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Abstract: We show how the multivariate two-component mixtures with
independent coordinates in each component by Hall and Zhou (2003) can be
studied within the framework of conditional mixtures as recently introduced
by Henry, Kitamura and Salanié (2010). Here, the conditional distribution
of the random variable Y given the vector of regressors Z can be expressed
as a two-component mixture, where only the mixture weights depend on the
covariates. Under appropriate tail conditions on the characteristic functions
and the distribution functions of the mixture components, which allow for
flexible location-scale type mixtures, we show identification and provide
asymptotically normal estimators. The main application for our results are
bivariate two-component mixtures with independent coordinates, the case
not previously covered by Hall and Zhou (2003). In a simulation study we
investigate the finite-sample performance of the proposed methods. The
main new technical ingredient is the estimation of limits of quotients of
two characteristic functions in the tails from independent samples, which
might be of some independent interest.
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1. Introduction

Finite mixtures are frequently used to model populations with unobserved het-
erogeneity. While the component distributions are most often chosen from some
parametric family, e.g. the normal or t-distributions, cf. McLachlan and Peel
(2000), in recent years there has been quite some interest in finite mixtures with
nonparametric components, see below for a review of some of the literature.

A prominent example is the multivariate two-component mixture with inde-
pendent coordinates in each component by Hall and Zhou (2003, HZ in what
follows), which they introduced for modeling results of repeated tests on a single
person with unknown disease status.
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In this paper we show how the model by HZ can be cast into the framework
of two-component conditional mixtures by Henry, Kitamura and Salanié (2010,
HKS in the following). In particular, our results imply that for the HZ-model
in the (in general only partially identified) two-dimensional case, an appropri-
ate representation of the factors in the independent components can still be
identified and estimated under some additional tail assumptions.

Suppose that the conditional distribution of the random variable Y given the
vector of regressors Z can be expressed as the two-component mixture

F (y|z) = (1 − λ(z))F0(y) + λ(z)F1(y), (1.1)

where only the mixture weights depend on the covariates. Apart from actual
dependence of λ(z) on the covariates, identification in model (1.1) requires ad-
ditional assumptions on the component distributions F0 and F1. HKS investigate
identifiability and estimation under tail conditions of the distribution functions
themselves, which are tailored to location-type mixtures, but do not work for
scale mixtures. We focus on identification and estimation results of (1.1) under
appropriate tail conditions on the characteristic functions of F0 and F1, which
shall allow for more flexible location-scale-type mixtures. Indeed, our main tech-
nical contribution is the derivation of the large-sample theory for characteristic
function-based estimators.

Let us review some of the literature on mixtures with nonparametric com-
ponents. In the simple case of finite mixtures of univariate distributions, most
theoretical work assumes symmetry of each component distribution. For ex-
ample, Bordes, Mottelet and Vandekerkhove (2006) and Hunter, Wang and
Hettmansperger (2007) present results on identifiability and asymptotically nor-
mal estimation in a two-component location mixture of a single symmetric dis-
tribution, and Bordes and Vandekerkhove (2010) and Hohmann and Holzmann
(2012) have similar results in a two-component mixture model with two sym-
metric components one of which is completely specified while the other is un-
known with unknown location parameter. For mixtures of regressions, there is
a series of work which exploits the additional information provided by covari-
ates. Kasahara and Shimotsu (2009) extend the HZ-approach to the context
of switching regressions. Kitamura (2004, unpublished) considers identifiability
issues for univariate mixtures of regressions on the mean functions and obtains
full nonparametric identification of the components under some tail assumptions
of either their characteristic functions or their moment generating functions.
Vandekerkhove (2010) considers the more specific case of a linear switching re-
gression model, where the switching error distributions are only assumed to be
symmetric.

Our paper is organized as follows. In Section 2 we show how the HZ-model can
be studied within the framework of model (1.1). Further, we show identification
under tail conditions on the characteristic functions of F0 and F1, and in partic-
ular conclude that for the HZ-model in the two-dimensional case, an appropriate
representation of the component distributions is identified and can be estimated
under our assumptions. In Section 3 we construct asymptotically normal esti-
mators of the component distributions and the mixture weights. The main new
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technical ingredient is the estimation of limits of quotients of two characteristic
functions in the tails from independent samples, which we discuss in Section 4,
and which might be of some independent interest. The proofs use strong ap-
proximation as well as an entropy-type bound for the characteristic process.

A simulation study is conducted in Section 5, where we focus on the HZ-model
in two dimensions. We also propose a cross-validation scheme in order to select
the tuning parameters of the estimators. Proofs are deferred to an appendix,
while some additional technical results are given in the supplementary material
Hohmann and Holzmann (2013).

2. Two-component conditional mixtures

In this section, we discuss the model by HZ as our main example of (1.1).
Further, we briefly review the identifiability statements of HKS and extend
these to cover tail conditions on the characteristic functions of the component
distributions.

2.1. Examples and model reduction

Example 1 (Unobserved binary status). Let Y be some endogenous variable
affected by an unobservable binary status T ∈ {0, 1}. Instead of T we observe
the regressor T ∗ which effects the status variable T , but such that Y given T is
independent of T ∗. Then

P(Y ≤ y|T ∗ = z) =
∑

s=0,1

P(T = s|T ∗ = z) P(Y ≤ y|T = s)

= (1 − λ(z))F0(y) + λ(z)F1(y)

with Fj(y) = P(Y ≤ y|T = j) and λ(z) = P(T = 1|T ∗ = z). The main example
in HKS is the misclassified binary status variable, e.g. the case of binary T ∗.

Example 2 (Mixtures with independent components). Suppose thatX1, . . . , Xk

are given results of a medical test of a single person where it is unknown if this
person is indeed affected by the disease or not. Let T denote the indicator for
this unknown affection status, i. e., T = 1 if and only if the person is actually
diseased. It is reasonable to assume that the k test results are stochastically
independent given the status T . Therefore, the observed data can be modeled
by the k-variate two-component mixture

F (x) = (1− α)

k∏

i=1

F0,i(xi) + α

k∏

i=1

F1,i(xi), x = (x1, . . . , xk)
′ ∈ R

k,

with α = P(T = 1) and Fj,i(x) = P(Xi ≤ x|T = j). This model was investigated
by HZ who established nonparametric identifiability of the cdfs Fj,i and the
mixture weight α under some mild irreducibility condition on F for the case
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k ≥ 3. Partial identifiability results were obtained for k = 2. Let i0 ∈ {1, . . . , k}
be an arbitrary fixed index, and define

Y = Xi0 , Z = (X1, . . . , Xi0−1, Xi0+1, . . . , Xk)
′.

