kernels Kj , j = 0, . . . , r of orders (L, j), L > r satisfying the conditions (K1)

and (K2). Let f̂n be the estimator of f of the form (2.13) or (2.14), where

q̂(j)(t)’s are given by (2.19). Then, for all 1 ≤ m ≤ min(L, ν + 1) − r, and
A > 0, one has

sup
f∈Wm

A

E‖f̂n − f‖2L2([0,Tn])
= O

((
T 2
n

n

) 2m
2(m+r)+1

)
. (2.20)

Under the additional conditions on f and Tn, the results of Theorem 3 can
be easily extended to the entire nonnegative half-line:

Corollary 1. Let conditions of Theorem 3 hold and also there exists ρ ≥ 1 such
that

∫∞

0
t2ρf2(t)dt < ∞ and limn→∞ T−2ρ

n n < ∞. Let f̂n be as in Theorem 3

for t ≤ Tn and f̂n ≡ 0 for t > Tn. Then,

sup
f∈Wm

A

E‖f̂n − f‖2L2([0,∞)) = O

((
T 2
n

n

) 2m
2(m+r)+1

)

for all 1 ≤ m ≤ min(L, ν + 1)− r and A > 0.

Note that the upper bounds established in Theorem 3 and Corollary 1 co-
incide with the minimax lower bound for the risk obtained in Theorem 1 and,
thus, cannot be improved. Hence, the derived Laplace deconvolution estimators
are asymptotically adaptively minimax over the entire range of Sobolev classes.
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3. Examples and simulation study

3.1. Examples of explicit Laplace deconvolution estimators

In what follows, we shall consider two examples of construction of explicit esti-
mators of f in the Laplace convolution problem.

Example 1. Consider (1.3) with

g(t) = (bt− sin(bt))e−at, a > 0.

It is easy to see that r = 4 and B4 = b3 in (2.1), and g̃ is of the form

g̃(s) = b3(s+ a)−2((s+ a)2 + b2)−1. (3.1)

Hence, g̃(s) has no zeros and one can use Theorem 2 for recovering and esti-
mating f . By (2.6) one has

φ̃(s) = −
(
4a

s
+

6a2 + b2

s2
+

4a3 + 2ab2

s3
+

a4 + a2b2

s4

)
,

so that, in (2.9) and (2.14), one has α0,0 = −4a, α0,1 = −(6a2 + b2), α0,2 =
−(4a3 + 2ab2), α0,3 = −(a4 + a2b2) and φ1(x) = 0. Hence, using (2.14)

f̂n(t) = b−3
[
q̂(4)λ̂n,4

(t) + 4aq̂′′′λ̂n,3
(t) + (6a2 + b2)q̂′′λ̂n,2

(t)

+(4a3 + 2ab2)q̂′λ̂n,1
(t) + (a4 + a2b2)q̂λ̂n,0

(t)
]
,

where λ̂n,l, l = 0, 1, . . . , 4, are defined in (2.17). The rate of convergence of f̂n

over Wm is given by (2.20) with r = 4 and is O

((
T 2
n

n

) 2m
2m+9

)
.

Example 2. Consider (1.3) with

g(t) = e−attr−1
k∑

j=0

ρj
(j + r − 1)!

tj , a > 0, (3.2)

where k ≥ 0 and r ≥ 1 are integers and ρ0 = 1. In this case, (2.1) holds with
Br = 1 and

g̃(s) = (s+ a)−(k+r)P(s),

where

P(s) =

k∑

j=0

ρj(s+ a)k−j . (3.3)

Therefore,

φ̃(s) =
srP(s)− (s+ a)k+r

srP(s)
,
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In particular, for k = 0 and r = 1, P(s) has no roots, so that b0 = −a and we
recover the result of [14]: f(x) = q′(t)+aq(t). For k = 1, ρ0 = 1 and ρ1 = b, one
has g(t) = e−at(bt+1) and g̃(s) = (s+a)−2(s+a+ b), so that P(s) has a single
root s1 = −(a+ b) of multiplicity α1 = 1. Hence, b0 = b2(a+ b), a1,0 = −b2 and
φ1(x) = −b2(a+ b)−1e−(a+b)x in formula (2.9) leading to the estimator of f of
the form

f̂n(t) = q̂′λ̂n,1
(t) + (a− b)q̂λ̂n,0

(t) + b2
∫ t

0

q̂λ̂n,0
(t− x)e−(a+b)xdx. (3.4)

The asymptotic minimax rate of convergence of f̂n in (3.4) over Wm is

O
(
(n−1 T 2

n)
2m

2m+3

)
.

For general values of k and r, the exact form of the solution (2.9) strongly
depends on the roots of the polynomial P(s) given by (3.3). Assume that P(s)

has k distinct roots. Then, P(s) =
∏k

l=1(s − sl) and 1/g̃(s) allows a partial
fraction decomposition

1

g̃(s)
=

r∑

j=0

αj(s+ a)j +

k∑

l=1

βl

s− sl
. (3.5)

By observing that
∑r

j=0 αjs
j is the quotient of sr+k and

∑k
j=0 ρjs

k−j , one can
recursively evaluate αj , j = 1, . . . , r, in (3.5) as

αr = 1, αr−l = −
l−1∑

j=max(0,l−k)

αr−jρl−j , l = 1, . . . , r.

The values of βl can be obtained by multiplying both sides of equation (3.5) by
P(s)/(s− sl) and setting s = sl:

βl = (sl + a)k+r
k∏

j=1

j 6=l

(sl − sj)
−1, l = 1, . . . , k.

The respective expression for f is of the form f = f1 + f2 where

f1(t) = q(r)(t) +
r−1∑

l=0

q(l)(t)
r∑

j=l

(
j

l

)
aj−lαj , (3.6)

f2(t) =
k∑

l=1

βl

∫ t

0

eslxq(t− x)dx, (3.7)

which can easily be reduced to representation (2.9).
Under assumptions (A2) and (A3), the asymptotic minimax rate of conver-

gence of the estimator (3.4) is provided by Theorem 3.
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3.2. Simulation study

In this section we present the results of a simulation study to illustrate finite
sample performance of the Laplace deconvolution procedure developed above.

