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1. Introduction

In recent years quickly growing interest in pricing of credit-risky securities (e.g.,
defaultable bonds) has been seen in the mathematical finance literature. One of
the basic models (for applications see for instance Chen and Joslin [8]) is the
following two-dimensional affine diffusion process:

{
dYt = (a− bYt) dt+

√
Yt dWt,

dXt = (m− θXt) dt+
√
Yt dBt,

t > 0, (1.1)

where a, b, θ and m are real parameters such that a > 0 and B and W
are independent standard Wiener processes. Note that Y is a Cox-Ingersol-
Ross (CIR) process. For practical use, it is important to estimate the appearing
parameters from some discretely observed real data set. In the case of the one-
dimensional CIR process, the parameter estimation of a and b goes back to
Overbeck and Rydén [30], Overbeck [31], and see also the very recent papers of
Ben Alaya and Kebaier [5, 6]. For asymptotic results on discrete time critical
branching processes with immigration, one may refer to Wei and Winnicki [34]
and [35].

The process (Y,X) given by (1.1) is a very special affine process. The set
of affine processes contains a large class of important Markov processes such as
continuous state branching processes and Orstein-Uhlenbeck processes. Further,
a lot of models in financial mathematics are also special affine processes such
as the Heston model [17], the model due to Barndorff-Nielsen and Shephard
[4] or the model due to Carr and Wu [7]. A precise mathematical formulation
and complete characterization of regular affine processes are due to Duffie et
al. [11]. Later several authors have contributed to the study of properties of
general affine processes: to name a few, Andersen and Piterbarg [1] (moment
explosions in stochastic volatility models), Dawson and Li [10] (jump-type SDE
representation for two-dimensional affine processes), Filipović and Mayerhofer
[13] (applications to the pricing of bond and stock options), Glasserman and Kim
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[15] (the range of finite exponential moments and the convergence to stationarity
in affine diffusion models), Jena et al. [23] (long-term and blow-up behaviors of
exponential moments in multi-dimensional affine diffusions), Keller-Ressel et al.
[25, 26] (stochastically continuous, time-homogeneous affine processes with state
space Rn+×Rd or more general ones are regular). We also refer to the overview
articles Cuchiero et al. [9] and Friz and Keller-Ressel [14].

To the best knowledge of the authors the parameter estimation problem for
multi-dimensional affine processes has not been tackled so far. Since affine pro-
cesses are being used in financial mathematics very frequently, the question of
parameter estimation for them is of high importance. Our aim is to start the dis-
cussion with a simple non-trivial example: the two-dimensional affine diffusion
process given by (1.1).

The article is divided into two parts and there are two appendices. In Sec-
tion 2 we recall some notations, the definition of affine processes and some of
their basic properties, and then a simple set of sufficient conditions for the weak
convergence of scaled affine processes is presented. Roughly speaking, given a
family of affine processes (Y (θ)(t), X(θ)(t))t>0, θ > 0, such that the correspond-
ing admissible parameters converge in an appropriate way (see Theorem 2.2),
the scaled process

(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t>0

converge weakly towards an

affine diffusion process as θ → ∞. We specialize our result for one-dimensional
continuous state branching processes with immigration which generalizes Theo-
rem 2.3 in Huang et al. [20]. The scaling Theorem 2.2 is proved for quite general
affine processes since it might have applications elsewhere later on. In Section 3
the scaling Theorem 2.2 is applied to study the asymptotic behavior of least
squares and conditional least squares estimators of some parameters of a crit-
ical two-dimensional affine diffusion process given by (1.1), see Theorems 3.1,
3.2 and 3.3. In Appendix A we check that some integrals in the form of the
infinitesimal generator of an affine process that we use are well-defined. Ap-
pendix B is devoted to show that the least squares estimator of m cannot be
asymptotically weakly consistent.

2. A scaling theorem for affine processes

Let N, Z+, R, R+, R−, R++, and C denote the sets of positive integers,
non-negative integers, real numbers, non-negative real numbers, non-positive
real numbers, positive real numbers and complex numbers, respectively. For
x, y ∈ R, we will use the notations x∧ y := min(x, y) and x∨ y := max(x, y).

For x, y ∈ C
k, k ∈ N, we write 〈x, y〉 :=

∑k
i=1 xiyi (notice that this is not

the scalar product on Ck, however for x ∈ Ck and y ∈ Rk, 〈x, y〉 coincides
with the usual scalar product of x and y). By ‖x‖ and ‖A‖ we denote the
Euclidean norm of a vector x ∈ Rp and the induced matrix norm of a matrix
A ∈ Rp×p, respectively. Further, let U := {z1+ iz2 : z1 ∈ R−, z2 ∈ R}× (iRd).
By C2

c (R+ × Rd) (C∞
c (R+ × Rd)) we denote the set of twice (infinitely)

continuously differentiable complex-valued functions on R+×Rd with compact
support, where d ∈ N. The set of càdlàg functions from R+ to R+ ×Rd will
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be denoted by D(R+,R+×Rd). For a bounded function g : R+×Rd → Rp, let
‖g‖∞ := supx∈R+×Rd ‖g(x)‖. Convergence in distribution, in probability and

almost sure convergence will be denoted by
L−→,

P−→ and
a.s.−→, respectively.

Next we briefly recall the definition of affine processes with state space R+×
Rd based on Duffie et al. [11].

Definition 2.1. A transition semigroup (Pt)t∈R+ with state space R+ ×
Rd is called a (general) affine semigroup if its characteristic function has the
representation

∫

R+×Rd

e〈u,ξ〉Pt(x, dξ) = e〈x,ψ(t,u)〉+φ(t,u) (2.1)

for x ∈ R+×R
d, u ∈ U and t ∈ R+, where ψ(t, ·) = (ψ1(t, ·), ψ2(t, ·)) ∈ C×C

d

is a continuous C1+d-valued function on U and φ(t, ·) is a continuous C-
valued function on U satisfying φ(t, 0) = 0. The affine semigroup (Pt)t∈R+

defined by (2.1) is called regular if it is stochastically continuous (equivalently,
for all u ∈ U , the functions R+ ∋ t 7→ Ψ(t, u) and R+ ∋ t 7→ φ(t, u)
are continuous) and ∂1ψ(0, u) and ∂1φ(0, u) exist for all u ∈ U and are
continuous at u = 0 (where ∂1ψ and ∂1φ denote the partial derivatives of
ψ and φ, respectively, with respect to the first variable).

Remark 2.1. We call the attention that Duffie et al. [11] in their Definition 2.1
assume only that Equation (2.1) hold for x ∈ R+×Rd, u ∈ ∂U = iR1+d, t ∈ R+,
i.e., instead of u ∈ U they only require that u should be an element of the
boundary ∂U of U . However, by Proposition 6.4 in Duffie et al. [11], one can
formulate the definition of a regular affine process as we did. Note also that this
kind of definition was already given by Dawson and Li [10, Definitions 2.1 and
3.3]. Finally, we remark that every stochastically continuous affine semigroup is
regular due to Keller-Ressel et al. [25, Theorem 5.1].

Definition 2.2. A set of parameters (a, α, b, β,m, µ) is called admissible if

(i) a = (ai,j)
1+d
i,j=1 ∈ R

(1+d)×(1+d) is a symmetric positive semidefinite matrix
with a1,1 = 0 (hence a1,k = ak,1 = 0 for all k ∈ {2, . . . , 1 + d}),

(ii) α = (αi,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) is a symmetric positive semidefinite ma-

trix,
(iii) b = (bi)

1+d
i=1 ∈ R+ × Rd,

(iv) β = (βi,j)
1+d
i,j=1 ∈ R(1+d)×(1+d) with β1,j = 0 for all j ∈ {2, . . . , 1 + d},

(v) m(dξ) = m(dξ1, dξ2) is a σ-finite measure on R+ × Rd supported by
(R+ × R

d) \ {(0, 0)} such that
∫

R+×Rd

[
ξ1 + (‖ξ2‖ ∧ ‖ξ2‖2)

]
m(dξ) <∞,

(vi) µ(dξ) = µ(dξ1, dξ2) is a σ-finite measure on R+ × Rd supported by
(R+ × R

d) \ {(0, 0)} such that
∫

R+×Rd

‖ξ‖ ∧ ‖ξ‖2µ(dξ) <∞.
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Remark 2.2. Note that our Definition 2.2 of the set of admissible parameters is
not so general as Definition 2.6 in Duffie et al. [11]. Firstly, the set of admissible
parameters is defined only for affine process with state space R+ × Rd, while
Duffie et al. [11] consider affine processes with state space R

n
+×R

d. We restrict
ourselves to this special case, since our scaling Theorem 2.2 is valid only in
this case. Secondly, our conditions (v) and (vi) of Definition 2.2 are stronger
than that of (2.10) and (2.11) of Definition 2.6 in Duffie et al. [11]. Thirdly,
according to our definition, a set of admissible parameters does not contain
parameters corresponding to killing, while in Definition 2.6 in Duffie et al. [11]
such parameters are included. Our definition of admissible parameters can be
considered as a (1 + d)-dimensional version of Definition 6.1 in Dawson and
Li [10]. The reason for this definition is to have a more pleasant form of the
infinitesimal generator of an affine process compared to that of Duffie et al. [11,
formula (2.12)]. For more details, see Remark 2.3.

Theorem 2.1 (Duffie et al. [11, Theorem 2.7]). Let (a, α, b, β,m, µ) be a set
of admissible parameters. Then there exists a unique regular affine semigroup
(Pt)t∈R+ with infinitesimal generator

(Af)(x) =
1+d∑

i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + 〈f ′(x), b + βx〉

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′
(2)(x), ξ2〉)m(dξ)

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′(x), ξ〉)x1 µ(dξ)

(2.2)

for x = (x1, x2) ∈ R+ ×Rd and f ∈ C2
c (R+×Rd), where f ′

i , i ∈ {1, . . . , 1+
d}, and f ′′

i,j, i, j ∈ {1, . . . , 1 + d}, denote the first and second order partial
derivatives of f with respect to its i-th and i-th and j-th variables, and f ′(x) :=
(f ′

1(x), . . . , f
′
1+d(x))

⊤, f ′
(2)(x) := (f ′

2(x), . . . , f
′
1+d(x))

⊤. Further, C∞
c (R+×Rd)

is a core of A.

Remark 2.3. Note that the form of the infinitesimal generator A in Theorem
2.1 is slightly different from the one given in (2.12) in Duffie et al. [11]. Our
formula (2.2) is in the spirit of Dawson and Li [10, formula (6.5)]. On the one
hand, the point is that under the conditions (v) and (vi) of Definition 2.2, one can
rewrite (2.12) in Duffie et al. [11] into the form (2.2), by changing the 2-nd, . . .,
(1+d)-th coordinates of b ∈ R+×Rd and the first column of β ∈ R(1+d)×(1+d),
respectively, in appropriate ways (see Appendix A). To see this, it is enough to
check that the integrals in (2.2) are well-defined (i.e., elements of C) under the
conditions (v) and (vi) of Definition 2.2. For further details, see also Appendix A.
On the other hand, the killing rate (see page 995 in Duffie et al. [11]) of the affine
semigroup (Pt)t∈R+ in Theorem 2.1 is identically zero. This also implies that
the affine processes that we will consider later on will have lifetime infinity.

Remark 2.4. In dimension 2 (i.e., if d = 1), by Theorem 6.2 in Dawson and
Li [10] and Theorem 2.7 in Duffie et al. [11] (see also Theorem 2.1), for an
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infinitesimal generator A given by (2.2) with d = 1 one can construct a two-
dimensional system of jump type SDEs of which there exists a pathwise unique
strong solution (Y (t), X(t))t∈R+ which is a regular affine Markov process with
the given infinitesimal generator A.

The next lemma is simple but very useful.

Lemma 2.1. Let (Z(t))t∈R+ be a time-homogeneous Markov process with state
space R+×R

d and let us denote its infinitesimal generator by AZ . Suppose that
C2
c (R+×Rd) is a subset of the domain of AZ . Then for all θ ∈ R++, the time-

homogeneous Markov process (Zθ(t))t∈R+ := (θ−1Z(θt))t∈R+ has infinitesimal
generator

(AZθ
f)(x) = θ(AZfθ)(θx), x ∈ R+ × R

d, f ∈ C2
c (R+ × R

d),

where fθ(x) := f(θ−1x), x ∈ R+ × Rd.

Proof. By definition, the infinitesimal generator of (Zθ(t))t∈R+ takes the form

(AZθ
f)(x) = lim

t↓0

E(f(θ−1Z(θt)) | θ−1Z(0) = x)− f(x)

t

= lim
t↓0

θE(fθ(Z(θt)) |Z(0) = θx)− θfθ(θx)

θt

= θ lim
t′↓0

E(fθ(Z(t
′)) |Z(0) = θx)− fθ(θx)

t′
= θ(AZfθ)(θx)

for all x ∈ R+ × Rd and f ∈ C2
c (R+ × Rd).

Theorem 2.2. For all θ ∈ R++, let (Y (θ)(t), X(θ)(t))t∈R+ be a (1 +
d)-dimensional affine process with state space R+ × Rd and with admissible
parameters (a(θ), α(θ), b(θ), β(θ),m, µ) such that additionally

∫

R+×Rd

‖ξ‖m(dξ) <∞ and

∫

R+×Rd

‖ξ‖2 µ(dξ) <∞. (2.3)

Let a, α, β ∈ R(1+d)×(1+d), b ∈ R+ × Rd, and let (Y (t), X(t))t∈R+ be a
(1 + d)-dimensional affine process with state space R+ × R

d and with the set

of admissible parameters (a, α̃, b̃, β, 0, 0), where

α̃ := α+
1

2

∫

R+×Rd

ξξ⊤ µ(dξ),

and b̃ = (̃bi)
1+d
i=1 with b̃i := bi for i ∈ {2, . . . , 1 + d} and

b̃1 := b1 +

∫

R+×Rd

ξ1m(dξ).

If

θ−1a(θ) → a, α(θ) → α, b(θ) → b, θβ(θ) → β,

θ−1(Y (θ)(0), X(θ)(0))
L−→ (Y (0), X(0))
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as θ → ∞, then
(
Y

(θ)
θ (t), X

(θ)
θ (t)

)
t∈R+

=
(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t∈R+

L−→ (Y (t), X(t))t∈R+

in D(R+,R+ × Rd) as θ → ∞.

Remark 2.5. (i) Note that the limit process (Y (t), X(t))t∈R+ in Theorem 2.2
has continuous sample paths almost surely. However, this is not a big surprise,
since in condition (2.3) of Theorem 2.2 we require finite second moment for the
measure µ.
(ii) Note also that the matrix α̃ ∈ R(1+d)×(1+d) given in Theorem 2.2 is sym-
metric and positive semidefinite, since α is symmetric and positive semidefinite,
and for all z ∈ R1+d,

〈∫

R+×Rd

ξξ⊤ µ(dξ)z, z

〉
=

∫

R+×Rd

(z⊤ξ)2 µ(dξ) > 0.

