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Abstract: When the study variable is functional and storage capacities
are limited or transmission costs are high, selecting with survey sampling
techniques a small fraction of the observations is an interesting alternative
to signal compression techniques, particularly when the goal is the estima-
tion of simple quantities such as means or totals. We extend, in this func-
tional framework, model-assisted estimators with linear regression models
that can take account of auxiliary variables whose totals over the popu-
lation are known. We first show, under weak hypotheses on the sampling
design and the regularity of the trajectories, that the estimator of the mean
function as well as its variance estimator are uniformly consistent. Then,
under additional assumptions, we prove a functional central limit theorem
and we assess rigorously a fast technique based on simulations of Gaussian
processes which is employed to build asymptotic confidence bands. The ac-
curacy of the variance function estimator is evaluated on a real dataset of
sampled electricity consumption curves measured every half an hour over
a period of one week.
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1. Introduction

Survey sampling techniques, which consist in randomly selecting only a part of
the elements of a population, are interesting alternatives to signal compression

562

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/13-EJS779
mailto:herve.cardot(AT)u-bourgogne.fr
mailto:camelia.goga(AT)u-bourgogne.fr
mailto:pauline.lardin(AT)laposte.fr


Model-assisted estimators for functional data 563

when one has to deal with very large populations of quantities that evolve along
time. With the development of automatic sensors such very large datasets of
temporal data are not unusual anymore and survey sampling techniques offer
a good trade-off between accuracy of the estimators and size of the analyzed
data. Examples can be found in different domains such as internet traffic moni-
toring (see Callado et al. (2009)) or estimation of energy consumption measured
by individual smart meters. Motivated by the estimation of mean consump-
tion electricity profiles measured every half an hour over one week, Cardot and
Josserand (2011) have introduced Horvitz-Thompson estimators of the mean
function and have shown, under weak hypotheses on the regularity of the func-
tional trajectories and the sampling design, that one gets uniformly convergent
estimators. They also prove a functional central limit theorem, in the space of
continuous functions, that can, in part, justify the construction of asymptotic
confidence bands. More recently, Cardot et al. (2012b) made a comparison, in
terms of precision of the mean estimators of electricity load curves and width of
the confidence bands, of different sampling approaches that can take auxiliary
information into account. One of the conclusions of this empirical study was
that very simple strategies based on simple sampling designs (such as simple
random sampling without replacement) could be improved much if some well
chosen auxiliary information, whose total is known for the whole population,
is also taken into account at the estimation stage, with model-assisted estima-
tors. Important variables for the electricity consumption such as temperature
or geographical location were not available for these datasets so that only one
auxiliary information, the mean past consumption over the previous period, was
taken into account. Its correlation with the current consumption is always very
high (see Figure 1) so that linear regression models are natural candidates for
assisting the Horvitz-Thompson estimator. More generally, one advantage of
linear approaches is that they only require the knowledge of the auxiliary vari-
able totals in the population. More sophisticated nonlinear or nonparametric
approaches would have required to know the values of the auxiliary variables
for all the elements of the population.

Thus, we focus in this paper on linear relationships between the set of aux-
iliary variables and the response at each instant t of the current period. The
regression coefficients vary in time (see Faraway (1997) or Ramsay and Sil-
verman (2005)) so that the model-assisted estimator can be seen as a direct
extension, to a functional or varying-time context, of the generalized regression
(GREG) estimators studied in Robinson and Särndal (1983) and Särndal et al.
(1992). Note also that from another point of view, the model-assisted estimator
can be obtained using a calibration technique (Deville and Särndal (1992)).

Confidence bands are then built using a simulation technique developed in
Faraway (1997), Cuevas et al. (2006) and Degras (2011). We first estimate the
covariance function of the mean estimator and then, assuming asymptotic nor-
mality, perform simulations of a centered Gaussian process whose covariance
function is the covariance function estimated at the previous step. We can, this
way, obtain an approximation to the law of the “sup” and deduce confidence
bands for the mean trajectory. In a recent work, Cardot et al. (2012a) have given
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Fig 1. Correlation between the current consumption at each instant t of the week under study
and the total past consumption of the week before.

a rigorous mathematical justification of this technique for sampled functional
data and Horvitz-Thompson estimators for the mean. The required theoretical
ingredients that can justify such a procedure are the functional central limit
theorem for the mean estimator, in the space of continuous functions equipped
with the sup-norm, as well as a uniformly consistent estimator of the variance
function.

The aim of this paper is to study the asymptotic properties of model-assisted
estimators and to show that we obtain, under classical assumptions, a uniformly
consistent estimator of the mean as well as of its variance function. One addi-
tional difficulty is that, for model-assisted estimators, the variance function can-
not be derived exactly and we can only have asymptotic approximations. Then,
we deduce that the confidence bands built via simulations have asymptotically
the desired coverage. In Section 2, we introduce notations and we suggest a
slight modification of the model-assisted estimators which permits control of
the variance of the regression coefficient estimator. Under classical assumptions
on the sampling design and on the regularity of the trajectories, we state, in
Section 3, the uniform convergence of the model assisted-estimators to the mean
function. Under additional assumptions on the design we also prove that we can



Model-assisted estimators for functional data 565

get a consistent estimator of the covariance function and a functional central
limit theorem that can justify rigorously that the confidence bands built with
the procedure based on Gaussian process simulations attain asymptotically the
desired level of confidence. In Section 4, we assess the precision of the variance
estimator on the real dataset consisting of electricity consumption curves stud-
ied in Cardot et al. (2012b) and observe that, in our context, the approximation
error is negligible compared to the sampling error. A brief discussion about pos-
sible extensions and future investigation is proposed in Section 5. All the proofs
are gathered in an Appendix.

2. Notations and estimators

2.1. The Horvitz Thompson estimator for functional data

Let us consider a finite population UN = {1, . . . , N} of size N supposed to be
known, and suppose that, for each unit k of the population UN , we can observe a
deterministic curve Yk = (Yk(t))t∈[0,T ]. The target is the mean trajectory µN (t),
t ∈ [0, T ], defined as follows:

µN (t) =
1

N

∑

k∈U

Yk(t). (1)

We consider a sample s, with size n, drawn from UN according to a fixed-size
sampling design pN (s), where pN (s) is the probability of drawing the sample
s. For simplicity of notations, the subscript N is omitted when there is no
ambiguity. We suppose that the first and second order inclusion probabilities
satisfy πk = P(k ∈ s) > 0, for all k ∈ U , and πkl = P(k&l ∈ s) > 0 for all
k, l ∈ UN , k 6= l. Without auxiliary information, the population mean curve
µ(t) is often estimated by the Horvitz-Thompson estimator, defined as follows
for t ∈ [0, T ],

µ̂(t) =
1

N

∑

k∈s

Yk(t)

πk
=

1

N

∑

k∈U

Yk(t)

πk
1k, (2)

where 1k is the sample membership indicator, 1k = 1 if k ∈ s and 1k = 0
otherwise. For each t ∈ [0, T ], the estimator µ̂(t) is design-unbiased for µ(t), i.e.
Ep(µ̂(t)) = µ(t), where Ep[.] denotes expectation with respect to the sampling
design.

The Horvitz-Thompson covariance function of µ̂ between two instants r and
t, computed with respect to the sampling design, is defined as follows

Covp(µ̂(r), µ̂(t)) =
1

N2

∑

k∈U

∑

l∈U

(πkl − πkπl)
Yk(r)

πk
· Yl(t)
πl

r, t ∈ [0, T ]. (3)

Note that for r = t, we obtain the Horvitz-Thompson variance function.
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2.2. The mean curve estimator assisted by a functional linear model

Let us suppose now that for each unit k ∈ UN we can also observe p real
variables, X1, . . . , Xp, and let us denote by xk = (xk1, . . . , xkp)

′, the value of
the auxiliary variable vector for each unit k in the population. We introduce
an estimator based on a linear regression model that can use these variables in
order to improve the accuracy of µ̂. By analogy to the real case (see e.g. Särndal
et al. (1992)) we suppose that the relationship between the functional variable
of interest and the auxiliary variables is modeled by the superpopulation model
ξ defined as follows:

ξ : Yk(t) = x′
kβ(t) + ǫkt, t ∈ [0, T ] (4)

where β(t) = (β1(t), . . . , βp(t))
′ is the vector of functional regression coeffi-

cients, ǫkt are independent (across units) and centered continuous time pro-
cesses, Eξ(ǫkt) = 0, with covariance function Covξ(ǫkt, ǫkr) = Γ(t, r), for (t, r) ∈
[0, T ]× [0, T ]. This model is a direct extension to several variables of the func-
tional linear model proposed by Faraway (1997).

If xk and Yk are known for all units k ∈ U and if the matrixG = 1
N

∑
k∈U xkx

′
k

is invertible, it is possible, under the model ξ, to estimate β(t) by β̃(t) =
G−1 1

N

∑
k∈U xkYk(t), the ordinary least squares estimator. Then, the mean

curve µ(t) can be estimated by the generalized difference estimator (see Särndal
et al. (1992), Chapter 6) defined as follows for all t ∈ [0, T ],

µ̃(t) =
1

N

∑

k∈U

x′
kβ̃(t)−

1

N

∑

k∈s

x′
kβ̃(t)− Yk(t)

πk
(5)

=
1

N

∑

k∈U

Ỹk(t)−
1

N

∑

k∈s

Ỹk(t)− Yk(t)

πk
,

where Ỹk(t) = x′
kβ̃(t).