First, we consider the data simulated according to the model (1.3) with five
convolution kernels g1, . . . , g5, where

g1(t) = e−5t(2t− sin(2t)), g2(t) = e−5t, g3(t) = e−t(2t+ 1).

Kernel g1 mimics an ideal behaviour of AIF in the DCE-imaging (see Example 1
in Section 1.1), while g2 and g3 are examples of kernels considered in Example 2
from Section 3.1. In particular, g2 corresponds to the framework of [14]. Kernels
g4 and g5 also fall within the general form of Example 2 from Section 3.1 with
r = 3 and were defined by the k roots s1, . . . , sk of the polynomial P(s) in (3.3).
For g4 we considered four roots (−4± 2.5i,−0.75± 1.5i), while for g5 we added
two more conjugate roots −2± 2i. Both g4 and g5 can be seen as more realistic
scenarios in the DCE-imaging. All the five kernels are presented on Figure 1.

The chosen true functions f in (1.3) are f1(t) = t2e−t, f2(t) = 1−Γ2,2(t) and
f3(t) = 1 − Γ3,0.75(t), where Γα,θ is the c.d.f of the Gamma distribution with
the shape parameter α and the scale parameter θ (see Figure 2). Functions f2
and f3 mimic sojourn time distributions of the particles of a contrast agent in
DCE-imaging experiments, while f1 is aimed to be a more general case.

The Laplace convolution q = f ∗ g which produces observations in (1.3) has
been numerically computed using trapezoidal rule for approximation of the inte-
gral. The noise levels for each of the kernels g1, . . . , g5 was chosen as σ0(gj)/2

i,
i = 0, . . . 4; j = 1, . . . , 5, where the nominal noise levels σ0(gj) were 0.001, 0.1,
0.01, 0.002, 0.002 for g1, . . . , g5 respectively. We ran simulations with n = 100
and n = 250 and regular design for the ti equally spaced between 0 and Tn = 10.
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Fig 1. From left to right and up to down: the kernels g1 to g5.
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Fig 3. Laplace convolution q (dotted red line) of the known kernel g and the unknown function
f , n = 100 noisy observations of q (green pluses) and estimated value of q (black line). The
choice of f and g used for each simulation are specified on each sub-figure by the convolution
product. The noise level has been chosen as σ0(gj)/2 for the three left figures and σ0(gj)/8
for the three right figures.

Following construction in [19], we derived kernels Kj of orders (L, j) for
estimating the derivatives q(j) of q, j = 0, . . . , r for various values of L. In our
simulations we used L = 8 as an upper bound of the regularity of the kernel since
higher values of L lead to numerically unstable computations and/or provide
very little advantage in terms of precision. Finally, we used boundary kernels
in order to stabilized the computations as suggested in [19]. In all simulations,
due to the regular fixed design, µ = 1 in Assumption (A4). We chose a = 1.2
in (2.16) and Cj = 1 in (2.18). Since the constant 4 in the Lepski’s threshold in
(2.17) is known to be too large for practical applications, we tried several values
and “tuned” it to 3.

Figures 3 and 4 provide examples of deconvolution estimators based on single
samples. Figure 5 illustrates that deconvolution estimators show good precision
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Fig 4. True unknown f (red dotted line) and its estimate (plain black line) for n = 100 (top
two lines) and n = 250 (bottom two lines).

although boundary effects in estimating high-order derivatives remain despite
the use of boundary kernels.

For each combination of true function f , kernel g, sample size n and the
noise level, we ran 400 simulations and calculated mean square errors. In order
to remove the influence of boundary effects (see comments above), we did not
include 20% of the boundary points (10% at each boundary). The box-plots of
the resulting mean square errors are presented on Figure 6. Table 1 shows the
average mean square errors and standard deviations (in parentheses) over 400
simulation runs.
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Fig 5. Example of estimation of unknown function f3 with kernel g5 using n = 250 and
σ0(g5)/4. Here r = 3. The top four sub-figures show true q and its three first derivatives q(s),
s = 1, 2, 3 (dotted red lines) and their estimators (plain black lines). Selected bandwidths are
specified for each estimator. Bottom left: the true function f (dotted red line) and its estimate
(plain black line). Bottom right: the kernel g5.

4. Discussion

In the present paper, we consider Laplace deconvolution problem with discrete
noisy data observed on the interval whose length Tn may increase with the
sample size n. Although this problem arises in a variety of applications, to the
best of our knowledge, it has been given very little attention by the statistical
community. Our objective was to fill this gap and to provide statistical analysis
of Laplace deconvolution problem with noisy discrete data.

The main contribution of the paper is explicit construction of a rate-optimal
(in the minimax sense) Laplace deconvolution estimator which is adaptive to
the regularity of the unknown function. We show that the original Laplace de-
convolution problem can be reduced to nonparametric estimation of a regression
function and its derivatives on the interval of growing length Tn. Although the
latter problem has been well studied on a finite interval, the asymptotic increase
of its length as the sample size grows raises a new challenge. Whereas the forms
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Fig 6. Box-plots of the mean square errors for n = 100, 400 simulation runs and each of the
triplets (g, f, σ0(g)). Each line represents a kernel from g1 (top) to g5 (bottom). Each column
represents an unknown function f from f1 (left) to f3 (right). In every sub-figure, going from
left to right, each boxplot corresponds to a different noise level σ0(gj)/2

i for i = 0, . . . , 4. The
empirical risks are presented on log-scale with the basis 10.

of the estimators remain standard, the choices of the parameters and the min-
imax convergence rates, which are expressed in terms of T 2

n/n in this case, are
affected by the asymptotic growth of the length of the interval.

In the present paper, we use kernel estimators with a global bandwidth adap-
tively chosen by the Lepski procedure (e.g., [31]) and establish asymptotic min-
imaxity of the resulting Laplace deconvolution estimator over a wide range of
Sobolev classes. One can, however, apply other types of estimators (e.g., local
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Fig 7. Box-plots of the mean square errors for n = 250. See Figure 6 for other details.

polynomial regression, splines or wavelets). In particular, we believe that the
use of wavelet-based methods can extend the adaptive minimaxity range from
Sobolev to more general Besov classes.