Due to the conditional independence of the Xj given T , we obtain for y ∈ R

and z ∈ Rk−1 that

P(Y ≤ y|Z = z) = (1−λ(z))F0,i0(y)+λ(z)F1,i0(y), λ(z) = P(T = 1|Z = z).

Note that the function λ(z) is only of minor interest. We may as well condition
on {Z ∈ B} for a Borel set B ⊂ Rk−1 to obtain

P(Y ≤ y|Z = z) = (1 − π(B))F0,i0 (y) + π(B)F1,i0 (y),

π(B) = P(T = 1|Z ∈ B) = αP(Z ∈ B|T = 1)/P(Z ∈ B).
(2.1)

In particular, the weight π(Rk−1) determines the parameter α.

Motivated by the HZ-model as well as the case of a misclassified binary
status variable, we consider conditioning in model (1.1) on events {Z ∈ B}
for a Borel set B ∈ Bp which have positive probability. Specifically, setting
π(B) = E(λ(Z)|Z ∈ B) allows to write (1.1) as

F (y|B) = (1− π(B))F0(y) + π(B)F1(y). (2.2)

2.2. Identification

Next, we briefly revisit the results on identification in HKS, reformulated in
the context of (2.2), and add a condition for identifiability on the quotients of
characteristic functions which allows to identify scale mixtures. As HKS, we
start with two basic assumptions.

A1. 1. There existB0, B1 ∈ Bp such that 0 < π(B0), π(B1) < 1, π(B0) 6= π(B1).
2. There exists a y0 ∈ R such that F1(y0) 6= F0(y0).

Given Assumption A1 set

ξ = ξ(B0, B1) =
π(B1)

π(B0)
and ζ = ζ(B0, B1) =

1− π(B1)

1− π(B0)
.

Then direct computations show that

F0(y) = F (y|B0) +
F (y|B1)− F (y|B0)

1− ξ
,

F1(y) = F (y|B0) +
F (y|B1)− F (y|B0)

1− ζ
.

(2.3)

Further, set

Λ(B) =
F (y0|B)− F (y0|B0)

F (y0|B1)− F (y0|B0)
=

π(B) − π(B0)

π(B1)− π(B0)
.
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Straightforward calculations give π(B0) = (1− ζ)/(ξ− ζ) and π(B1)− π(B0) =
−(1− ξ)(1 − ζ)/(ξ − ζ), and thus

π(B) =
1− ζ

ξ − ζ
− (1 − ξ)(1− ζ)

ξ − ζ
Λ(B). (2.4)

From (2.3) and (2.4), HKS observe that F0, F1 and π (and in particular λ)
can be identified from the quantities ξ and ζ and the observable cdf F . So, under
Assumption A1, the identification and estimation of ξ and ζ is the crucial part
for the mixture (2.2).

In order to achieve full identification, consider the following tail dominance
conditions concerning the component cdfs F0 and F1 and their Fourier trans-
forms, say F̃0 and F̃1, respectively.

C1. limy→−∞ F1(y)/F0(y) = 0

C2. limy→+∞(1− F0(y))/(1− F1(y)) = 0

C3. limy→+∞ F̃0(y)/F̃1(y) = 0

For i = 2, 3, let Mi denote the class of mixtures of the form (2.2), the compo-
nent cdfs of which satisfy the tail conditions C1 and Ci. HKS state identification
under C1 and C2, for convenience, we reformulate their result.

Theorem 3. If F ∈ Mi for i = 2 or i = 3, then, under A1, F0, F1 and π are
nonparametrically identifiable within this class Mi. Moreover, by C1,

lim
y→−∞

F (y|B1)

F (y|B0)
= ζ (2.5)

and

under C2: lim
y→∞

1− F (y|B1)

1− F (y|B0)
= ξ, under C3: lim

y→∞

F̃ (y|B1)

F̃ (y|B0)
= ξ. (2.6)

Let us comment on and illustrate the conditions C1-C3 as well as the state-
ment of the theorem.

Assumptions C1 and C2 from HKS mean that F0 dominates the left tail of
the distribution F , while F1 dominates the right tail. This assumption is natural
for location mixtures, where it is satisfied for (exponentially) light tails of the
underlying distribution. A class of examples is the (skew) normal distribution
with equal skewness and scale parameters.
For scale mixtures, Assumptions C1 and C2 are not appropriate. For example,
for normal distributions, the component with higher variance dominates both
tails. Specifically, consider a normal mixture with σ0 > σ1 and µ0, µ1 ∈ R

arbitrary. Then Assumptions C1 is satisfied and further

F̃0(y)

F̃1(y)
= exp

(
i(µ0 − µ1)y

)
exp

(
− (σ2

0 − σ2
1)x

2/2
)
−→ 0, |x| → ∞,
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thus Assumptions C1 and C3 provide identification. More generally, for a scale
mixture of a supersmooth density (for which the characteristic function decays
at an exponential rate), C3 is satisfied. Thus, C3 allows to smoothly separate
scale-mixtures.

Example 2 (continued). We show in the context of Example 2 that Theorem
3 only states that the specific representation of the conditional mixtures for
which the components satisfy the conditions C1 and C2 or C3 is identified,
there might be further representations of the from (2.2). Nevertheless, as argued
above, these representations are quite natural: C1 and C2 are appropriate if F0

and F1 dominate distinct tails of the distribution, while C1 and C3 are natural
for a scale-type mixture in a smooth density with light tails.

In terms of densities, the model is

f(x) = (1− π)f0,1(x1)f0,2(x2) + πf1,1(x1)f1,2(x2), x = (x1, x2)
′ ∈ R

2. (2.7)

Let f1 and f2 denote the one-dimensional marginals of f . Then theorem 4.1 in
HZ provides the factorization

f(x)− f1(x1)f2(x2) = g1(x1)g2(x2),

where the functions g1 and g2 are uniquely determined up to constant multiples.
Now, theorem 4.2 in HZ states the partial identifiability of (2.7) as follows.
If θ = (α1, α2, β1, β2) is a vector of real constants unequal to zero such that
sgnαj = − sgnβj, the fraction |βj |/(|αj |+ |βj|) does not depend on j, and such
that

fθ
0,j := fj + αjgj , fθ

1,j := fj + βjgj (2.8)

are non-negative, then these latter functions are probability densities which also
fulfill (2.7), with mixture weight 1−πθ := |β1|/(|α1|+ |β1|). Denote by Θ the set
of corresponding shifting vectors θ. We show that our tail assumptions identify
a unique value in Θ. Indeed, suppose that θ∗ ∈ Θ is such that

0 = lim
x→−∞

fθ∗

1,1(x)

fθ∗

0,1(x)
= lim

x→−∞

1 + β∗
1g1(x)/f1(x)

1 + α∗
1g1(x)/f1(x)

, (2.9)

corresponding to condition C1 of section 2 in terms of densities. Since β∗
1 6= 0,

this implies the convergence

lim
x→−∞

g1(x)/f1(x) = −1/β∗
1 ,

which by (2.7) yields the identification of f1. The arguments under C2 and C3
are similar.