In practice, we do not know Yk except for k ∈ s, and it is not possible to
compute β̃(t). An estimator of µ(t) is obtained by substituting each total in

β̃(t) by its Horvitz-Thompson estimator. Thus, if the matrix Ĝ = 1
N

∑
k∈s

xkx
′

k

πk

is invertible, β̃(t) is estimated by:

β̂(t) = Ĝ−1 1

N

∑

k∈s

xkYk(t)

πk
, t ∈ [0, T ].

Remark that the denominator N is used in the expression of β̃(t) for asymptotic
purposes and need not be estimated. The model-assisted estimator µ̂MA(t) is

then defined by replacing β̃(t) by β̂(t) in (5),

µ̂MA(t) =
1

N

∑

k∈U

Ŷk(t)−
1

N

∑

k∈s

Ŷk(t)− Yk(t)

πk
, t ∈ [0, T ], (6)
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where Ŷk(t) = x′
kβ̂(t). Since

∑
k∈U Ŷk(t) =

(∑
k∈U xk

)′
β̂(t), the only required

information to build µ̂MA(t) is xk and Yk(t) for all the units k ∈ s as well as
the population totals of the auxiliary variables,

∑
k∈U xk.

Remark 1. If the vector of auxiliary information contains the intercept (con-
stant term), then it can be shown (see Särndal (1980)) that the Horvitz-Thompson

estimator of the estimated residuals Ŷk(t) − Yk(t) is equal to zero for each
t ∈ [0, T ]. This means that the model-assisted estimator µ̂MA reduces in this

case to the mean in the population of the predicted values Ŷk,

µ̂MA(t) =
1

N

∑

k∈U

Ŷk(t), t ∈ [0, T ].

Moreover, if only the intercept term is used, namely Yk(t) = β(t) + εkt for all
k ∈ U, then the estimator µ̂MA is simply the well known Hájek estimator,

µ̂MA(t) =

∑
k∈s π

−1
k Yk(t)∑

k∈s π
−1
k

, t ∈ [0, T ],

which is sometimes preferred to the Horvitz-Thompson estimator (see e.g. Särndal
et al. (1992), Chapter 5.7).

Remark 2. The estimator µ̂MA(t) may also be obtained by using a calibration
approach (Deville and Särndal (1992)). This approach consists in looking for
weights wks, k ∈ s, that are as close as possible, according to some distance, to
the sampling weights 1/πk while estimating exactly the population totals of the
auxiliary information,

∑

k∈s

wksxk =
∑

k∈U

xk.

Considering the chi-square distance leads to the following choice of weights

wks =
1

πk
−
(∑

l∈s

xl

πl
−
∑

l∈U

xl

)′(∑

l∈s

xlx
′
l

πl

)−1
xk

πk

and the calibration estimator
∑
s wksYk(t)/N for the mean µ(t) is equal to

µ̂MA(t) defined in (6).

2.3. A regularized estimator for asymptotics

The construction of the estimator µ̂MA(t) is based on the assumption that

the matrix Ĝ is invertible. To show the uniform convergence, we consider a
modification of Ĝ which will permit control of the expected norm of its inverse.
Such a trick has already been used for example in Bosq (2000) and Guillas
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(2001). Since Ĝ is a p× p symmetric and non negative matrix it is possible to
write it as follows

Ĝ =

p∑

j=1

ηj,nvjnv
′
jn,

where ηj,n is the j th eigenvalue, η1,n ≥ · · · ≥ ηp,n ≥ 0, and vjn is the corre-
sponding orthonormal eigenvector. Let us consider a real number a > 0 and
define the following regularized estimator of G,

Ĝa =

p∑

j=1

max(ηj,n, a) vjnv
′
jn.

It is clear that Ĝa is always invertible and

‖Ĝ−1
a ‖ ≤ a−1, (7)

where ‖.‖ is the spectral norm for matrices. Furthermore, if ηp,n ≥ a then

Ĝ = Ĝa. If a > 0 is small enough, we show under standard conditions on the
moments of the variables X1, . . . , Xp and on the first and second order inclusion

probabilities that P(Ĝ 6= Ĝa) = P(ηp,n < a) = O(n−1) (see Lemma A.1 in the
Appendix).

Consequently, it is possible to estimate the mean function µN (t) by the fol-
lowing estimator

µ̂MA,a(t) =
1

N

∑

k∈U

Ŷk,a(t)−
1

N

∑

k∈s

Ŷk,a(t)− Yk(t)

πk
, t ∈ [0, T ], (8)

where Ŷk,a(t) = x′
kβ̂a(t) and β̂a(t) = Ĝ−1

a
1
N

∑
k∈s

xkYk(t)
πk

.

2.4. Discretized observations

Note finally that with real data, we do not observe Yk(t) at all instants t in [0, T ]
but only for a finite set of D measurement times, 0 = t1 < · · · < tD = T . In
functional data analysis, when the noise level is low and the grid of discretization
points is fine, it is usual to perform a linear interpolation or to smooth the
discretized trajectories in order to obtain approximations of the trajectories at
every instant t ∈ [0, T ] (see Ramsay and Silverman (2005)).

If there are no measurement errors, if the trajectories are regular enough
(but not necessarily differentiable) and if the grid of discretization points is
dense enough, Cardot and Josserand (2011) showed that linear interpolation
can provide sufficiently accurate approximations to the trajectories so that the
approximation error can be neglected compared to the sampling error for the
Horvitz-Thompson estimator. Note also that even if the observations are cor-
rupted by noise, it has been shown by simulations in Cardot et al. (2012a) that
smoothing does really improve the accuracy of the Horvitz-Thompson estimator
only when the noise level is high.
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Thus, for each unit k in the sample s, we build the interpolated trajectory

Yk,d(t) = Yk(ti) +
Yk(ti+1)− Yk(ti)

ti+1 − ti
(t− ti) t ∈ [ti, ti+1]

and we define β̂a,d(t) as the estimator of β(t) based on the discretized observa-
tions as follows

β̂a,d(t) = Ĝ−1
a

1

N

∑

k∈s

xkYk,d(t)

= β̂a(ti) +
β̂a(ti+1)− β̂a(ti)

ti+1 − ti
(t− ti).

Therefore, the estimator of the mean population curve µ(t) based on the
discretized observations is obtained by linear interpolation between µ̂MA,a(ti)
and µ̂MA,a(ti+1). For t ∈ [ti, ti+1],

µ̂MA,d(t) =
1

N

∑

k∈U

Ŷk,d(t)−
1

N

∑

k∈s

(Ŷk,d(t)− Yk,d(t))

πk

= µ̂MA,a(ti) +
µ̂MA,a(ti+1)− µ̂MA,a(ti)

ti+1 − ti
(t− ti) (9)

where Ŷk,d(t) = x′
kβ̂a,d(t).

3. Asymptotic properties under the sampling design

All the proofs are postponed in an Appendix.

3.1. Assumptions

To derive the asymptotic properties under the sampling design p(·) of µ̂MA,d

we must suppose that both the sample size and the population size become
large. More precisely, we consider the superpopulation framework introduced
by Isaki and Fuller (1982) with a sequence of growing and nested populations
UN with size N tending to infinity and a sequence of samples sN of size nN
drawn from UN according to the sampling design pN (sN ). The first and second
order inclusion propabilities are respectively denoted by πkN and πklN . We also
suppose that the grid of discretization points gets finer and finer as the sample
size increases, so that DN tends to infinity and the distance between to adjacent
discretization points tend to zero. For simplicity of notations and when there
is no ambiguity, we drop the subscript N . To prove our asymptotic results we
need the following assumptions.

A1. We assume that limN→∞
n
N = π ∈ (0, 1).

A2. We assume that mink∈U πk ≥ λ > 0, mink 6=l πkl ≥ λ∗ > 0 and
lim supN→∞ nmaxk 6=l∈U |πkl − πkπl| < C1 <∞



570 H. Cardot et al.

A3. There are two positive constants C2 and C3 and 1 ≥ β > 1/2 such that,
for all N and for all (r, t) ∈ [0, T ]× [0, T ],

1

N

∑

k∈U

Yk(0)
2 < C2 and

1

N

∑

k∈U

{Yk(t)− Yk(r)}2 < C3|t− r|2β .

A4. We assume that there is a positive constant C4 such that for all k ∈ U,
‖xk‖2 < C4.

A5. We assume that, for N > N0, the matrix G is invertible and that the
number a chosen before satisfies ‖G−1‖ < a−1.

Assumptions A1 and A2 are classical hypotheses in survey sampling and
deal with the first and second order inclusion probabilities. They are satisfied
for many usual sampling designs with fixed size (see for example Hájek (1981),
Robinson and Särndal (1983) and Breidt and Opsomer (2000)).

Assumption A3 is a minimal regularity condition already required in Cardot
and Josserand (2011). Even if pointwise consistency, for each fixed value of t,
can be proved without any condition on the Hölder coefficient β, this regularity
condition is necessary to get a uniform convergence result. A counterexample
is given in Hahn (1977) when β ≤ 1/2. More precisely it is shown that the
sample mean i.i.d copies of a uniformly bounded continuous random function
defined on a compact interval may not satisfy the Central Limit Theorem in
the space of continuous functions. The hypothesis β > 1/2 also implies that the
trajectories of the residual processes ǫkt, see (4), are regular enough (but not
necessarily differentiable). Assumption A4 could certainly be weakened at the
expense of longer proofs. Assumption A5 means that for all u ∈ R, with u 6= 0,
we have u′Gu ≥ au′u. The same kind of assumption is required in Isaki and
Fuller (1982) to get the pointwise convergence in probability whereas Robinson
and Särndal (1983) introduce a much stronger condition (condition A7 in their
article) which directly deals with the mean square convergence of the estimator
of the vector β of regression coefficients.