We illustrate the theory by examples of construction of explicit expressions
for estimators of f based on observations governed by equation (1.3) with vari-
ous kernels. Simulation study shows, that, in addition to providing asymptotic
optimality, the proposed Laplace deconvolution estimator demonstrates good
finite sample performance.

The present paper provides the first comprehensive statistical treatment of
Laplace deconvolution problem, though a number of open questions remain be-
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Table 1

Average (over 400 simulation runs) mean square errors and standard deviations (in
parentheses) for kernels g1 to g5 and unknown function f1 to f3, for n = 100 (upper part)

and n = 250 (lower part) and for the noise level equal to σ0(gj)/2
i,

j = 1, . . . , 5; i = 0, . . . , 4.

R̂(f̂) i=0 i=1 i=2 i=3 i=4

g1

f1 1.6e-2 (9.5e-3) 4.1e-3 (2.5e-3) 9.9e-4 (6.6e-4) 2.9e-4 (1.7e-4) 7.6e-5 (4.7e-5)

n
=

1
0
0

f2 1.7e-2 (1.0e-2) 4.5e-3 (2.8e-3) 1.4e-3 (8.4e-4) 6.7e-4 (4.2e-4) 3.4e-4 (1.9e-4)
f3 1.5e-2 (9.6e-3) 4.0e-3 (2.6e-3) 1.4e-3 (9.0e-4) 7.4e-4 (4.4e-4) 3.6e-4 (1.7e-4)

g2

f1 2.3e-3 (1.1e-3) 6.9e-4 (4.6e-4) 2.2e-4 (8.8e-5) 6.1e-5 (2.2e-5) 1.5e-5 (5.5e-6)
f2 3.5e-3 (1.5e-3) 8.2e-4 (4.0e-4) 2.9e-4 (1.3e-4) 7.5e-5 (2.8e-5) 2.4e-5 (7.7e-6)
f3 2.1e-3 (1.4e-3) 8.6e-4 (4.4e-4) 2.9e-4 (1.1e-4) 7.2e-5 (2.8e-5) 2.5e-5 (7.8e-6)

g3

f1 1.2e-2 (3.7e-3) 2.4e-3 (1.0e-3) 1.3e-3 (3.6e-4) 8.7e-4 (1.4e-4) 7.4e-4 (7.2e-5)
f2 1.4e-2 (3.8e-3) 3.5e-3 (9.2e-4) 2.2e-3 (5.0e-4) 1.7e-3 (1.9e-4) 1.6e-3 (9.1e-5)
f3 1.0e-2 (3.6e-3) 4.3e-3 (1.4e-3) 1.2e-3 (3.7e-4) 8.2e-4 (1.5e-4) 7.1e-4 (7.3e-5)

g4

f1 2.2e-2 (1.2e-2) 6.3e-3 (3.3e-3) 1.2e-3 (8.3e-4) 4.2e-4 (2.4e-4) 1.2e-4 (6.5e-5)
f2 2.0e-2 (1.2e-2) 6.6e-3 (3.6e-3) 1.8e-3 (1.0e-3) 6.0e-4 (3.1e-4) 3.6e-4 (1.1e-4)
f3 2.1e-2 (1.2e-2) 5.7e-3 (3.5e-3) 1.8e-3 (1.0e-3) 5.5e-4 (3.0e-4) 3.0e-4 (1.1e-4)

g5

f1 3.2e-2 (1.7e-2) 9.4e-3 (4.6e-3) 2.8e-3 (1.2e-3) 5.3e-4 (3.2e-4) 1.6e-4 (9.9e-5)
f2 2.7e-2 (1.7e-2) 9.8e-3 (4.5e-3) 2.9e-3 (1.5e-3) 8.8e-4 (4.7e-4) 3.4e-4 (1.4e-4)
f3 2.6e-2 (1.7e-2) 8.1e-3 (4.8e-3) 2.9e-3 (1.5e-3) 8.3e-4 (4.8e-4) 3.4e-4 (1.4e-4)

g1

f1 5.5e-3 (3.4e-3) 1.6e-3 (9.0e-4) 4.1e-4 (2.3e-4) 1.2e-4 (5.7e-5) 5.9e-5 (2.2e-5)

n
=

2
5
0

f2 7.0e-3 (3.8e-3) 1.9e-3 (1.2e-3) 1.0e-3 (5.6e-4) 5.3e-4 (2.6e-4) 1.6e-4 (9.1e-5)
f3 6.5e-3 (3.9e-3) 1.8e-3 (1.1e-3) 1.0e-3 (5.4e-4) 5.0e-4 (2.6e-4) 1.5e-4 (8.4e-5)

g2

f1 1.4e-3 (5.2e-4) 2.7e-4 (1.2e-4) 9.1e-5 (5.4e-5) 3.5e-5 (1.9e-5) 1.0e-5 (3.1e-6)
f2 1.2e-3 (5.4e-4) 3.7e-4 (1.8e-4) 1.3e-4 (5.2e-5) 3.8e-5 (1.1e-5) 1.1e-5 (3.2e-6)
f3 1.0e-3 (4.9e-4) 3.9e-4 (1.8e-4) 1.2e-4 (4.8e-5) 3.8e-5 (1.1e-5) 1.1e-5 (3.4e-6)

g3

f1 3.4e-3 (1.7e-3) 1.2e-3 (4.1e-4) 3.8e-4 (2.2e-4) 1.7e-4 (4.7e-5) 5.8e-5 (1.4e-5)
f2 3.6e-3 (2.2e-3) 1.4e-3 (3.8e-4) 2.3e-4 (1.1e-4) 9.6e-5 (3.4e-5) 4.8e-5 (1.2e-5)
f3 6.3e-3 (1.4e-3) 1.0e-3 (7.1e-4) 2.1e-4 (1.1e-4) 6.1e-5 (2.9e-5) 3.3e-5 (1.2e-5)

