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CNRS-UMR 6139, Université de Caen, Campus II, BP 5186
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Abstract: We observe n heteroscedastic stochastic processes {Yv(t)}v ,
where for any v ∈ {1, . . . , n} and t ∈ [0, 1], Yv(t) is the convolution product
of an unknown function f and a known blurring function gv corrupted by
Gaussian noise. Under an ordinary smoothness assumption on g1, . . . , gn,
our goal is to estimate the d-th derivatives (in weak sense) of f from the
observations. We propose an adaptive estimator based on wavelet block
thresholding, namely the “BlockJS estimator”. Taking the mean integrated
squared error (MISE), our main theoretical result investigates the minimax
rates over Besov smoothness spaces, and shows that our block estimator
can achieve the optimal minimax rate, or is at least nearly-minimax in the
least favorable situation. We also report a comprehensive suite of numerical
simulations to support our theoretical findings. The practical performance
of our block estimator compares very favorably to existing methods of the
literature on a large set of test functions.
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1. Introduction

1.1. Problem statement

Suppose that we observe n stochastic processes Y1(t), . . . , Yn(t), t ∈ [0, 1] where,
for any v ∈ {1, . . . , n},

dYv(t) = (f ⋆ gv)(t)dt + ǫdWv(t), t ∈ [0, 1], n ∈ N∗, (1)

ǫ > 0 is the noise level, (f ⋆ gv)(t) =
∫ 1

0
f(t − u)gv(u)du denotes the convolu-

tion product on [0, 1],W1(t), . . . ,Wn(t) are n unobserved independent standard
Brownian motions, for any v ∈ {1, . . . , n}, gv : [0, 1] → R is a known blurring
function and f : [0, 1] → R is the unknown function that we target. We assume
that f and g1, . . . , gn belong to L2

per([0, 1]) = {h; h is 1-periodic on [0, 1] and



430 F. Navarro et al.

∫ 1

0
h2(t)dt < ∞}. The focus of this paper is to estimate f and its derivatives

f (d) (to be understood in weak or distributional sense) from Y1(t), . . . , Yn(t),
t ∈ [0, 1]. This is in general a severely ill-posed inverse problem. Application
fields cover biomedical imaging, astronomical imaging, remote-sensing, seismol-
ogy, etc. This list is by no means exhaustive.

In the following, any function h ∈ L2
per([0, 1]) can be represented by its Fourier

series
h(t) =

∑

ℓ∈Z

F(h)(ℓ)e2iπℓt, t ∈ [0, 1],

where the equality is intended in mean-square convergence sense, and Fℓ(h)
denotes the Fourier series coefficient given by

F(h)(ℓ) =

∫ 1

0

h(t)e−2iπℓtdt, ℓ ∈ Z,

whenever this integral exists. The notation · will stand for the complex con-
jugate.

1.2. Overview of previous work

There is an extensive statistical literature on wavelet-based deconvolution prob-
lems. For obvious space limitations, we only focus on some of them.

In the special case where g1 = · · · = gn, (1) reduces to the form

dỸ (t) = (f ⋆ g1)(t)dt+ ǫn−1/2dW̃ (t), t ∈ [0, 1], (2)

where Ỹ (t) = (1/n)
∑n

v=1 Yv(t), and W̃ (t) = (1/n1/2)
∑n

v=1Wv(t) is standard
Brownian motion. In such a case, (2) becomes the standard deconvolution which
attracted attention of a number of researchers spanning a wide range of fields
including signal processing and statistics. For instance, wavelet-based estima-
tors of f have been constructed and their asymptotic performance investigated
in a number of papers, see e.g. [5–7, 10, 16, 19]. When g1, . . . , gn are not neces-
sarily equal, estimators of f and their minimax rates under the mean integrated
squared error (MISE) over Besov balls were proposed in [14, 22–24]. These au-
thors develop wavelet thresholding estimators (hard thresholding in [14, 24] and
block thresholding in [22, 23]) under various assumptions on g1, . . . , gn (typi-
cally, ordinary smooth and super-smooth case, or boxcar blurring functions).

Estimating the derivative of a function on the basis of noisy and blurred ob-
servations is of paramount importance in many fields such as signal processing,
control or mathematical physics. For instance detecting the singularities of f or
characterizing its concavity or convexity properties is a longstanding problem in
signal processing. The estimation of the derivatives from noisy solutions of or-
dinary or partial differential equations is typical in many areas of mathematical
physics such as astronomy or fluid dynamics. In the case where d = 0, several
examples of recovering initial/boundary conditions from observations of a noisy
and blurred solution of a PDE (e.g., parabolic, hyperbolic or elliptic PDE) are
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given in [22]. For higher-order derivatives (typically d = 1 or d = 2), there are
also physical applications where such a model occurs. We mention for instance
frequency self-deconvolution encountered in the field of chemometrics. In this
context, the first and the second derivatives can be used to detect important
information or features in the raw spectra; see e.g. [1]). The wavelet estimator
developed in the paper could be an interesting alternative to commonly used
methods in this area.

The derivatives estimation have already been investigated from several stan-
dard nonparametric models. If we only restrict the review to wavelet methods,
we refer to [3, 11] for model (2) and to [8, 9, 26] for density estimation problems.

1.3. Contributions and relation to prior work

In this paper, considering an appropriate ordinary smoothness assumption on

g1, . . . , gn, we develop an adaptive wavelet-based block estimator f̂ (d) of f (d)

from (1), d ∈ N. It is constructed using a periodized Meyer wavelet basis and
a particular block thresholding rule which goes by the the name of BlockJS;
see [2] for the original construction of BlockJS in the standard Gaussian noise
model, and [3, 4, 12, 27] for further developments on BlockJS. Adopting the
minimax approach under the MISE over Besov balls, we investigate the upper
bounds of our estimator. This is featured in Theorem 4.1. We prove that the
rates of our estimator are nearly optimal by establishing a lower bound as stated
in Theorem 4.2.

Our work is related to some prior art in the literature. To the best of our
knowledge, the closest ones are those of [22, 23]. For the case where d = 0 and
the blurring function is ordinary-smooth or super-smooth, [22, 23, Theorems 1
and 2] provide the upper and lower bounds of the MISE over Besov balls for
a block hard thresholding estimator from the functional deconvolution model1.
These bounds match ours but only for d = 0. In this respect, our work goes
one step further as it tackles the estimation (with a different wavelet estimator)
of f and its derivatives. As far as the methods of proof are concerned, we use
similar tools (concentration and moment inequalities as well as the general result
in [12]) as theirs for the upper bound, but the proof of the lower bounds are
different. However unlike [22], we only cover the ordinary smooth convolution,
while their results apply also to the super-smooth case. On the practical side,
for d = 0, we will show in Section 5 that BlockJS behaves better than block
hard thresholding [23, (2.9)] over several test functions that contain different
degrees of irregularity.