3.2. Uniform consistency of µ̂MA,d

We aim at showing that µ̂MA,d is uniformly consistent for µ, namely that, for
all ε > 0,

P

(
sup
t∈[0,T ]

|µ̂MA,d(t)− µ(t)| > ε

)
→ 0,

whenN tends to infinity. The suitable space for proving the uniform convergence
is the space of continuous functions on [0, T ], denoted by C[0, T ], equipped with
its natural distance ρ; for two elements f, g ∈ C[0, T ], the distance between f
and g is ρ(f, g) = supt∈[0,T ] |f(t)− g(t)|. It results that the uniform consistency
of µ̂MA,d is simply the convergence in probability of µ̂MA,d to µ in the space
C[0, T ]. Remark that with assumption A3 the trajectories Yk are continuous for
all k ∈ U, and thus the mean curve µ belongs to C[0, T ] as well as its estimator
µ̂MA,d, by construction.
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We first state the uniform consistency of the estimator β̂a,d(t) towards its

population counterpart β̃(t) under conditions on the number DN and the repar-
tition of the discretization points.

Proposition 3.1. Let assumptions (A1)-(A5) hold. If the discretization scheme
satisfies maxi∈{1,...,DN−1} |ti+1 − ti|2β = o(n−1) then there is a constant C > 0
such that, for all n,

√
n Ep

{
sup
t∈[0,T ]

∥∥∥β̂a,d(t)− β̃(t)
∥∥∥
}

≤ C.

We can now state a similar type of result for the estimator of the mean function.

Proposition 3.2. Let assumptions (A1)-(A5) hold. If the discretization scheme
satisfies maxi∈{1,...,DN−1} |ti+1 − ti|2β = o(n−1) then there is a constant C > 0
such that, for all n,

√
n Ep

{
sup
t∈[0,T ]

| µ̂MA,d(t)− µ(t) |
}

≤ C.

We deduce from Proposition 3.2 that estimator µ̂MA,d(t) is asymptotically
unbiased as well as design consistent. Note that the approximation error (with
linear interpolation) is negligible, compared to the sampling variability, under
the additional assumption on the repartition of the discretization points. This
assumption also tolds us that less discretization points are required for smoother
trajectories.

Let us also remark that, for each t,

µ̂MA,a(t)− µ̃(t) =
1

N

∑

k∈U

(
1− 1k

πk

)
x′
k

(
β̂a(t)− β̃(t)

)
, (10)

where 1k is the sample membership, so that it is not difficult to prove, under
the previous assumptions and by using lemma A.4 in the Appendix, that for all
t ∈ [0, T ],

√
n (µ̂MA,d(t)− µ̃(t)) = op(1). (11)

3.3. Covariance function estimation under the sampling design

We undertake in this section a detailed study of the covariance function of the
estimator µ̂MA,d. The covariance function is computed with respect to the sam-
pling design p(·) and from relation (9), we can deduce that µ̂MA,d is a nonlinear
function of Horvitz-Thompson estimators, so the usual Horvitz-Thompson co-
variance formula given by (3) can not be used anymore. Nevertheless, in light
of relation (11), the covariance function of µ̂MA,d between two instants r and
t may be approximated by the covariance Covp(µ̃(r), µ̃(t)), which in turn is
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equal to the Horvitz-Thompson covariance applied to the residuals Yk− Ỹk. Let
us denote by γMA the approximative covariance function of µ̂MA,d defined as
follows

γMA(r, t) =
1

N2
Covp

(∑

k∈s

Yk(r)− Ỹk(r)

πk
,
∑

k∈s

Yk(t)− Ỹk(t)

πk

)

=
1

N2

∑

k∈U

∑

l∈U

(πkl − πkπl)
Yk(r) − Ỹk(r)

πk

Yl(t)− Ỹl(t)

πl
, r, t ∈ [0, T ].

(12)

This approximation explains that model-assisted estimators will perform
much better than Horvitz-Thompson estimators if the residuals Yk(t) − Ỹk(t)
are small compared to Yk(t). For r, t ∈ [0, T ], the covariance function γMA(r, t)
can be estimated by the Horvitz-Thompson variance estimator for the estimated
residuals Yk,d(t)− Ŷk,d(t),

γ̂MA,d(r, t) =
1

N2

∑

k,l∈s

πkl − πkπl
πkl

· Yk,d(r) − Ŷk,d(r)

πk
· Yl,d(t)− Ŷl,d(t)

πl
, (13)

where Ŷk,d(t) = x′
kβ̂a,d(t).

To prove the consistency of the covariance estimator γ̂MA,d(r, t), let us intro-
duce additional assumptions that involve higher-order inclusion probabilities as
well as conditions on the fourth order moments of the trajectories.

A6. We assume that

lim
N→∞

max
(k,l,k′,l′)∈D4,n

|Ep{(1kl − πkl)(1k′l′ − πk′l′)}| = 0

where Dt,n is the set of all distinct t-tuples (i1, . . . , it) from UN and 1kl =1k1l.
A7. There are two positive constants C5 and C6 such that N−1

∑
U Yk(0)

4 <
C5 and N−1

∑{Yk(t)− Yk(r)}4 < C6|t− r|4β , for all (r, t) ∈ [0, T ]2

Condition A6 has already been assumed by Breidt and Opsomer (2000) in a
nonparametric model-assisted context and in Cardot and Josserand (2011) for
Horvitz-Thompson estimators. It can be checked that it is fulfilled for simple
random sampling without replacement (SRSWOR) or stratified sampling with
SRSWOR within each strata. More generally, it is fulfilled for high entropy
sampling designs. Boistard et al. (2012) prove that it is fulfilled for the rejective
sampling whereas Cardot et al. (2012c) check that it is true for sampling designs,
such as Sampford sampling, whose Kullback-Leibler divergence with respect to
rejective sampling, tends to zero when the population size increases.

Proposition 3.3. Let assumptions (A1)-(A7) hold and suppose that the se-
quence of discretization schemes satisfies maxi∈{1,...,DN−1} |ti+1 − ti| = o(1).
Then, as N tends to infinity, we have for all (r, t) ∈ [0, T ]2,

n Ep {|γ̂MA,d(r, t)− γMA(r, t)|} → 0
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and

n Ep

{
sup
t∈[0,T ]

|γ̂MA,d(t, t)− γMA(t, t)|
}

→ 0.

Since nγMA(r, t) remains bounded, the previous proposition tells us that
γ̂MA,d is consistent pointwise and the variance function estimator is uniformly
convergent. Note also that the condition on the number of discretization points
is much weaker than in Proposition 3.2 because we do not give here rates of
convergence. To obtain such rates, we would also need to impose additional
assumptions on the sampling design.

3.4. Asymptotic normality and confidence bands

We assume a supplementary assumption in order to get the asymptotic normal-
ity of the functional estimator µ̂MA,d in the space of continuous functions.

A8. We assume that for each fixed value of t ∈ [0, 1],

{γMA(t, t)}−1/2 (µ̃(t)− µ(t)) → N (0, 1)

in distribution when N tends to infinity.

This assumption is satisfied for usual sampling designs (see e.g. Fuller (2009),
Chapter 2.2). Note that using relation (11), we can write for any fixed value
t ∈ [0, T ],

µ̂MA,d(t)− µ(t) = µ̃(t)− µ(t) + op(n
−1/2),

and deduce that
√
n (µ̂MA,d(t)− µ(t)) is also pointwise asymptotically Gaussian

when conditions of Proposition 3.1 hold. Let us state now a much stronger result
which indicates that the convergence to a Gaussian distribution also occurs for
the trajectories, in the space of continuous functions (see Billingsley (1968),
Chapter 2).

Proposition 3.4. Let assumptions (A1)-(A5) and (A8) hold. If the discretiza-
tion scheme satisfies maxi={1,...,DN−1} |ti+1 − ti|2β = o(n−1), we have when n
tends to infinity

√
n {µ̂MA,d − µ} Z

where  indicates the convergence in distribution in C[0, T ] with the uniform
topology and Z is a Gaussian process taking values in C[0, T ] with mean 0 and
covariance function γZ(r, t) = limn→+∞ nγMA(r, t).

The “sup” functional defined on the space of continuous functions being con-
tinuous, the real random variable supt |

√
n {µ̂MA,d(t)− µ(t)} | converges in dis-

tribution to supt |Z(t)|, by Proposition 3.4. We thus consider confidence bands
for µ of the form

{[
µ̂MA,d(t)± c

σ̂(t)√
n

]
, t ∈ [0, T ]

}
(14)
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where c is a suitable number and σ̂(t) =
√
nγ̂MA,d(t, t). Note that the fact that

µ belongs to the confidence band defined in (14) is equivalent to

sup
t∈[0,T ]

√
n

σ̂(t)
|µ̂MA,d(t)− µ(t)| ≤ c.

Given a confidence level 1 − α ∈ (0, 1), one way to build such confidence
band, that is to say one way to find an adequate value for cα, is to perform
simulations of a centered Gaussian functions Ẑ defined on [0, T ] with mean
0 and covariance function nγ̂MA,d(r, t) and then compute the quantile of order

1−α of supt∈[0,T ] |Ẑ(t)/σ̂(t)|. In other words, we look for a constant cα, which is
in fact a random variable since it depends on the estimated covariance function
γ̂MA,d, such that

P

(
|Ẑ(t)| ≤ cα

σ̂(t)√
n
, ∀t ∈ [0, T ] | γ̂MA,d

)
= 1− α

The asymptotic coverage of this simulation based procedure has been rigor-
ously studied for the Horvitz-Thompson estimators of the mean of sampled and
noisy trajectories in Cardot et al. (2012a) whereas Cardot et al. (2012b) have
successfully employed this approach on real load curves with model-assisted es-
timators. The next proposition, which can be seen as a functional version of
Slutsky’s Lemma, provides a rigorous justification of this latter technique.