g4

f1 8.9e-3 (4.5e-3) 2.7e-3 (1.1e-3) 5.8e-4 (3.0e-4) 1.6e-4 (8.6e-5) 4.9e-5 (2.3e-5)
f2 8.8e-3 (4.6e-3) 2.9e-3 (1.5e-3) 8.2e-4 (3.8e-4) 2.8e-4 (1.5e-4) 1.6e-4 (9.6e-5)
f3 7.7e-3 (4.8e-3) 3.2e-3 (1.3e-3) 8.1e-4 (3.7e-4) 2.9e-4 (1.9e-4) 1.9e-4 (9.6e-5)

g5

f1 1.5e-2 (7.0e-3) 4.1e-3 (2.0e-3) 7.4e-4 (4.4e-4) 2.7e-4 (1.4e-4) 7.2e-5 (4.0e-5)
f2 1.3e-2 (6.7e-3) 4.6e-3 (1.9e-3) 1.3e-3 (6.4e-4) 4.3e-4 (2.3e-4) 2.4e-4 (9.9e-5)
f3 1.4e-2 (6.9e-3) 3.5e-3 (1.9e-3) 1.2e-3 (5.9e-4) 4.1e-4 (2.2e-4) 2.2e-4 (9.4e-5)

yond its scope. In particular, an interesting challenge would be to study Laplace
deconvolution with an unstable resolvent, where Assumption (A2) does not hold.
Another important problem would be to study the equation (1.3) when the ker-
nel g is not completely known and is estimated from observations.

5. Appendix

Throughout the proofs we use C to denote a generic positive constant, not
necessarily the same each time it is used, even within a single equation.

Proof of Theorem 1

Although the rates are derived by standard methods described in, e.g., [43],
the challenging part of the proof is constructing the set of test functions and,
subsequently, producing upper bounds for the Kullback-Leibler divergence.



Laplace deconvolution with noisy observations 1115

The main idea of the proof is to find a subset of functions F ⊂ Wm
A such

that for any pair f1, f2 ∈ F ,

‖f1 − f2‖2L2([0,Tn])
≥ 4C(T 2

nn
−1)2m/(2(m+r)+1) (5.1)

and the Kullback-Leibler divergence

K(Pf1 ,Pf2) =
||q1 − q2||2Rn

2σ2
≤ log card(F)

16
, (5.2)

where log stands for natural logarithm and vectors qj , j = 1, 2, have components
qji = (g ∗ fj)(ti), i = 1, . . . , n. The result will then follow immediately from
Lemma A.1 of [4]:

Lemma 1 (Bunea, Tsybakov, Wegkamp (2007), Lemma A.1). Let F be a set
of functions of cardinality card (F) ≥ 2 such that
(i) ‖f1 − f2‖2 ≥ 4δ2 for any f1, f2 ∈ F , f1 6= f2,
(ii) the Kullback divergences K(Pf1 ,Pf2) between the measures Pf1 and Pf2 sat-
isfy the inequality K(Pf1 ,Pf2) ≤ (1/16) log(card (F)) for any f1, f2 ∈ F .
Then, for some absolute positive constant C,

inf
f̃n

sup
f∈ F

Ef‖f̃n − f‖2 ≥ Cδ2,

where the infimum is taken over all estimates f̃n of f .

Without loss of generality, let us assume that the points are equally spaced,
i.e. ti − ti−1 = Tn/n, i = 1, . . . , n. To construct such a subset F , define integers

Mn ≥ 8 and N =
[

n
Mn

]
, the largest integer which does not exceed n/Mn. Let

λn = NTn/n and define points zl = l λn, l = 0, 1, . . . ,Mn. Note that the latter
implies that points of observation tj = j Tn/n in equation (1.3) are related to
zl as zl = tj where j = Nl for l = 1, . . . ,Mn and j ≤ NMn. Note also that
Tn

2Mn
≤ λn ≤ Tn

Mn
.

Let k(·) be an infinitely differentiable function with supp(k) = [0, 1] and such
that ∫ 1

0

xjk(x)dx = 0, j = 0, . . . , r − 1,

∫ 1

0

xrk(x)dx 6= 0. (5.3)

Introduce functions

ϕj(x) = L
λm
n√
Tn

k

(
x− zj−1

λn

)
l = 1, . . . ,Mn,

where the constant L > 0 will be defined later. Note that ϕj have non-overlapping
supports, where supp(ϕj) = [zj−1, zj ].

Consider the set of all binary sequences of the length Mn ≥ 8:

Ω =
{
ω = (ω1, . . . , ωMn

), ωj = {0, 1}
}
= {0, 1}Mn
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and the corresponding subset of functions

F = {fω : fω(t) =

Mn∑

j=1

wjϕj(t), ω ∈ Ω̃}. (5.4)

Here Ω̃ ⊂ Ω is such that log2 card(Ω̃) ≥ Mn/8 and the Hamming distance

ρ(ω1,ω2) =
∑Mn

j=1 I{ω1j 6= ω2j} ≥ Mn/8 for any pair ω1,ω2 ∈ Ω̃ (see, e.g.,

Lemma 2.9 of [43] for construction of Ω̃).
We now need to show that F in (5.4) is exactly the required set. Note first that

since the supports of ϕj are non-overlapping, for any fω ∈ F a straightforward
calculus yields

||fω||2L2([0,Tn])
≤

Mn∑

j=1

||ϕj ||2 = L2λ
2s+1
n

Tn
Mn||k||2 = L2λ2m||k||2 ≤ L2||k||2

Similarly,

||f (m)
ω ||2L2([0,Tn])

≤
Mn∑

j=1

||ϕ(m)
j ||2 =

L2

Tn
mλn||k(s)||2 = L2||k(m)||2 < ∞

and therefore fω ∈ Wm
A , where A = L||k||Wm . Furthermore,

||fω1 − fω2 ||2L2([0,Tn])
= L2λ

2m+1
n

Tn
||k||2ρ(ω1,ω2) ≥ L2λ

2m+1
n

Tn

Mn

8
≥ 4Cλ2m

n

and (5.1) holds provided λn ≥ C(T 2
nn

−1)−1/(2(m+r)+1) for some positive con-
stant C.