The nonidentifiability without additional assumptions on the components in
model (2.2) holds more generally, see Example 1 in Hohmann and Holzmann
(2013). Further, without the additional regressor Z even in case of a known
weight and tail conditions on the components, the model is not identified, see
Example 2 in Hohmann and Holzmann (2013).
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3. Estimation

In this section, given i.i.d. observations (Y1, Z1), . . . , (Yn, Zn) such that the con-
ditional distribution F (y|z) satisfies (2.2), following HKS we propose nonpara-
metric estimators of the components F0, F1 and of the weight function π. The
essential step is to estimate the quantities ζ and ξ, then, based on (2.3) and
(2.4), plug-in estimates are easily devised. Given the tail conditions (C1) and
(C2)/(C3), we estimate ζ and ξ as the limits arising in (2.5) and (2.6). To this
end, Section 4 contains the asymptotic distribution theory for limits of quotients
of characteristic functions, our major contribution, as well as of distribution
functions, which is essentially covered in HKS, of independent samples in their
tails. Here, we apply this theory to obtain asymptotics for the estimators in
model (2.2).

3.1. Estimation of ζ and ξ under C1 and C3

Consider the empirical conditional distribution and characteristic functions

Fn(y|Bj) =

∑n
k=1 1{Yk≤y}1{Zk∈Bj}∑n

k=1 1{Zk∈Bj}

, y ∈ R,

F̃n(t|Bj) =

∑n
k=1 exp(it Yk)1{Zk∈Bj}∑n

k=1 1{Zk∈Bj}

, t ∈ R.

Motivated by (2.5) and (2.6), following HKS we consider estimators for ζ and ξ
of the form

ζn =
Fn(Ln|B1)

Fn(Ln|B0)
, ξn = Re

F̃n(Rn|B1)

F̃n(Rn|B0)
,

where the levels Ln and Rn need to be chosen appropriately. To this end, assume

A2. The Borel sets B0 and B1 in A1 i. satisfy B0 ∩ B1 = ∅ and pj := P(Z ∈
Bj) > 0, j = 0, 1.

Under A2, we define disjoint subsamples Y ∗
1 , . . . , Y

∗
mn

and Y ∗∗
1 , . . . , Y ∗∗

ln
of

Y1, . . . , Yn, where the Y ∗
j correspond to the observations Yk such that Zk ∈

B0, the Y
∗∗
j correspond to Zk ∈ B1, and set mn =

∑n
k=1 1{Zk∈B0} and ln =∑n

k=1 1{Zk∈B1}.
We choose Ln as an intermediate lower order statistic of the subsample

Y ∗
1 , . . . , Y

∗
mn

: Let Ln be the ⌊rn⌋-th largest order statistic of the Y ∗
k , Ln =

Y ∗
mn(⌊rn⌋)

, where rn → ∞ is such that

rn/n→ 0, rn/
√
n→ ∞ as n→ ∞. (3.1)

In order to choose Rn, we assume that the characteristic function satisfies
F̃ (t|B0) → 0 as t → ∞. Let sn → ∞ be such that sn/n → 0. Then, for

large n, by continuity of F̃ (y|B0) there is a (not necessarily unique) solution

tn of the equation F̃ (tn|B0) =
√
sn/mn, and we choose Rn as a solution of
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the corresponding empirical version of this equation: |F̃n(Rn|B0)| =
√
sn/mn .

More precisely, we require

A3. There exists γ > 0 and a non-random sequence tn → ∞ such that (4.7)-
(4.10) (see Section 4) hold true for F = F (·|B1), G = F (·|B0), and hn = Rn.

For further discussion see Section 4. Finally, assume that the rates rn and
sn are chosen such that there exist constants βζ and βξ in R (possibly zero) for
which

√
rn

(F (Ln|B1)

F (Ln|B0)
− ζ

)
→p βζ ,

√
sn

(
Re

F̃ (Rn|B1)

F̃ (Rn|B0)
− ξ

)
→p βξ (3.2)

as n→ ∞.

Proposition 4. If A1-A3 and (3.2) hold, then

√
rn(ζn − ζ) N

(
βζ , τζ + ζ2

)
,

√
sn(ξn − ξ) N

(
βξ, (τ + ξ2)/2

)

with τ = p0/p1. Moreover, if sn = rn, then the estimators are asymptotically
independent.

The first part of the proposition is as in HKS, the second (which is based
on characteristic functions) as well as the asymptotic independence are our
main contributions to estimation. Under the Assumptions C1 and C2, we obtain
analogous results to those in HKS, see Hohmann and Holzmann (2013) for the
details.

For further discussion of the tail assumption (3.2) see HKS, Lemmas 7 and
8. Note that it also applies to the characteristic functions if these (and not the
distributions functions) satisfy the shape constraints made in HKS.

3.2. Estimating the component distributions and the weight function

We now turn to the estimation of the components distributions F0 and F1 and
the mixture weight function π. We obtain similar, though slightly more refined
results as HKS.

By (2.3), natural estimates of F0 and F1 are given by

F̂0(y) = Fn(y|B0) +
Fn(y|B1)− Fn(y|B0)

1− ξn
,

F̂1(y) = Fn(y|B0) +
Fn(y|B1)− Fn(y|B0)

1− ζn
,

where ζn is obtained using (C1) and ξn either from (C2) or from (C3). As a
consequence of Proposition 4,

√
rn(ζn − ζ) N

(
βζ , σ

2
ζ

)
,

√
sn(ξn − ξ) N

(
βξ, σ

2
ξ

)
, (3.3)

where the variances σ2
ζ and σ2

ξ are given as in Proposition 4, and possibly rn =
sn, in which case the estimators are asymptotically independent. Then we have
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Theorem 5. Suppose that (3.3) holds, where sn and rn satisfy (3.1). Then

√
sn

(
F̂0(y)− F0(y)

) ℓ∞(R)
 Gξ(y),

√
rn
(
F̂1(y)− F1(y)

) ℓ∞(R)
 Gζ(y),

where Gi, i = ξ, ζ, are tight Gaussian processes with mean and covariance
functions

µi(y) = D(F, y)(1 − i)−2βi, ρi(y1, y2) = D(F, y1)D(F, y2)(1− i)−4σ2
i ,

i = ξ, ζ, where D(F, y) = F (y|B1)− F (y|B0).