Proposition 3.5. Let assumptions (A1)-(A8) hold and suppose that the dis-
cretization scheme satisfies maxi∈{1,...,DN−1} |ti+1 − ti|2β = o(n−1).

Let Z be a Gaussian process with mean zero and covariance function γZ (as

in Proposition 3.4). Let (ẐN ) be a sequence of processes such that for each N ,

conditionally on the estimator γ̂MA,d defined in (13), ẐN is Gaussian with mean
zero and covariance nγ̂MA,d. Suppose that γZ(t, t) is a continuous function and
inft γZ(t, t) > 0. Then, as N → ∞, the following convergence holds uniformly
in c,

P

(
|ẐN (t)| ≤ c σ̂(t), ∀t ∈ [0, T ]

∣∣ γ̂MA,d

)
→ P (|Z(t)| ≤ c σ(t), ∀t ∈ [0, T ]) ,

where σ̂(t) =
√
nγ̂MA,d(t, t) and σ(t) =

√
γZ(t, t).

As in Cardot et al. (2012a), it is possible to deduce from the previous propo-
sition that the chosen value ĉα = cα(γ̂MA,d) provides asymptotically the desired
coverage since it satisfies

lim
N→∞

P

(
µ(t) ∈

[
µ̂MA,d(t)± ĉα

σ̂(t)√
n

]
, ∀t ∈ [0, T ]

)
= 1− α.

4. An illustration on electricity consumption curves

We consider, as in Cardot et al. (2012b), a population of N = 15069 electricity
consumption curves, measured every 30 minutes over a period of one week. Each
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element k of the population is thus a vector with size 336, denoted by (Yk(t), t ∈
{1, . . . , 336}). The auxiliary information X of values xk, k ∈ U is simply the
mean consumption of each meter k ∈ U recorded during the week before the
sample is drawn. As shown in Figure 1, the real variable X is strongly correlated
with the consumption at each instant t of the current period of estimation so
that a linear model with a functional response is well adapted for model-assisted
estimation.

We draw samples si of size n, for i = 1, . . . , I = 10000 with simple random
sampling without replacement (SRSWOR) so that πk = n/N for k ∈ {1, . . . , N}.
We define, for each sample si, the model-assisted estimator of the mean curve,

µ̂
(i)
MA,d(t) =

1

N

∑

k∈U

Ŷ
(i)
k (t)− 1

N

∑

k∈si

Ŷ
(i)
k (t)− Yk(t)

n/N
(15)

where x′
k = (1, xk), Ŷ

(i)
k (t) = x′

kβ̂
(i)
(t), and β̂

(i)
(t) = Ĝ−1 1

N

∑
k∈si

xkYk(t)
n/N

for t ∈ {1, . . . , 336}. Cardot et al. (2012b) noted that, for the same sample
size, the mean square error of estimation of the mean curve is divided by four
compared to the Horvitz-Thompson estimator with SRSWOR when considering
the model-assisted estimator defined in (15). There is only one covariate in this

study and we did not encounter any problem with the invertibility of matrix Ĝ,
the value of parameter a is thus a = 0.

We also define µ̂(t) = 1
I

∑I
i=1 µ̂

(i)
MA,d(t), t ∈ {1, . . . , 336}. The true variance

function of the model-assisted estimator being unknown, we approximate it with
a Monte Carlo approach based on the I = 10000 samples drawn with simple
random sampling without replacement. The approximation to the true variance
function is thus given by

γemp(r, t) =
1

I

I∑

i=1

(µ̂
(i)
MA,d(t)− µ̂(t))(µ̂

(i)
MA,d(r) − µ̂(r)) (16)

for (r, t) ∈ {1, . . . , 336}.
The following quadratic loss criterion which measures a relative error is used

to evaluate, for each sample, the accuracy of the variance estimator defined
in (13),

Er(γ̂MA,d) =
1

336

336∑

t=1

|γ̂MA,d(t, t)− γemp(t, t)|2
γemp(t, t)2

dt (17)

We also decompose, over the I = 10000 estimations, the relative mean square
error (RMSE) of the estimator into an approximation error (RB(γ̂MA,d)

2) and
a variance term (V R(γ̂MA,d)) that can be related to the sampling error,

RMSE(γ̂MA,d) =
1

I

I∑

i=1

E(i)
r (γ̂MA,d)

= RB(γ̂MA,d)
2 + V R(γ̂MA,d)



576 H. Cardot et al.

Table 1

Summary statistics for Er(γ̂MA,d, γemp), with I=10000 samples

Sample size RMSE(γ̂MA,d) RB(γ̂MA,d)
2 Er(γ̂MA,d)

q05 q25 Median q75 q95
250 0.132 0.0027 0.026 0.046 0.071 0.117 0.495
500 0.070 0.0016 0.017 0.029 0.046 0.079 0.195
1500 0.024 0.0003 0.008 0.013 0.019 0.028 0.057
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Fig 2. Empirical variance function γemp, approximated variance γMA and estimated variance
γ̂MA,d obtained with a sample of size n = 1500.

where E
(i)
r (γ̂MA,d) is the value of Er(γ̂MA,d) for the ith sample. The relative

bias of the estimator γ̂MA,d may be written as

RB(γ̂MA,d)
2 =

1

336

336∑

t=1

(
γ̂MA,d(t, t)− γemp(t, t)

γemp(t, t)

)2

where γ̂MA,d(t, t) =
1
I

∑I
i=1 γ̂

(i)
MA,d(t, t).

The RMSE as well as the approximation error and statistics (quantiles) for
Er are given in Table 1. We can note that logically the RMSE decreases as the
sample size increases and that even for moderate sample sizes, the estimations
are rather precise. A closer look on how the RMSE is decomposed reveals that
estimation error is mainly due to the sampling error, via the variance term
whereas the approximation error term RB(γ̂MA,d)

2 is negligible. This fact can
be observed in Figure 2 were we plot the true variance function γemp over the
considered period, its approximation γMA as well as an estimation γ̂MA,d with
a sample with size n = 1500, whose error according to criterion (17) is close to
the mean error (Er ≈ 0.02).
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Fig 3. (Approximation error) difference between the covariance function and its approxima-
tion, γemp(t, r)− γMA(t, r), for a sample with size n = 1500.

We have also plotted in Figure 3 the difference between the empirical covari-
ance function γemp and its approximation γMA and in Figure 4 the difference
between γMA and its estimation γ̂MA,d for a sample with size n = 1500 whose
error, Er ≈ 0.02, is close to the mean value. Once again, it is clearly seen that
the approximation error to the true covariance function (see Figure 3) is much
smaller than the sampling error (see Figure 4). We can also remark some strong
periodic pattern which reflects the natural daily periodicity in the electricity
consumption behavior and that is related to the temporal correlation of the
unknown residual process ǫkt defined in (4).

5. Concluding remarks

We have studied in this paper asymptotic properties of model-assisted estima-
tors, with linear regression models with functional response, when the target is
the mean of functional data with discrete observations in time. This work can
be extended in many directions. For example, one could consider more sophis-
ticated regression models than model (4) such as non linear or nonparametric
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Fig 4. (Sampling error) difference between the approximated covariance function and its
estimation, γMA(t, r)− γ̂MA,d(t, r), for a sample with size n = 1500.

models with functional response by adapting, in a survey sampling context, mod-
els studied in the functional data analysis literature (see Chiou et al. (2004),
Cardot (2007), or Ferraty et al. (2011)). However, one important drawback of
such more sophisticated approaches is that they would require to know xk for
all the units k in the population as opposed to only their population totals. An-
other extension would be to consider the estimation of more robust indicators of
centrality such as the functional median (also named geometric median) when
auxiliary information is available by extending a previous work of Chaouch and
Goga (2012) and using techniques developed in Goga and Ruiz-Gazen (2013)
for estimating the variance.

There are domains, such as medicine, in which measurements are often noisy
and possibly sparse in time. For the Horvitz-Thompson estimator, local poly-
nomials are employed in Cardot et al. (2012a) in order to first smooth the tra-
jectories and it would certainly be possible to adapt the techniques developed
in this work to the model-assisted estimation procedure.

Another promising direction for future research would be to adapt model-
assisted estimators for time-varying samples. When one works with large net-
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works of sensors it can be possible to consider a sequence of samples s(t) that
evolve along time. A preliminary work (see Degras (2012)), which focuses on
Horvitz-Thompson estimators and stratified sampling clearly shows that such
time-varying samples can outperform sampling designs that are fixed in time.
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Appendix A: Proofs

Throughout the proofs we use the letter C to denote a generic constant whose
value may vary from place to place. We also denote by αk = 1k

πk
− 1, k ∈ U and

by ∆kl = πkl − πkπl, k, l ∈ U.

A.1. Some useful Lemmas

Note that the result showed in the first Lemma is sometimes stated as an as-
sumption (see e.g Robinson and Särndal (1983)). It is used to prove the conver-
gence of the estimator of the mean in terms of mean square error.

Lemma A.1. Let assumptions (A1), (A2) and (A4), (A5) hold. Then, there is
a constant C such that

n Ep

(
‖Ĝ−1

a −G−1‖2
)
≤ C.