1.4. Paper organization

The paper is organized as follows. Section 2 gives a brief account of periodized
Meyer wavelets and Besov balls. Section 3 states ordinary smoothness assump-

1This is a more general model which reduces to the multichannel deconvolution model
when observed at a finite number of distinct points, see [22, Section 5] for further details.
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tion on g1, . . . , gn, and then constructs the BlockJS-based estimator. The min-
imax upper and lower bounds of this estimator are investigated in Section 4.
Section 5 describes and discusses the simulation results, before drawing some
conclusions in Section 6. The proofs are deferred to Section 7 awaiting inspection
by the interested reader.

2. Wavelets and Besov balls

2.1. Periodized Meyer wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a “father” Meyer-type wavelet φ and a “mother” Meyer-type wavelet
ψ. These wavelets enjoy the following features.

• They are smooth and frequency band-limited, i.e. the Fourier transforms of
φ and ψ have compact supports with

{
supp (F(φ)) ⊂ [−4π3−1, 4π3−1],

supp (F(ψ)) ⊂ [−8π3−1,−2π3−1] ∪ [2π3−1, 8π3−1],
(3)

where supp denotes the support.
• The functions (φ, ψ) are C∞ as their Fourier transforms have a compact
support, and ψ has an infinite number of vanishing moments as its Fourier
transform vanishes in a neighborhood of the origin:

∫ +∞

−∞

tuψ(t)dt = 0, ∀ u ∈ N. (4)

• If the Fourier transforms of φ and ψ are also in Cm for a chosen m ∈ N, then
it can be easily shown that φ and ψ obey

|φ(t)| = O
(
(1 + |t|)−m−1

)
, |ψ(t)| = O

(
(1 + |t|)−m−1

)
(5)

for every t ∈ R.

For the purpose of this paper, we use the periodized wavelet bases on the
unit interval. For any t ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j − 1}, let

φj,k(t) = 2j/2φ(2jt− k), ψj,k(t) = 2j/2ψ(2jt− k)

be the elements of the wavelet basis, and

φperj,k (t) =
∑

ℓ∈Z

φj,k(t− ℓ), ψper
j,k (t) =

∑

ℓ∈Z

ψj,k(t− ℓ),

their periodized versions. There exists an integer j∗ such that the collection{
φperj∗,k

(·), k ∈ {0, . . . , 2j∗ − 1}; ψper
j,k (.), j ≥ j∗, k ∈ {0, . . . , 2j − 1}

}
forms an

orthonormal basis of L2
per([0, 1]). In what follows, the superscript “per” will be

dropped from φper and ψper to lighten the notation.
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Let l ≥ j∗, any function h ∈ L2
per([0, 1]) can be expanded into a wavelet series

as

h(t) =

2l−1∑

k=0

αl,kφl,k(t) +

∞∑

j=l

2j−1∑

k=0

βj,kψj,k(t), t ∈ [0, 1],

where

αl,k =

∫ 1

0

h(t)φl,k(t)dt, βj,k =

∫ 1

0

h(t)ψj,k(t)dt. (6)

See [21, Vol. 1 Chapter III.11] for a detailed account on periodized orthonormal
wavelet bases.

2.2. Besov balls

Let 0 < M < ∞, s > 0, 1 ≤ p, r ≤ ∞. Among the several characterizations of
Besov spaces for periodic functions on Lp([0, 1]), we will focus on the usual one
based on the corresponding coefficients in a sufficiently q-regular (periodized)
wavelet basis (q = ∞ for Meyer wavelets). More precisely, we say that a function

h belongs to the Besov ball Bs
p,r(M) if and only if

∫ 1

0 |h(t)|pdt ≤ M , and there
exists a constant M∗ > 0 (depending on M) such that the associated wavelet
coefficients (6) satisfy

2j∗(1/2−1/p)




2j∗−1∑

k=0

|αj∗,k|p



1/p

+




∞∑

j=j∗


2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|p



1/p



r


1/r

≤M∗, (7)

with a smoothness parameter 0 < s < q, and the norm parameters p and r.
Besov spaces capture a variety of smoothness features in a function including
spatially inhomogeneous behavior, see [21].

3. The deconvolution BlockJS estimator

3.1. The ordinary smoothness assumption

In this study, we focus on the following particular ordinary smoothness assump-
tion on g1, . . . , gn. We assume that there exist three constants, cg > 0, Cg > 0
and δ > 1, and n positive real numbers σ1, . . . , σn such that, for any ℓ ∈ Z and
any v ∈ {1, . . . , n},

cg
1

(1 + σ2
vℓ

2)δ/2
≤ |F(gv)(ℓ)| ≤ Cg

1

(1 + σ2
vℓ

2)δ/2
. (8)

This assumption controls the decay of the Fourier coefficients of g1, . . . , gn, and
thus the smoothness of g1, . . . , gn. It is a standard hypothesis usually adopted in
the field of nonparametric estimation for deconvolution problems. See e.g. [25],
[17] and [19].
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Example 3.1. Let τ1, . . . , τn be n positive real numbers. For any v ∈ {1, . . . , n},
consider the square-integrable 1-periodic function gv defined by

gv(t) =
1

τv

∑

m∈Z

e−|t+m|/τv , t ∈ [0, 1].

Then, for any ℓ ∈ Z, F(gv)(ℓ) = 2
(
1 + 4π2ℓ2τ2v

)−1
and (8) is satisfied with

δ = 2 and σv = 2πτv.

In the sequel, we set

ρn =

n∑

v=1

1

(1 + σ2
v)

δ
. (9)

For a technical reason that is not restrictive at all (see Section 7), we suppose
that ρn ≥ e and limn→∞(ln ρn)

vρ−1
n = 0 for any v > 0.

3.2. BlockJS estimator

We suppose that f (d) ∈ L2
per([0, 1]) and that the ordinary smoothness assump-

tion (8) holds, where δ refers to the exponent in the assumption. We are ready
to construct our adaptive procedure for the estimation of f (d).

Let j1 = ⌊log2(log ρn)⌋ be the coarsest resolution level, and j2 = ⌊(1/(2δ +
2d+ 1)) log2(ρn/ log ρn)⌋, where, for any a ∈ R, ⌊a⌋ denotes the integer part of
a. For any j ∈ {j1, . . . , j2}, let L = ⌊log ρn⌋ be the block size.