We note that relations analogous to (2.3) also hold true for underlying den-
sities, and hence that similar estimators for the densities could be devised.

Finally, we consider estimation of the mixture weight function π(B) for sets
B ∈ Bp with P(Z ∈ B) > 0, B = Rp being of particular interest. Fix a y0
satisfying Assumption A1. From (2.4), a suitable estimator is given by

πn(B) = L1(ξn, ζn)− L2(ξn, ζn)
Fn(y0|B)− Fn(y0|B0)

Fn(y0|B1)− Fn(y0|B0)
,

where L1(x1, x2) = (1− x2)/(x1 − x2), L2(x1, x2) = (1− x1)(1− x2)/(x1 − x2),
x1 6= x2.

Theorem 6. Let B ∈ Bp with P(Z ∈ B) > 0, and assume (3.3), where in case
of equal rates we additionally assume asymptotic independence.

1. If sn = rn, we have

√
rn
(
πn(B) − π(B)

)
 N

(
(βξ, βζ)J, J

′ diag(σ2
ξ , σ

2
ζ )J

)
,

where

J = (ξ − ζ)−2

((
ζ − 1
1− ξ

)
− Λ(B)

(
−(1− ζ)2

(1 − ξ)2

))
.

2. If sn = o(rn), then

√
sn

(
πn(B)− π(B)

)
 N

(
βξj, j

2σ2
ξ

)
, j = (ξ − ζ)−2

(
ζ − 1 + Λ(B)(1− ζ)2

)
.

Remark. When estimating the mixture weights π(B0) and π(B1) of the sets B0

and B1 upon which the estimation procedure is based, the asymptotic covariance
matrix has a simpler form: Since Λ(B0) = 0 and Λ(B1) = 1, we obtain that

J(B0, B1) =
1

(ξ − ζ)2

(
−(1− ζ) 1− ξ
−ζ(1− ζ) ξ(1− ξ)

)
.

4. Estimating quotients in the tails

Let X1, X2, . . . and Y1, Y2, . . . be mutually independent sequences of i.i.d. obser-
vations with distribution functions F and G, respectively. Assume that

F (y)/G(y) −→ θ as y → −∞ (4.1)
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or / and

F̃ (y), G̃(y) −→ 0, F̃ (y)/G̃(y) −→ η as y → ∞ (4.2)

hold for some θ > 0 and η ∈ C\{0}, where as above F̃ and G̃ denote the
characteristic functions of F and G. We shall construct asymptotically normal
estimators of θ and η. In the following, suppose that ln and mn are sequences
in N such that ln,mn ≍ n as n→ ∞.

4.1. Characteristic functions

To estimate η in (4.2), let

ηn = F̃n(hn)/G̃n(hn),

where

F̃n(y) =
1

ln

ln∑

k=1

exp(iyXk), G̃n(y) =
1

mn

mn∑

k=1

exp(iyYk),

with hn a sequence tending to infinity. Decompose

ηn − η = (ηn − η̄n) + (η̄n − η), η̄n = F̃ (hn)/G̃(hn).

In order to handle the “variance term”, write

√
sn(ηn − η̄n) =

√
sn/mn

G̃n(hn)

(√
mn/ln F̃n(hn)− η̄nG̃n(hn)

)
, (4.3)

where F̃n =
√
ln(F̃n − F̃ ) and G̃n =

√
mn(G̃n − G̃) are the characteristic

processes and sn → ∞. Assume that sn satisfies

sn/n→ 0 as n→ ∞, (4.4)

and that hn →p ∞ is chosen such that

|G̃n(hn)| =
√
sn/mn(1 + oP (1)). (4.5)

We shall use strong approximations of the characteristic processes by

C(y) =

∫
exp(iyx)B(F (dx)) (4.6)

for F̃n(y), and similarly for G̃n. In order that these processes are sample-
continuous and that strong approximations work, some conditions on F and
G are required, see Csörgő (1981). We shall adopt the following sufficient con-
dition: Assume that there exists γ > 0 such that

yγH(−y) + yγ(1 −H(y)) = O(1) as y → ∞, H = F,G. (4.7)
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Finally, we assume that there also exists a non-random sequences tn → ∞ such
that

tn = o
(
nγ/(2γ+4)(log n)−(γ+1)/(γ+2)

)
, (4.8)

|hn − tn| = oP (1), (4.9)

|G̃(hn)− G̃(tn)| = oP
(√

sn/mn

)
, (4.10)

with γ determined by (4.7).

Remark. Given a non-random sequence tn → ∞ of order (4.8), assume that
the following separability criterion holds: There is a sequence an, either constant
or tending to infinity, such that for all ε > 0 there exists Cε > 0 fulfilling

inf
an|t−tn|>ε

∣∣√mn/sn |G̃(t)| − 1
∣∣ > Cε (4.11)

for n sufficiently large. In case of a supersmooth density, one can show that
(4.11) holds with an = tn, and that this rate implies (4.10) if tn is chosen such

that |G̃(tn)| =
√
sn/mn.

Lemma 7. Assume that (4.7) and (4.11) hold. If tn is a non-random sequence

of order (4.8), then there exists a sequence hn such that G̃n(hn) =
√
sn/mn

and |hn − tn| = oP (a
−1
n ).