Proof. The proof follows the lines of (Bosq (2000), Theorem 8.4) and (Cardot
et al. (2010), Proposition 3.1). Using assumption (A5) and inequality (7), we
have

‖Ĝ−1
a −G−1‖ ≤ ‖Ĝ−1

a ‖.‖Ĝa −G‖.‖G−1‖
≤ a−2‖Ĝa −G‖,

which implies

Ep

(
‖Ĝ−1

a −G−1‖2
)
≤ a−4

Ep

(
‖Ĝa −G‖2

)
. (18)

To bound Ep

(
‖Ĝa −G‖2

)
, we use the following decomposition.

Ep

(
‖Ĝa −G‖2

)
= Ep

(
‖Ĝa −G‖21{Ĝa=Ĝ}

)
+ Ep

(
‖Ĝa −G‖21{Ĝa 6=Ĝ}

)

≤ Ep

(
‖Ĝ−G‖2

)
+ 2Ep

(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)

+ 2Ep

(
‖Ĝ−G‖21{Ĝa 6=Ĝ}

)

≤ 3Ep(‖Ĝ−G‖2) + 2Ep

(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)
. (19)
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To bound the first term at the righthand-side of (19), we use the fact that the

spectral norm is smaller than the Frobenius norm || · ||2 defined by ‖A‖22 =
tr(A′A). Next, we show (see also Cardot et al. (2010), proof of Proposition 3.1)
that,

Ep‖Ĝ−G‖22 = O(n−1). (20)

We have, with assumptions (A1), (A2) and (A4) that,

Ep‖Ĝ−G‖22 =
1

N2
Ep

(∑

k∈U

∑

l∈U

αkαltr[xkx
′
kxlx

′
l]

)

≤ 1

N2

1

λ

∑

k∈U

‖xkx′
k‖22 + max

k 6=l∈U
|∆kl|

1

N2λ2

∑

k∈U

∑

l∈U

‖xk‖2‖xl‖2

≤ 1

n

(
n

N

1

λ
+ n max

k 6=l∈U
|∆kl|

1

λ2

)
C2

2

≤ C

n
.

On the other hand,

Ep

(
‖Ĝa − Ĝ‖21{Ĝa 6=Ĝ}

)
≤ a2P(Ĝa 6= Ĝ)

since

‖Ĝa − Ĝ‖2 =

∥∥∥∥∥∥

p∑

j=1

[max(ηj,n, a)− ηj,n]vjnv
′
jn

∥∥∥∥∥∥

2

≤ sup
j=1,...,p

|max(ηj,n, a)− ηj,n|2

≤ a2.

Moreover, since a < ηp =
∥∥G−1

∥∥−1
and by Chebychev inequality, we can bound

P(Ĝa 6= Ĝ) = P(ηp,n < a)

≤ P

(
|ηp,n − ηp| ≥

|ηp − a|
2

)
,

≤ 4

(ηp − a)2
Ep

(
|ηp,n − ηp|2

)

≤ 4

(ηp − a)2
Ep

(
‖Ĝ−G‖2

)
,

because it is known that the eigenvalue map is Lipschitzian for symmetric ma-
trices (see Bhatia (1997), Chapter 3). This means that for two p× p symmetric
matrices A and B, with eigenvalues η1(A) ≥ η2(A) ≥ · · · ≥ ηp(A) (resp.
η1(B) ≥ · · · ≥ ηp(B)), we have

max
j∈{1,...,p}

|ηj(A)− ηj(B)| ≤ ‖A−B‖ .
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Hence, for some constant C

Ep

(
‖Ĝa −G‖2

)
≤ 3Ep

(
‖Ĝ−G‖2

)
+ 2a2P(Ĝa 6= Ĝ)

≤ C

n
. (21)

Combining (18), (19), (20) and (21), the proof is complete.

Lemma A.2. Under assumptions (A1), (A2) and (A4), there is a constant C
such that, for all n,

n Ep

∥∥∥∥∥
1

N

∑

k∈U

(1k
πk

− 1

)
xk

∥∥∥∥∥

2

≤ C.

Proof. Expanding the square norm, we have

nEp

∥∥∥∥∥
1

N

∑

k∈U

αkxk

∥∥∥∥∥

2

= nEp

(
1

N2

∑

k∈U

∑

l∈U

αkαlx
′
kxl

)

≤ n

N2

∑

k∈U

∑

l∈U

∣∣∣∣
∆kl

πkπl

∣∣∣∣x′
kxl

≤
[
n

N

1

λ
+

1

λ2
n max
k 6=l∈U

|∆kl|
]

1

N

∑

k∈U

‖xk‖2

and the result follows with hypotheses (A1), (A2) and (A4).

Lemma A.3. Under assumptions (A2)-(A5), we have

i) ‖β̃(t)− β̃(r)‖2 ≤ a−2C3C4|t− r|2β .
ii) ‖β̂a(t)− β̂a(r)‖2 ≤ a−2

λ2 C3C4|t− r|2β .

Proof. For i), we just need to remark that, under hypotheses (A3), (A4) and
(A5),

‖β̃(t)− β̃(r)‖2 =

∥∥∥∥∥G
−1 1

N

∑

k∈U

xk(Yk(t)− Yk(r)

∥∥∥∥∥

2

≤ ‖G−1‖2
(

1

N

∑

k∈U

‖xk‖2
)(

1

N

∑

k∈U

(Yk(t)− Yk(r))
2

)

≤ a−2C4C3|t− r|2β .

The proof of point ii) is similar, but also requires the use of lower bounds on
the first order inclusion probabilities (assumption (A2)),
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‖β̂a(t)− β̂a(r)‖2 =

∥∥∥∥∥Ĝ
−1
a

1

N

∑

k∈U

1k
πk

xk(Yk(t)− Yk(r)

∥∥∥∥∥

2

≤ 1

λ2
‖Ĝ−1

a ‖2
(

1

N

∑

k∈U

‖xk‖2
)(

1

N

∑

k∈U

(Yk(t)− Yk(r))
2

)

≤ a−2 1

λ2
C4C3|t− r|2β .

The following Lemma states the pointwise mean square convergence for any
fixed value of t ∈ [0, T ].

Lemma A.4. Suppose that assumptions (A1)-(A5) hold. Then, there is a pos-
itive constant ζ1 such that, for all t ∈ [0, T ],

nEp

(
‖β̂a(t)− β̃(t)‖2

)
≤ ζ1.

Proof. The demonstration is similar to the proof of Lemma A.5 and is thus
omitted.

Lemma A.5. Suppose that assumptions (A1)-(A5) hold. Then, there is a pos-
itive constant ζ2 such that

nEp

(
‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2

)
≤ ζ2|t− r|2β .

Proof. A direct decomposition leads to

n‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2

≤
∥∥∥∥∥(Ĝ

−1
a −G−1)

1

N

∑

k∈U

1k
πk

xk(Yk(t)− Yk(r))

+G−1 1

N

∑

k∈U

(1k
πk

− 1

)
xk(Yk(t)− Yk(r))

∥∥∥∥∥

2

≤ 2A2
1N + 2A2

2N , (22)

where A2
1N = n‖Ĝ−1

a − G−1‖2
∥∥ 1
N

∑
k∈U

1k

πk
xk(Yk(t) − Yk(r))

∥∥2 and A2
2N =

n‖G−1‖2
∥∥ 1
N

∑
k∈U αkxk(Yk(t) − Yk(r))

∥∥2. Using now assumptions (A2)-(A4)
and the Cauchy-Schwarz inequality, we get

A2
1N ≤ n‖Ĝ−1

a −G−1‖2
(

1

λ2
1

N

∑

k∈U

‖xk‖2
)(

1

N

∑

k∈U

(Yk(t)− Yk(r))
2

)

≤ n‖Ĝ−1
a −G−1‖2 1

λ2
C3C4|t− r|2β .
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Using now Lemma A.1, we can bound

Ep(A
2
1N ) ≤ C|t− r|2β , (23)

for some constant C. Now, with assumptions (A1)-(A5) and following the same
arguments as in the proof of Lemma A.2, we also have

Ep(A
2
2N ) ≤ n‖G−1‖2Ep



∥∥∥∥∥
1

N

∑

k∈U

αkxk(Yk(t)− Yk(r))

∥∥∥∥∥

2



≤
(
n

N

1

λ
+
nmaxk 6=l∈U |∆kl|

λ2

)
C3C4a

−2|t− r|2β ≤ C|t− r|2β . (24)

for some positive constant C. Combining (22), (23) and (24), the result is proved.

A.2. Proof of Proposition 3.1 and Proposition 3.2

The proof of Proposition 3.1 is omitted. It is analogous to the proof of Propo-
sition 3.2, which is given below. The different steps are similar to the proof of
Proposition 1 in Cardot and Josserand (2011).

Let us decompose, for t ∈ [0, T ],

sup
t∈[0,T ]

|µ̂MA,d(t)− µ(t)| ≤ sup
t∈[0,T ]

|µ̂MA,d(t)− µ̂MA,a(t)|+ sup
t∈[0,T ]

|µ̂MA,a(t)− µ(t)|

(25)
and study each term at the right-hand side of the inequality separately.

Step 1. The interpolation error supt∈[0,T ] |µ̂MA,d(t)− µ̂MA,a(t)|.

Consider t ∈ [ti, ti+1) and write

|µ̂MA,d(t)− µ̂MA,a(t)| ≤ |µ̂MA,a(ti)− µ̂MA,a(t)|+ |µ̂MA,a(ti+1)− µ̂MA,a(ti)|.