Proof of Theorem 2.2. By Duffie et al. [11, Theorem 2.7], C∞
c (R+ × Rd) is a

core of the infinitesimal generator A(Y,X) of the process (Y (t), X(t))t∈R+ ,
and hence {(f,A(Y,X)f) : f ∈ D(A(Y,X))} coincides with the closure of

{(f,A(Y,X)f) : f ∈ C∞
c (R+ × Rd)}, where D(A(Y,X)) denotes the domain

of A(Y,X), see, e.g., Ethier and Kurtz [12, page 17]. In other words, the clo-

sure of {(f,A(Y,X)f) : f ∈ C∞
c (R+ × Rd)} generates the affine semigroup

corresponding to A(Y,X).

Next we show that for all f ∈ C∞
c (R+ × Rd), we have

lim
θ→∞

sup
x∈R+×Rd

∣∣∣(A(Y
(θ)
θ

,X
(θ)
θ

)
f)(x)− (A(Y,X)f)(x)

∣∣∣ = 0. (2.4)

First note that it is enough to prove (2.4) for real-valued functions f ∈ C∞
c (R+×

Rd), since if (2.4) holds for for real-valued functions f ∈ C∞
c (R+×Rd), then, by

decomposing f into real and imaginary parts, the linearity of the infinitesimal
generators in question and triangular inequality yield (2.4) for complex-valued
functions f ∈ C∞

c (R+ × Rd). Hence in what follows without loss of generality
we can assume that f ∈ C∞

c (R+ × Rd) is real-valued.
For all f ∈ C∞

c (R+ × Rd), θ ∈ R++, and x ∈ R+ × Rd, we have

fθ(x) = f(θ−1x),

(fθ)
′
i(x) = θ−1f ′

i(θ
−1x), i ∈ {1, . . . , 1 + d},

(fθ)
′′
i,j(x) = θ−2f ′′

i,j(θ
−1x), i, j ∈ {1, . . . , 1 + d}.

(2.5)

Then, by Lemma 2.1, (2.2) and (2.5),

(A
(Y

(θ)
θ

,X
(θ)
θ

)
f)(x) = θ(A(Y (θ),X(θ))fθ)(θx)

= θ

[
1+d∑

i,j=1

(a
(θ)
i,j + α

(θ)
i,j θx1)θ

−2f ′′
i,j(θ

−1θx) + 〈θ−1f ′(θ−1θx), b(θ) + β(θ)θx〉
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+

∫

R+×Rd

(f(θ−1(θx+ ξ))− f(θ−1θx)− 〈θ−1f ′
(2)(θ

−1θx), ξ2〉)m(dξ)

+

∫

R+×Rd

(f(θ−1(θx+ ξ))− f(θ−1θx)− 〈θ−1f ′(θ−1θx), ξ〉)θx1 µ(dξ)
]

=
1+d∑

i,j=1

(θ−1a
(θ)
i,j + α

(θ)
i,j x1)f

′′
i,j(x) + 〈f ′(x), b(θ) + θβ(θ)x〉

+

∫

R+×Rd

(f(x+ θ−1ξ)− f(x)− 〈f ′
(2)(x), θ

−1ξ2〉)θm(dξ)

+ x1

∫

R+×Rd

(f(x+ θ−1ξ)− f(x)− 〈f ′(x), θ−1ξ〉)θ2 µ(dξ)

for f ∈ C∞
c (R+×Rd) and x ∈ R+×Rd. Hence, for all x = (x1, x2) ∈ R+×Rd,

using the triangular inequality and that |〈u, v〉| 6 ‖u‖‖v‖, u, v ∈ Rp, we have

∣∣∣(A(Y
(θ)
θ

,X
(θ)
θ

)
f)(x) − (A(Y,X)f)(x)

∣∣∣

6

1+d∑

i,j=1

(|θ−1a
(θ)
i,j − ai,j |+ |α(θ)

i,j − αi,j |x1)|f ′′
i,j(x)|

+ (‖b(θ) − b‖+ ‖θβ(θ) − β‖‖x‖)‖f ′(x)‖

+

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1〈f ′(x), ξ〉

)
θm(dξ)

∣∣∣∣∣

+ x1

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1〈f ′(x), ξ〉

− 1

2
θ−2〈f ′′(x)ξ, ξ〉

)
θ2 µ(dξ)

∣∣∣∣∣,

where

f ′′(x) :=



f ′′
1,1(x) · · · f ′′

1,1+d(x)
...

. . .
...

f ′′
1+d,1(x) · · · f ′′

1+d,1+d(x)


 .

Since f ∈ C∞
c (R+ × Rd), we have

sup
x∈R+×Rd

x1|f ′′
i,j(x)| <∞, sup

x∈R+×Rd

|f ′′
i,j(x)| <∞, ∀ i, j ∈ {1, . . . , 1 + d},

sup
x∈R+×Rd

‖x‖‖f ′(x)‖ <∞, sup
x∈R+×Rd

‖f ′(x)‖ <∞,

and hence, by our assumptions, in order to prove (2.4) it is enough to check
that
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lim
θ→∞

sup
x∈R+×Rd

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1〈f ′(x), ξ〉

)
θm(dξ)

∣∣∣∣∣ = 0,

(2.6)

and

lim
θ→∞

sup
x∈R+×Rd

x1

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1〈f ′(x), ξ〉

−1

2
θ−2〈f ′′(x)ξ, ξ〉

)
θ2 µ(dξ)

∣∣∣∣ = 0.

(2.7)

First we consider (2.6). Let ε ∈ R++ be fixed. Let us choose an M ∈ R++

such that

2‖f ′‖∞
∫

(R+×Rd)\([0,M ]×[−M,M ]d)

‖ξ‖m(dξ) <
ε

2
. (2.8)

In what follows, for abbreviation, [0,M ]× [−M,M ]d will be denoted by DM .
Such an M can be chosen, since f ∈ C∞

c (R+ × Rd) yields ‖f ′‖∞ < ∞
and, by assumption (2.3),

∫
R+×Rd ‖ξ‖m(dξ) <∞. By Taylor’s theorem, for all

θ ∈ R++, x ∈ R+ × R
d and ξ ∈ DM there exists some τ = τ(θ, x, ξ) ∈ [0, 1]

such that

f(x+ θ−1ξ)− f(x) = 〈f ′(x+ θ−1τξ), θ−1ξ〉. (2.9)

Then

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x)− θ−1〈f ′(x), ξ〉

)
θm(dξ)

∣∣∣∣∣

6

∫

R+×Rd

∣∣〈f ′(x+ θ−1τξ), ξ〉 − 〈f ′(x), ξ〉
∣∣m(dξ) 6 A

(1)
θ,M (x) +A

(2)
θ,M (x)

for all x ∈ R+ × Rd, where

A
(1)
θ,M (x) :=

∫

DM

|〈f ′(x+ θ−1τξ)− f ′(x), ξ〉|m(dξ),

A
(2)
θ,M (x) :=

∫

(R+×Rd)\DM

(
|〈f ′(x+ θ−1τξ), ξ〉| + |〈f ′(x), ξ〉|

)
m(dξ).

Here

A
(1)
θ,M (x) 6

∫

DM

‖f ′(x+ θ−1τξ)− f ′(x)‖‖ξ‖m(dξ)

6 sup
ξ∈DM

‖f ′(x+ θ−1τξ)− f ′(x)‖
∫

R+×Rd

‖ξ‖m(dξ).
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The convexity of DM implies τξ = τ(θ, x, ξ)ξ ∈ DM for all θ ∈ R++,
x ∈ R+ × Rd and ξ ∈ DM , and, hence,

sup
ξ∈DM

‖f ′(x + θ−1τξ) − f ′(x)‖ 6 sup
ξ̃∈DM

‖f ′(x+ θ−1ξ̃)− f ′(x)‖.

Since f ′ is uniformly continuous on R+ × R
d (which follows by mean value

theorem using also that ‖f ′′‖∞ < ∞), there exists a θ0 ∈ R++ (depending
on ε and M) such that

sup
ξ̃∈DM

‖f ′(x+ θ−1ξ̃)− f ′(x)‖
∫

R+×Rd

‖ξ‖m(dξ) <
ε

2

for all x ∈ R+ × R
d and θ ∈ [θ0,∞). Further, by (2.8), we have

A
(2)
θ,M (x) 6 2‖f ′‖∞

∫

(R+×Rd)\DM

‖ξ‖m(dξ) <
ε

2

for all x ∈ R+ ×Rd and θ ∈ R++. Putting the pieces together we have (2.6).
Now we turn to prove (2.7) in a similar way. Let ε ∈ R++ be fixed again.

Let us now choose an M ∈ R++ such that

2 sup
x∈R+×Rd

x1‖f ′′(x)‖
∫

(R+×Rd)\DM

‖ξ‖2 µ(dξ) < ε

2
. (2.10)

Such anM can be chosen, since supx∈R+×Rd x1‖f ′′(x)‖ <∞ for all f ∈ C∞
c (R+×

Rd) and, by assumption (2.3),
∫
R+×Rd ‖ξ‖2 µ(dξ) <∞. By Taylor’s theorem, for

all θ ∈ R++, x ∈ R+×Rd and ξ ∈ DM there exists some τ = τ(θ, x, ξ) ∈ [0, 1]
such that

f(x+ θ−1ξ)− f(x)− 〈f ′(x), θ−1ξ〉 = 1

2
〈f ′′(x+ θ−1τξ)θ−1ξ, θ−1ξ〉. (2.11)

Then

x1

∣∣∣∣∣

∫

R+×Rd

(
f(x+ θ−1ξ)− f(x) − θ−1〈f ′(x), ξ〉 − 1

2
θ−2〈f ′′(x)ξ, ξ〉

)
θ2 µ(dξ)

∣∣∣∣∣

6
1

2
x1

∫

R+×Rd

∣∣〈f ′′(x + θ−1τξ)ξ, ξ〉 − 〈f ′′(x)ξ, ξ〉
∣∣µ(dξ)

6
1

2
(B

(1)
θ,M (x) +B

(2)
θ,M(x))

for all x ∈ R+ × Rd, where

B
(1)
θ,M(x) := x1

∫

DM

|〈(f ′′(x+ θ−1τξ) − f ′′(x))ξ, ξ〉|µ(dξ),

B
(2)
θ,M(x) := x1

∫

(R+×Rd)\DM

(
|〈f ′′(x+ θ−1τξ)ξ, ξ〉| + |〈f ′′(x)ξ, ξ〉|

)
µ(dξ).
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Here

B
(1)
θ,M(x) 6 x1

∫

DM

‖f ′′(x+ θ−1τξ) − f ′′(x)‖‖ξ‖2 µ(dξ)

6 sup
ξ∈DM

x1‖f ′′(x + θ−1τξ) − f ′′(x)‖
∫

R+×Rd

‖ξ‖2 µ(dξ),

and note that ‖A−B‖ > ‖A‖ − ‖B‖, A,B ∈ Rp×p, yields that

x1‖f ′′(x + θ−1τξ) − f ′′(x)‖ 6 ‖(x1 + θ−1τξ1)f
′′(x+ θ−1τξ) − x1f

′′(x)‖
+ θ−1τξ1‖f ′′(x + θ−1τξ)‖.

Further, we have again

{τξ = τ(θ, x, ξ)ξ : θ ∈ R++, x ∈ R+ × R
d and ξ ∈ DM} ⊂ DM ,

and hence

sup
ξ∈DM

‖(x1 + θ−1τξ1)f
′′(x+ θ−1τξ) − x1f

′′(x)‖

6 sup
ξ̃∈DM

‖(x1 + θ−1ξ̃1)f
′′(x+ θ−1ξ̃)− x1f

′′(x)‖.

Since the function x 7→ x1f
′′(x) is uniformly continuous on R+ × Rd, there

exists a θ1 ∈ R++ (depending on ε and M) such that

sup
ξ̃∈DM

‖(x1 + θ−1ξ̃1)f
′′(x+ θ−1ξ̃)− x1f

′′(x)‖
∫

R+×Rd

‖ξ‖2 µ(dξ) < ε

4

for all x ∈ R+ × Rd and θ ∈ [θ1,∞). Moreover, there exists a θ2 ∈ R++

(depending on ε and M) such that

θ−1 sup
ξ∈DM

τξ1‖f ′′(x+ θ−1τξ)‖
∫

R+×Rd

‖ξ‖2 µ(dξ)

6 θ−1‖f ′′‖∞ sup
ξ∈DM

ξ1

∫

R+×Rd

‖ξ‖2 µ(dξ) < ε

4

for all x ∈ R+ × Rd and θ ∈ [θ2,∞). Consequently, B
(1)
θ,M(x) < ε

2 for all

x ∈ R+ × R
d and θ ∈ [θ1 + θ2,∞). Further,

B
(2)
θ,M (x) 6 x1

∫

(R+×Rd)\DM

(
‖f ′′(x+ θ−1τξ)‖ + ‖f ′′(x)‖

)
‖ξ‖2 µ(dξ)

6 sup
ξ∈R+×Rd

x1
(
‖f ′′(x + θ−1τξ)‖ + ‖f ′′(x)‖

) ∫

(R+×Rd)\DM

‖ξ‖2 µ(dξ).

Here

x1
(
‖f ′′(x+ θ−1τξ)‖ + ‖f ′′(x)‖

)
6 (x1 + θ−1τξ1)‖f ′′(x+ θ−1τξ)‖+ x1‖f ′′(x)‖,
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hence

sup
ξ∈R+×Rd

x1
(
‖f ′′(x+ θ−1τξ)‖ + ‖f ′′(x)‖

)
6 2 sup

x∈R+×Rd

x1‖f ′′(x)‖.

Consequently, by (2.10), we have

B
(2)
θ,M (x) 6 2 sup

x∈R+×Rd

x1‖f ′′(x)‖
∫

(R+×Rd)\DM

‖ξ‖2 µ(dξ) < ε

2

for all x ∈ R+ × Rd and θ ∈ R++. Putting the pieces together we have (2.7).