To verify (5.2), note that

K(P1, P2) =
1

2σ2

n∑

i=1

[q1(ti)− q2(ti)]
2 ≤ 1

σ2

2∑

j=1

Q(fj) (5.5)

where, suppressing index j, we write

Q(f) =

n∑

i=1

[∫ ti

0

g(ti − x)f(x)dx

]2

=
L2λ2m

n

Tn

n∑

i=1

[
Mn∑

l=1

ω
(j)
l

∫ ti

0

g(ti − x)k

(
x− zl−1

λn

)
dx

]2
.

In order to obtain an upper bound for Q(f) we need the following supple-
mentary lemma, the proof of which is presented at the end of the section.

Lemma 2. Introduce functions Kj(x) using the following recursive relation

K1(x) =

∫ x

0

k(t)dt, Kj(x) =

∫ x

0

Kj−1(t)dt, j = 2, . . . , r. (5.6)
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Then, under condition (5.3), functions Kj(x), j = 1, . . . , r, are uniformly bounded
and Kj(1) = 0, j = 1, . . . , r. Moreover,

∫ ti

0

g(ti − x)k

(
x− zl−1

λn

)
dx = λr

n

[
BrKr

(
ti − zl−1

λn

)
I(zl−1 ≤ yi ≤ zl)

+

∫ min(zl,ti)

min(zl−1,ti)

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]
.

(5.7)

Applying equation (5.7) to the integral in Q(f), obtain

Q(f) ≤ 2L2λ2m+2r
n T−1

n (∆1 +∆2) (5.8)

where

∆1 =

n∑

i=1

[
Mn∑

l=1

Br Kr

(
ti − zl−1

λn

)
I(zl−1 ≤ yi ≤ zl)

]2
,

∆2 =

n∑

i=1

[
Mn∑

l=1

∫ min(zl,ti)

min(zl−1,ti)

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]2
.

Observe that for any t and any l1 and l2 such that l1 6= l2, one hasKr(λ
−1
n (t−

zl1))Kr(λ
−1
n (t − zl2)) = 0. Also, for each i, Kr(λ

−1
n (ti − zl)) 6= 0 for only one

value of l, namely, for l = [i/N ] + 1 where [x] is the largest integer which does
not exceed x. Therefore,

∆1 ≤ B2
r

n∑

i=1

K2
r

(
ti − z[i/N ]

λn

)
≤ n B2

r‖Kr‖2∞, (5.9)

where ‖ · ‖∞ is the supremum norm. In order to obtain an upper bound for ∆2,
observe that for any nonnegative function F (x) one has

∫ min(zl,ti)

min(zl−1,ti)

F (x)dx ≤
∫ zl

zl−1

F (x)dx.

Hence, we derive

∆2 ≤
n∑

i=1

[
Mn∑

l=1

∫ zl

zl−1

∣∣∣∣g(r)(ti − x)Kr

(
x− zl−1

λn

)∣∣∣∣ dx
]2

≤
n∑

i=1

‖Kr‖2∞

[
Mn∑

l=1

∫ zl

zl−1

|g(r)(ti − x)|dx
]2

≤ n ‖g(r)‖2‖Kr‖2∞. (5.10)

Combining formulae (5.5)–(5.10), we obtain that, in order to satisfy the condi-
tion (5.2), we need the following inequality to hold

K(Pf1 ,Pf2) ≤
2L2λ2m+2r

n n

σ2Tn
‖Kr‖2∞[B2

r + ‖g(r)‖22] ≤
1

16

Mn log 2

8
. (5.11)
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Note that Tn

Mn

(
1 − Tn

Mn

)
≤ λn ≤ Tn

Mn
. Choosing Mn = Cn1/(2(m+r)+1) ×

T
(2(m+r)−1)/(2(m+r)+1)
n and observing that Tn/Mn → 0 as n → ∞, obtain

λn ≥ Tn/(2Mn) ≥ C(T 2
nn

−1)1/(2(m+r)+1). Therefore, both conditions (5.1) and
(5.2) hold and theorem is proved.

Proof of Theorem 2

To prove Theorem 2 we use the following Lemma 3 which can be viewed as a
version of Theorem 7.2.4 of [25] adapted to our notations.

Lemma 3. Let sg be such that

inf
Re(s)=sg

|g̃(s)| > 0 and lim
|s|→∞

Re(s)≥sg

|srg̃(s)| > 0. (5.12)

Then, solution φ(·) of equation (2.4) can be presented as

φ(t) =

L∑

l=0

αl−1∑

j=0

al,j
j!

tjeslt + φ1(t) (5.13)

where L is the total number of distinct zeros sl of sr g̃(s) such that Re(sl) >
Re(sg), αl is the order of zero sl and φ1 ∈ L1.

Choose sg such that s∗ < sg < 0. Then, the first condition in (5.12) immediately
follows from Assumption (A2). To validate the second assumption in (5.12),
note that for s = s1 + is2 conditions Re(s) ≥ sg and |s| → ∞ imply that either

s1 → ∞ or |s2| → ∞, or both. Recall that srg̃(s) = Br + G̃(r)(s). If s1 → ∞,
no matter whether s2 is finite or s2 → ∞, one has

lim
Re(s)→∞

|sr g̃(s)| = lim
Re(s)→∞

|Br +

∫ ∞

0

g(r)(t)e−stdt| = |Br| > 0. (5.14)

If s1 is finite, s1 ≥ sg, and |s2| → ∞, then Laplace transform g̃(r)(s) =∫∞

0 g(r)(t)e−stdt is equal to Fourier transform F [g(r)(t)e−s1t](s2) of function

g(r)(t)e−s1t at the point s2. Since g(r)(t)e−s1t ∈ L1(R
+), one obtains

lim
|s2|→∞

∫ ∞

0

g(r)(t)e−stdt = lim
|s2|→∞

F [g(r)(t)e−s1t](s2) = 0,

and (5.14) holds again. Hence, the second assumption in (5.12) is valid, and
Lemma 3 can be applied.