Under assumptions (A2)-(A5) and using Lemma A.3, ii), we get

|µ̂MA,a(t)− µ̂MA,a(r)| ≤
∣∣∣∣∣
1

N

∑

k∈U

αkx
′
k(β̂a(t)− β̂a(r))

∣∣∣∣∣+
1

N

∑

k∈s

|Yk(t)− Yk(r)|
πk

≤
(
1 +

1

λ

)√
C4‖β̂a(t)− β̂a(r)‖ +

1

λ

(
1

N

∑

k∈U

(Yk(t)− Yk(r))
2

)1/2

≤
(
(1 + λ−1)C4a

−1 + 1
)
λ−1

√
C3|t− r|β .

So, there is a positive constant C such that

|µ̂MA,a(t)− µ̂MA,a(r)| ≤ C|t− r|β
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and consequently,

|µ̂MA,d(t)− µ̂MA,a(t)| ≤ C[|ti − t|β + |ti+1 − ti|β ]
≤ 2C|ti+1 − ti|β .

Hence, since by hypothesis, limN→∞ maxi={1,...,dN−1} |ti+1−ti|β = o(n−1/2), we
have

sup
t∈[0,T ]

√
n|µ̂MA,d(t)− µ̂MA,a(t)| = o(1). (26)

Step 2. The estimation error supt∈[0,T ] |µ̂MA,a(t)− µ(t)|.

We use the following decomposition:

sup
t∈[0,T ]

|µ̂MA,a(t)− µ(t)| ≤ |µ̂MA,a(0)− µ(0)|

+ sup
r,t∈[0,T ]

|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) + µ(r)|. (27)

Writing,

µ̂MA,a(0)− µ(0) =
1

N

∑

k∈U

αkYk(0)−
1

N

∑

k∈U

αkŶk(0)

=
1

N

∑

k∈U

αkYk(0)−
1

N2

∑

k∈U

αkx
′
kĜ

−1
a

∑

l∈s

xlYl(0)

πl

we directly get, with hypotheses A1-A3 and with similar arguments as in the
proof of Lemma A.2, that for some constant C,

Ep (µ̂MA,a(0)− µ(0))2 ≤ C

n
. (28)

The term at the right-hand side in (27) is dealt with using maximal inequali-
ties. More exactly, we use Corollary 2.2.5 in van der Vaart and Wellner (2000).
Consider for this, the Orlicz norm of some random variable X which is defined
as follows

||X ||ψ =
√
Ep(ψ(X)).

For the particular case ψ(u) = u2, the Orlicz norm is simply the well-known L2

norm, ||X ||ψ =
√
Ep(X2). Let us introduce for (r, t) ∈ [0, T ]2, the semimetric

d(r, t) defined by

d2(r, t) =
∥∥√n|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) − µ(r)|

∥∥2
ψ

= nEp
(
|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) + µ(r)|2

)
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and consider D(ǫ, d), the packing number, which is defined as the maximum
number of points in [0, T ] whose distance between each pair is strictly larger
than ǫ. Then, Corollary 2.2.5 in van der Vaart and Wellner (2000) states that
there is a constant K > 0 such that∣∣∣∣∣

∣∣∣∣∣ sup
(r,t)∈[0,T ]2

√
n|µ̂MA,a(t)− µ(t)− µ̂MA,a(r) − µ(r)|

∣∣∣∣∣

∣∣∣∣∣
ψ

≤ K

∫ T

0

ψ−1(D(ǫ, d))dǫ.

(29)

We show below that there is a constant C such that d2(r, t) ≤ C|t − r|2β and
thus, since β > 1/2, the integral at the right-hand side of (29) is finite.

Let us first decompose

d2(r, t) ≤ 2d21(r, t) + 2d22(r, t) (30)

where

d21(r, t) = nEp(|µ̂MA,a(t)− µ̃(t)− µ̂MA,a(r) + µ̃(r)|2)
and

d22(r, t) = nEp(|µ̃(t)− µ(t)− µ̃(r) + µ(r)|2).
By assumptions (A2)-(A4) and Lemma A.5, we can bound, for some con-

stant C,

d21(r, t) ≤ Ep



n

∥∥∥∥∥
1

N

∑

k∈U

αkxk

∥∥∥∥∥

2

‖β̂a(t)− β̃(t)− β̂a(r) + β̃(r)‖2




≤
(
1 +

1

λ

)2

C4ζ2|t− r|2β := C|t− r|2β . (31)

Considering now d2(r, t), we have

d22(r, t) = nEp

[
1

N

∑

k∈U

αk

[
Yk(t)− Yk(r) − x′

k(β̃(t)− β̃(r))
]]2

≤ 2Ep(A
2
N ) + 2Ep(B

2
N ) (32)

whereA2
N = n

(
1
N

∑
k∈U αk [Yk(t)− Yk(r)]

)2
and B2

N = n
(

1
N

∑
k∈U αkx

′
k(β̃(t)−

β̃(r))
)2
. With hypotheses (A1)-(A3), one can easily obtain that there is a posi-

tive constant C such that

Ep(A
2
N ) ≤ C|t− r|2β (33)

and thanks to Lemma A.2 and to Lemma A.3, we can bound

Ep(B
2
N ) ≤ Ep


n
∥∥∥∥∥
1

N

∑

k∈U

αkxk

∥∥∥∥∥

2

 ‖β̃(t)− β̃(r)‖2

≤ C|t− r|2β . (34)
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Combining now (33) and (34) with (30) and (31), we get that

d2(r, t) ≤ C|t− r|2β , (35)

for some constant C.
Using now (35), it is clear that the packing number is bounded as follows:

D(ǫ, d) = O(ǫ−1/β). Consequently, the integral at the right-hand side of (29)
is finite when β > 1/2. Inserting (28) and (29) in (27), the proof of step 2 is
complete.

A.3. Proof of the consistency of the covariance function

We first prove that for any (r, t) ∈ [0, T ]2, the estimator γ̂MA,d(r, t) of the
covariance function converges to γMA(r, t).

Then we prove the uniform convergence of the variance estimator γ̂MA,d(t, t)
by showing its convergence in distribution to zero in the space of continuous
functions. The proof is decomposed into two classical steps (see for example
Theorem 8.1 in Billingsley (1968)). We first show the pointwise convergence, by
considering the convergence of all finite linear combinations, and then we check
that the sequence is tight by bounding the increments.

Step 1. Pointwise convergence

We want to show, that for each (t, r) ∈ [0, T ]2, we have when N tends to infinity,

nEp {| γ̂MA,d(r, t)− γMA(r, t) |} → 0.

Let us decompose

n(γ̂MA,d(r, t)− γMA(r, t)) =

n(γ̂MA,d(r, t)− γ̂MA,a(r, t)) + n(γ̂MA,a(r, t)− γMA(r, t))

where γ̂MA,a(r, t) is defined by

γ̂MA,a(r, t) =
1

N2

∑

k,l∈s

∆kl

πkl

Yk(r)− Ŷk,a(r)

πk
· Yl(t)− Ŷl,a(t)

πl

We study separately the interpolation and the estimation errors.

Interpolation error

Let us suppose that t ∈ [ti, ti+1), r ∈ [ti′ , ti′+1). We have n(γ̂MA,d(r, t) −
γ̂MA,a(r, t)) ≤ A+B, with

A =
n

N2

∑

k,l∈U

|∆kl|
πklπkπl

|(Yk,d(r) − Yk(r))(Yl,d(t)− Yl(t))

+ (Yk,d(r) − Yk(r))(Yl(t)− Ŷl,d(t)) + (Yk(r) − Ŷk,d(r))(Yl,d(t)− Yl(t))
∣∣∣
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and

B =
n

N2

∑

k,l∈U

|∆kl|
πklπkπl

∣∣∣
(
Yk(r) − Ŷk,d(r)

) (
Yl(t)− Ŷl,d(t)

)

−
(
Yk(r)− Ŷk,a(r)

) (
Yl(t)− Ŷl,a(t)

)∣∣∣

=
n

N2

∑

k,l∈U

|∆kl|
πklπkπl

∣∣∣Yk(r)(Ŷl,a(t)− Ŷl,d(t)) + Yl(t)(Ŷk,a(r) − Ŷk,d(r))

+ Ŷk,d(r)Ŷl,d(t)− Ŷk,a(r)Ŷl,a(t)
∣∣∣ .

For t ∈ [ti, ti+1], we can write

|Yl,d(t)− Yl(t)| ≤ |Yl(ti)− Yl(t)|+ |Yl(ti+1)− Yl(ti)|

and

|Ŷl,a(t)− Ŷl,d(t)| ≤ |Ŷl,a(t)− Ŷl,a(ti)|+ |Ŷl,a(ti+1)− Ŷl,d(ti)|
We have that 1

N

∑
l∈U (Yl,d(t) − Yl(t))

2 ≤ C[|ti − t|2β + |ti+1 − ti|2β ] and
1
N

∑
l∈U (Yl(t)− Ŷl,d(t))

2 = O(1). Thanks to Lemma A.3, we can bound

|Ŷl,a(ti)− Ŷl,a(t)| ≤ C4a
−1 1

λ
C

1/2
3 |ti − t|β ≤ C4a

−1 1

λ
C

1/2
3 |ti+1 − ti|β .

Under the assumption on the grid of discretization points, one can get after
some algebra that

n|γ̂MA,d(r, t) − γ̂MA,a(r, t)| = o(1).