Example 8. Consider exemplarily the Gaussian characteristic function

Φ̃(x) = Φ̃(x;µ, σ2) = exp(iµx) exp(−σ2x2/2),

and let tn be chosen such that |Φ̃(tn)| =
√
sn/mn. Given ε > 0, the infimum in

(4.11) is attained at t∗n = tn + ε/an. A Taylor expansion then yields

∣∣√mn/sn|Φ̃(t∗n)− 1
∣∣ =

√
mn/sn σ

2 t̄n exp(−σ2t̄2n/2) ε/an

with t̄n ∈ [tn, tn + ε/an]. Choosing an = tn, it follows that t̄n/an → 1 and

exp(−σ2 t̄2n/2) ≥ exp(−σ2(tn+ε/an)
2/2) =

√
sn/mn exp

(
−σ2(2ε+(ε/an)

2)/2
)
,

and thus (4.11) holds. As a result, by Lemma 7 there exists a random sequence

hn such that |Φ̃n(hn)| =
√
sn/mn and |hn − tn| = oP (t

−1
n ). Now, again by a

Taylor expansion, similar arguments show that for some t̄n between hn and tn,

√
mn/sn

∣∣ReΦ(hn)− ReΦ(tn)
∣∣ =

√
mn/sn

(
σ2 t̄n cos(µt̄n) + µ sin(µt̄n)

)

exp(−σ2t̄2n/2)|hn − tn|
= oP (1).

Since the imaginary part of Φ̃(hn)− Φ̃(tn) can be handled likewise, we also see
that (4.10) is fulfilled.



870 D. Hohmann and H. Holzmann

Theorem 9. Assume that (4.4), (4.5) and (4.7)-(4.10) hold. If there exists
τ > 0 such that mn/ln → τ , then

√
sn(ηn − η̄n) CN

(
0, τ + |η|2, 0

)
,

where CN denotes the complex-normal distribution. More explicitly,

√
sn

(
Re(ηn − η̄n)

Im(ηn − η̄n)

)
 N

((
0

0

)
,
1

2

(
τ + |η|2 0

0 τ + |η|2
))

.

4.2. Distribution functions

To estimate θ in (4.1), let

θn = Fn(hn)/Gn(hn), Fn(y) =
1

ln

ln∑

k=1

1{Xk≤y}, Gn(y) =
1

mn

mn∑

k=1

1{Yk≤y},

where the level hn is specified below. Write

θn − θ = (θn − θ̄n) + (θ̄n − θ), θ̄n = F (hn)/G(hn).

Assume that rn → ∞ satisfies (3.1), and that hn →p −∞ is chosen such that

Gn(hn) = rn/mn + oP (rn/n) = rn/mn (1 + oP (1)). (4.12)

(4.12) is satisfied if we choose in particular hn = Ymn(⌊rn⌋), where ⌊rn⌋ is the
largest integer smaller than rn, and where Ymn(⌊rn⌋) denotes the ⌊rn⌋-th largest
order statistic of the sample Y1, . . . , Ymn , since Gn(hn) = ⌊rn⌋/mn = rn/mn(1+
o(1)).

Theorem 10. Suppose that the assumptions of Theorem 9 for sn = rn as well
as (3.1) and (4.12) hold. If there exists τ > 0 such that mn/ln → τ , then

√
rn




θn − θ̄n

Re
(
ηn − η̄n

)

Im
(
ηn − η̄n

)



 N








0
0
0



 ,
1

2




2(τθ + θ2) 0 0

0 τ + |η|2 0
0 0 τ + |η|2







 .

The asymptotic distribution of rn(θn − θ̄n) follows from arguments along the
lines of HKS, however, the asymptotic independence requires some additional
work. Further applications, discussed in Hohmann and Holzmann (2013), are
testing for tail dominance, as well as estimating the exponent of regular varia-
tion.

5. Simulation study

We investigate the finite-sample performance of the estimators in a simulation
study in the HZ-model. Consider a random vector (Y, Z)′ distributed according
to

FY,Z(y, z) = (1 − p)Ψ(y;µ0, σ
2
0 , λ0)Φ(z; 0, 1) + pΨ(y;µ1, σ

2
1 , λ1)Φ(z; 3, 1),
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where Φ and Ψ denote the normal and skew-normal distribution functions, resp.
The distribution of Y conditional on Z is then given by (cf. (2.1))

F (y|B) = (1 − π(B))Ψ(y;µ0, σ
2
0 , λ0) + π(B)Ψ(y;µ1, σ

2
1 , λ1). (5.1)

As true values we choose (µ0, σ
2
0 , λ0) = (0, 1, 2), (µ1, σ

2
1 , λ1) = (0.5, 0.5, 3),

and p = 0.6. Let us show that the component distributions in (5.1) then fulfill
the tail dominance assumptions C1 and C3.

The density of the skew-normal distribution is given by

ψ(x;µ, σ2, λ) =
2

σ
φ
(x− µ

σ

)
Φ
(
λ
x− µ

σ

)
, x ∈ R,

where φ denotes the standard normal density, and its characteristic function by

Ψ̃(x;µ, σ2, λ) = eiµx−
1

2
σ2x2

(
1 + i I

(
σxλ/

√
1 + λ2

))
,

where I(x) =
∫ x

0

√
2/π eu

2/2 du . Hence,

Ψ(x;µ, σ2, λ) ∼ 1

λπ(µ− x)
e−

1

2

(
x−µ
σ

)
2

(1+λ2), x→ −∞,

and, as x→ ∞,

|Ψ̃(x;µ, σ2, λ)| = e−σ2x2/2

√
1 + I

(
σxλ/

√
1 + λ2

)2

∼
√

2

π

√
1 + λ2

λσx
e−

1

2
σ2x2(1+λ2)−1

,

and thus the condition

σ2
0/σ

2
1 > (1 + λ20)/(1 + λ21)

is sufficient and necessary for both C1 and C3 to hold true.
For the estimation we further chose B0 = (0,∞) and B1 = (−∞, 0], inducing

true values ζ = 2.3876 and ξ = 0.4502, and set y0 = 1. The estimation results
for ξ, ζ, and p, using different sample sizes n and different rates rn = sn = nδ,
are presented in Table 1 (a)-(c).

The choice of rn turns out to highly affect the estimates’ variance and bias
properties. A small rn leads to small bias, it however increases the variance,
as should be expected from the theory. Therefore, in a second step we use
a cross-validation scheme to choose rn. This can for example be done by a
repeated random sub-sampling validation, i. e., one randomly slits up the sample
of observations into two sub-samples of equal size, uses these sub-samples to
estimate both the mixture

(1 − p̂) F̂0(x) + p̂ F̂1(x) ,

for the given rn, where p̂ = πn(R), and the ordinary empirical distribution
function of Y . One estimates the L1-distance between these estimates, the cross-
validated rn is then the minimizer (on some fixed grid). The estimates for ξ, ζ,
and p using cross-validation can be found in Table 1 (d). Also, Figure 1 shows
estimates of the distribution functions F0 and F1 using cross-validation.
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-1 0 1 2 3
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1

(a) n = 500.