Finally, Ethier and Kurtz [12, Corollary 8.7 on page 232] yields our assertion.
Namely, with the notations of part (f) of this corollary (but replacing n by θ),
let

• Gθ := Eθ := E := R+ × Rd for all θ ∈ R++,
• Ca := C∞

c (R+×R
d) which strongly separates points in R+×R

d (indeed,
for every (x1, x2) ∈ R+ × Rd and δ ∈ R++, the bump function defined
by h1(u1, u2) := exp

{
− 1

1−(u1−x1)2
− 1

1−‖u2−x2‖2

}
if |u1 − x1| < 1 and

‖u2 − x2‖ < 1 with (u1, u2) ∈ R+ ×Rd, and h1(u1, u2) := 0 otherwise,
satisfies (4.7) on page 113 in Ethier and Kurtz [12]),

• ηθ : Eθ → E with ηθ(x1, x2) := (x1, x2), (x1, x2) ∈ Eθ for all θ ∈ R++,
• πθ : E → Eθ with πθ(x1, x2) := (x1, x2), (x1, x2) ∈ E for all θ ∈ R++,
• for each f ∈ C∞

c (R+ × Rd) one can choose fθ := f and gθ :=

A
(Y

(θ)
θ

,X
(θ)
θ

)
f for all θ ∈ R++ (and hence (fθ, gθ) ∈ Â

(Y
(θ)
θ

,X
(θ)
θ

)
defined

on page 24 in Ethier and Kurtz [12] by part (c) of Proposition 1.5 on page
9 in Ethier and Kurtz [12]),

• (Gθt )t∈R+ := (F (Y
(θ)
θ

,X
(θ)
θ

)
t )t∈R+ , where F (Y

(θ)
θ

,X
(θ)
θ

)
t denotes the σ-algebra

generated by {(Y (θ)
θ (s), X

(θ)
θ (s)), s ∈ [0, t]}.

Then, by our assumptions, convergence of the initial distributions holds, con-
dition (8.35) on page 232 in Ethier and Kurtz [12] is automatically satisfied,
and (2.4) shows the validity of condition (8.36) on page 232 in Ethier and
Kurtz [12].

Remark 2.6. By giving an example, we shed some light on why we consider
only (1+d)-dimensional affine processes with state space R+×Rd in Theorem
2.2 instead of (n + d)-dimensional ones with state space Rn+ × Rd, n ∈ N.
Let (Yt)t∈R+ be a two-dimensional continuous state branching process with
infinitesimal generator

(AY f)(y) =

2∑

i=1

yi

∫

R2
+\{0}

(
f(y + u)− f(y)− f ′

i(y)ui

)
pi(du),

for f ∈ C2
c (R

2
+) and y = (y1, y2) ∈ R2

+, where pi, i = 1, 2, are σ-finite
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measures on R2
+ \ {0} such that

∫

R2
+\{0}

(u1 + ‖u‖2)p2(du) <∞ and

∫

R2
+\{0}

(u2 + ‖u‖2)p1(du) <∞,

(2.12)

see, e.g., Duffie et al. [11, Theorem 2.7]. Note that Y can be considered as a
two-dimensional affine process with state space R2

+ (formally with d = 0).
Then, by a simple modification of Lemma 2.1, for all θ > 0, f ∈ C2

c (R
2
+) and

y = (y1, y2) ∈ R2
+,

(AYθ
f)(y) = θ(AY fθ)(θy)

= θ

2∑

i=1

θyi

∫

R2
+\{0}

(
f(θ−1(θy + u))− f(θ−1θy)− θ−1f ′

i(θ
−1θy)ui

)
pi(du)

= θ2
2∑

i=1

yi

∫

R2
+\{0}

(
f(y + θ−1u)− f(y)− 〈f ′(y), θ−1u〉

)
pi(du)

+ θ

2∑

i=1

yif
′
3−i(y)

∫

R2
+\{0}

u3−i pi(du),

where the last equality follows by (2.12). Supposing that f is real-valued, by
Taylor’s theorem,

f(y + θ−1u)− f(y)− 〈f ′(y), θ−1u〉 = 1

2
〈f ′′(y + τθ−1u)θ−1u, θ−1u〉

=
θ−2

2
〈f ′′(y + τθ−1u)u, u〉

with some τ = τ(u, y) ∈ [0, 1]. Hence, similarly to the proof of (2.7), we get

lim
θ→∞

θ2
2∑

i=1

yi

∫

R2
+\{0}

(
f(y + θ−1u)− f(y)− 〈f ′(y), θ−1u〉

)
pi(du)

=
1

2

2∑

i=1

yi

∫

R2
+\{0}

〈f ′′(y)u, u〉pi(du)

for real-valued f ∈ C2
c (R

2
+) and y = (y1, y2) ∈ R2

+. However, (AYθ
f)(y) does

not converge as θ → ∞ provided that

2∑

i=1

yif
′
3−i(y)

∫

R2
+\{0}

u3−i pi(du) 6= 0.

We also note that this phenomena is somewhat similar to that of Remark 2.1
in Ma [28].

In the next remark we formulate some special cases of Theorem 2.2.
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Remark 2.7. (i) If (Y (t), X(t))t∈R+ is a (1 + d)-dimensional affine process
on R+ × Rd with admissible parameters (a, α, b, 0,m, µ) such that con-
dition (2.3) is satisfied, then the conditions of Theorem 2.2 are satisfied for
(Y (θ)(t), X(θ)(t))t∈R+ := (Y (t), X(t))t∈R+ , θ ∈ R++, and hence

(
θ−1Y (θt), θ−1X(θt)

)
t∈R+

L−→ (Y(t),X (t))t∈R+ as θ → ∞

in D(R+,R+ × Rd), where (Y(t),X (t))t∈R+ is a (1 + d)-dimensional affine

process on R+×Rd with admissible parameters (0, α̃, b̃, 0, 0, 0), where α̃ and

b̃ are given in Theorem 2.2.

(ii) If (Y (t), X(t))t∈R+ is a (1 + d)-dimensional affine process on R+ ×Rd

with (Y (0), X(0)) = (0, 0) and with admissible parameters (0, α, b, 0, 0, 0),
then

(
θ−1Y (θt), θ−1X(θt)

)
t∈R+

L
= (Y (t), X(t))t∈R+ for all θ ∈ R++,

where
L
= denotes equality in distribution. Indeed, by Proposition 1.6 on page

161 in Ethier and Kurtz [12], it is enough to check that the semigroups (on the
Banach space of bounded Borel measurable functions on R+×Rd) correspond-
ing to the processes in question coincide. By the definition of a core, this follows
from the equality of the infinitesimal generators of the processes in question on
the core C∞

c (R+×Rd), which has been shown in the proof of Theorem 2.2.

Next we present a corollary of Theorem 2.2 which states weak convergence of
appropriately normalized one-dimensional continuous state branching processes
with immigration. Our corollary generalizes Theorem 2.3 in Huang et al. [20] in
the sense that we do not have to suppose that

∫∞

1 ξ2m(dξ) < ∞, only that∫∞

1 ξ m(dξ) <∞ (with the notations of Huang et al. [20]), and our proof defers
from that of Huang et al. [20].

Corollary 2.1. For all θ ∈ R++, let (Y (θ)(t))t∈R+ be a one-dimensional
continuous state branching process with immigration on R+ with branching
mechanism

R(θ)(z) := β(θ)z + α(θ)z2 +

∫

R+

(e−zu − 1 + zu) p(du), z ∈ R+,

and with immigration mechanism

F (θ)(z) := b(θ)z +

∫

R+

(1 − e−zu)n(du), z ∈ R+,

where α(θ) > 0, b(θ) > 0, β(θ) ∈ R and n and p are measures on (0,∞)
such that ∫

R+

un(du) <∞ and

∫

R+

u2 p(du) <∞.
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Let α, b, β ∈ R, and let (Y (t))t∈R+ be a one-dimensional continuous state
branching process with immigration on R+ with branching mechanism

R(z) := −βz +
(
α+

1

2

∫

R+

u2 p(du)

)
z2, z ∈ R+,

and with immigration mechanism

F (z) :=

(
b +

∫

R+

un(du)

)
z, z ∈ R+.

If

lim
θ→∞

α(θ) = α, lim
θ→∞

b(θ) = b, lim
θ→∞

θβ(θ) = β, Y (θ)(0)
L−→ Y (0)

as θ → ∞, then
(
θ−1Y (θ)(θt)

)
t∈R+

L−→ (Y (t))t∈R+ as θ → ∞

in D(R+,R+).

Proof. For each θ ∈ R++ and t ∈ R+, let X(θ)(t) := 0. Then for each
θ ∈ R++, the process (Y (θ)(t), X(θ)(t))t∈R+ is a two-dimensional affine process

with admissible parameters (0, α(θ), b
(θ)
, β

(θ)
,m, µ), where

α(θ) :=

[
α(θ) 0
0 0

]
, b

(θ)
:=

[
b(θ)

0

]
, β

(θ)
:=

[
β(θ) 0
0 0

]
,

µ(dξ) = µ(dξ1, dξ2) := p(dξ1)× δ0(dξ2),

m(dξ) = m(dξ1, dξ2) := n(dξ1)× δ0(dξ2),

where δ0 denotes the Dirac measure concentrated on 0 ∈ R. Then, by Theorem
2.2, for the two-dimensional affine processes (Y (θ)(t), X(θ)(t))t∈R+ , θ ∈ R++,
we have

(
θ−1Y (θ)(θt), θ−1X(θ)(θt)

)
t∈R+

L−→ (Y (t), X(t))t∈R+ as θ → ∞

in D(R+,R+×R), where (Y (t), X(t))t∈R+ is a two-dimensional affine process
on R+ × R with infinitesimal generator

(A(Y,X)f)(x) =

(
α+

1

2

∫

R+

u2 p(du)

)
x1f

′′
1,1(x)

+

(
b+ βx1 +

∫

R+

un(du)

)
f ′
1(x),

for x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R). Note that in fact X is the

identically zero process. Finally, Theorem 9.30 in Li [27] yields the assertion.
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3. Least squares estimator for a critical two-dimensional affine
diffusion process

In this section continuous time stochastic processes will be written as (ξt)t∈R+

instead of (ξ(t))t∈R+ . Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space
satisfying the usual conditions, i.e., (Ω,F ,P) is complete, the filtration (Ft)t∈R+

is right-continuous and F0 contains all the P-null sets in F . Let (Wt)t∈R+

and (Bt)t∈R+ be independent standard (Ft)t∈R+ -Wiener processes. Let us
consider the following two-dimensional diffusion process given by the SDE

{
dYt = (a− bYt) dt+

√
Yt dWt,

dXt = (m− θXt) dt+
√
Yt dBt,

t ∈ R+, (3.1)

where a ∈ R++ and b, θ,m ∈ R.

3.1. Preparations and (sub)(super)criticality

The next proposition is about the existence and uniqueness of a strong solution
of the SDE (3.1).

Proposition 3.1. Let (η, ζ) be a random vector independent of (Wt, Bt)t∈R+

satisfying P(η > 0) = 1. Then, for all a ∈ R++ and b,m, θ ∈ R, there is
a (pathwise) unique strong solution (Yt, Xt)t∈R+ of the SDE (3.1) such that
P((Y0, X0) = (η, ζ)) = 1 and P(Yt > 0 for all t ∈ R+) = 1. Further, for all
0 6 s 6 t,

Yt = e−b(t−s)
(
Ys + a

∫ t

s

e−b(s−u) du+

∫ t

s

e−b(s−u)
√
Yu dWu

)
, (3.2)

and

Xt = e−θ(t−s)
(
Xs +m

∫ t

s

e−θ(s−u) du+

∫ t

s

e−θ(s−u)
√
Yu dBu

)
. (3.3)

Proof. By Ikeda and Watanabe [21, Example 8.2, page 221], there is a pathwise
unique non-negative strong solution (Yt)t∈R+ of the first equation in (3.1) with
any initial value η satisfying P(η > 0) = 1. Next, by applications of the Itô’s
formula to the processes (ebtYt)t∈R+ and (eθtXt)t∈R+ , respectively, we have

d(ebtYt) = bebtYt dt+ ebtdYt = bebtYt dt+ ebt
(
(a− bYt) dt+

√
Yt dWt

)

= aebt dt+ ebt
√
Yt dWt, t ∈ R+,

and

d(eθtXt) = θeθtXt dt+ eθtdXt = θeθtXt dt+ eθt
(
(m− θXt) dt+

√
Yt dBt

)

= meθt dt+ eθt
√
Yt dBt, t ∈ R+,
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which imply (3.2) and (3.3) in case of s = 0. If 0 6 s 6 t, then, by

ebtYt = ebsYs + a

∫ t

s

ebu du+

∫ t

s

ebu
√
Yu dBu,

and

eθtXt = eθsXs +m

∫ t

s

eθu du+

∫ t

s

eθu
√
Yu dBu,

we have (3.2) and (3.3). Finally, we note that the existence of a pathwise unique
strong solution (Yt, Xt)t∈R+ of the SDE (3.1) with P(Yt > 0 for all t ∈ R+) =
1 follows also by a general result of Dawson and Li [10, Theorem 6.2].

Note that it is the assumption a ∈ R++ that ensures P(Yt> 0, ∀ t∈R+)= 1.
Next we present a result about the first moment of (Yt, Xt)t∈R+ .

Proposition 3.2. Let (Yt, Xt)t∈R+ be a strong solution of the SDE (3.1)
satisfying P(Y0 > 0) = 1, E(Y0) <∞, and E(X0) <∞. Then

[
E(Yt)
E(Xt)

]
=

[
e−bt 0
0 e−θt

] [
E(Y0)
E(X0)

]
+

[∫ t
0
e−bs ds 0

0
∫ t
0
e−θs ds

][
a
m

]
, t ∈ R+,

Proof. By Proposition 3.1, we have

Yt = e−bt
(
Y0 + a

∫ t

0

ebu du+

∫ t

0

ebu
√
Yu dWu

)
, t ∈ R+,

Xt = e−θt
(
X0 +m

∫ t

0

eθu du +

∫ t

0

eθu
√
Yu dBu

)
, t ∈ R+,

and so, taking expectations of both sides,

E(Yt) = e−bt E(Y0) + ae−bt
∫ t

0

ebu du = e−bt E(Y0) + a

∫ t

0

e−bu du, t ∈ R+,

E(Xt) = e−θt E(X0) +me−θt
∫ t

0

eθu du = e−θt E(X0) +m

∫ t

0

e−θu du, t ∈ R+,

where we used that the processes

(∫ t

0

ebu
√
Yu dWu

)

t∈R+

and

(∫ t

0

eθu
√
Yu dBu

)

t∈R+

are martingales which can be checked as follows. First we check that they are
local martingales with respect to the filtration (Ft)t∈R+ . Let us define the
increasing sequence of stopping times by δn := inf{t > 0 : Yt > n}, n ∈ N. Since
Y has continuous trajectories almost surely, we have P(limn→∞ δn = ∞) = 1.
Using (δn)n∈N as a localizing sequence, we have

E

(∫ t∧δn

0

e2buYu du

)
6 ntmax(1, e2bt), t ∈ R+, n ∈ N.
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The local martingale property of
(∫ t

0 e
bu
√
Yu dWu

)
t∈R+

follows by Ikeda and

Watanabe [21, page 57]. Hence, using (3.2) and that a ∈ R++, we find that

E(eb(t∧δn)Yt∧δn) = E(Y0) + aE

(∫ t∧δn

0

ebu du

)
6 E(Y0) + atmax(1, ebt)

for all t ∈ R+ and n ∈ N, and then, by Fatou’s lemma,

E(ebtYt) 6 lim inf
n→∞

E(eb(t∧δn)Yt∧δn) 6 E(Y0) + atmax(1, ebt), t ∈ R+. (3.4)

Next, we can deduce that
(∫ t

0
ebu

√
Yu dWu

)
t∈R+

is indeed a martingale.