Let Aj = {1, . . . , ⌊2jL−1⌋} be the set indexing the blocks at resolution
j. For each j, let {Bj,K}K∈Aj

be a uniform and disjoint open covering of
{0, . . . , 2j − 1}, i.e. ⋃K∈Aj

Bj,K = {0, . . . , 2j − 1} and for any (K,K ′) ∈ A2
j

with K 6= K ′, Bj,K ∩ Bj,K′ = ∅ and Card(Bj,K) = L, where Bj,K = {k ∈
{0, . . . , 2j − 1}; (K − 1)L ≤ k ≤ KL− 1} is the Kth block.

We define the Block James-Stein estimator (BlockJS) of f (d) by

f̂ (d)(t) =
2j1−1∑

k=0

α̂j1,kφj1,k(t) +

j2∑

j=j1

∑

K∈Aj

∑

k∈Bj,K

β̂∗
j,kψj,k(t), t ∈ [0, 1], (10)

where for any resolution j and position k ∈ Bj,K within the Kth block, the
wavelet coefficients of f (d) are estimated via the rule

β̂∗
j,k = β̂j,k

(
1− λǫ2ρn

−122j(δ+d)

1
L

∑
k∈Bj,K

|β̂j,k|2

)

+

,

with, for any a ∈ R, (a)+ = max(a, 0), λ > 0, and α̂j1,k and β̂j,k are respectively
the empirical scaling and detail coefficients, defined as

α̂j1,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Dj1

(2πiℓ)d
F (φj1,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t)
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and

β̂j,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t).

Notice that thanks to (3), for any j ∈ {j1, . . . , j2} and k ∈ {0, . . . , 2j − 1}
{
Dj1 = supp (F (φj1,k)) ⊂ [−4π3−12j1 , 4π3−12j1 ],

Cj = supp (F (ψj,k)) ⊂ [−8π3−12j,−2π3−12j ] ∪ [2π3−12j , 8π3−12j ].
(11)

4. Minimaxity results of BlockJS over Besov balls

4.1. Minimax upper-bound for the MISE

Theorem 4.1 below determines the rates of convergence achieved by f̂ (d) under
the MISE over Besov balls.

Theorem 4.1. Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (φ, ψ) satisfy (5) for some m ≥ d and (8) is satisfied.

Let f̂ (d) be the estimator defined by (10) with a large enough λ. Then there exists

a constant C > 0 such that, for any M > 0, p ≥ 1, r ≥ 1, s > 1/p and n large

enough, we have

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̂ (d)(t)− f (d)(t)

)2
dt

)
≤ Cϕn,

where

ϕn =

{
ρ−2s/(2s+2δ+2d+1)
n , if p ≥ 2,

(log ρn/ρn)
2s/(2s+2δ+2d+1), if p ∈ [1, 2), s > (1/p− 1/2)(2δ + 2d+ 1).

Theorem 4.1 will be proved using the more general theorem [12, Theorem
3.1]. To apply this result, two conditions on the wavelet coefficients estima-
tor are required: a moment condition and a concentration condition. They are
established in Propositions 7.2 and 7.3, see Section 7.

Remark 4.1. Theorem 4.1 can be generalized by allowing the decay exponent
δ of g1, . . . , gn to vary across the channels. More precisely, our ordinary assump-
tion (8) is uniform over the channels, in the sense that we assumed that the
decay exponent δ is the same for all v. Assume now that there exist three con-
stants, cg > 0, Cg > 0, and 2n positive real numbers σ1, . . . , σn, δ1, . . . , δn with
min(δ1, . . . , δn) > 1/2 such that, for any ℓ ∈ Z and any v ∈ {1, . . . , n},

| F(gv)(ℓ)| ≤ Cg
1

(1 + σ2
vℓ

2)δv/2
.

Set
ω = min(δ1, . . . , δn).
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Let us now define the BlockJS estimator of f (d) as in Section 3.2 but with the
weights

ρn =

n∑

v=1

1

(1 + σ2
v)

δv
,

resolution levels j1 = ⌊log2(log ρn)⌋, j2 = ⌊(1/(2ω + 2d + 1)) log2(ρn/ log ρn)⌋,
and

β̂∗
j,k = β̂j,k

(
1− λǫ2ρn

−122j(ω+d)

1
L

∑
k∈Bj,K

|β̂j,k|2

)

+

,

α̂j1,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δv

∑

ℓ∈Dj1

(2πiℓ)d
F (φj1,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t)

and

β̂j,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δv

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)

∫ 1

0

e−2πiℓtdYv(t).

Then Theorem 4.1 holds with the convergence rate

ϕn =

{
ρ−2s/(2s+2ω+2d+1)
n , if p ≥ 2,

(log ρn/ρn)
2s/(2s+2ω+2d+1), if p ∈ [1, 2), s > (1/p− 1/2)(2ω + 2d+ 1).

Of course, this generalization encompasses the statement of Theorem 4.1. This
generalized result also tells us that the adaptivity of the estimator makes its
performance mainly influenced by the best gi, that is the one with the smallest
δi, which is a nice feature.

4.2. Minimax lower-bound for the MISE

We now turn to the lower bound of the MISE to formally answer the question
whether ϕn is indeed the optimal rate of convergence or not. This is the goal of
Theorem 4.2 which gives a positive answer.

Theorem 4.2. Consider the model (1) and recall that we want to estimate f (d)

with d ∈ N. Assume that (8) is satisfied. Then there exists a constant c > 0
such that, for any M > 0, p ≥ 1, r ≥ 1, s > 1/p and n large enough, we have

inf
f̃(d)

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̃ (d)(t)− f (d)(t)

)2
dt

)
≥ cϕ∗

n,

where

ϕ∗
n = (ρ∗n)

−2s/(2s+2δ+2d+1), ρ∗n =

n∑

v=1

σ−2δ
v .

and the infimum is taken over all the estimators f̃ (d) of f (d).
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Fig 1. Original Signals (a): Wave. (b): Parabolas. (c): TimeShiftedSine.

It can then be concluded from Theorem 4.1 and Theorem 4.2 that the rate
of convergence ϕn achieved by f̂ (d) is near optimal in the minimax sense. Near
minimaxity is only due to the case p ∈ [1, 2) and s > (1/p− 1/2)(2δ + 2d+ 1)
where there is an extra logarithmic term.