-1 0 1 2 3
0

0.5

1

-1 0 1 2 3
0

0.5

1

(b) n = 1000.

-1 0 1 2 3
0

0.5

1

-1 0 1 2 3
0

0.5

1

(c) n = 10000.

Fig 1. Estimates F̂0 and F̂1 (dashed) of the component distribution functions F0 and F1

(solid) for different sample sizes n. The right column shows estimates of the corresponding
densities.
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Table 1

Estimates of ζ, ξ, and π in the model of Hall and Zhou (2003) for true values ζ = 2.3876,
ξ = 0.4502, and p = 0.6. The table shows mean values and standard deviations (in brackets)

of 104 repetitions, based on different sample sizes n and different rates rn = sn = nδ

(a) Estimates using δ = 0.4.

n ζn ξn pn

500 2.3346 (0.9088) 0.3634 (0.3974) 0.5266 (0.2544)
1000 2.3736 (0.8536) 0.3626 (0.3433) 0.5308 (0.2311)

10000 2.3826 (0.5371) 0.3995 (0.2089) 0.5649 (0.1321)

(b) Estimates using δ = 0.6.

n ζn ξn pn

500 1.9299 (0.3493) 0.5129 (0.2249) 0.5685 (0.1319)
1000 2.0911 (0.3201) 0.4755 (0.1825) 0.5734 (0.0976)

10000 2.3657 (0.2009) 0.3967 (0.0853) 0.5693 (0.0495)

(c) Estimates using δ = 0.8.

n ζn ξn pn

500 1.2328 (0.1147) 0.7408 (0.1128) 0.4356 (0.1725)
1000 1.2935 (0.0935) 0.7163 (0.0876) 0.4663 (0.1029)

10000 1.5335 (0.0440) 0.6305 (0.0359) 0.5266 (0.0241)

(d) Estimates using cross validation for δ.

n ζn ξn pn δn

500 2.2586 (0.8189) 0.3827 (0.3668) 0.5301 (0.2027) 0.4675 (0.0942)
1000 2.2757 (0.6341) 0.3816 (0.2631) 0.5392 (0.1341) 0.5181 (0.0863)

10000 2.3657 (0.2652) 0.3894 (0.0983) 0.5649 (0.0528) 0.5772 (0.0552)
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Appendix A: Proofs

A.1. Proofs of Section 4

Proof of Lemma 7. Let δ > 0, and without loss of generality assume that |G̃(x)|
is non-increasing for x sufficiently large. Then, by (4.11) there exists 0 < Cδ < 1
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such that
|G̃(tn + δ)| ≤ (1− Cδ)

√
sn/mn .

From Lemma 11 and (A.3) it follows that |G̃n(tn+δ)−G̃(tn+δ)| = oP (
√
sn/mn),

yielding ∣∣|G̃n(tn + δ)| − |G̃(tn + δ)|
∣∣ < Cδ/2 + oP (1)

and thus
|G̃n(tn + δ)| <

√
sn/mn + oP (1) .

As a result, there exists a sequence hn such that G̃n(hn) =
√
sn/mn, where

hn fulfills the order condition (4.8), too. Hence, it also holds that |G̃n(hn) −
G̃(hn)| = oP (

√
sn/mn), yielding

∣∣√mn/sn|G̃(hn)| − 1
∣∣ =

√
mn/sn

∣∣|G̃n(hn)| − |G̃(hn)|
∣∣ = oP (1) .

Since, for all ε > 0, (4.11) implies

{
an|hn − tn| > ε

}
⊂

{∣∣√mn/sn|G̃(hn)| − 1
∣∣ > Cε

}
,

we conclude that |hn − tn| = oP (a
−1
n ).

Proof of Theorem 9

The proof of Theorem 9 proceeds in several steps.

Lemma 11. Assume that (4.7) holds. On a sufficiently rich probability space
there exist versions of the Xk and Yk, and independent sequences B1,n and B2,n

of standard Brownian bridges on [0, 1] such that, defining

C1,n(y) =

∫
exp(iyx)B1,n(F (dx)), C2,n(y) =

∫
exp(iyx)B2,n(G(dx)),

(A.1)
for all sequences Tn = o

(
nγ/(2γ+4)(log n)−(γ+1)/(γ+2)

)
it holds that

sup
0≤y≤Tn

∣∣F̃n(y)−C1,ln(y)
∣∣ →p 0, sup

0≤y≤Tn

∣∣G̃n(y)−C2,mn(y)
∣∣ →p 0.

Proof. According to Theorem 4 and Corollary 2 in Csörgő (1981), for all T, δ > 0
and n ∈ N there exists a constant C which depends only on δ and F such that

P
(

sup
0≤y≤T

∣∣F̃n(y)−C1,ln(y)
∣∣ > CqnT

)
. Tn−(1+δ) ,

where the sequence qn satisfies qn ∼ n−γ/(2γ+4)(logn)(γ+1)/(γ+2). Hence, for all
sequences Tn = o(q−1

n ) and all ε > 0 we find that

P
(

sup
0≤y≤Tn

∣∣F̃n(y)−C1,ln(y)
∣∣ > ε

)
. Tnn

−(1+δ)

eventually, where the right side converges to zero as n→ ∞.



Conditional mixtures 875

Remark. The processes Ci,n are zero mean complex Gaussian. In particular,
with C being defined as in (4.6) and W a standard Brownian motion on [0, 1],

C(t) =d

∫ 1

0

exp
(
itF−1(x)

)
W(dx) −W(1)

∫ 1

0

exp
(
itF−1(x)

)
dx .

With this, basic properties of the Itô integral give

E
(
C(s)C(t)

)
=

∫
exp(isx)exp(itx)F (dx) −

∫
exp(isx)F (dx)

∫
exp(itx)F (dx)

= F̃ (s− t)− F̃ (s)F̃ (−t) , (A.2)

E
(
C(s)C(t)

)
=

∫
exp(isx) exp(itx)F (dx) −

∫
exp(isx)F (dx)

∫
exp(itx)F (dx)

= F̃ (s+ t)− F̃ (s)F̃ (t) ,

and hence C(t) has variance σ2(t) = E
(
|C(t)|2

)
= 1 − |F̃ (t)|2 and relation

ρ(t) = E
(
C(t)2

)
= F̃ (2t)− F̃ (t)2. In particular, if tn → ∞, then

C(tn) CN(0, 1, 0) as n→ ∞ . (A.3)

Lemma 12. Let Bn be a sequence of standard Brownian bridges, not necessarily
independent of hn, and define Cn(y) =

∫
exp(iyx)Bn(F (dx)). If (4.7) and (4.9)

hold, then |Cn(hn)−Cn(tn)| = oP (1).