First, we note that a local martingale M is a square integrable martingale
if E([M,M ]t) < ∞ for all t ∈ R+, where ([M,M ]t)t∈R+ denotes the
quadratic variation process of M , see, e.g., Corollary 3 on page 73 in Protter
[32]. Here the quadratic variation process of

(∫ t
0 e

bu
√
Yu dWu

)
t∈R+

takes the

form

E

(∫ t

0

e2buYu du

)
<∞, t ∈ R+,

where, for the inequality, we used Fubini’s theorem, (3.4) and our assumption
E(Y0) < ∞. Replacing b by θ, we have the desired martingale property of(∫ t

0 e
θu
√
Yu dBu

)
t∈R+

, too.

Next we show that the process (Yt, Xt)t∈R+ given by the SDE (3.1) is an
affine process.

Proposition 3.3. Let (Yt, Xt)t∈R+ be a strong solution of the SDE (3.1) satis-
fying P(Y0 > 0) = 1. Then (Yt, Xt)t∈R+ is an affine process with infinitesimal
generator

(A(Y,X)f)(x) = (a− bx1)f
′
1(x) + (m− θx2)f

′
2(x)

+
1

2
x1(f

′′
1,1(x) + f ′′

2,2(x))
(3.5)

for x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

Proof. For calculating the infinitesimal generator of (Yt, Xt)t∈R+ , without loss
of generality, we may suppose that P((Y0, X0) = (y0, x0)) = 1, where (y0, x0) ∈
R+ × R. By Itô’s formula, for all real-valued functions f ∈ C2

c (R+ × R) we
have

f(Yt, Xt) = f(y0, x0) +

∫ t

0

f ′
1(Ys, Xs)

√
Ys dWs +

∫ t

0

f ′
2(Ys, Xs)

√
Ys dBs

+

∫ t

0

f ′
1(Ys, Xs)(a− bYs) ds+

∫ t

0

f ′
2(Ys, Xs)(m− θXs) ds

+
1

2

(∫ t

0

f ′′
1,1(Ys, Xs)Ys ds+

∫ t

0

f ′′
2,2(Ys, Xs)Ys ds

)

= f(y0, x0) +

∫ t

0

(A(Y,X)f)(Ys, Xs) ds+Mt(f), t ∈ R+,
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where

Mt(f) :=

∫ t

0

f ′
1(Ys, Xs)

√
Ys dWs +

∫ t

0

f ′
2(Ys, Xs)

√
Ys dBs, t ∈ R+,

and A(Y,X)f is given by (3.5). Here (Mt(f))t∈R+ is a square integrable
martingale with respect to the filtration (Ft)t∈R+ , since

∫ t

0

E((f ′
1(Ys, Xs))

2Ys) ds 6 C1

∫ t

0

E(Ys) ds <∞, t ∈ R+,

∫ t

0

E((f ′
2(Ys, Xs))

2Ys) ds 6 C2

∫ t

0

E(Ys) ds <∞, t ∈ R+,

with some constants C1 > 0 and C2 > 0, where the finiteness of the integrals
follow by Proposition 3.2. Finally, if f ∈ C2

c (R+ ×R) is complex valued, then,
by decomposing f into real and imaginary parts, one can argue in the same
way as above.

By Proposition 3.3, the process (Yt, Xt)t∈R+ given by (3.1) is a two-dimen-
sional affine process with admissible parameters

([
0 0
0 0

]
,
1

2

[
1 0
0 1

]
,

[
a
m

]
,

[
−b 0
0 −θ

]
, 0, 0

)
.

In what follows we define and study criticality of the affine process given by
the SDE (3.1).

Definition 3.1. Let (Yt, Xt)t∈R+ be an affine diffusion process given by the
SDE (3.1) satisfying P(Y0 > 0) = 1. We call (Yt, Xt)t∈R+ subcritical, critical
or supercritical if the spectral radius of the matrix

(
e−bt 0
0 e−θt

)

is less than 1, equal to 1 or greater than 1, respectively.

Note that, since the spectral radius of the matrix given in Definition 3.1 is
max(e−bt, e−θt), the affine process given in Definition 3.1 is

subcritical if b > 0 and θ > 0,

critical if b = 0, θ > 0 or b > 0, θ = 0,

supercritical if b < 0 or θ < 0.

Definition 3.1 of criticality is in accordance with the corresponding definition for
one-dimensional continuous state branching processes, see, e.g., Li [27, page 58].

In this section we will always suppose that

Condition (C): (b, θ) = (0, 0), P(Y0 > 0) = 1,

E(Y0) <∞, and E(X2
0 ) <∞.
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For some explanations why we study only this special case, see Remarks 3.1,
3.2 and 3.3. In the next sections under Condition (C) we will study asymptotic
behaviour of least squares estimator of θ and (θ,m), respectively. Before
doing so we recall some critical models both in discrete and continuous time.

In general, parameter estimation for critical models has a long history. A
common feature of the estimators for parameters of critical models is that one
may prove weak limit theorems for them by using norming factors that are
usually different from the norming factors for the subcritical and supercritical
models. Further, it may happen that one has to use different norming factors
for two different critical cases.

We recall some discrete time critical models. If (ξk)k∈Z+ is an AR(1) process,
i.e., ξk = ̺ξk−1+ζk, k ∈ N, with ξ0 = 0 and an i.i.d. sequence (ζk)k∈N having
mean 0 and positive variance, then the (ordinary) least squares estimator of
the so-called stability parameter ̺ based on the sample ξ1, . . . , ξn takes the
form

˜̺n =

∑n
k=1 ξk−1ξk∑n
k=1 ξ

2
k

, n ∈ N,

see, e.g., Hamilton [16, 17.4.2]. In the critical case, i.e., when ̺ = 1, by Hamilton
[16, 17.4.7],

n(˜̺n − 1)
L−→
∫ 1

0 Wt dWt∫ 1

0
W2
t dt

as n→ ∞,

where (Wt)t∈R+ is a standard Wiener process and
L−→ denotes convergence

in distribution. Here n(˜̺n − 1) is known as the Dickey-Fuller statistics. We
emphasize that the asymptotic behaviour of ˜̺n is completely different in the
subcritical (|ρ| < 1) and supercritical (|ρ| > 1) cases, where it is asymptoti-
cally normal and asymptotically Cauchy, respectively, see, e.g., Mann and Wald
[29], Anderson [2] and White [36].

For continuous time critical models, we recall that Huang et al. [20, Theorem
2.4] studied asymptotic behaviour of weighted conditional least squares esti-
mator of the drift parameters for discretely observed continuous time critical
branching processes with immigration given by

Ỹt = Ỹ0 +

∫ t

0

(a+ bỸs) ds+ σ

∫ t

0

√
Ỹs dWs +

∫ t

0

∫

[0,∞)

ξN0(ds, dξ)

+

∫ t

0

∫ Ỹs−

0

∫

[0,∞)

ξ (N1(ds, du, dξ)− ds du p(dξ)), t ∈ R+,

where Ỹ0 > 0, a > 0, b ∈ R, σ > 0, W is a standard Wiener process,
N0(ds, dξ) is a Poisson random measure on (0,∞) × [0,∞) with intensity
ds n(dξ), N1(ds, du, dξ) is a Poisson randommeasure on (0,∞)×(0,∞)×[0,∞)
with intensity ds du p(dξ) such that the σ-finite measures n and p are
supported by (0,∞) and

∫ ∞

0

ξ n(dξ) +

∫ ∞

0

ξ ∧ ξ2 p(dξ) <∞.
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Our technique differs from that of Huang et al. [20] and for completeness we
note that the limit distribution and some parts of the proof of their Theorem 2.4
suffer from some misprints. Furthermore, Hu and Long [19] studied the problem
of parameter estimation for critical mean-reverting α-stable motions

dX̃t = (m− θX̃t) dt+ dZt, t ∈ R+,

where Z is an α-stable Lévy motion with α ∈ (0, 2)) observed at discrete
instants. A least squares estimator is obtained and its asymptotics is discussed
in the singular case (m, θ) = (0, 0). We note that the forms of the limit distri-
butions of least squares estimators for critical two-dimensional affine diffusion
processes in our Theorems 3.1 and 3.2 are the same as that of the limit distribu-
tions in Theorems 3.2 and 4.1 in Hu and Long [19], respectively. We also recall
that Hu and Long [18] considered the problem of parameter estimation not only
for critical mean-reverting α-stable motions, but also for some subcritical ones
(m = 0 and θ > 0) by proving limit theorems for the least squares estimators
that are completely different from the ones in the critical case. Huang et al.
[20] investigated the asymptotic behaviour of weighted conditional least squares
estimator of the drift parameters not only for critical continuous time branching
processes with immigration, but also for subcritical and supercritical ones.

Using our scaling Theorem 2.2 we can only handle a special critical affine
diffusion model given by (1.1) (for a more detailed discussion, see Remark 3.2).
The other critical and non-critical cases are under investigation but different
techniques are needed.

3.2. Least squares estimator of θ when m is known

The least squares estimator (LSE) of θ based on the observations Xi, i =
0, 1, . . . , n, can be obtained by solving the extremum problem

θ̃LSEn := argmin
θ∈R

n∑

i=1

(Xi −Xi−1 − (m− θXi−1))
2.

This definition of LSE of θ can be considered as the counterpart of the one given
in Hu and Long [18, formula (1.2)] for generalized Ornstein-Uhlenbeck processes
driven by α-stable motions, see also Hu and Long [19, formulas (3.1) and (4.1)].
For a mathematical motivation of the definition of the LSE of θ, see later on
Remark 3.4. With the notation f(θ) :=

∑n
i=1(Xi − Xi−1 − (m − θXi−1))

2,
θ ∈ R, the equation f ′(θ) = 0 takes the form:

2

n∑

i=1

(Xi −Xi−1 − (m− θXi−1))Xi−1 = 0.

Hence (
n∑

i=1

X2
i−1

)
θ = −

n∑

i=1

(Xi −Xi−1 −m)Xi−1,



668 M. Barczy et al.

i.e.,

θ̃LSEn = −
∑n
i=1(Xi −Xi−1 −m)Xi−1∑n

i=1X
2
i−1

= −
∑n
i=1(Xi −Xi−1)Xi−1 − (

∑n
i=1Xi−1)m∑n

i=1X
2
i−1

(3.6)

provided that
∑n

i=1X
2
i−1 > 0. Since f ′′(θ) = 2

∑n
i=1X

2
i−1, θ ∈ R, we

have θ̃LSEn is indeed the solution of the extremum problem provided that∑n
i=1X

2
i−1 > 0.

Theorem 3.1. Let us assume that Condition (C) holds. Then P(
∑n

i=1X
2
i−1 >

0) = 1 for all n > 2, and there exists a unique LSE θ̃LSEn which has the form
given in (3.6). Further,

nθ̃LSEn
L−→ −

∫ 1

0 Xt dXt −m
∫ 1

0 Xt dt∫ 1

0 X 2
t dt

as n→ ∞, (3.7)

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process
(Yt,Xt)t∈R+ given by the unique strong solution of the SDE




dYt = a dt+

√Yt dWt,

dXt = m dt+
√Yt dBt,

t ∈ R+, (3.8)

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are
independent standard Wiener processes.

Remark 3.1. (i) The limit distributions in Theorem 3.1 have the same forms
as those of the limit distributions in Theorem 3.2 in Hu and Long [19].

(ii) The limit distribution of nθ̃LSEn as n→ ∞ in Theorem 3.1 can be written
also in the form

−
∫ 1

0 Xt d(Xt −mt)
∫ 1

0
X 2
t dt

= −
∫ 1

0 Xt
√Yt dBt∫ 1

0
X 2
t dt

.

(iii) By Proposition 3.3, the affine process (Yt,Xt)t∈R+ given in Theorem 3.1
has infinitesimal generator

(A(Y,X )f)(x) =
1

2
x1f

′′
1,1(x) +

1

2
x1f

′′
2,2(x) + af ′

1(x) +mf ′
2(x)

where x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

(iv) Under the Condition (C), by Theorem 3.1 and Slutsky’s lemma, we get

θ̃LSEn converges stochastically to the parameter θ = 0 as n→ ∞.
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Proof of Theorem 3.1. By (3.3), we have

Xt = X0 +mt+

∫ t

0

√
Ys dBs, t ∈ R+.

Hence for all t ∈ R++, the conditional distribution of Xt given X0 and
(Ys)s∈[0,t] is a normal distribution with mean X0 + mt and with variance∫ t
0 Ys ds. Here the variance

∫ t
0 Ys ds is positive almost surely for all t ∈ R++.

Indeed, let At := {ω ∈ Ω : s 7→ Ys(ω) is continuous on [0, t]}. Then P(At) =

1, and, since P(Y0 > 0) = 1, for all ω ∈ At,
∫ t
0 Ys(ω) ds = 0 if and only if

Ys(ω) = 0 for all s ∈ [0, t]. By (3.1), we have

Ys = Y0 + as+

∫ s

0

√
Yu dWu, s ∈ R+.