5. Simulations results

In the following simulation study we consider the problem of estimating one of
the derivatives of a function f from the heteroscedastic multichannel deconvo-
lution model (1). Three test functions (“Wave”, “Parabolas” and “TimeShifted-
Sine”, initially introduced in [20]) representing different degrees of smoothness
were used (see Fig 1). The “Wave” function was used to illustrate the per-
formance of our estimator on a smooth function. Note that the “Parabolas”
function has big jumps in its second derivative.

We have compared the numerical performance of BlockJS to state-of-the-
art classical thresholding methods of the literature. In particular we consider
the block estimator of [23] and two term-by-term thresholding methods. The
first one is the classical hard thresholding and the other one corresponds to
the non-negative garrote (introduced in wavelet estimation by [18]). In the se-
quel, we name the estimator of [23] by ‘BlockH’, the one of [18] by ‘TermJS’
and our estimator by ‘BlockJS’. For numerical implementation, the test func-
tions were finely discretized by taking T equispaced samples ti = i/T ∈ [0, 1],
i = 0, . . . , T − 1. The deconvolution estimator was efficiently implemented in
the Fourier domain given that Meyer wavelets are frequency band-limited. The
performance of the estimators are measured in terms of peak signal-to-noise

ratio (PSNR = 10 log10
maxti∈[0,1] |f

(d)(ti)|
2

∑T−1
i=0 (f(d)(ti)−f(d)(ti))2/T

) in decibels (dB)). For any

v ∈ {1, . . . , n}, the blurring function gv is that of Example 3.1 and was used
throughout all experiments.

5.1. Monochannel simulation

As an example of homoscedastic monochannel reconstruction (i.e. n = 1), we
show in Fig 2 estimates obtained using the BlockJS method from T = 4096
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Fig 2. Original (dashed) and estimated function/derivatives (solid) using the BlockJS esti-
mator applied to noisy blurred observations shown in (a). (b): d = 0. (c): d = 1 (d): d = 2.
From left to right Wave, Parabolas and TimeShiftedSine.

equispaced samples generated according to (1) with blurred signal-to-noise ra-

tio (BSNR) of 25 dB (BSNR = 10 log10

∑T−1
i=0 (f⋆gv)(ti)

2

Tǫ2 dB). For d = 0, the
results are very effective for each test function where the singularities are well
estimated. The estimator does also a good job in estimating the first and second-
order derivatives, although the estimation quality decreases as the order of the
derivative increases. This is in agreement with the predictions of the minimaxity
results. We then have compared the performance of BlockJS with BlockH. The
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Fig 3. Averaged PSNR values as a function of the input BSNR from 10 replications of the
noise. (a): Wave. (b): Parabolas. (c): TimeShiftedSine. From top to bottom d = 0, 1, 2.

blurred signals were corrupted by a zero-mean white Gaussian noise such that
the BSNR ranged from 10 to 40 dB. The PSNR values averaged over 10 noise
realizations are depicted in Fig 3 for d = 0, d = 1 and d = 2 respectively. One
can see that our BlockJS thresholding estimator produces quite accurate esti-
mates of f , f ′ and f ′′ for each test function. These results clearly show that our
approach compares favorably to BlockH and that BlockJS has good adaptive
properties over a wide range of noise levels in the monochannel setting.

5.2. Multichannel simulation

A first point we would like to highlight is the fact that some choices of σ1, . . . , σn
can severely impact the performance of the estimators. To illustrate this, we
show in Fig 4 an example of first derivative estimates obtained using BlockJS
from n = 10 channels with T = 4096 samples and noise level corresponding to
BSNR= 25 dB, for σv = v (dashed blue) and σv randomly generated in (0,+∞)
(solid blue). With σv randomly generated, we can observe a significant PSNR
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Fig 4. Original functions (dashed black) and the estimate for σv = v (dashed blue) and σv

randomly generated (solid blue) with n = 10 channels. (a)-(c): noisy blurred observations (3
channels out of 10 shown). (d)-(f) BlockJS estimates of the first derivative. Zoom on the
estimates (g): Parabolas, (h): TimeShiftedSine.

improvement up to 6.85 dB for the first derivative of TimeShiftedSine. Note
that this improvement is marginal (about 0.60 dB) for the most regular test
signal (i.e. Wave).

We finally report a simulation study by quantitatively comparing BlockJS to
the other thresholding estimators described above. For each test function, we
generated T = 4096 equispaced samples on [0, 1] according to (1) with varying
number of channels ranging from n = 10 to 100.

Table 1 summarizes the results. It shows in particular that BlockJS consis-
tently outperforms the other methods in almost all cases in terms of PSNR. As
expected and predicted by our theoretical findings, on the one hand, the per-
formance gets better as the number of channels increases. On the other hand,
it degrades with increasing noise level and/or d. Indeed, the derivatives estima-
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Table 1

Comparison of average PSNR in decibels (dB) over 10 realizations of the noise for d = 0,
d = 1 and d = 2. From top to bottom BSNR= 40, 25, 10 dB.

BSNR= 40 dB
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 57.42 66.40 66.83 74.62 42.64 43.58 43.94 50.10 22.04 30.34 33.88 36.69
BlockH 57.34 66.31 66.78 74.72 42.43 43.57 43.07 50.07 22.66 29.14 33.78 36.65
TermJS 52.51 61.94 64.86 73.57 40.64 41.56 33.90 49.30 19.17 29.57 30.87 33.20
TermH 50.97 52.72 55.69 74.73 31.39 33.92 37.20 39.48 17.17 28.82 33.89 35.61

TimeShiftedSine
BlockJS 65.11 65.58 68.47 71.17 42.16 46.25 46.85 49.53 41.09 42.67 43.07 46.35
BlockH 62.11 62.29 62.71 70.43 41.97 45.57 45.75 49.35 39.20 40.55 41.97 42.00
TermJS 64.01 64.73 66.13 68.21 40.96 42.13 43.63 43.98 38.57 41.17 41.73 45.15
TermH 61.84 62.05 67.12 68.80 41.22 42.12 43.32 44.69 39.39 39.81 39.24 43.04

Parabolas
BlockJS 56.18 57.42 58.10 58.40 29.66 29.76 31.04 31.40 20.63 21.88 21.93 21.90
BlockH 55.92 57.25 57.70 58.10 29.69 29.67 29.91 29.94 20.74 21.09 21.99 21.73
TermJS 54.33 57.05 57.96 58.24 29.21 29.38 29.65 29.79 20.57 20.93 20.91 21.51
TermH 54.59 56.96 57.88 58.10 29.60 29.60 29.90 29.94 20.51 20.96 20.84 21.49