Note that, under Assumption (A2), g̃(s) has no zeros with Re(s) > sg and,
therefore, sr g̃(s) has a single zero of r-th order at s = 0. Lemma 3 yields then
that φ(t) = φ0(t) + φ1(t), where

φ0(t) =

r−1∑

j=0

a0,j
j!

tj , a0,j = φ(j)(0), (5.15)
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and integrating by parts, one has

∫ t

0

q(r)(t− τ)φ0(τ)dτ =
r−1∑

j=0

φ
(r−j−1)
0 (0)q(j)(t), (5.16)

that completes the proof of (2.8).
In order to prove (2.9) – (2.12), note that it follows from equation (2.6) that

φ̃(s) has poles sl, l = 0, . . . ,M , of respective orders αl, where s0 = 0 and α0 = r.
Since, by (5.14), one has

lim
|s|→∞

Re(s)≥sg

|sr g̃(s)| > 0

and, therefore, φ̃ does not have a pole at infinity. Then, φ̃ is a rational function
and, consequently, can be represented using Cauchy integral formula

φ̃(s) = − 1

2πi

M∑

l=0

∮

Cl

φ̃(z)

z − s
dz

where Cl, l = 0, . . . ,M , is a circle around the pole sl such that this circle does
not enclose any other pole of φ̃ (see [30], Section 5.14). Using Laurent expansion
of φ̃(z) around sl, we have

Il(s) =
1

2πi

∮

Cl

φ̃(z)

z − s
dz

= −
αl−1∑

j=0

1

(s− sl)j+1

1

(αl − 1− j)!

dαl−j−1

dsαl−j−1

[
(s− sl)

αl φ̃(s)
] ∣∣∣∣∣

s=sl

Combining the last two expressions and taking inverse Laplace transform of φ̃(s)
yields

φ(t) =
M∑

l=0

αl−1∑

j=0

al,j
j!

tjeslt = φ0(t) + φ1(t),

where φ0 is given by (5.15), same as before, and

φ1(t) =
M∑

l=1

αl−1∑

j=0

al,j
j!

tjeslt. (5.17)

Repeat calculations in (5.16) and also note that, by similar considerations, for
every j = 0, . . . , αl − 1, one can write

∫ t

0

q(r)(t− x)xjeslxdx =

r−1∑

k=0

q(r−k−1)(t)
dk

dxk

[
xjeslx

]
∣∣∣∣∣
x=0

+

∫ t

0

q(t− x)
d(r−1)

dx(r−1)

[
xjeslx

]
dx.
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To complete the proof, evaluate the derivatives, observe that

dk

dxk

[
xjeslx

]
∣∣∣∣∣
x=0

=

(
k

j

)
sk−j
l

and interchange summation with respect to j and k.

Proof of Theorem 3

Since the estimator (2.14) is just a particular form of the estimator (2.13), it is
sufficient to carry out the proof for the estimator (2.13) of f . From (2.8), one
immediately obtains

E||f̂n − f ||2[0,Tn]
≤ r + 2

B2
r

(
E||̂q(r)

λ̂r,n

− q(r)||2[0,Tn]
+

r−1∑

j=0

a20,r−1−jE||q̂(j)
λ̂j,n

− q(j)||2[0,Tn]

+ ||̂q(r)
λ̂r,n

∗ φ1 − q(r) ∗ φ1||2[0,Tn]

)
, (5.18)

where q̂
(j)

λ̂j,n

, j = 0, . . . , r are given in (2.19).

The proof is based on the following proposition which provides upper bounds

for the risks E||q̂(j)
λ̂j,n

− q(j)||2[0,Tn]
, j = 0, . . . , r in (5.18).

Proposition 1. Let condition (2.1) and Assumptions (A1)-(A4) hold. Let ker-
nel Kj be of order (L, j), where L > r and 0 ≤ j ≤ r, and satisfies Assumptions
(K1) and (K2). Then, for all A′ > 0,

sup
q∈Wm+r

A′

E||q̂(j)
λ̂j,n

− q(j)||2[0,Tn]
= O



(
T 2
n

n

) 2(r+m−j)
2(r+m)+1


 . (5.19)

In particular, Proposition 1 implies that the errors of estimating q(j) in (5.18)
are dominated by the estimation error of the highest order derivative q(r). Fur-
thermore, φ1 ∈ L1 (see Theorem 2) and, therefore,

‖̂q(r)
λ̂r,n

∗ φ1 − q(r) ∗ φ1‖2 ≤ ‖φ1‖1 · ‖q̂(r)n − q(r)‖2 = O

(
‖̂q(r)

λ̂r,n

− q(r)‖2
)

(see also Theorem 2.2.2 of [25]).
Thus, (5.18) and Proposition 1 yield

E||f̂n − f ||2[0,Tn]
= O

(
E||̂q(r)

λ̂r,n

− q(r)||2[0,Tn]

)
= O

((
T 2
n

n

) 2m
2m+2r+1

)
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Proof of Proposition 1

For simplicity of notations we drop the index n in λ̂j,n.

Recall that under Assumptions (A1)-(A3), q ∈ W r+m (see Section 2.3). By
the standard asymptotic calculus for kernel estimation (see, e.g., [18]) for esti-
mator (2.15) and any interior point t of (0, Tn), one then has

V ar

(
q̂
(j)
λ (t)

)
=

σ2

λ
2(j+1)
j

n∑

i=1

(ti − ti−1)
2K2

j

(
ti − t

λj

)

=
σ2

λ2j+1
j

Tn

n

∫
K2

j (u)du (1 + o(1)).

The required boundary corrections ensure the same order of error for the values
t close to the boundaries ([18]) and the integrated variance then is

Vj(λj) =

∫ Tn

0

V ar

(
q̂
(j)
λj

(t)

)
dt = V0j

T 2
n

λ2j+1
j n

(1 + o(1)), (5.20)

where V0j = σ2||Kj||2. Similarly, the integrated squared bias can be written as

B2
j (λj , q) =

∫ Tn

0

(
E

(
q̂
(j)
λj

(t)

)
− q(j)(t)

)2

dt = B0jλ
2(r+m−j)
j (1+o(1)), (5.21)

where B0j = B−1
0 ||q(r+m)||2||Kj||2 and B0 = 2 ((r +m− 1)!)