The stochastic integral on the right hand side can be approximated as

sup
s∈[0,t]

∣∣∣∣∣∣

⌊ns⌋∑

i=1

√
Y(i−1)/n(Wi/n −W(i−1)/n)−

∫ s

0

Yu dWu

∣∣∣∣∣∣
P−→ 0 as n→ ∞

for all t ∈ R+, by Jacod and Shiryaev [22, Theorem I.4.44]. Hence there exists
a sequence (nk)k∈N of positive integers such that

sup
s∈[0,t]

∣∣∣∣∣∣

⌊nkt⌋∑

i=1

√
Y(i−1)/nk

(Wi/nk
−W(i−1)/nk

)−
∫ s

0

Yu dWu

∣∣∣∣∣∣
a.s.−→ 0 as k → ∞

for all t ∈ R+. Consequently, with the notation

Ãt :=

{
ω ∈ Ω :

∫ t

0

Ys(ω) ds = 0

}
,

we have

Ãt ∩ At ⊂
{
Ãt
⋂{∫ s

0

Yu dWu = 0 for all s ∈ [0, t]

}}

⊂
{
Ãt ∩ {Ys = Y0 + as for all s ∈ [0, t]}

}

=
{
Ãt ∩

{
Y0s+ as2/2 = 0 for all s ∈ [0, t]

}}

=
{
Ãt ∩ {Y0 = −as/2 for all s ∈ [0, t]}

}
= ∅,

implying P
(∫ t

0
Ys ds = 0

)
= 0, and hence P

(∫ t
0
Ys ds > 0

)
= 1. It yields that

P(Xt = 0) = E
(
P(Xt = 0 |X0, (Ys)s∈[0,t])

)
= 0, t ∈ R++, (3.9)

and hence P(
∑n

i=1X
2
i−1 > 0) = 1 for all n > 2.
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Now we turn to prove (3.7). By Itô’s formula, we have d(X 2
t ) = 2XtdXt +

Yt dt, t ∈ R+, and hence, using also X0 = 0, we have

∫ 1

0

Xs dXs =
1

2

(
X 2

1 −
∫ 1

0

Ys ds
)
. (3.10)

For the process (Xt)t∈R+ , a discrete version

n∑

i=1

(Xi −Xi−1)Xi−1 =
1

2

(
X2
n −X2

0 −
n∑

i=1

(Xi −Xi−1)
2

)
(3.11)

of the identity (3.10) can be easily checked. The aim of the following discussion
is to prove

(
1

n2

n∑

i=1

Xi−1,
1

n3

n∑

i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑

i=1

(Xi −Xi−1)
2

)

L−→
(∫ 1

0

Xt dt,
∫ 1

0

X 2
t dt,X1, 0,

∫ 1

0

Yt dt
)

as n→ ∞.

(3.12)

Let us consider the unique strong solution of the SDE





dỸt = a dt+

√
Ỹt dWt,

dX̃t = m dt+

√
Ỹt dBt,

t ∈ R+, (3.13)

with initial value (Ỹ0, X̃0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are the
independent standard (Ft)t∈R+ -Wiener processes appearing in the SDE (3.1).

First note that (Ỹt, X̃t)t∈R+

L
= (Yt,Xt)t∈R+ , and, by Proposition 3.3, it is an

affine process having admissible parameters

([
0 0
0 0

]
,
1

2

[
1 0
0 1

]
,

[
a
m

]
,

[
0 0
0 0

]
, 0, 0

)
,

and condition (2.3) is trivially fulfilled. Hence, by part (ii) of Remark 2.7, we
have

(
n−1Ỹnt, n

−1X̃nt

)
t∈R+

L
= (Yt,Xt)t∈R+ for all n ∈ N. (3.14)

Consequently, for all n ∈ N, we have

(
1

n2

n∑

i=1

X̃i−1,
1

n3

n∑

i=1

X̃2
i−1,

1

n
X̃n,

1

n
X̃0,

1

n2

n∑

i=1

(X̃i − X̃i−1)
2

)

L
= (An, Bn, Cn, Dn, En),
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where

An :=
1

n

n∑

i=1

X(i−1)/n
a.s.−→

∫ 1

0

Xt dt, as n→ ∞,

Bn :=
1

n

n∑

i=1

X 2
(i−1)/n

a.s.−→
∫ 1

0

X 2
t dt, as n→ ∞,

Cn := X1,

Dn := X0,

En :=

n∑

i=1

(Xi/n −X(i−1)/n)
2 P−→

∫ 1

0

Yt dt, as n→ ∞. (3.15)

Here the first two convergences are consequences of the definition of the Rie-
mann integral using also that (Xt)t∈R+ has continuous sample paths almost
surely. The convergence (3.15) can be checked as follows. With the notations
of Jacod and Shiryaev [22],

(
τn :=

(
i
n ∧ 1

)
i∈N

)
n∈N

is a Riemann sequence of

(adapted) subdivisions and hence, by Jacod and Shiryaev [22, Theorem I.4.47],
the sequence of processes

(
n∑

i=1

(
X
(
i

n
∧ 1 ∧ t

)
−X

(
i− 1

n
∧ 1 ∧ t

))2
)

t∈R+

, n ∈ N,

converges to the quadratic variation process of X in probability, uniformly on
every compact interval. Especially, with t = 1, using also the SDE (3.8), we
have (3.15). Hence, in order to prove (3.12), it suffices to show convergences

1

n2

n−1∑

i=0

Xi −
1

n2

n−1∑

i=0

X̃i
P−→ 0, (3.16)

1

n3

n−1∑

i=0

X2
i −

1

n3

n−1∑

i=0

X̃2
i

P−→ 0, (3.17)

1

n
Xn − 1

n
X̃n

P−→ 0, (3.18)

1

n
X0 −

1

n
X̃0

P−→ 0, (3.19)

1

n2

n∑

i=1

(Xi −Xi−1)
2 − 1

n2

n∑

i=1

(X̃i − X̃i−1)
2 P−→ 0, (3.20)

as n → ∞. Indeed, one can refer to Slutsky’s lemma using also that for any

random vectors Un, Vn, n ∈ N, U , V such that Un
P−→ U and Vn

P−→ V

as n → ∞, we have (Un, Vn)
P−→ (U, V ) as n → ∞, see, e.g., van der Vaart

[33, Theorem 2.7, part (vi)].
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The convergence (3.19) is trivial. Next we show

E(|Yt − Ỹt|) 6 E(Y0), t ∈ R+. (3.21)

By (3.1) and (3.13), we have

Yt − Ỹt = Y0 +

∫ t

0

(
√
Ys −

√
Ỹs) dWs, t ∈ R+.

For each n ∈ N, there exists an even and twice continuously differentiable
function ψn : R → R+ with |ψn(x)| 6 |x|, |ψ′

n(x)| 6 1, ψn(x) ↑ |x| as
n→ ∞ for all x ∈ R, and

ψ′′
n(x− y)(

√
x−√

y)2 6
2(
√
x−√

y)2

n|x− y| 6
2

n

for all n ∈ N and x, y ∈ R+, see, e.g., in Karatzas and Shreve [24, Proof of
Proposition 5.2.13]. By Itô’s formula,

ψn(Yt − Ỹt) = ψn(Y0) +
1

2

∫ t

0

ψ′′
n(Ys − Ỹs)

(√
Ys −

√
Ỹs

)2

ds

+

∫ t

0

ψ′
n(Ys − Ỹs)

(√
Ys −

√
Ỹs

)
dWs

(3.22)

for all t ∈ R+ and n ∈ N. The last term is an (Ft)t∈R+ -martingale, since

E

(∫ t

0

|ψ′
n(Ys − Ỹs)|

(√
Ys −

√
Ỹs

)2

ds

)
6 E

(∫ t

0

|Ys − Ỹs| ds
)

6

∫ t

0

(E(Ys) + E(Ỹs)) ds <∞,

where the last inequality follows by Lemma 3.2. Thus the expectation of the
last term on the right hand side of (3.22) is zero, whereas the expectation of
the second integral is bounded by 2t/n. We conclude

E(ψn(Yt − Ỹt)) 6 E(ψn(Y0)) +
t

n
, t ∈ R+, n ∈ N.

By monotone convergence theorem, we have

E(|Yt − Ỹt|) = E( lim
n→∞

ψn(Yt − Ỹt)) = lim
n→∞

E(ψn(Yt − Ỹt))

6 lim inf
n→∞

(
E(ψn(Y0)) +

t

n

)
= lim

n→∞
E(ψn(Y0)) = E( lim

n→∞
ψn(Y0)) = E(|Y0|),

which yields (3.21).
Next, we derive

E(|Xt − X̃t|) 6 E(|X0|) +
√
tE(Y0), t ∈ R+. (3.23)
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Again by (3.1) and (3.13), we have

Xt − X̃t = X0 +

∫ t

0

(√
Ys −

√
Ỹs

)
dBs, t ∈ R+, (3.24)

hence

E(|Xt − X̃t|) 6 E(|X0|) +

√√√√E

((∫ t

0

(
√
Ys −

√
Ỹs) dBs

)2
)

= E(|X0|) +

√√√√E

(∫ t

0

(√
Ys −

√
Ỹs

)2

ds

)

6 E(|X0|) +
√
E

(∫ t

0

|Ys − Ỹs| ds
)

= E(|X0|) +
√∫ t

0

E(|Ys − Ỹs|) ds,

which yields (3.23) by (3.21).
By (3.23), we have

E

(∣∣∣∣
1

n
Xn − 1

n
X̃n

∣∣∣∣
)

6
1

n

(
E(|X0|) +

√
nE(Y0)

)
→ 0 as n→ ∞,

hence we obtain (3.18). In a similar way,

E

(∣∣∣∣∣
1

n2

n−1∑

i=0

Xi −
1

n2

n−1∑

i=0

X̃i

∣∣∣∣∣

)
6

1

n2

n−1∑

i=0

(
E(|X0|) +

√
iE(Y0)

)
→ 0

as n→ ∞, hence we obtain (3.16).
We also have

E

(
(Xt − X̃t)

2
)
6 2E(X2

0 ) + 2tE(Y0), t ∈ R+. (3.25)

Indeed, by (3.24), using Minkowski inequality, we have

√
E

(
(Xt − X̃t)2

)
6

√
E(X2

0 ) +

√√√√E

((∫ t

0

(
√
Ys −

√
Ỹs) dBs

)2
)

=
√
E(X2

0 ) +

√√√√E

(∫ t

0

(√
Ys −

√
Ỹs

)2

ds

)

6

√
E(X2

0 ) +

√
E

(∫ t

0

|Ys − Ỹs| ds
)

=
√
E(X2

0 ) +

√∫ t

0

E(|Ys − Ỹs|) ds 6
√
E(X2

0 ) +
√
tE(Y0)
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by (3.21), which yields (3.25). In a similar way,

E(X2
t ) 6 3E(X2

0 ) + 3m2t2 + 3tE(Y0) + 3at2/2, t ∈ R+. (3.26)

since, by (3.1) and (3.2),

√
E(X2

t ) 6
√
E(X2

0 ) + |m|t+

√√√√E

((∫ t

0

√
Ys dBs

)2
)

=
√
E(X2

0 ) + |m|t+
√
E

(∫ t

0

Ys ds

)

=
√
E(X2

0 ) + |m|t+
√∫ t

0

(E(Y0) + as) ds

=
√
E(X2

0 ) + |m|t+
√
tE(Y0) + at2/2

for t ∈ R+, which yields (3.26). Clearly, (3.26) implies also E(X̃2
t ) 6 3m2t2 +

3at2/2 for all t ∈ R+, and hence, together with (3.25) and (3.26), we conclude

E

(∣∣∣∣∣
1

n3

n−1∑

i=0

X2
i −

1

n3

n−1∑

i=0

X̃2
i

∣∣∣∣∣

)
6

1

n3

n−1∑

i=0

E

(
|(Xi − X̃i)(Xi + X̃i)|

)

6
1

n3

n−1∑

i=0

√
E((Xi − X̃i)2)E((Xi + X̃i)2)

6
1

n3

n−1∑

i=0

√
2E((Xi − X̃i)2)(E(X2

i ) + E(X̃2
i ))

6
1

n3

n−1∑

i=0

√
12(E(X2

0 ) + iE(Y0)) (E(X2
0 ) + (E(Y0))i+ (2m2 + a)i2) → 0

as n→ ∞, hence we obtain (3.17).
Next, we show (3.20). Again by (3.1) and (3.13), we have

Xi−Xi−1 = m+

∫ i

i−1

√
Ys dBs, X̃i−X̃i−1 = m+

∫ i

i−1

√
Ỹs dBs, i ∈ N,

and hence

1

n2

n∑

i=1

(Xi −Xi−1)
2 − 1

n2

n∑

i=1

(X̃i − X̃i−1)
2

=
2m

n2

∫ n

0

(√
Ys −

√
Ỹs

)
dBs

+
1

n2

n∑

i=1

[(∫ i

i−1

√
Ys dBs

)2

−
(∫ i

i−1

√
Ỹs dBs

)2
]

=: 2mRn + Sn.
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Here, by (3.21),

E(R2
n) =

1

n4
E

((∫ n

0

(√
Ys −

√
Ỹs

)
dBs

)2
)

=
1

n4
E

(∫ n

0

(√
Ys −

√
Ỹs

)2

ds

)
6

1

n4
E

(∫ n

0

|Ys − Ỹs| ds
)

=
1

n4

∫ n

0

E(|Ys − Ỹs|) ds 6
E(Y0)

n3
→ 0 as n→ ∞,

hence Rn
P−→ 0 as n→ ∞. Further, by (3.21),

E(|Sn|) = E

(∣∣∣∣∣
1

n2

n∑

i=1

∫ i

i−1

(√
Ys −

√
Ỹs

)
dBs

∫ i

i−1

(√
Ys +

√
Ỹs

)
dBs

∣∣∣∣∣

)

6
1

n2

n∑

i=1

E

(∣∣∣∣
∫ i

i−1

(√
Ys −

√
Ỹs

)
dBs

∫ i

i−1

(√
Ys +

√
Ỹs

)
dBs

∣∣∣∣
)

6
1

n2

n∑

i=1

√√√√E

((∫ i

i−1

(
√
Ys −

√
Ỹs) dBs

)2
)
E

((∫ i

i−1

(
√
Ys +

√
Ỹs) dBs

)2
)

=
1

n2

n∑

i=1

√∫ i

i−1

E

(
(
√
Ys −

√
Ỹs)2

)
ds

∫ i

i−1

E

(
(
√
Ys +

√
Ỹs)2

)
ds

6
1

n2

n∑

i=1

√∫ i

i−1

E(|Ys − Ỹs|) ds
∫ i

i−1

2(E(Ys) + E(Ỹs)) ds

6
1

n2

n∑

i=1

√
E(Y0)

∫ i

i−1

2(E(Y0) + 2as) ds

=
1

n2

n∑

i=1

√
2E(Y0)(E(Y0) + (2i− 1)a) → 0 as n→ ∞,

thus Sn
P−→ 0 as n→ ∞, and we obtain (3.20), and hence (3.12).