BSNR= 25 dB
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 44.04 51.93 52.47 59.76 30.14 30.90 30.90 35.93 26.83 26.83 26.98 27.00
BlockH 42.12 51.35 51.82 59.73 28.69 28.69 28.72 35.26 26.89 26.85 26.98 26.48
TermJS 41.67 48.10 49.44 52.59 28.49 28.69 28.72 28.71 25.25 26.62 26.78 26.94
TermH 40.95 49.03 50.22 55.04 28.69 28.69 28.72 28.72 25.28 26.85 26.98 26.86

TimeShiftedSine
BlockJS 51.85 52.33 55.66 60.49 39.48 41.46 41.88 41.92 27.39 28.72 29.05 35.95
BlockH 52.93 51.51 55.82 60.35 38.68 41.24 41.87 41.84 26.68 29.36 29.54 35.15
TermJS 47.19 47.83 54.45 56.63 29.46 41.34 41.85 41.79 23.66 25.84 25.95 27.58
TermH 47.54 47.47 54.44 59.63 31.42 41.03 40.75 41.79 23.66 25.69 25.91 30.67

Parabolas
BlockJS 47.81 49.88 52.90 54.40 25.52 26.11 28.74 29.57 17.48 18.24 18.96 20.62
BlockH 47.74 49.23 52.00 53.62 25.43 25.16 29.55 29.69 17.08 18.92 19.00 20.63
TermJS 44.52 49.80 50.80 52.79 24.84 25.78 25.71 25.73 16.39 18.58 19.00 20.57
TermH 43.74 48.84 51.35 53.24 24.86 25.17 25.10 27.98 16.49 18.64 18.95 20.34

BSNR= 10 dB
d = 0 d = 1 d = 2

n 10 20 50 100 10 20 50 100 10 20 50 100

Wave
BlockJS 35.82 43.46 43.91 45.95 26.96 27.34 28.22 28.45 19.02 25.12 26.16 26.78
BlockH 34.08 43.41 43.83 44.60 26.90 27.34 28.19 28.41 19.21 25.16 26.06 26.68
TermJS 33.30 43.16 43.24 44.48 26.67 27.25 28.14 28.36 18.32 18.89 22.87 26.65
TermH 33.22 40.16 39.32 44.27 26.77 27.35 28.15 28.39 18.61 19.07 18.95 26.68

TimeShiftedSine
BlockJS 38.69 39.28 41.24 48.38 30.12 38.85 39.26 40.19 22.58 22.84 23.37 23.53
BlockH 38.66 38.97 40.12 45.34 26.66 38.22 39.22 39.08 22.58 22.73 23.33 23.48
TermJS 38.41 38.68 40.31 41.45 25.68 29.24 36.79 36.68 22.52 22.82 15.27 23.26
TermH 38.23 38.44 39.07 41.46 26.98 28.10 35.18 36.98 22.49 22.72 15.47 17.56

Parabolas
BlockJS 35.26 37.04 40.64 44.74 22.03 24.56 24.77 25.56 12.76 12.79 13.09 13.29
BlockH 34.12 35.53 39.29 43.41 22.22 24.54 24.47 25.00 12.64 12.76 12.78 12.77
TermJS 34.29 35.18 39.38 41.37 21.70 24.51 24.63 24.96 12.56 12.76 12.79 12.79
TermH 33.27 34.53 39.45 42.21 21.88 23.98 24.21 24.86 12.70 12.76 12.79 12.79
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tion for BSNR= 10 dB is rather difficult to estimate, especially for functions
having highly irregular derivatives such as “Parabolas” (which has big jumps in
its second derivative, see Fig. 2(d)).

6. Conclusion and perspectives

In this work, an adaptive wavelet block thresholding estimator was constructed
to estimate one of the derivative of a function f from the heteroscedastic multi-
channel deconvolution model. Under ordinary smooth assumption on g1, . . . , gn,
it was proved that it is nearly optimal in the minimax sense. The practical com-
parisons to state-of-the art methods have demonstrated the usefulness and the
efficiency of adaptive block thresholding methods in estimating a function f and
its first derivatives in the functional deconvolution setting.

It would be interesting to consider the case where gv are unknown, which is
the case in many practical situations. Another interesting perspective would be
to extend our results to a multidimensional setting. These aspects need further
investigations that we leave for a future work.

7. Proofs

In the following proofs, c and C denote positive constants which can take dif-
ferent values for each mathematical term.

7.1. Preparatory results

In the three following results, we consider the framework of Theorem 4.1 and,

for any integer j ≥ j∗ and k ∈ {1, . . . , 2j − 1}, we set αj,k =
∫ 1

0
f (d)(t)φj,k(t)dt

and βj,k =
∫ 1

0 f
(d)(t)ψj,k(t)dt, the wavelet coefficients (6) of f (d).

Proposition 7.1 (Gaussian distribution on the wavelet coefficient estimators).
For any integer j ≥ j∗ and k ∈ {0, . . . , 2j − 1}, we have

α̂j,k ∼ N


αj,k, ǫ

2 1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Dj

(2πℓ)2d
| F (φj,k) (ℓ)|2
| F(gv)(ℓ)|2




and

β̂j,k ∼ N


βj,k, ǫ2

1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Cj

(2πℓ)2d
| F (ψj,k) (ℓ)|2
| F(gv)(ℓ)|2


 .

Proof. Let us prove the second point, the first one can be proved in a similar
way. For any ℓ ∈ Z and any v ∈ {1, . . . , n}, F (f ⋆ gv) (ℓ) = F(f)(ℓ)F(gv)(ℓ).
Therefore, if we set

yℓ,v =

∫ 1

0

e−2πiℓtdYv(t), eℓ,v =

∫ 1

0

e−2πiℓtdWv(t),
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It follows from (1) that

yℓ,v = F(f)(ℓ)F(gv)(ℓ) + ǫeℓ,v. (12)

Note that, since f is 1-periodic, for any u ∈ {0, . . . , d}, f (u) is 1-periodic and
f (u)(0) = f (u)(1). By classical properties of the Fourier series, for any ℓ ∈ Z, we
have F(f (d))(ℓ) = (2πiℓ)dF(f)(ℓ). The Parseval theorem gives

βj,k =

∫ 1

0

f (d)(t)ψj,k(t)dt =
∑

ℓ∈Cj

F(f (d))(ℓ)F (ψj,k)(ℓ)

=
∑

ℓ∈Cj

(2πiℓ)dF(f)(ℓ)F (ψj,k)(ℓ).