Estimation error

Consider now,

n(γ̂MA,a(r, t)− γMA(r, t))

=
n

N2

∑

k∈U

∑

l∈U

∆kl

πkπl

(1kl
πkl

− 1

)
[Yk(t)− Ỹk(t)][Yl(r) − Ỹl(r)]

+
n

N2

∑

k∈U

∑

l∈U

∆kl

πkπl

1kl
πkl

[Yk(t)− Ỹk(t)][Ỹl(r) − Ŷl,a(r)]

+
n

N2

∑

k∈U

∑

l∈U

∆kl

πkπl

1kl
πkl

[Ỹk(t)− Ŷk,a(t)][Yl(r)− Ỹl(r)]

+
n

N2

∑

k∈U

∑

l∈U

∆kl

πkπl

1kl
πkl

[Ỹk(t)− Ŷk,a(t)][Ỹl(r)− Ŷl,a(r)]

:= A1(r, t) +A2(r, t) +A3(r, t) +A4(r, t). (36)
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Let us define ẽk(t) = Yk(t) − Ỹk(t) and first show that Ep(A1(r, t)
2) → 0 when

N → ∞.

Ep(A1(r, t)
2)

= Ep


 n

2

N4

∑

k,l,k′,l′∈U

∆kl

πkπl

(1kl
πkl

− 1

)
∆k′l′

πk′πl′

(1k′l′
πk′l′

− 1

)
ẽk(t)ẽl(r)ẽk′ (t)ẽl′(r)




= Ep


 n

2

N4

∑

k,k′∈U

1− πk
πk

(1k
πk

− 1

)
1− πk′

πk′

(1k′
πk′

− 1

)
ẽk(t)ẽk(r)ẽk′ (t)ẽk′ (r)




+ Ep


2n

2

N4

∑

k,k′ 6=l′∈U

1− πk
πk

(1k
πk

− 1

)
∆k′l′

πk′πl′

(1k′l′
πk′l′

− 1

)
ẽk(t)ẽk(r)ẽk′ (t)ẽl′ (r)




+ Ep


 n

2

N4

∑

k 6=l,k′ 6=l′∈U

∆kl

πkπl

(1kl
πkl

− 1

)
∆k′l′

πk′πl′

(1k′l′
πk′l′

− 1

)
ẽk(t)ẽl(r)ẽk′ (t)ẽl′(r)




:= a1 + a2 + a3. (37)

The hypotheses on the moments of the inclusion probabilities and Lemma A.6
give us

a1 ≤
(
n2

N3

1

λ3
+
n2

N2

maxk 6=k′∈U |∆kk′ |
λ4

)
ζ4

as well as

a3 ≤ C

N
+

(nmaxk 6=l∈U |∆kl|)2
λ4λ∗2 max

(k,l,k′,l′)∈D4,n

|Ep{(1kl − πkl)(1k′l′ − πk′l′)}|ζ5

so that a1 → 0 and a3 → 0 when N → ∞. Then, the Cauchy-Schwarz inequality
allows us to get that a2 → 0 when N → ∞ and Ep(A1(r, t)

2) → 0 when N → ∞.

Let us show now that Ep(|A4(r, t)|) → 0 when N → ∞. With Lemma A.4,
and assumptions (A1)-(A5), we have

Ep(|A4(r, t)|)

≤ nEp

(
1

N2

∑

k∈U

∑

l∈U

|∆kl|
πkπl

1

πkl
‖xk‖‖xl‖‖β̃(t)− β̂a(t)‖‖β̃(r) − β̂a(r)‖

)

≤ 1

n

[
n

λ2N
+
nmaxk 6=l∈U |∆kl|

λ2λ∗

]
C4ζ1

so that Ep(|A4(r, t)|) → 0 when N → ∞.
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In a similar way, we can bound Ep(|A2(r, t)|) as follows,

Ep(|A2(r, t)|) ≤
n

N2

∑

k∈U

∑

l∈U

|∆kl|
πkπl

1

πkl
Ep|ẽk(t)̂̃el(r)|

≤ n

N2

∑

k∈U

∑

l∈U

|∆kl|
πkπl

‖xl‖
πkl

|Yk(t)− Ỹk(t)| · Ep(‖β̃(r) − β̂a(r)‖)

≤
( √

n

λ2N
+

√
nmaxk 6=l∈U |∆kl|

λ2λ∗

)
C

1/2
4 ζ

1/2
1

1

N

∑

k∈U

|Yk(t)− Ỹk(t)|,

where ̂̃ek(t) = Ỹk(t)− Ŷk,a(t) = x′
k(β̃(t)− β̂a(t)). Thus, there is constant C such

that,

Ep(|A2(r, t)|) ≤
C√
n

and Ep(|A2(r, t)|) → 0 when N → ∞. We can show in a similar way that
Ep(|A3(r, t)|) → 0 when N → ∞.

Finally, we have that for all (r, t) ∈ [0, T ]2,

nEp {| γ̂MA,a(r, t)− γMA(r, t) |} → 0, when N → ∞. (38)

Step 2. Uniform convergence of the variance estimator

The pointwise convergence of the variance function proved in the previous step
clearly implies the convergence of all finite linear combinations: for all p ∈
{1, 2, . . .}, for all (c1, . . . , cp) ∈ R

p and for all (t1, . . . , tp) ∈ [0, T ]p, we have

p∑

ℓ=1

cℓ n (γ̂MA,a(tℓ, tℓ)− γMA(tℓ, tℓ)) → 0 (39)

in probability as N tends to infinity. Thus, we deduce with the Cramer-Wold de-
vice that n (γ̂MA,a(t1, t1)− γMA(t1, t1), . . . , γ̂MA,a(tp, tp)− γMA(tp, tp)) converges
in distribution to 0 (in R

p).
We need now to prove that the sequence of random functions γ̂MA,a(t, t)

is tight in C[0, T ] by using a bound on its increments. Let us introduce the
following criterion,

d2γ(t, r) = n2
Ep(|γ̂MA,a(t, t)− γMA(t, t)− γ̂MA,a(r, r) + γMA(r, r)|2).

To conclude we show in the following that d2γ(t, r) ≤ C|t− r|2β for a constant C
and all (r, t) ∈ [0, T ]2. Using (36), the distance is decomposed into four parts.
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Let us define φkl(t, r) = ẽk(t)ẽl(t) − ẽk(r)ẽl(r) and first consider d2A1
=

Ep(|A1(t, t)−A1(r, r)|2). We have

d2A1

= Ep


 n

2

N4

∑

k,k′∈U

1− πk
πk

(1k
πk

− 1

)
1− πk′

πk′

(1k′
πk′

− 1

)
φkk(t, r)φk′k′(t, r)




+ Ep


2n

2

N4

∑

k,k′ 6=l′∈U

1− πk
πk

(1k
πk

− 1

)
∆k′l′

πk′πl′

(1k′l′
πk′l′

− 1

)
φkk(t, r)φk′ l′(t, r)




+ Ep


 n

2

N4

∑

k 6=l,k′ 6=l′∈U

∆kl

πkπl

(1kl
πkl

− 1

)
∆k′l′

πk′πl′

(1k′l′
πk′l′

− 1

)
φkl(t, r)φk′ l′(t, r)




:= b1 + b2 + b3 (40)

Thanks to Lemma A.8, we get

b1 ≤
(
n2

N3

1

λ3
+
n2

N2

maxk 6=k′∈U |∆kk′ |
λ4

)
1

N

∑

k∈U

|φkk(t, r)|2

≤ C|t− r|2β (41)

and

b3 ≤ C

N
|t− r|2β +

(nmaxk 6=l∈U |∆kl|)2
λ4λ∗2

× max
(k,l,k′,l′)∈D4,n

|Ep{(1kl − πkl)(1k′l′ − πk′l′)}|


 1

N2

∑

k,l∈U

|φkl(t, r)|




2

≤ C|t− r|2β . (42)

The Cauchy-Schwarz inequality together with bounds (41) and (42) allows
us to get b2 ≤ C|t− r|2β so that

d2A1
≤ C|t− r|2β . (43)

Let us bound now d2A2
= Ep(|A2(t, t) − A2(r, r)|2) and define φ̃kl(t, r) =

ẽk(t)̂̃el(t)− ẽk(r)̂̃el(r). Thanks to Lemma A.9, we get

d2A2
≤ 2n2

N2λ4
Ep

(
1

N

∑

k∈U

φ̃kk(t, r)

)2

+
2n2maxk 6=l∈U |∆kl|2

λ4λ∗2 Ep


 1

N2

∑

k,l∈U

|φ̃k,l(t, r)|




2

≤ C|t− r|2β . (44)
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Let us study now the last term, d2A4
= Ep(|A4(t, t) − A4(r, r)|2) and define

̂̃
φkl(t, r) = ̂̃ek(t)̂̃el(t)− ̂̃ek(r)̂̃el(r). Thanks to Lemma A.7, we have

d2A4
≤ 2n2

N2λ4
Ep

(
1

N

∑

k∈U

̂̃φkk(t, r)
)2

+
2n2maxk 6=l∈U |∆kl|2

λ4λ∗2 Ep


 1

N2

∑

k,l∈U

|̂̃φk,l(t, r)|




2

≤ C|t− r|2β . (45)

Finally, we can deduce, with inequalities (36), (43), (44) and (45), that

d2γ(t, r) = n2
Ep(|γ̂MA,a(t, t)− γMA(t, t)− γ̂MA,a(r, r) + γMA(r, r)|2)

≤ C|t− r|2β . (46)

The end of the proof is a direct application of Theorem 12.3 of Billingsley
(1968). Since β > 1/2, the sequence n(γ̂MA,a(t, t)−γMA(t, t)) is tight in C([0, T ])
and converges in distribution to 0. The proof is complete with a direct applica-
tion of the definition of weak convergence in C([0, T ]) considering the bounded
and continuous “sup” functional. �

A.4. Proofs related to the asymptotic normality and the confidence

bands

The steps of the proof of Proposition 3.4 are similar to the steps of the proof
of Proposition 3.3. We first examine the finite combinations and invoke the
Cramer-Wold device. Then we prove the tightness thanks to inequalities on the
increments.