2
(2(r + m) −

1)(2(r +m) + 1). Hence, for any radius A′ > 0,

sup
q∈Wm+r

A′

E||q̂(j)λj
− q(j)||2L2([0,Tn)]

= sup
q∈Wm+r

A′

(
Vj(λj) +B2

j (λj , q)
)

= O

(
T 2
n

λ2j+1
j n

)
+O

(
λ
2(r+m−j)
j

)
. (5.22)

It follows from (5.20) and (5.21) that the asymptotically optimal bandwidth

that minimizes E||q̂(j)λj
− q(j)||2L2([0,Tn])

is

λ∗
j = O

((
T 2
n

n

) 1
2(r+m)+1

)
(5.23)

and the corresponding risk of estimating q(j) is given by

sup
q∈Wm+r

A′

E||q̂(j)λ∗
j
− q(j)||2L2([0,Tn])

= O



(
T 2
n

n

) 2(r+m−j)
2(r+m)+1


 . (5.24)
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Now we need to prove that (5.24) remains valid when λ∗
j is replaced by λ̂j

selected by Lepski procedure, that is,

sup
q∈Wm+r

A′

E||q̂(j)
λ̂j

− q(j)||2 = O



(
T 2
n

n

) 2(r+m−j)
2(r+m)+1




for all A′ > 0. Set dj and λ∗
j in (5.23) to be, respectively,

dj =
Cj − µ||Kj||

2||Kj||
, λ∗

j =

(
d2j

σ2B0

2(A′)2
T 2
n

n

) 1
2(r+m)+1

,

where Cj is defined in (2.18). Note that

E‖q̂(j)
λ̂j

− q(j)‖2 = E

{
‖q̂(j)

λ̂j

− q(j)‖2I(λ̂j ≥ λ∗
j )

}
+ E

{
‖q̂(j)

λ̂j

− q(j)‖2I(λ̂j < λ∗
j )

}

= ∆1 +∆2.

For λ̂j ≥ λ∗
j , equations (5.24) and (2.17) imply that uniformly over q ∈ Wm+r

A′

∆1 ≤ 2E

{
‖q̂(j)

λ̂j

− q
(j)
λ∗
j
‖2I(λ̂j > λ∗

j )

}
+ 2E

{
‖q̂(j)λ∗

j
− q(j)‖2I(λ̂j > λ∗

j )

}

= O
(
n−1T 2

n(λ
∗
j )

−(2j+1)
)
+O

(
(n−1T 2

n)
− 2(r+m−j)

2(r+m)+1

)

= O
(
(n−1T 2

n)
− 2(r+m−j)

2(r+m)+1

)
. (5.25)

For (n−1T 2
n)

1
2j+1 ≤ λ̂j < λ∗

j , by direct calculus similar to that carried out above,
one can show that

sup
q∈Wm+r

A′

E‖q̂(j)
λ̂j

− q(j)‖4 = O
(
(λ∗

j )
−2(2j+1)n−2T 4

n

)
+O((λ∗

n)
4(r+m−j)) = O(1).

Hence,

sup
q∈Wm+r

A′

∆2 ≤ sup
q∈Wm+r

A′

√
E‖q̂(j)

λ̂j

− q(j)‖4
√
P (λ̂j < λ∗

j )

= O


 sup

q∈Wm+r

A′

√
P (λ̂j < λ∗

j )


 . (5.26)

If λ∗
j > λ̂j , it follows from definition (2.17) of λ̂j that there exists h̃ < λ∗

j

such that ‖q̂(j)λ∗
j
− q̂

(j)

h̃
‖2 > 4C2

j n
−1σ2T 2

n h̃
−(2j+1), where, by (2.18) and definition

of dj , we have Cj = ‖Kj‖(µ + 2dj). It follows from (5.20) and (5.21) that, for
all h < λ∗

j , the variance term dominates the squared bias, that is,

sup
q∈Wm+r

A′

‖Eq̂
(j)
h − q(j)‖2 ≤ d2jσ

2‖Kj‖2n−1T 2
nh

−(2j+1).
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Hence, for all h̃ < λ∗
j and q ∈ Wm+r

A′ , one has

P

(
‖q̂(j)λ∗

j
− q̂

(j)

h̃
‖2 > 4C2

j n
−1σ2T 2

nh̃
−(2j+1)

)

< P

(
‖q̂(j)λ∗

j
− Eq

(j)
λ∗
j
‖2 > σ2‖Kj‖2(µ+ dj)

2n−1T 2
nh̃

−(2j+1)

)

+P

(
‖q̂(j)

h̃
− Eq

(j)

h̃
‖2 > σ2‖Kj‖2(µ+ dj)

2n−1T 2
n h̃

−(2j+1)

)

due to Cj − ‖Kj‖dj > ‖Kj‖(µ+ dj). Thus, uniformly over q ∈ W s+r
A′ , one has

P (λ̂j < λ∗
j ) ≤

∑

h∈Λj

h≤λ∗
j

P (h̃ = h) P

(
‖q̂(j)λ∗

j
− q̂

(j)
h ‖2 > 4 σ2C2

j n
−1T 2

nh
−(2j+1)

)
(5.27)

≤ 2
∑

h∈Λj

h≤λ∗
j

P (h̃ = h) P

(
‖q̂(j)h − Eq̂

(j)
h ‖2 ≥ σ2‖Kj‖2(µ+ dj)

2n−1T 2
nh

−(2j+1)

)
.