Using (12), we have

β̂j,k =
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
F(f)(ℓ)F(gv)(ℓ)

+ ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v

=
∑

ℓ∈Cj

(2πiℓ)dF(f)(ℓ)F (ψj,k)(ℓ)

+ ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v

= βj,k + ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
F (ψj,k)(ℓ)

F(gv)(ℓ)
eℓ,v.

Since {e−2πiℓ.}ℓ∈Z is an orthonormal basis of L2
per([0, 1]) andW1(t), . . . ,Wn(t)

are i.i.d. standard Brownian motions,
(∫ 1

0
e−2πiℓtdWv(t)

)
(ℓ,v)∈Z×{1,...,n}

is a se-

quence of i.i.d. random variables with the common distribution N (0, 1). There-
fore

β̂j,k ∼ N


βj,k, ǫ2

1

ρ2n

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Cj

(2πℓ)2d
| F (ψj,k) (ℓ)|2
| F(gv)(ℓ)|2


 .

Proposition 7.1 is proved.

Proposition 7.2 (Moment inequalities).

• There exists a constant C > 0 such that, for any integer j ≥ j∗ and

k ∈ {0, . . . , 2j − 1},

E
(
|α̂j1,k − αj1,k|2

)
≤ Cǫ222(δ+d)j1ρ−1

n ,
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• There exists a constant C > 0 such that, for any integer j ≥ j∗ and

k ∈ {0, . . . , 2j − 1},

E

(
|β̂j,k − βj,k|4

)
≤ Cǫ424(δ+d)jρ−2

n .

Proof. Let us prove the second point, the first one can be proved in a similar
way. Let us recall that, by Proposition 7.1, for any j ∈ {j1, . . . , j2} and any
k ∈ {0, . . . , 2j − 1}, we have

β̂j,k − βj,k ∼ N
(
0, ρ−2

n σ2
j,k

)
, (13)

where

σ2
j,k = ǫ2

n∑

v=1

1

(1 + σ2
v)

2δ

∑

ℓ∈Z

(2πℓ)2d
| F (ψj,k) (ℓ)|2
| F(gv)(ℓ)|2

. (14)

Due to (8) and (11), for any v ∈ {1, . . . , n}, we have

sup
ℓ∈Cj

(
(2πℓ)2d

| F(gv)(ℓ)|2
)

≤ C sup
ℓ∈Cj

(
(2πℓ)2d

(
1 + σ2

vℓ
2
)δ)

≤ C(1 + σ2
v)

δ sup
ℓ∈Cj

(
(2πℓ)2d

(
1 + ℓ2

)δ)

≤ C(1 + σ2
v)

δ22(δ+d)j . (15)

It follows from (15) and the Parseval identity that

σ2
j,k ≤ ǫ2

n∑

v=1

1

(1 + σ2
v)

2δ
sup
ℓ∈Cj

(
(2πℓ)2d

| F(gv)(ℓ)|2
)∑

ℓ∈Cj

| F (ψj,k) (ℓ)|2

≤ Cǫ222(δ+d)j

(
n∑

v=1

1

(1 + σ2
v)

δ

)
∑

ℓ∈Cj

| F (ψj,k) (ℓ)|2



= Cǫ222(δ+d)jρn

∫ 1

0

|ψj,k(t)|2dt = Cǫ2ρn2
2(δ+d)j . (16)

Putting (13), (14) and (16) together, we obtain

E

(
|β̂j,k − βj,k|4

)
≤ C(ǫ222(δ+d)jρnρ

−2
n )2 = Cǫ424(δ+d)jρ−2

n .

Proposition 7.2 is proved.

Proposition 7.3 (Concentration inequality). There exists a constant λ > 0
such that, for any j ∈ {j1, . . . , j2}, any K ∈ Aj and n large enough,

P





 ∑

k∈Bj,K

|β̂j,k − βj,k|2



1/2

≥ λ2(δ+d)j(log ρn/ρn)
1/2


 ≤ ρ−2

n .
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Proof. We need the Tsirelson inequality stated in Lemma7.1 below.

Lemma 7.1 ([13]). Let (ϑt)t∈D be a centered Gaussian process. If

E

(
sup
t∈D

ϑt

)
≤ N, sup

t∈D
V (ϑt) ≤ V

then, for any x > 0, we have

P

(
sup
t∈D

ϑt ≥ x+N

)
≤ exp

(
− x2

2V

)
.

For the sake of notational clarity, let

Vj,k = β̂j,k − βj,k.

Recall that, by Proposition 7.1, we have Vj,k ∼ N
(
0, ρ−2

n σ2
j,k

)
, where σ2

j,k is

given in (14). Let B(1) the unit 2-norm ball in CCard(Bj,K), i.e. B(1) = {a ∈
CCard(Bj,K);

∑
k∈Bj,K

|ak|2 ≤ 1}. For any a ∈ B(1), let Z(a) be the centered
Gaussian process defined by

Z(a) =
∑

k∈Bj,K

akVj,k

= ǫ
1

ρn

n∑

v=1

1

(1 + σ2
v)

δ

∑

ℓ∈Cj

(2πiℓ)d
eℓ,v

F(gv)(ℓ)

∑

k∈Bj,K

akF (ψj,k)(ℓ).

By a simple Legendre-Fenchel conjugacy argument, we have

sup
a∈B(1)

Z(a) =


 ∑

k∈Bj,K

|Vj,k|2



1/2

=


 ∑

k∈Bj,K

|β̂j,k − βj,k|2



1/2

.

Now, let us determine the values of N and V which appeared in the Tsirelson
inequality.

Value of N . Using the Jensen inequality and (16), we obtain

E

(
sup

a∈B(1)

Z(a)

)
= E





 ∑

k∈Bj,K

|Vj,k|2



1/2

 ≤


 ∑

k∈Bj,K

E
(
|Vj,k|2

)



1/2

≤ C


ρ−2

n

∑

k∈Bj,K

σ2
j,k




1/2

≤ C
(
ρ−2
n ǫ2ρn2

2(δ+d)j Card(Bj,K)
)1/2

≤ Cǫ2(δ+d)j (log ρn/ρn)
1/2 .

Hence N = Cǫ2(δ+d)j(log ρn/ρn)
1/2.
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Value of V . Note that, for any (ℓ, ℓ′) ∈ Z2 and any (v, v′) ∈ {1, . . . , n}2,

E (eℓ,neℓ′,v′) =

{
1 if ℓ = ℓ′ and v = v′,

0 otherwise.