Let us first deal with the interpolation error, which is negligible under the
assumption on the grid of discretization points, as shown in (26).

Then, in light of (10), Lemma A.2 and Lemma A.4, we clearly have that, for
each value of t,

√
n (µ̂MA,a(t)− µ̃(t)) = op(1),

and consequently, as n tends to infinity,
√
n (µ̂MA,a(t)− µ(t)) → N (0, γZ(t, t)) in distribution,

where the covariance-function of µ̃, which defined in (12), satisfies
limN→∞ nγMA = γZ .

If we now consider p distinct discretization instants 0 ≤ t1 < t2 . . . < tp ≤ 1, it
is immediate to check that for any vector c ∈ R

p,
√
n
(∑p

j=1 cj(µ̃(tj)−µ(tj))
)
→

N (0, σ2
c ) where

σ2
c =

p∑

j=1

p∑

ℓ=1

cjcℓγZ(tj , tℓ).
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Indeed, by linearity, there exists a vector of random weights (w1, . . . , wN ) which
does not depend on time t such that

µ̃(t) =
∑

k∈U

wkYk(t),

and
∑p
j=1 cj µ̃(tj) =

∑
k∈U wk

(∑p
j=1 cjYk(tj)

)
also satisfies a CLT, with asymp-

totic variance σ2
c , under the moment conditions (A7). Thus, any finite linear

combination is asymptotically Gaussian and we can conclude that the vec-
tor

√
n (µ̃(t1)− µ(t1), . . . , µ̃(tp)− µ(tp)) is asymptotically Gaussian with the

Cramer-Wold device.
It remains to check the tightness of the functional process and this is a direct

consequence of (30) and (35). Indeed, denoting by Zn(t) =
√
n (µ̂MA,a(t)− µ(t)) ,

there is a constant C such that, for all (r, t) ∈ [0, T ]2,

Ep

(
[Zn(t)− Zn(r)]

2
)
≤ C |t− r|2β ,

and, since β > 1/2, the sequence Zn is tight in C[0, T ], in view of Theorem 12.3
of Billingsley (1968). �

We prove now Proposition 3.5, the last result of the paper. The proof consists
in showing the weak convergence of the sequence of distributions (ẐN ) to the
law of Z in C([0, T ]).

For any vector of p points 0 ≤ t1 < · · · < tp ≤ T, the finite dimensional

convergence of the distribution of the Gaussian vector (ẐN (t1), . . . , ẐN (tp)) to
the distribution of (Z(t1), . . . , Z(tp)) is an immediate consequence of the uni-
form convergence of the covariance function stated in Proposition 3.3. We can
conclude with Slutsky’s Lemma noting that for any (c1, . . . , cp) ∈ R

p,

p∑

j=1

p∑

ℓ=1

cjcℓγ̂MA,d(tj , tℓ) →
p∑

j=1

p∑

ℓ=1

cjcℓγMA(tj , tℓ) in probability. (47)

Now, we need to check the tightness of (ẐN ) in C([0, T ]). Given γ̂MA,d, we
have for (r, t) ∈ [0, T ]2,

Ep

[(
ẐN (t)− ẐN(r)

)2
| γ̂MA,d

]
= n (γ̂MA,d(t, t)− 2γ̂MA,d(r, t) + γ̂MA,d(r, r))

and after some algebra, we obtain thanks to Assumption (A2) that

Ep

[(
ẐN (t)− ẐN (r)

)2
|γ̂MA,d

]

≤ C

N

∑

k∈U

[
(Yk,d(t)− Yk,d(r))

2
+
(
Ŷk,d(t)− Ŷk,d(r)

)2]
. (48)

Let us first study the term
∑

k∈U (Yk,d(t)− Yk,d(r))
2 in the previous inequal-

ity and without loss of generality suppose that t > r. To check the continuity
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of the trajctories, we only need to consider points r and t that are close to each
other. If t and r belong to the same interval, say [ti, ti+1], then it is easy to
check, with Assumption (A4) that

1

N

∑

k∈U

(Yk,d(t)− Yk,d(r))
2
=

(t− r)2

(ti+1 − ti)2
1

N

∑

k∈U

(Yk(ti+1)− Yk(ti))
2

≤ C(t− r)2β . (49)

If we suppose now that r ∈ [ti−1, ti] and t ∈ [ti, ti+1], then we have

|Yk,d(t)− Yk,d(r)|
t− r

≤ max

( |Yk(ti+1)− Yk(ti)|
ti+1 − ti

,
|Yk(ti)− Yk(ti−1)|

ti − ti−1

)

≤ |Yk(ti+1)− Yk(ti)|
ti+1 − ti

+
|Yk(ti)− Yk(ti−1)|

ti − ti−1

and using the same decomposition as in (49), we directly get that
∑

k∈U

(Yk,d(t)− Yk,d(r))
2 ≤ C(t− r)2β .

The second term at the right-hand side of inequality (48) is dealt with similar
arguments and the decomposition used in the proof of Lemma A.3, so that
1
N

∑
k∈U

(
Ŷk,d(t)− Ŷk,d(r)

)2 ≤ C|t− r|2β .
Thus, the trajectories of the Gaussian process are continuous on [0, T ] when-

ever β > 0 (see e.g Theorem 1.4.1 in Adler and Taylor (2007)) and the sequence

(ẐN ) converges weakly to Z in C([0, T ]) equipped with the supremum norm.
Using again Proposition 3.3, we have, uniformly in t, σ̂Z(t) = σZ(t) + op(1),

where σ̂2
Z(t) = nγ̂MA,d(t, t). Since, by hypothesis σ2

Z(t) = γZ(t, t) is a continu-

ous function and inft γZ(t, t) > 0, we get with Slutsky’s lemma that (ẐN/σ̂Z)
converges weakly to Z/σZ in C([0, T ]). By definition of the weak convergence
in C([0, T ]) and the continuous mapping theorem, we also deduce that the real

random variable M̂N = supt∈[0,T ] |ẐN (t)|/σ̂Z(t) converges in distribution to
M = supt∈[0,T ] |Z(t)|/σZ(t), so that for each c ≥ 0,

P

(
sup
t∈[0,T ]

|ẐN(t)|/σ̂Z(t) ≤ c

)
→ P

(
sup
t∈[0,T ]

|Z(t)|/σZ(t) ≤ c

)
.

Note finally, that under the previous hypotheses on γZ (see e.g. Pitt and
Tran (1979)), the real random variable M = supt∈[0,T ] (|Z(t)|/σZ(t)) has an
absolutely continuous and bounded density function so that the convergence
holds uniformly in c (see e.g. Lemma 2.11 in van der Vaart (1998)). �

A.5. Some useful lemmas

We state here without any proof some results that are needed for the study of the
convergence of the covariance function. They rely on applications of the Cauchy-
Schwarz inequality and on the assumptions on the moments of the trajectories
and the inclusion probabilities.



594 H. Cardot et al.

Lemma A.6. Assume (A2)-(A5) and (A7) hold. There are two constants ζ4
and ζ5 such that

1

N

∑

k∈U

ẽk(t)
2ẽk(r)

2 ≤ ζ4

and
1

N2

∑

k∈U

∑

l∈U

ẽk(t)
2ẽl(r)

2 ≤ ζ5,

where ẽk(t) = Yk(t)− Ỹk(t).

Lemma A.7. Assume (A2)-(A5) and (A7) hold. There are two constants ζ6
and ζ7 such that

Ep

(
1

N

∑

k∈U

̂̃φkk(t, r)2
)

≤ ζ6|t− r|2β

and

Ep


 1

N2

∑

k,l∈U

̂̃φkl(t, r)




2

≤ ζ7[|t− r|2β

where ̂̃φkl(t, r) = ̂̃ek(t)̂̃el(t)− ̂̃ek(r)̂̃el(r) and ̂̃ek(t) = Ỹk(t)− Ŷk,a(t).

Lemma A.8. Assume (A2)-(A5) and (A7) hold. There are two constant con-
stants ζ8 and ζ9 such that

1

N

∑

k∈U

φ2kk(t, r) ≤ ζ8|t− r|2β

and 
 1

N2

∑

k,l∈U

φkl(t, r)




2

≤ ζ9|t− r|2β

where φkl(t, r) = ẽk(t)ẽl(t)− ẽk(r)ẽl(r) and ẽk(t) = Yk(t)− Ỹk(t).

Lemma A.9. Assume (A2)-(A5) and (A7) hold. There are two constants ζ10
and ζ11such that

Ep

(
1

N

∑

k∈U

φ̃kk(t, r)
2

)
≤ ζ10|t− r|2β

and

Ep


 1

N2

∑

k,l∈U

φ̃kl(t, r)




2

≤ ζ11|t− r|2β

where φ̃kl(t, r) = ẽk(t)̂̃el(t) − ẽk(r)̂̃el(r), ẽk(t) = Yk(t) − Ỹk(t) and ̂̃ek(t) =

Ỹk(t)− Ŷk,a(t).
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