Proof. For any ε, δ > 0, defining In,δ = [tn − δ, tn + δ],

P(|Cn(hn)−Cn(tn)| > ε) ≤ P
(

sup
t∈In,δ

|Cn(t)−Cn(tn)| > ε
)
+P(|hn− tn| > δ) .

The right probability tends to zero due to (4.9). The left probability can be
made arbitrarily small by the choice of δ. In fact, by the maximal inequality as
given in Lemma 2.1 in Talagrand (1996), there exists a finite constant K such
that, for all x > 0,

P
(

sup
t∈In,δ

|Cn(t)−Cn(tn)| > Kx

∫ ∞

0

√
logN(In,δ, η) dη

)
≤ exp(−x2) ,

whereN(T, η) denotes the smallest number of open balls of radius η with respect
to the distance d(s, t) = [E|Cn(s) −Cn(t)|2]1/2 (which does not depend on n)
that are necessary in order to cover an index set T ⊂ R. Hence, it remains to
show that the entropy integral

∫∞

0

√
logN(In,δ, η) dη is finite and can be made

arbitrarily small by the choice of δ.
As already mentioned, the process Cn is zero mean complex Gaussian, and

with (A.2) we find that

E|Cn(s)−Cn(t)|2 = E
(
(Cn(s)−Cn(t))(Cn(s)−Cn(t))

)

= 2− F̃ (s− t)− F̃ (t− s)− |F̃ (s)− F̃ (t)|2

. 1− Re F̃ (|s− t|) .
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By (4.7), there exists γ > 0 such that yγF (−y) = O(1) and yγ(1−F (y)) = O(1)
as y → ∞. Without loss of generality, it can be assumed that γ < 2, so that
from Theorem 11.3.2 in Kawata (1972) it follows that 1 − Re F̃ (t) = O(tγ) as
t ↓ 0. Conclude that

d(s, t) = O
(
|s− t|γ/2

)
as |s− t| → 0 .

As a result, there exists an absolute constant C such that d(s, t) ≤ C|s−t|γ/2 for
sufficiently small δ and s, t ∈ In,δ, so that each η2/γ/C-cover of In,δ with respect
to the absolute value distance is an valid η-cover with respect to d, yielding

N(In,δ, η) ≤ 4Cδη−2/γ .

This and noting that N(In,δ, η) = 1 whenever η ≥ C(2δ)γ/2 ≥ diam(In,δ) gives

∫ ∞

0

√
logN(In,δ, η) dη ≤

∫ C(2δ)γ/2

0

√
log 4Cδη−2/γ dη

= C(2δ)γ/2
∫ 1

0

√
log 2C1−2/γx−2/γ dx

which is O(δγ/2) as δ → 0.

Proof of Theorem 9. For all ε > 0 and Tn → ∞, with C1,n as given in (A.1),

P
(
|F̃n(hn)−C1,ln(hn)| > ε

)
≤ P

(
sup

0≤y≤Tn

|F̃n(y)−C1,ln(y)| > ε
)
+P(hn > Tn) ,

so that, choosing Tn = 2tn which is o
(
nγ/(2γ+4)(logn)−(γ+1)/(γ+2)

)
by (4.8),

from Lemma 11 and (4.9) it follows that F̃n(hn) = C1,ln(hn) + oP (1). With

this, Lemma 12 immediately shows that F̃n(hn) = C1,ln(tn) + oP (1), and all

the same we find that G̃n(hn) = C2,mn(tn)+ oP (1). Hence, in view of (4.3) and
since η̄n →p η,

√
sn

(
ηn − η̄n

)
=

√
sn/mn

G̃n(hn)

(√
τ C1,ln(tn)− ηC2,mn(tn)

)
+ oP (1) .

Below we show that
√
sn/mn

G̃n(hn)
= (1 + oP (1))

|G̃(tn)|
G̃(tn)

, (A.4)

so that defining zn = |G̃(tn)|/G̃(tn),
√
sn

(
ηn − η̄n

)
=

zn
(1 + oP (1))

(√
τ C1,ln(tn)− ηC2,mn(tn)

)
+ oP (1) . (A.5)

The conclusion follows by using (A.3), the fact that the CN(0, 1, 0)-distribution
is invariant under multiplication with the complex non-random numbers zn with
|zn| = 1, and the independence of C1,n and C2,n.
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To show (A.4), from (A.3) it follows that G̃n(hn) = OP (1), which implies

|G̃n(hn)− G̃(hn)| = oP
(√

sn/mn

)
. By (4.10) this gives

∣∣G̃n(hn)− G̃(tn)
∣∣ = oP

(√
sn/mn

)
.

Applying (4.5) we therefore have

G̃(tn)

G̃n(hn)
=
G̃n(hn) + oP

(√
sn/mn

)

G̃n(hn)
= 1 +

|G̃n(hn)|
G̃n(hn)

oP
(√

sn/mn

)
√
sn/mn(1 + oP (1))

= 1 + oP (1) .

Since
∣∣|G̃n(hn)|− |G̃(tn)|

∣∣ ≤
∣∣G̃n(hn)− G̃(tn)

∣∣ by triangle inequality, we further

have |G̃(tn)| =
√
sn/mn(1 + oP (1)), and thus

√
sn/mn

G̃n(hn)
=

G̃(tn)

G̃n(hn)

√
sn/mn

G̃(tn)
= (1 + oP (1))

|G̃(tn)|
G̃(tn)

.

The proof of Theorem 10 is given in Hohmann and Holzmann (2013).

A.2. Proofs of Section 2

Proof of Theorem 3. From C1, for i = 0, 1

F (y|Bi)

(1− π(Bi))F0(y)
= 1 +

π(Bi)F1(y)

(1− π(Bi))F0(y)
→ 1, y → −∞ ,

and similarly under C2 and C3

1− F (y|Bi) ∼ π(Bi) (1 − F1(y)) as y → +∞ ,

F̃ (y|Bi) ∼ π(Bi) F̃1(y) as y → +∞ ,

Therefore, as y → −∞,

F (y|B1)

F (y|B0)
∼ (1− π(B1))F0(y)

(1− π(B1))F0(y)
=

1− π(B1)

1− π(B1)
= ζ,

which is (2.5), and (2.6) follows similarly. Then, given the identification of ζ
and ξ, one determines the component cdfs F0 and F1 by applying (2.3), and the
mixture weight π by using (2.4).