Note that

‖q̂(j)h −Eq̂
(j)
h ‖2 =

∥∥∥∥∥
n∑

i=1

h−(j+1)Kj

(
t−ti
h

)
(ti − ti−1)ǫi

∥∥∥∥∥

2

= h−(2j+1)n−2T 2
n ǫTQǫ,

where Q is an n× n symmetric nonnegative-definite matrix with elements

Qil =
n2

T 2
n

(ti − ti−1)(tl − tl−1)

∫ 1

−1

Kj(z)Kj

(
z +

ti − tl
h

)
dz. (5.28)

Then,

P

(
‖q̂(j)h − Eq̂

(j)
h ‖2 ≥ σ2‖Kj‖2(µ+ dj)

2n−1T 2
nh

−(2j+1)

)

= P
(
ǫTQǫ ≥ nσ2‖Kj‖2(µ+ dj)

2
)
. (5.29)

Applying a χ2-type inequality which initially appeared in [29], was improved by
[8] and furthermore by [21], we derive that, for any x > 0,

P

(
σ−2ǫTQǫ ≥

[√
Tr(Q) +

√
xρ2max(Q)

]2)
≤ e−x, (5.30)

where Tr(Q) is the trace of Q, and ρ2max(Q) is the maximal eigenvalue of Q.
Note that

Tr(Q) =
n2

T 2
n

n∑

i=1

(ti − ti−1)
2‖Kj‖2 ≤ nµ2‖Kj‖2,
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and ρ2max(Q) is the spectral norm of matrix Q which is dominated by any other
norm. In particular,

ρ2max(Q) ≤ max
k

n∑

l=1

|Qkl|

=
n2

T 2
n

max
k

(tk − tk−1)

∫ 1

−1

|Kj(z)|
[

n∑

l=1

∣∣∣∣Kj

(
z +

tk − tl
h

)∣∣∣∣ (tl − tl−1)

]
dz.

Since

n∑

l=1

∣∣∣∣Kj

(
z +

tk − tl
h

)∣∣∣∣ (tl − tl−1) =

∫ 1

−1

∣∣∣∣Kj

(
z +

tk − t

h

)∣∣∣∣ dt(1 + o(1))

= h

∫ 1

−1

∣∣∣∣Kj

(
z +

tk
h

− y

)∣∣∣∣ dt(1 + o(1)),

we derive

ρ2max(Q) ≤ n2

T 2
n

max
k

[
(tk − tk−1)h

∫ 1

−1

∫ 1

−1

|Kj(z)||Kj(z + tk/h− y)|dzdy
]

≤ µ
nh

Tn

[∫ 1

−1

|Kj(z)|dz
]2

≤ 2µ‖Kj‖2
nh

Tn
.

Using inequality (5.30) with x = d2jTn/(2µh) and h < λ∗
j one obtains

P

(
‖q̂(j)h − Eq̂

(j)
h ‖2 ≥ σ2‖Kj‖2(µ+ dj)

2T 2
n

nh2j+1

)
≤ exp

(
−
d2jTn

2µh

)

≤ exp

(
−cjn

1
2(r+m)+1 T

2(r+m)−1
2(r+m)+1
n

)
(5.31)

where cj depends on m, A′, µ and dj . Combination of (5.25), (5.26), (5.27) and
(5.31) completes the proof.

Proof of Lemma 2. Definitions (5.6) imply that k(x) = K ′
1(x), K

′
j−1(x) =

Kj(x) and Kj(0) = 0, j = 1, . . . , r. Observe that condition Kj(1) = 0, j =
1, . . . , r, is equivalent to

∫ 1

0

Kj(x)dx = 0, j = 0, . . . , r − 1, (5.32)

where K0(x) = k(x). It is easy to see that (5.32) is valid for j = 0. For j ≥ 1,
note that, by formula (4.631) of [24],

Kj(x) =

∫ x

0

dzj−1

∫ zj−1

0

dzj−2 . . .

∫ z1

0

k(z)dz =
1

(j − 1)!

∫ x

0

(x − z)j−1k(z)dz.

(5.33)
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Then, for any x ∈ [0, 1], one has |Kj(x)| ≤ [(j − 1)!]−1 ‖k‖∞
∫ x

0 (x − z)j−1dz ≤
‖k‖∞. Moreover, by (5.33), for j = 1, . . . , r − 1, one has
∫ 1

0

Kj(x)dx =
1

(j − 1)!

∫ 1

0

dx

∫ x

0

(x− z)j−1k(z)dz

=
1

(j − 1)!

∫ 1

0

k(z)dz

∫ 1

z

(x− z)j−1dx =
1

(j − 1)!j!

∫ 1

0

(1− z)j k(z)dz = 0.

Now, it remains to prove formula (5.7). Note that support of the function
k(u/λn − (l − 1)) coincides with (zl−1, zl), so that

I(i, l) =

∫ ti

0

g(ti − x)k

(
x− zl−1

λn

)
dx =

∫ min(zl,ti)

min(zl−1,ti)

g(ti − x)k

(
x− zl−1

λn

)
dx.

(5.34)
Formula (5.34) implies that I(i, l) = 0 whenever zl−1 ≥ yi. If zl−1 < yi ≤ zl, it
follows from (5.34) that

I(i, l) =

∫ ti

zl−1

g(ti − x)k

(
x− zl−1

λn

)
dx.

Introduce new variable t = x− zl−1 and denote uil = ti − zl−1. Then, recalling
condition (2.1) and using integration by parts, we derive

I(i, l) =

∫ uil

0

g(uil − t)k

(
t

λn

)
dt = λng(uil − t)K1

(
t

λn

) ∣∣∣∣∣

uil

0

+ λn

∫ uil

0

g′(uil − t)K1

(
t

λn

)
dt

= · · · = λr
ng

(r−1)(uil − t)Kr

(
t

λn

) ∣∣∣∣∣

uil

0

+ λr
n

∫ uil

0

gr(uil − t)Kr

(
t

λn

)
dt.

Changing variables back to x, we arrive at

I(i, l) = λr
n

[
Br Kr

(
ti − zl−1

λn

)
+

∫ ti

zl−1

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

]
.

(5.35)
Finally, consider the case when zl ≤ yi. Then, using relation zl = zl−1 + λn,

integration by parts and the fact that Kj(0) = Kj(1) = 0 for j = 1, . . . , r, we
obtain

I(i, l) =

∫ zl

zl−1

g(ti − x)k

(
x− zl−1

λn

)
dx = λn

∫ 1

0

g(ti − zl−1 − λnt)k(t)dt

= · · · = λr+1
n

∫ 1

0

gr(ti − zl−1 − λnt)Kr(t)dt

= λr
n

∫ zl

zl−1

g(r)(ti − x)Kr

(
x− zl−1

λn

)
dx

which, in combination with (5.35), completes the proof.
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