It then follows that

sup
a∈B(1)

V(Z(a)) = sup
a∈B(1)

E




∣∣∣∣∣∣
∑

k∈Bj,K

akVj,k

∣∣∣∣∣∣

2



= sup
a∈B(1)

E


 ∑

k∈Bj,K

∑

k′∈Bj,K

akak′Vj,kV j,k′




= ǫ2ρ−2
n sup

a∈B(1)

∑

k∈Bj,K

∑

k′∈Bj,K

akak′

∑

ℓ∈Cj

∑

ℓ′∈Cj

n∑

v′=1

n∑

v=1

1

(1 + σ2
v)

δ

1

(1 + σ2
v′)δ

× (2πiℓ)d

F(gv)(ℓ)
F(ψj,k)(ℓ)

(2πiℓ′)d

F(gv′)(ℓ′)
F(ψj,k′)(ℓ′)E (eℓ,veℓ′,v′)

= ǫ2ρ−2
n sup

a∈B(1)

∑

k∈Bj,K

∑

k′∈Bj,K

akak′

∑

ℓ∈Cj

n∑

v=1

1

(1 + σ2
v)

2δ

× (2πℓ)2d

| F(gv)(ℓ)|2
F (ψj,k)(ℓ)F(ψj,k′ )(ℓ)

= ǫ2ρ−2
n sup

a∈B(1)

∑

ℓ∈Cj

n∑

v=1

1

(1 + σ2
v)

2δ

(2πℓ)2d

| F(gv)(ℓ)|2

∣∣∣∣∣∣
∑

k∈Bj,K

ak F (ψj,k) (ℓ)

∣∣∣∣∣∣

2

. (17)

For any a ∈ B(1), the Parseval identity and the fact that {ψj,k}k=0,...,2j−1

are orthonormal yields

∑

ℓ∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

ak F(ψj,k)(ℓ)

∣∣∣∣∣∣

2

=
∑

ℓ∈Cj

∣∣∣∣∣∣
F


 ∑

k∈Bj,K

akψj,k


 (ℓ)

∣∣∣∣∣∣

2

=

∫ 1

0

∣∣∣∣∣∣
∑

k∈Bj,K

akψj,k(t)

∣∣∣∣∣∣

2

dt

=
∑

k∈Bj,K

|ak|2 ≤ 1. (18)

Piecing (15), (17) and (18) together, we get

sup
a∈B(1)

V(Z(a)) ≤ Cǫ2ρ−1
n 22(δ+d)j sup

a∈B(1)

∑

ℓ∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

ak F (ψj,k) (ℓ)

∣∣∣∣∣∣

2

≤ Cǫ2ρ−1
n 22(δ+d)j .

Hence it is sufficient to take V = Cǫ2ρ−1
n 22(δ+d)j.
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Taking λ large enough and x = 2−1λǫ2(δ+d)j(log ρn/ρn)
1/2, the Tsirelson

inequality (see Lemma 7.1) yields

P





 ∑

k∈Bj,K

|Vj,k|2



1/2

≥ λǫ2(δ+d)j(log ρn/ρn)
1/2




≤ P





 ∑

k∈Bj,K

|Vj,k|2



1/2

≥ 2−1λǫ2(δ+d)j(log ρn/ρn)
1/2 +N




= P

(
sup

a∈B(1)

Z(a) ≥ x+N

)
≤ exp

(
−x2/(2V )

)
≤ exp

(
−Cλ2 log ρn

)

≤ ρ−2
n .

Proposition 7.3 is proved.

7.2. Proof of Theorem 4.1

Proof. Plugging Propositions 7.2 and 7.3 into [12, Theorem 3.1], we end the
proof of Theorem 4.1.

7.3. Proof of Theorem 4.2

Proof. Let us now present a consequence of the Fano lemma.

Lemma 7.2. Let m ∈ N∗ and A be a σ-algebra on the space Ω. For any i ∈
{0, . . . ,m}, let Ai ∈ A such that, for any (i, j) ∈ {0, . . . ,m}2 with i 6= j,

Ai ∩ Aj = ∅.

Let (Pi)i∈{0,...,m} be m+ 1 probability measures on (Ω, A). Then

sup
i∈{0,...,m}

Pi (A
c
i ) ≥ min

(
2−1, exp(−3e−1)

√
m exp(−χm)

)
,

where

χm = inf
v∈{0,...,m}

1

m

∑

k∈{0,...,m}
k 6=v

K(Pk,Pv),

Ac denotes the complement of A in Ω and K is the Kullbak-Leibler divergence

defined by

K(P,Q) =

{∫
ln
(

dP
dQ

)
dP if P ≪ Q,

∞ otherwise.
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The proof of Lemma 7.2 can be found in [15, Lemma 3.3]. For further details
and applications of the Fano lemma, see [27].

In what follows, we distinguish ψ and ψper (see Section 2.1). For any inte-
grable function h on R, we set

F∗(h)(ℓ) =

∫ ∞

−∞

h(t)e−2iπℓtdt, ℓ ∈ Z.

Consider the Besov balls Bs
p,r(M) (see (7)). Let j0 be an integer suitably

chosen below. For any ε = (εk)k∈{0,...,2j0−1} ∈ {0, 1}2j0 and d ∈ N∗, set

hε(t) =M∗2
−j0(s+1/2)

2j0−1∑

k=0

εk
1

(d− 1)!

∑

l∈Z

∫ t+l

−∞

(t+l−y)d−1ψj0,k(y)dy, t ∈ [0, 1],

and, if d = 0, set hε(t) =M∗2
−j0(s+1/2)

∑2j0−1
k=0 εkψ

per
j0,k

(t), t ∈ [0, 1]. Notice that,
owing to (5), hε exists. Moreover, it is 1-periodic. Using the Cauchy formula for
repeated integration, we have

h(d)ε (t) =M∗2
−j0(s+1/2)

2j0−1∑

k=0

εkψ
per
j0,k

(t), t ∈ [0, 1].

So, for any j ≥ j∗ and any k ∈ {0, . . . , 2j − 1}, the (mother) wavelet coefficient

of h
(d)
ε is

βj,k =

∫ 1

0

h(d)ε (t)ψ
per

j,k (t)dt =

{
M∗εk2

−j0(s+1/2), if j = j0,

0, otherwise.

Therefore h
(d)
ε ∈ Bs

p,r(M). The Varshamov-Gilbert theorem (see [27, Lemma

2.7]) asserts that there exist a set Ej0 =
{
ε(0), . . . , ε(Tj0 )

}
and two constants, c ∈

]0, 1[ and α ∈]0, 1[, such that, for any u ∈ {0, . . . , Tj0}, ε(u) = (ε
(u)
k )k∈{0,...,2j0−1} ∈

{0, 1}2j0 and any (u, v) ∈ {0, . . . , Tj0}2 with u < v, the following inequalities
hold:

2j0−1∑

k=0

|ε(u)k − ε
(v)
k | ≥ c2j0 , Tj0 ≥ eα2

j0
.