Finally, by (3.12) and the continuous mapping theorem, and using that

nθ̃LSEn =
m
n2

∑n
i=1Xi−1 − 1

2n2X
2
n + 1

2n2X
2
0 + 1

2n2

∑n
i=1(Xi −Xi−1)

2

1
n3

∑n
i=1X

2
i−1

,

we have the assertion. Indeed, the function g : R5 → R, defined by

g(x, y, z, u, v) :=

{
mx−(z2−u2−v)/2

y if y 6= 0,

0 if y = 0,

is continuous on the set {(x, y, z, u, v) ∈ R5 : y 6= 0}, and the limit distribution

in (3.12) is concentrated on this set since P
(∫ 1

0 X 2
t dt > 0

)
= 1. Indeed, if
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P(
∫ 1

0
X 2
t dt = 0) > 0 held, then, by the almost sure continuity of the sample

paths of X , we would have P(Xt = 0, ∀ t ∈ [0, 1]) > 0. Hence on the event
{ω ∈ Ω : Xt(ω) = 0, ∀ t ∈ [0, 1]}, the quadratic variation of X would be
identically zero. Since dXt = m dt+

√Yt dBt, t ∈ R+, the quadratic variation

of X is the process
(∫ t

0
Yu du

)
t∈R+

, and then we would have

∫ t

0

Yu du = 0 for all t ∈ [0, 1]

on the event {ω ∈ Ω : Xt(ω) = 0, ∀ t ∈ [0, 1]}. This yields us to a contradiction
similarly as at the beginning of the proof due to that a ∈ R++ and dYt =
a dt +

√Yt dWt, t ∈ R+. Hence the continuous mapping theorem (see, e.g.,
Theorem 2.3 in van der Vaart [33]) yields

g

(
1

n2

n∑

i=1

Xi−1,
1

n3

n∑

i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑

i=1

(Xi −Xi−1)
2

)

L−→ g

(∫ 1

0

Xt dt,
∫ 1

0

X 2
t dt,X1, 0,

∫ 1

0

Yt dt
)

as n→ ∞.

Since

P

(
nθ̃LSEn = g

(
1

n2

n∑

i=1

Xi−1,
1

n3

n∑

i=1

X2
i−1,

1

n
Xn,

1

n
X0,

1

n2

n∑

i=1

(Xi −Xi−1)
2

))

> P

(
n∑

i=1

X2
i−1 > 0

)
= 1

for all n > 2, the assertion follows using (3.10) and that if ξn, ηn, n ∈ N, and

ξ are random variables such that ξn
L−→ ξ as n → ∞ and limn→∞ P(ξn =

ηn) = 1, then ηn
L−→ ξ as n→ ∞, see, e.g., Barczy et al. [3, Lemma 3.1].

Remark 3.2. If the affine diffusion process given by the SDE (3.1) is critical
but (b, θ) 6= (0, 0) (i.e., b = 0, θ > 0 or b > 0, θ = 0), then the asymptotic

behaviour of the LSE θ̃LSEn cannot be studied using Theorem 2.2 since its
condition limθ→∞ θβ(θ) = β is not satisfied.

3.3. Least squares estimator of (θ,m)

The LSE of (θ,m) based on the observations Xi, i = 0, 1, . . . , n, can be
obtained by solving the extremum problem

(θ̂LSEn , m̂LSE
n ) := argmin

(θ,m)∈R2

n∑

i=1

(Xi −Xi−1 − (m− θXi−1))
2.
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We need to solve the following system of equations with respect to (θ,m):

2

n∑

i=1

(Xi −Xi−1 − (m− θXi−1))Xi−1 = 0,

2

n∑

i=1

(Xi −Xi−1 − (m− θXi−1)) = 0,

which can be written also in the form

[ ∑n
i=1X

2
i−1 −∑n

i=1Xi−1

−∑n
i=1Xi−1 n

] [
θ
m

]
=

[
−∑n

i=1(Xi −Xi−1)Xi−1∑n
i=1(Xi −Xi−1)

]
.

Then one can check that

θ̂LSEn = −n
∑n
i=1(Xi −Xi−1)Xi−1 −

∑n
i=1Xi−1

∑n
i=1(Xi −Xi−1)

n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2 , (3.27)

and

m̂LSE
n =

∑n
i=1X

2
i−1

∑n
i=1(Xi −Xi−1)−

∑n
i=1Xi−1

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2

(3.28)

provided that n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2
> 0. Since the matrix

[
2
∑n
i=1X

2
i−1 −2

∑n
i=1Xi−1

−2
∑n
i=1Xi−1 2n

]

which consists of the second order partial derivatives of the function R2 ∋
(θ,m) 7→ ∑n

i=1(Xi −Xi−1 − (m − θXi−1))
2 is positive definite provided that

n
∑n
i=1X

2
i−1−(

∑n
i=1Xi−1)

2
> 0, we have (θ̂LSEn , m̂LSE

n ) is indeed the solution

of the extremum problem provided that n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2
> 0.

Theorem 3.2. Let us assume that Condition (C) holds. Then

P


n

n∑

i=1

X2
i−1 −

(
n∑

i=1

Xi−1

)2

> 0


 = 1 for all n > 2, (3.29)

and there exists a unique LSE (θ̂LSEn , m̂LSE
n ) which has the form given in (3.27)

and (3.28). Further,

nθ̂LSEn
L−→ −

∫ 1

0 Xt dXt −X1

∫ 1

0 Xt dt
∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2 as n→ ∞,
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and

m̂LSE
n

L−→ X1

∫ 1

0
X 2
t dt−

∫ 1

0
Xt dt

∫ 1

0
Xt dXt

∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2 as n→ ∞,

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process
(Yt,Xt)t∈R+ given by the unique strong solution of the SDE




dYt = a dt+

√Yt dWt,

dXt = m dt+
√Yt dBt,

t ∈ R+,

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are
independent standard Wiener processes.

Remark 3.3. (i) The limit distributions in Theorem 3.2 have the same forms
as those of the limit distributions in Theorem 4.1 in Hu and Long [19].
(ii) By Proposition 3.3, the affine process (Yt,Xt)t∈R+ given in Theorem 3.2
has infinitesimal generator

(A(Y,X )f)(x) =
1

2
x1f

′′
1,1(x) +

1

2
x1f

′′
2,2(x) + af ′

1(x) +mf ′
2(x),

where x = (x1, x2) ∈ R+ × R and f ∈ C2
c (R+ × R).

(iii) Under the Condition (C), by Theorem 3.2 and Slutsky’s lemma, we get

θ̂LSEn converges stochastically to the parameter θ = 0 as n → ∞, and one
can show that m̂LSE

n does not converge stochastically to the parameter m as
n→ ∞, see Appendix B.

Proof of Theorem 3.2. By an easy calculation,

n

n∑

i=1

X2
i−1 −

(
n∑

i=1

Xi−1

)2

= n

n∑

i=1


Xi−1 −

1

n

n∑

j=1

Xj−1




2

> 0,

and equality holds if and only if

Xi−1 =
1

n

n∑

j=1

Xj−1, i = 1, . . . , n ⇐⇒ X0 = X1 = · · · = Xn−1.

By (3.3), for all n > 2,

P(X0 = X1 = · · · = Xn−1) 6 P(X0 = X1) = P

(∫ 1

0

√
Ys dBs = m

)

= E

(
P

(∫ 1

0

√
Ys dBs = m

∣∣∣ (Ys)s∈[0,1]

))
= 0,
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where we used that the conditional distribution of
∫ 1

0

√
Ys dBs given (Ys)s∈[0,1]

is a normal distribution with mean 0 and with variance
∫ 1

0
Ys ds. Here the

variance
∫ 1

0 Ys ds is positive almost surely, see the proof of Theorem 3.1. This
yields (3.29).

By (3.27) and (3.28), we have

nθ̂LSEn = −
1
n2

∑n
i=1(Xi −Xi−1)Xi−1 − 1

n2

∑n
i=1Xi−1

1
n (Xn −X0)

1
n3

∑n
i=1X

2
i−1 −

(
1
n2

∑n
i=1Xi−1

)2 ,

m̂LSE
n =

1
n3

∑n
i=1X

2
i−1

1
n (Xn −X0)− 1

n2

∑n
i=1Xi−1

1
n2

∑n
i=1(Xi −Xi−1)

1
n3

∑n
i=1X

2
i−1 −

(
1
n2

∑n
i=1Xi−1

)2 ,

and using (3.11) and (3.12), as in the proof of Theorem 3.1, the continuous
mapping theorem yields the assertion. We only remark that

P

(∫ 1

0

X 2
t dt−

(∫ 1

0

Xt dt
)2

> 0

)
= 1. (3.30)

Indeed,

∫ 1

0

X 2
t dt−

(∫ 1

0

Xt dt
)2

=

∫ 1

0

(
Xt −

∫ 1

0

Xs ds
)2

> 0,

and equality holds if and only if

Xt =
∫ 1

0

Xs ds a.e. t ∈ [0, 1].

Since X has continuous sample paths almost surely,

P

(∫ 1

0

X 2
t dt−

(∫ 1

0

Xt dt
)2

= 0

)
> 0 (3.31)

holds if and only if

P

(
Xt =

∫ 1

0

Xs ds, ∀ t ∈ [0, 1]

)
> 0.

Hence, since X0 = 0, we have (3.31) holds if and only if P(Xt = 0, ∀ t ∈
[0, 1]) > 0, which is a contradiction due to our assumption a ∈ R++ (for more
details, see the proof of Theorem 3.1).

3.4. Conditional least squares estimator of (θ,m)

For all t ∈ R+, let F (Y,X)
t be the σ-algebra generated by (Ys, Xs)s∈[0,t]. The

conditional least squares estimator (CLSE) of (θ,m) based on the observations
Xi, i = 0, 1, . . . , n, can be obtained by solving the extremum problem

(θ̂CLSE
n , m̂CLSE

n ) := argmin
(θ,m)∈R2

n∑

i=1

(
Xi − E(Xi | F (Y,X)

i−1 )
)2
.
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By (3.3), for all (y0, x0) ∈ R+ × R, we have

E
(
Xt | (Y0, X0) = (y0, x0)

)
= e−θtx0 +m

∫ t

0

e−θ(t−u) du, t > 0,

where we used that
(∫ t

0
eθu

√
Yu dBu

)
t∈R+

is a martingale (which follows by

the proof of Proposition 3.2). Using that (Yt, Xt)t∈R+ is a time-homogeneous
Markov process, we have

E(Xt | F (Y,X)
s ) = E(Xt | (Ys, Xs)) = e−θ(t−s)Xs +m

∫ t

s

e−θ(t−u) du

for 0 6 s 6 t. Then

Xi − E(Xi | F (Y,X)
i−1 ) = Xi − e−θXi−1 −m

∫ i

i−1

e−θ(i−u) du

= Xi − e−θXi−1 −m

∫ 1

0

e−θv dv

= Xi − γXi−1 − δ, i = 1, . . . , n,

where

γ := e−θ and δ := m

∫ 1

0

e−θv dv =

{
m 1−e−θ

θ if θ 6= 0,

m if θ = 0.

Hence for all n ∈ N,

γ̂CLSE
n = e−θ̂

CLSE
n ,

δ̂CLSE
n = m̂CLSE

n

∫ 1

0

e−θ̂
CLSE
n

v dv,
(3.32)

where (γ̂CLSE
n , δ̂CLSE

n ) is a CLSE of (γ, δ) based on the observations Xi,
i = 0, 1, . . . , n, which can be obtained by solving the extremum problem

(γ̂CLSE
n , δ̂CLSE

n ) := argmin
(γ,δ)∈R2

n∑

i=1

(Xi − γXi−1 − δ)2. (3.33)

Indeed, the function A : R2 → R2,

R
2 ∋ (θ′,m′) 7→ A(θ′,m′) :=

[
γ′

δ′

]
=:

[
e−θ

′

m′
∫ 1

0
e−θ

′v dv

]
∈ R+ × R

is bijective and measurable, and then there is a bijection between the set of
CLSEs of the parameters (θ,m) and the set of CLSEs of the parameters
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A(θ,m). This follows easily, since for all n ∈ N, (x0, x1, . . . , xn) ∈ Rn+1 and
(γ′, δ′) ∈ R+ × R,

n∑

i=1

(xi − γ′xi−1 − δ′)2 =

n∑

i=1

(
xi −

[
γ′

δ′

]⊤ [
xi−1

1

])2

=
n∑

i=1

(
xi − (A(θ′,m′))

⊤
[
xi−1

1

])2

,

hence (θ̂CLSE
n , m̂CLSE

n ) is a CLSE of (θ,m) if and only if A(θ̂CLSE
n , m̂CLSE

n )
is a CLSE of A(θ,m).

For the extremum problem (3.33), we need to solve the following system of
equations with respect to (γ, δ):

2

n∑

i=1

(Xi − γXi−1 − δ)Xi−1 = 0,

2
n∑

i=1

(Xi − γXi−1 − δ) = 0,

which can be written also in the form
[∑n

i=1X
2
i−1

∑n
i=1Xi−1∑n

i=1Xi−1 n

] [
γ
δ

]
=

[∑n
i=1Xi−1Xi∑n

i=1Xi

]
.

Then

γ̂CLSE
n =

n
∑n
i=1Xi−1Xi −

∑n
i=1Xi−1

∑n
i=1Xi

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 , (3.34)

and

δ̂CLSE
n =

∑n
i=1X

2
i−1

∑n
i=1Xi −

∑n
i=1Xi−1

∑n
i=1Xi−1Xi

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 , (3.35)

provided that n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2 6= 0. Since the matrix
[
2
∑n
i=1X

2
i−1 2

∑n
i=1Xi−1

2
∑n
i=1Xi−1 2n

]

consisting of the second order partial derivatives of the function R2 ∋ (γ, δ) 7→∑n
i=1(Xi − γXi−1 − δ)2 is positive definite provided that n

∑n
i=1X

2
i−1 −

(
∑n
i=1Xi−1)

2
> 0, we have (γ̂CLSE

n , δ̂CLSE
n ) is indeed the solution of the

extremum problem provided that n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2
> 0.

Remark 3.4. Using the definition of CLSE of (θ,m) we give a mathematical

motivation of the definition of the LSE θ̃n of θ introduced in Section 3.2.
Note that if θ = 0, then

Xi − E(Xi | F (Y,X)
i−1 ) = Xi −Xi−1 −m, i = 1, . . . , n.
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If θ 6= 0, then, by Taylor’s theorem, 1− e−θ = e−τθθ with some τ = τ(θ) ∈
[0, 1], and hence

Xi − E(Xi | F (Y,X)
i−1 ) = Xi − e−θXi−1 −m

∫ 1

0

e−θv dv

= Xi −Xi−1 + e−τθθXi−1 −me−τθ

for i = 1, . . . , n− 1. Hence for small values of θ one can approximate Xi −
E(Xi | F (Y,X)

i−1 ) by Xi − Xi−1 + θXi−1 − m = Xi − Xi−1 − (m − θXi−1),
i = 1, . . . , n. Based on this, for small values of θ, in the definition of the LSE
of θ, the sum

∑n
i=1(Xi − Xi−1 − (m − θXi−1))

2 can be considered as an

approximation of the sum
∑n

i=1(Xi −E(Xi | F (Y,X)
i−1 ))2 in the definition of the

CLSE of (θ,m).