Now let G(y|B) = (1 − µ(B))G0(y) + µ(B)G1(y) be another mixture in Mi

such that G = F . Then, by C1,

ζ = lim
y→−∞

F (y|B1)

F (y|B0)
= lim

y→−∞

G(y|B1)

G(y|B0)

= lim
y→−∞

1 + µ(B1)
(
G1(y)/G0(y)− 1

)

1 + µ(B0)
(
G1(y)/G0(y)− 1

) =
1− µ(B1)

1− µ(B0)
,
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from which we conclude that µ(B0) < 1 and µ(B0) 6= µ(B1) since ζ 6= 1.
Similarly, we obtain µ(B0) > 0 by C2 respectively C3. Thus, (2.3) applies to G
as well, and since F = G and the values for ξ and ζ coincide, (2.3) implies that
Fi = Gi, i = 0, 1. In particular, G0(y0) 6= G1(y0), and by (2.4) it follows that
π = µ.

A.3. Proofs of Section 3

Proof of Proposition 4. Using our previous notation, set ζ̄n=F (Ln|B1)/F (Ln|B0)

and ξ̄n = Re(F̃ (Rn|B1)/F̃ (Rn|B0)). Let Z = σ(1{Zk∈Bj}, k ∈ N, j = 0, 1) be
the σ-field generated by the indicator variables 1{Zk∈Bj}. By A2, the distribu-
tion of Y1, . . . , Yn conditional on Z is given by

P(Y1 ≤ y1, . . . , Yn ≤ yn|Z)

=
∏

1≤i≤n
Zi∈B0

F (yi|B0)
∏

1≤i≤n
Zi∈B1

F (yi|B1)
∏

1≤i≤n
Zi /∈B0∪B1

F (yi|(B0 ∪B1)
∁),

and thus, evaluating the latter at a fixed ω,

P(Y ∗
i ≤ y∗i , Y

∗∗
j ≤ y∗∗j , i = 1, . . . ,mn, j = 1, . . . , ln|Z)(ω)

=

mn(ω)∏

i=1

F (y∗i |B0)

ln(ω)∏

j=1

F (y∗∗j |B1).

Hence, conditional on Z, Y ∗
1 , . . . , Y

∗
mn

and Y ∗∗
1 , . . . , Y ∗∗

ln
are independent i.i.d.

samples from F (·|B0) and F (·|B1), resp., where for almost all ω it holds that

mn(ω)/ln(ω) → p0/p1 .

Defining τ = p0/p1, it therefore follows from Theorem 10 and (3.2) that

√
rn

(
ζn − ζ

ξn − ξ

)∣∣Z  N

((
βζ
βξ

)
,

(
τζ + ζ2 0

0 (τ + ξ2)/2

))

with probability one. Finally, since the weak limit does actually not depend on
the specific realization of the sequence 1{Zk∈Bj}, the result follows.

Proof of Theorem 5. We only consider the process Fn =
√
rn
(
F̂1 − F1

)
. Let

K(x) = (1− x)−1, x 6= 1. Since

F̂1(y)− F1(y) = Fn(y|B0)− F (y|B0) +
(
K(ζn)−K(ζ)

)
D(Fn, y)

+
(
D(Fn, y)−D(F, y)

)
K(ζ),

(A.6)

where Fn(y|Bi)−F (y|Bi) = OP

(
n−1/2

)
and rn/n→ 0, with Kn =

√
rn(K(ζn)−

K(ζ)) we find that
Fn(y) = D(Fn, y)Kn + oP (1) .
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The function K being differentiable at ζ with derivative (1 − ζ)−2, the Delta
method and (3.3) yield

Kn  N
(
(1 − ζ)−2βζ , (1− ζ)−4σ2

ζ

)
.

Since D(Fn, y) →a.s. D(F, y), we therefore find that, for any y1, y2 ∈ R, defining

D(y1, y2) =
(
D(F, y1), D(F, y2)

)′
,

(
Fn(y1),Fn(y2)

)′
 N

(
D(y1, y2)(1 − ζ)−2βζ ,D(y1, y2)D(y1, y2)

′(1 − ζ)−4σ2
ζ

)
,

which shows the weak convergence of the finite dimensional distributions of Fn

to those of the Gaussian process Gζ .
To conclude weak convergence in ℓ∞(R), it remains to show that Fn is asymp-

totically tight, a sufficient condition for which is to show that for any ε, η > 0
we can find a finite partition {I1, . . . , Id} of R such that

lim sup
n→∞

P
(

max
k=1,...,d

sup
s,t∈Ik

∣∣Fn(t)− Fn(s)
∣∣ > ε

)
< η (A.7)

holds, cf. van der Vaart and Wellner (2000, Theorem 1.5.6). Similar to (A.6),
write

Fn(s)− Fn(t) =
(
Fn(s|B1)− Fn(t|B1) + Fn(t|B0)− Fn(s|B0)

)
Kn + oP (1),

where the remainder is uniform in s, t. By the uniform convergence of Fn,

sup
s,t∈R

∣∣Fn(s|Bi)− Fn(t|Bi)
∣∣ ≤ sup

s,t∈R

∣∣F (s|Bi)− F (t|Bi)
∣∣ + oP (1).

For all γ ∈ (0, 1) one can find a finite partition {Ik} of R such that

sup
s,t∈Ik

(∣∣F (s|B1)− F (t|B1)
∣∣+

∣∣F (s|B0)− F (t|B0)
∣∣) < γ,

implying
max

k
sup

s,t∈Ik

∣∣Fn(s)− Fn(t)
∣∣ ≤ γ|Kn|+ oP (1).

By asymptotic normality of Kn, we find C > 0 such that

lim sup
n

P
(
|Kn| > C

)
< η.

Now choosing γ = C/ε gives (A.7) and hence the asymptotic tightness of Fn.

Theorem 6 is proved by using the Delta method.
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Csörgő, S. (1981). Limit behaviour of the Empirical Characteristic Function.
Ann. Probab. 9 130-144. MR0606802

Hall, P. and Zhou, X. (2003). Nonparametric Estimation of Component Dis-
tributions in a Multivariate Mixture. Ann. Statist. 31 201-224. MR1962504
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