Theorem 3.3. Let us assume that Condition (C) holds. Then

P


n

n∑

i=1

X2
i−1 −

(
n∑

i=1

Xi−1

)2

> 0


 = 1 for all n > 2, (3.36)

and there exists a unique CLSE (θ̂CLSE
n , m̂CLSE

n ) which has the form given in
(3.32). Further,

nθ̂CLSE
n

L−→ −
∫ 1

0
Xt dXt −X1

∫ 1

0
Xt dt

∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2 as n→ ∞, (3.37)

and

m̂CLSE
n

L−→ X1

∫ 1

0 X 2
t dt−

∫ 1

0 Xt dt
∫ 1

0 Xt dXt
∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2 as n→ ∞, (3.38)

where (Xt)t∈R+ is the second coordinate of a two-dimensional affine process
(Yt,Xt)t∈R+ given by the unique strong solution of the SDE




dYt = a dt+

√Yt dWt,

dXt = m dt+
√Yt dBt,

t ∈ R+,

with initial value (Y0,X0) = (0, 0), where (Wt)t∈R+ and (Bt)t∈R+ are
independent standard Wiener processes.

Proof. By the proof of Theorem 3.2, we have (3.36). By (3.34) and (3.35), for
all n > 2 we have

γ̂CLSE
n − 1 =

n
∑n
i=1(Xi −Xi−1)Xi−1 −Xn

∑n
i=1Xi−1

n
∑n
i=1X

2
i−1 − (

∑n
i=1Xi−1)

2 ,
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and

δ̂CLSE
n =

Xn

∑n
i=1X

2
i−1 −

∑n
i=1Xi−1

∑n
i=1(Xi −Xi−1)Xi−1

n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2 .

Using (3.11) and (3.12), the continuous mapping theorem, by the same technique
as in the proof of Theorem 3.2, we get

n(γ̂CLSE
n − 1)

L−→
∫ 1

0
Xt dXt −X1

∫ 1

0
Xt dt

∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2 as n→ ∞, (3.39)

and

δ̂CLSE
n

L−→ X1

∫ 1

0
X 2
t dt−

∫ 1

0
Xt dt

∫ 1

0
Xt dXt

∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2 as n→ ∞. (3.40)

By Slutsky’s lemma, we also have γ̂CLSE
n

P−→ 1 as n→ ∞. Hence, by Taylor’s
theorem using also that γ̂CLSE

n > 0, n ∈ N (due to its definition given in
(3.32)), we have

θ̂CLSE
n = − log(γ̂CLSE

n ) = − log(γ̂CLSE
n )− log(1) = − 1

ξn
(γ̂CLSE
n − 1), (3.41)

where ξn is in the interval with endpoints 1 and γ̂CLSE
n . Since γ̂CLSE

n
P−→ 1

as n→ ∞, we have ξn
P−→ 1 as n→ ∞, and hence using the decomposition

nθ̂CLSE
n = − 1

ξn
n(γ̂CLSE

n − 1), n ∈ N,

Slutsky’s lemma and (3.39), we get (3.37).

Next we turn to prove (3.38). For this, by (3.32), (3.40) and by Slutsky’s
lemma, it is enough to check that

∫ 1

0

e−θ̂
CLSE
n

v dv
P−→ 1 as n→ ∞.

Since

∫ 1

0

e−θ̂
CLSE
n

v dv =





1−e−θ̂
CLSE
n

θ̂CLSE
n

if θ̂CLSE
n 6= 0,

1 if θ̂CLSE
n = 0,
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by (3.41), for all ε > 0 we have

P

(∣∣∣∣
∫ 1

0

e−θ̂
CLSE
n

v dv − 1

∣∣∣∣ > ε

)

= P

(∣∣∣∣∣
1− γ̂CLSE

n

θ̂CLSE
n

− 1

∣∣∣∣∣ > ε
∣∣∣ θ̂CLSE
n 6= 0

)
P(θ̂CLSE

n 6= 0)

+ P

(
|1− 1| > ε

∣∣ θ̂CLSE
n = 0

)
P(θ̂CLSE

n = 0)

= P

(
|ξn − 1| > ε

∣∣ θ̂CLSE
n 6= 0

)
P(θ̂CLSE

n 6= 0)
P−→ 0,

since ξn
P−→ 0 as n→ ∞.

Remark 3.5. (i) We do not consider the CLSE of θ supposing that m is
known since the corresponding extremum problem is rather complicated, and
from statistical point of view it has less importance.
(ii) Under the Condition (C), by Theorem 3.3 and Slutsky’s lemma, we get

θ̂CLSE
n converges stochastically to the parameter θ = 0 as n → ∞, and one
can show that m̂CLSE

n does not converge stochastically to the parameter m
as n→ ∞, see Appendix B.

Appendix

Appendix A: The integrals in (2.2)

We check that the integrals in (2.2) are well-defined, i.e., elements of C, under
the conditions (v) and (vi) of Definition 2.2. For this, by decomposing a complex-
valued function to real and imaginary parts, it is enough to verify that

∫

R+×Rd

(
f(x+ ξ)− f(x)− 〈f ′(x), ξ〉

)
x1 µ(dξ) <∞, (A.1)

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′
(2)(x), ξ2〉)m(dξ) <∞ (A.2)

for all x = (x1, x2) ∈ R+ × Rd and real-valued f ∈ C2
c (R+ × Rd).

First we check (A.1). If x = (x1, x2) ∈ R+ × Rd and ξ ∈ R+ × Rd with
‖ξ‖ 6 1, then, by (2.11) with θ = 1,

|f(x+ ξ)− f(x)− 〈f ′(x), ξ〉| = 1

2
|〈f ′′(x+ τξ)ξ, ξ〉| 6 1

2
‖f ′′‖∞‖ξ‖2,

where τ = τ(x, ξ) ∈ [0, 1]. If x = (x1, x2) ∈ R+ ×Rd and ξ ∈ R+ ×Rd with
‖ξ‖ > 1, then, by (2.9) with θ = 1,

|f(x+ ξ)− f(x)− 〈f ′(x), ξ〉| 6 |f(x+ ξ)− f(x)|+ |〈f ′(x), ξ〉|
= |〈f ′(x+ τξ), ξ〉| + |〈f ′(x), ξ〉|
6 2‖f ′‖∞‖ξ‖,
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where τ = τ(x, ξ) ∈ [0, 1]. Hence
∣∣∣∣∣

∫

R+×Rd

(
f(x+ ξ)− f(x)− 〈f ′(x), ξ〉

)
x1 µ(dξ)

∣∣∣∣∣

6

∫

{ξ∈R+×Rd : ‖ξ‖61}

|(f(x+ ξ)− f(x)− 〈f ′(x), ξ〉|x1 µ(dξ)

+

∫

{ξ∈R+×Rd : ‖ξ‖>1}

|(f(x+ ξ)− f(x)− 〈f ′(x), ξ〉|x1 µ(dξ)

6
1

2
‖f ′′‖∞x1

∫

{ξ∈R+×Rd : ‖ξ‖61}

‖ξ‖2 µ(dξ)

+ 2‖f ′‖∞x1
∫

{ξ∈R+×Rd : ‖ξ‖>1}

‖ξ‖µ(dξ) <∞,

where the last inequality follows by assumption (vi) of Definition 2.2.
Next we check (A.2). If x = (x1, x2) ∈ R+ × Rd and ξ ∈ R+ × Rd with

‖ξ2‖ 6 1, then, by (2.11) with θ = 1,

|f(x+ ξ)− f(x)− 〈f ′
(2)(x), ξ2〉| = |f(x+ ξ)− f(x)− 〈f ′(x), ξ〉 + 〈f ′

1(x), ξ1〉|

6
1

2
|〈f ′′(x+ τξ)ξ, ξ〉| + |〈f ′

1(x), ξ1〉|

6
1

2
‖f ′′‖∞‖ξ‖2 + ‖f ′′

1 ‖∞ξ1,

where τ = τ(x, ξ) ∈ [0, 1]. If x = (x1, x2) ∈ R+ ×Rd and ξ ∈ R+ ×Rd with
‖ξ2‖ > 1, then, by (2.9) with θ = 1,

|f(x+ ξ)− f(x)− 〈f ′
(2)(x), ξ2〉| = |〈f ′(x+ τξ), ξ〉 − 〈f ′

(2)(x), ξ2〉|
= |〈f ′

1(x+ τξ), ξ1〉+ 〈f ′
(2)(x + τξ), ξ2〉 − 〈f ′

(2)(x), ξ2〉|
6 ‖f ′′

1 ‖∞ξ1 + |〈f ′
(2)(x+ τξ) − f ′

(2)(x), ξ2〉|
6 ‖f ′′

1 ‖∞ξ1 + 2‖f ′
(2)‖‖ξ2‖,

where τ = τ(x, ξ) ∈ [0, 1]. Using assumption (v) of Definition 2.2, the finiteness
of the integral in (A.2) follows as for the integral in (A.1).

Having proved that the integrals in (2.2) are well-defined, we check that under
the conditions (v) and (vi) of Definition 2.2, one can rewrite (2.12) in Duffie et
al. [11] into the form (2.2), by changing the 2-nd, . . ., (1 + d)-th coordinates
of b ∈ R+ × Rd and the first column of β ∈ R(1+d)×(1+d), respectively. More
precisely, with the notations

χ(ξ) := (χ1(ξ), . . . , χ1+d(ξ)) and χ(2)(ξ) := (χ2(ξ), . . . , χ1+d(ξ))

for ξ ∈ R
1+d, where

χk(ξ) :=

{
(1 ∧ |ξk|) ξk|ξk|

if ξk 6= 0,

0 if ξk = 0,
k = 1, . . . , 1 + d,



686 M. Barczy et al.

for all x = (x1, x2) ∈ R+ × Rd and f ∈ C2
c (R+ × Rd), we have

(Af)(x) =
1+d∑

i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + 〈f ′(x), b + βx〉

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′
(2)(x), ξ2〉)m(dξ)

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′(x), ξ〉)x1 µ(dξ)

=

1+d∑

i,j=1

(ai,j + αi,jx1)f
′′
i,j(x) + 〈f ′(x), b̃ + β̃x〉

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′
(2)(x), χ(2)(ξ)〉)m(dξ)

+

∫

R+×Rd

(f(x+ ξ)− f(x)− 〈f ′(x), χ(ξ)〉)x1 µ(dξ),

where b̃ = (̃b1, b̃2) ∈ R+ × R
d and β̃ = (β̃i,j)

1+d
i,j=1 ∈ R

(1+d)×(1+d) with

b̃1 := b1,

b̃2 := b2 +

∫

R+×Rd

(χ(2)(ξ)− ξ2)m(dξ),

(β̃i,1)
1+d
i=1 := (βi,1)

1+d
i=1 +

∫

R+×Rd

(χ(ξ)− ξ)µ(dξ),

(β̃i,j)
j=2,...,1+d
i=1,...,1+d := (βi,1)

j=2,...,1+d
i=1,...,1+d .

Note also that there is another way for checking that the integrals in (2.2) are
well-defined under the conditions (v) and (vi) of Definition 2.2. Namely, using
that the integrals in (2.12) in Duffie et al. [11] are well-defined, the assertion
follows since

∥∥∥∥∥

∫

R+×Rd

(χ(2)(ξ)− ξ2)m(dξ)

∥∥∥∥∥ =




1+d∑

i=2

(∫

R+×Rd

(χi(ξ)− ξi)m(dξ)

)2



1/2

=




1+d∑

i=2

(∫

R+×Rd

|ξi|1{|ξi|>1}m(dξ)

)2



1/2

6
√
d

∫

R+×Rd

‖ξ‖1{‖ξ‖>1}m(dξ) <∞,

and similarly ∥∥∥∥∥

∫

R+×Rd

(χ(ξ)− ξ)µ(dξ)

∥∥∥∥∥ <∞.
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Appendix B: On consistency properties of the LSE and CLSE
of (θ,m)

Let us suppose that Condition (C) holds. Using Slutsky’s lemma and Theorems

3.2 and 3.3 we get θ̂LSEn and θ̂CLSE
n converge stochastically to the parameter

θ = 0 as n → ∞, respectively, and in what follows we show that m̂LSE
n

and m̂CLSE
n do not converge stochastically to the parameter m as n → ∞,

respectively. For this it is enough to check that the weak limits of m̂LSE
n and

m̂CLSE
n given in Theorems 3.2 and 3.3 do not equal to m almost surely,

respectively. Since the weak limits in question are the same, we can give a
common proof. First note that

X1

∫ 1

0 X 2
t dt−

∫ 1

0 Xt dt
∫ 1

0 Xt dXt
∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2 −m

=
(X1 −m)

∫ 1

0
X 2
t dt−

∫ 1

0
Xt dt

(∫ 1

0
Xt dXt −m

∫ 1

0
Xt dt

)

∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

=

∫ 1

0
X 2
t dt

∫ 1

0
d[Xt −mt]−

∫ 1

0
Xt dt

∫ 1

0
Xt d[Xt −mt]

∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2 ,

and hence

X1

∫ 1

0
X 2
t dt−

∫ 1

0
Xt dt

∫ 1

0
Xt dXt

∫ 1

0 X 2
t dt−

(∫ 1

0 Xt dt
)2

a.s.
= m

if and only if

J :=

∫ 1

0

X 2
t dt

∫ 1

0

d[Xt −mt]−
∫ 1

0

Xt dt
∫ 1

0

Xt d[Xt −mt]
a.s.
= 0,

where
a.s.
= denotes equality almost surely. Here J can be written in the form

J =

∫ 1

0

X 2
s

(∫ 1

0

d[Xt −mt]

)
ds−

∫ 1

0

Xs
(∫ 1

0

Xt d[Xt −mt]

)
ds,

and hence E(J) takes the following form

∫ 1

0

E

(
X 2
s

∫ 1

0

d[Xt −mt]

)
ds−

∫ 1

0

E

(
Xs
∫ 1

0

Xt d[Xt −mt]

)
ds.

Here (Xt−mt)t∈R+ =
(∫ t

0

√Yu dBu
)
t∈R+

is a square integrable martingale (see

the proof of Proposition 3.2) and Xs = ms +
∫ s
0

√Yu dBu for s ∈ R+, thus,
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for all s ∈ [0, 1], we have

E

(
X 2
s

∫ 1

0

d[Xt −mt]

∣∣∣∣∣F
Y
1

)

= m2s2 E

(∫ 1

0

√
Yt dBt

∣∣∣∣∣F
Y
1

)
+ 2msE

(∫ s

0

√
Yu dBu

∫ 1

0

√
Yt dBt

∣∣∣∣∣F
Y
1

)

+ E

((∫ s

0

√
Yu dBu

)2 ∫ 1

0

√
Yt dBt

∣∣∣∣∣F
Y
1

)

= 2ms

∫ s

0

Yu du,

where FY
1 denotes the σ-algebra generated by (Yu)u∈[0,1]. For the last equality

above, we used that conditionally on the σ-algebra FY
1 , the stochastic process(∫ t

0

√Yu dBu
)
t∈[0,1]

is a Gauss process with mean function identically 0 and

with covariance function

E

(∫ s

0

√
Yu dBu

∫ t

0

√
Yu dBu

∣∣∣∣∣F
Y
1

)
=

∫ s∧t

0

Yu du, s, t ∈ [0, 1],

(for the mean and covariation function, see Karatzas and Shreve [24, formulas
(3.2.21) and (3.2.23)]), and we also used that the third moment of a centered
normally distributed random variable is 0. Similarly, for all s ∈ [0, 1], we have

E

(
Xs
∫ 1

0

Xt d[Xt −mt]

∣∣∣∣∣F
Y
1

)

= msE

(∫ 1

0

Xt
√
Yt dBt

∣∣∣∣∣F
Y
1

)
+ E

(∫ s

0

√
Yu dBu

∫ 1

0

Xt
√
Yt dBt

∣∣∣∣∣F
Y
1

)

= E

(∫ s

0

XuYu du
∣∣∣∣∣F

Y
1

)
=

∫ s

0

E
(
XuYu | FY

1

)
du = m

∫ s

0

uYu du.

Thus

E

(
X 2
s

∫ 1

0

d[Xt −mt]

)
= 2ms

∫ s

0

E(Yu) du,

E

(
Xs
∫ 1

0

Xt d[Xt −mt]

)
= m

∫ s

0

uE(Yu) du.

Consequently,

E(J) = 2m

∫ 1

0

s

(∫ s

0

E(Yu) du
)
ds−m

∫ 1

0

(∫ s

0

uE(Yu) du
)
ds

= 2m

∫ 1

0

(∫ 1

u

s ds

)
E(Yu) ds−m

∫ 1

0

(∫ 1

u

ds

)
uE(Yu) du
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= m

∫ 1

0

(1− u)E(Yu) du = ma

∫ 1

0

(1 − u)u du.

Hence if m 6= 0, then E(J) 6= 0, which clearly yields that J
a.s.
= 0 is

impossible.
If m = 0, then E(J) = 0, and hence for proving P(J = 0) < 1, it is enough

to show that E(J2) > 0. Now J can be written in the form J = J1−J2 with

J1 :=

∫ 1

0

X 2
s ds

∫ 1

0

dXt, J2 :=

∫ 1

0

Xs ds
∫ 1

0

Xt dXt.

Clearly, E(J2) = E(J2
1 )− 2E(J1J2)+E(J2

2 ). Here J1J2 can be written in the
form

J1J2 =

∫ 1

0

∫ 1

0

X 2
s1Xs2

(∫ 1

0

dXt
)(∫ 1

0

Xt dXt
)
ds1 ds2,

hence

E(J1J2) =

∫ 1

0

∫ 1

0

E

(
X 2
s1Xs2

(∫ 1

0

dXt
)(∫ 1

0

Xt dXt
))

ds1 ds2.

If s1, s2 ∈ [0, 1], then, by (3.10),

E

(
X 2
s1Xs2

(∫ 1

0

dXt
)(∫ 1

0

Xt dXt
) ∣∣∣∣FY

1

)

=
1

2
E

(
X 2
s1Xs2X1

(
X 2

1 −
∫ 1

0

Ys ds
) ∣∣∣∣FY

1

)

=
1

2
E

(
X 2
s1Xs2X 3

1

∣∣∣∣FY
1

)
− 1

2
E

(
X 2
s1Xs2X1

∫ 1

0

Ys ds
∣∣∣∣FY

1

)

=
1

2
E

(
X 2
s1Xs2X 3

1

∣∣∣∣FY
1

)
− 1

2

(∫ 1

0

Ys ds
)
E

(
X 2
s1Xs2X1

∣∣∣∣FY
1

)
.

Similarly to the proof of Proposition 3.1 one can check that conditionally of
FY

1 , the process (Xt)t∈[0,1] is a centered Gauss process (especially having
independent increments). Hence if s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
X 2
s1Xs2X 3

1

∣∣∣∣FY
1

)

= E

(
X 6
s1

∣∣∣∣FY
1

)
+ 4E

(
X 3
s1(Xs2 −Xs1)3

∣∣∣∣FY
1

)
+ E

(
X 3
s1 (X1 −Xs2)3

∣∣∣∣FY
1

)

+ 4E

(
X 5
s1(Xs2 −Xs1)

∣∣∣∣FY
1

)
+ 3E

(
X 5
s1(X1 −Xs2)

∣∣∣∣FY
1

)

+ 6E

(
X 4
s1(Xs2 −Xs1)2

∣∣∣∣FY
1

)
+ 3E

(
X 4
s1 (X1 −Xs2)2

∣∣∣∣FY
1

)

+ 6E

(
X 3
s1(Xs2 −Xs1)(X1 −Xs2)2

∣∣∣∣FY
1

)
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+ 3E

(
X 3
s1(Xs2 −Xs1)2(X1 −Xs2)

∣∣∣∣FY
1

)

+ 9E

(
X 4
s1(Xs2 −Xs1)(X1 −Xs2)

∣∣∣∣FY
1

)
+ E

(
X 2
s1(Xs2 −Xs1)4

∣∣∣∣FY
1

)

+ E

(
X 2
s1(Xs2 −Xs1)(X1 − Xs2)3

∣∣∣∣FY
1

)

+ 3E

(
X 2
s1(Xs2 −Xs1)2(X1 −Xs2)2

∣∣∣∣FY
1

)

+ 3E

(
X 2
s1(Xs2 −Xs1)3(X1 −Xs2)

∣∣∣∣FY
1

)

+ 6E

(
X 3
s1(Xs2 −Xs1)2(X1 −Xs2)

∣∣∣∣FY
1

)
.

Using that X has independent increments and that the odd moments of a
centered normally distributed random variable are 0, if s1, s2 ∈ [0, 1] with
s1 6 s2, then

E

(
X 2
s1Xs2X 3

1

∣∣∣∣FY
1

)

= E

(
X 6
s1

∣∣∣∣FY
1

)
+ 6E

(
X 4
s1

∣∣∣∣FY
1

)
E

(
(Xs2 −Xs1)2

∣∣∣∣FY
1

)

+ 3E

(
X 4
s1

∣∣∣∣FY
1

)
E

(
(X1 −Xs2)2

∣∣∣∣FY
1

)

+ E

(
X 2
s1

∣∣∣∣FY
1

)
E

(
(Xs2 −Xs1)4

∣∣∣∣FY
1

)

+ 3E

(
X 2
s1

∣∣∣∣FY
1

)
E

(
(Xs2 −Xs1)2

∣∣∣∣FY
1

)
E

(
(X1 −Xs2 )2

∣∣∣∣FY
1

)

= 15

(∫ s1

0

Yu du
)3

+ 18

(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)

+ 9

(∫ s1

0

Yu du
)2(∫ 1

s2

Yu du
)
+ 3

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+ 3

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

One can also check that if s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
X 2
s1Xs2X1

∣∣∣∣FY
1

)
= E

(
X 4
s1

∣∣∣∣FY
1

)
+ E

(
X 2
s1(Xs2 −Xs1)2

∣∣∣∣FY
1

)

= 3

(∫ s1

0

Yu du
)2

+

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)
.
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Hence if s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
X 2
s1Xs2

(∫ 1

0

dXt
)(∫ 1

0

Xt dXt
) ∣∣∣∣FY

1

)

= 6

(∫ s1

0

Yu du
)3

+ 7

(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)

+ 3

(∫ s1

0

Yu du
)2(∫ 1

s2

Yu du
)
+

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to
change s1 by s2.

Moreover, J2
1 can be written in the form

J2
1 =

∫ 1

0

∫ 1

0

X 2
s1X 2

s2

(∫ 1

0

dXt
)2

ds1 ds2,

hence

E(J2
1 ) =

∫ 1

0

∫ 1

0

E

(
X 2
s1X 2

s2

(∫ 1

0

dXt
)2
)
ds1 ds2.

If s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
X 2
s1X 2

s2

(∫ 1

0

dXt
)2 ∣∣∣∣FY

1

)

= E
(
X 2
s1X 2

s2X 2
1

∣∣FY
1

)

= E
(
X 6
s1

∣∣FY
1

)
+ E

(
X 4
s1

∣∣FY
1

)
E

(
(X1 −Xs2)2

∣∣FY
1

)

+ 6E
(
X 4
s1

∣∣FY
1

)
E

(
(Xs2 −Xs1)2

∣∣FY
1

)

+ E
(
X 2
s1

∣∣FY
1

)
E

(
(Xs2 −Xs1 )4

∣∣FY
1

)

+ E
(
X 2
s1

∣∣FY
1

)
E

(
(Xs2 −Xs1 )2

∣∣FY
1

)
E

(
(X1 −Xs2)2

∣∣FY
1

)

= 15

(∫ s1

0

Yu du
)3

+ 3

(∫ s1

0

Yu du
)2(∫ 1

s2

Yu du
)

+ 18

(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)
+ 3

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to
change s1 by s2.
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Furthermore, using (3.10), J2
2 can be written in the form

J2
2 =

1

4

∫ 1

0

∫ 1

0

Xs1Xs2
(
X 2

1 −
∫ 1

0

Yu du
)2

ds1 ds2,

hence

E(J2
2 ) =

1

4

∫ 1

0

∫ 1

0

E

(
Xs1Xs2

(
X 2

1 −
∫ 1

0

Yu du
)2
)
ds1 ds2.

Here if s1, s2 ∈ [0, 1] with s1 6 s2, then we have

E

(
Xs1Xs2

(
X 2

1 −
∫ 1

0

Yu du
)2 ∣∣∣∣FY

1

)

= E

(
Xs1Xs2X 4

1

∣∣∣∣FY
1

)
− 2

(∫ 1

0

Yu du
)
E

(
Xs1Xs2X 2

1

∣∣∣∣FY
1

)

+

(∫ 1

0

Yu du
)2

E

(
Xs1Xs2

∣∣∣∣FY
1

)
,

where, using the arguments as above, one can check that

E

(
Xs1Xs2X 4

1

∣∣∣∣FY
1

)

= E

(
X 6
s1

∣∣∣∣FY
1

)
+ 5E

(
X 2
s1(Xs2 −Xs1)4

∣∣∣∣FY
1

)

+ E

(
X 2
s1(X1 −Xs2)4

∣∣∣∣FY
1

)
+ 10E

(
X 4
s1(Xs2 −Xs1)2

∣∣∣∣FY
1

)

+ 6E

(
X 4
s1(X1 −Xs2)2

∣∣∣∣FY
1

)
+ 18E

(
X 2
s1(Xs2 −Xs1)2(X1 −Xs2)2

∣∣∣∣FY
1

)

= 15

(∫ s1

0

Yu du
)3

+ 15

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+ 3

(∫ s1

0

Yu du
)(∫ 1

s2

Yu du
)2
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(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)

+ 18

(∫ s1

0

Yu du
)2(∫ 1

s2

Yu du
)

+ 18

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
,

and

E

(
Xs1Xs2X 2

1

∣∣∣∣FY
1

)
= E

(
X 4
s1

∣∣∣∣FY
1

)
+ 3E

(
X 2
s1(Xs2 − Xs1)2

∣∣∣∣FY
1

)

+ E

(
X 2
s1(X1 −Xs2)2

∣∣∣∣FY
1

)
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= 3

(∫ s1

0

Yu du
)2

+ 3

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)

+

(∫ s1

0

Yu du
)(∫ 1

s2

Yu du
)
,

and

E

(
Xs1Xs2

∣∣∣∣FY
1

)
= E

(
X 2
s1

∣∣∣∣FY
1

)
=

∫ s1

0

Yu du.

Hence, by an easy calculation, if s1, s2 ∈ [0, 1] with s1 6 s2, then

E

(
Xs1Xs2

(
X 2

1 −
∫ 1

0

Yu du
)2 ∣∣∣∣FY

1

)

= 10

(∫ s1

0

Yu du
)3

+ 10

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+ 20

(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)

+ 12

(∫ s1

0

Yu du
)2(∫ 1

s2

Yu du
)

+ 2

(∫ s1

0

Yu du
)(∫ 1

s2

Yu du
)2

+ 12

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
.

Similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have to
change s1 by s2.

Hence if s1, s2 ∈ [0, 1] with s1 6 s2, then we have

E

(
X 2
s1X 2

s2

(∫ 1

0

dXt
)2

− 2X 2
s1Xs2

(∫ 1

0

dXt
)(∫ 1

0

Xt dXt
)

+
1

4
Xs1Xs2

(
X 2

1 −
∫ 1

0

Yu du
)2 ∣∣∣∣FY

1

)

=
11

2

(∫ s1

0

Yu du
)3

+ 9

(∫ s1

0

Yu du
)2(∫ s2

s1

Yu du
)

+
7

2

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)2

+
1

2

(∫ s1

0

Yu du
)(∫ 1

s2

Yu du
)2

+ 2

(∫ s1

0

Yu du
)(∫ s2

s1

Yu du
)(∫ 1

s2

Yu du
)
,
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and a similar expression hold in case of s1, s2 ∈ [0, 1] with s1 > s2, we have
to change s1 by s2. Then E(J2) = E(J2

1 )−2E(J1J2)+E(J2
2 ) takes the form

∫ 1

0

∫ 1

0

E

(
11

2

(∫ s1∧s2

0

Yu du
)3

+ 9

(∫ s1∧s2

0

Yu du
)2(∫ s1∨s2

s1∧s2

Yu du
)

+
7

2

(∫ s1∧s2

0

Yu du
)(∫ s1∨s2

s1∧s2

Yu du
)2

+
1

2

(∫ s1∧s2

0

Yu du
)(∫ 1

s1∨s2

Yu du
)2

+ 2

(∫ s1∧s2

0

Yu du
)(∫ s1∨s2

s1∧s2

Yu du
)(∫ 1

s1∨s2

Yu du
))

ds1ds2 > 0,

where for the last inequality we used that

E

((∫ s1∧s2

0

Yu du
)i (∫ s1∨s2

s1∧s2

Yu du
)j (∫ 1

s1∨s2

Yu du
)k)

> 0

for i, j, k ∈ {0, 1, 2, 3}, which follows by a ∈ R++ and that P(Yt >

0 for all t ∈ R+) = 1. Consequently, we conclude E(J2) > 0, which clearly

yields that J
a.s.
= 0 is impossible.

References

[1] Andersen, L. B. G. and Piterbarg, V. V. (2007). Moment explo-
sions in stochastic volatility models. Finance and Stochastics 11(1) 29–50.
MR2284011

[2] Anderson, T. W. (1959). On asymptotic distributions of estimates of
parameters of stochastic difference equations. The Annals of Mathematical
Statistics 30 676–687. MR0107347
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