Considering such a set Ej0 , for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have
by orthonormality of the collection {ψj0,k}k=0,...,2j0−1

(∫ 1

0

(
h
(d)

ε(u)(t)− h
(d)

ε(v)
(t)
)2
dt

)1/2

=M∗c2
−j0(s+1/2)




2j0−1∑

k=0

∣∣∣ε(u)k − ε
(v)
k

∣∣∣
2




1/2
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=M∗c2
−j0(s+1/2)




2j0−1∑

k=0

∣∣∣ε(u)k − ε
(v)
k

∣∣∣




1/2

≥ 2δj0 ,

where
δj0 =M∗c

1/22j0/22−j0(s+1/2) =M∗c
1/22−j0s.

Using the Markov inequality, for any estimator f̃ (d) of f (d), we have

δ−2
j0

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̃ (d)(t)− f (d)(t)

)2
dt

)
≥ sup

u∈{0,...,Tj0}

Ph
ε(u)

(Ac
u) = p,

where

Au =

{(∫ 1

0

(
f̃ (d)(t)− h

(d)

ε(u)(t)
)2
dt

)1/2

< δj0

}

and Pf is the distribution of model (1). Notice that, for any (u, v) ∈ {0, . . . , Tj0}2
with u 6= v, Au ∩ Av = ∅. Lemma 7.2 applied to the probability measures(
Ph

ε(u)

)
u∈{0,...,Tj0}

gives

p ≥ min
(
2−1, exp(−3e−1)

√
Tj0 exp(−χTj0

)
)
, (19)

where

χTj0
= inf

v∈{0,...,Tj0}

1

Tj0

∑

u∈{0,...,Tj0}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)
.

Let’s now bound χTj0
. For any functions f1 and f2 in L2

per([0, 1]), we have

K (Pf1 ,Pf2) =
1

2ǫ2

n∑

v=1

∫ 1

0

((f1 ⋆ gv)(t)− (f2 ⋆ gv)(t))
2
dt

=
1

2ǫ2

n∑

v=1

∫ 1

0

(((f1 − f2) ⋆ gv)(t))
2
dt.

The Parseval identity yields

K (Pf1 ,Pf2) =
1

2ǫ2

n∑

v=1

∑

ℓ∈Z

| F((f1 − f2) ⋆ gv)(ℓ)|2

=
1

2ǫ2

n∑

v=1

∑

ℓ∈Z

|F(f1 − f2)(ℓ)|2 | F(gv)(ℓ)|2.

So, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v, we have

K
(
Ph

ε(u)
,Ph

ε(v)

)
=

1

2ǫ2

n∑

v=1

∑

ℓ∈Z

|F (hε(u) − hε(v)) (ℓ)|2 | F(gv)(ℓ)|2. (20)
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By definition, for any (u, v) ∈ {0, . . . , Tj0}2 with u 6= v and ℓ ∈ Z, we have

F (hε(u) − hε(v)) (ℓ)

=M∗2
−j0(s+1/2)

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
×

1

(d− 1)!

∑

l∈Z

F
(∫ ·+l

−∞

(·+ l − y)d−1ψj0,k(y)dy

)
(ℓ)

=M∗2
−j0(s+1/2)

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
×

1

(d− 1)!
F∗

(∫ ·

∞

(· − y)d−1ψj0,k(y)dy

)
(ℓ). (21)

Let, for any k ∈ {0, . . . , 2j0 − 1},

θk(t) =
1

(d− 1)!

∫ t

−∞

(t− y)d−1ψj0,k(y)dy, t ∈ [0, 1].

Then, for any u ∈ {0, . . . , d}, thanks to (4), lim|t|→∞ θ
(u)
k (t) = 0. Consequently,

for any ℓ ∈ Z,

(2πiℓ)dF∗(θk)(ℓ) = F∗

(
θ
(d)
k

)
(ℓ) = F(ψper

j0,k
)(ℓ).

So, for any ℓ ∈ Cj0 (excluding 0), (21) implies that

F(hε(u) − hε(v))(ℓ)

=M∗2
−j0(s+1/2)

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

) 1

(2πiℓ)d
F
(
ψper
j0,k

)
(ℓ), (22)

which entails in particular that supp (F(hε(u) − hε(v))) = Cj0 . This in conjunc-
tion with equalities (20) and (22) imply that

K
(
Ph

ε(u)
,Ph

ε(v)

)

=
M2

∗

2ǫ2
2−2j0(s+1/2)

n∑

v=1

∑

ℓ∈Cj0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k −ε(v)k

)
F
(
ψper
j0,k

)
(ℓ)

∣∣∣∣∣∣

2

1

(2πℓ)2d
| F(gv)(ℓ)|2.

(23)

By assumptions (8) and (11), for any v ∈ {1, . . . , n},

sup
ℓ∈Cj0

(
1

(2πℓ)2d
| F(gv)(ℓ)|2

)
≤ C sup

ℓ∈Cj0

(
1

(2πℓ)2d
(
1 + σ2

vℓ
2
)−δ
)

≤ Cσ−2δ
v sup

ℓ∈Cj0

(
ℓ−2(δ+d)

)
≤ Cσ−2δ

v 2−2j0(δ+d).

(24)
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Moreover, the Parseval identity and orthonormality of the family
{ψper

j0,k
}k=0,...,2j0−1 imply that

∑

ℓ∈Cj0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
F
(
ψper
j0,k

)
(ℓ)

∣∣∣∣∣∣

2

=

∫ 1

0

∣∣∣∣∣∣

2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)
ψper
j0,k

(t)

∣∣∣∣∣∣

2

dt =
2j0−1∑

k=0

(
ε
(u)
k − ε

(v)
k

)2
≤ 2j0 . (25)

It follows from (23), (24) and (25) that

K
(
Ph

ε(u)
,Ph

ε(v)

)
≤ C2−2j0(s+1/2)2−2j0(δ+d)2j0

n∑

v=1

σ−2δ
v

= Cρ∗n2
−2j0(s+1/2+δ+d)2j0 .

Hence

χTj0
= inf

v∈{0,...,Tj0}

1

Tj0

∑

u∈{0,...,Tj0}
u6=v

K
(
Ph

ε(u)
,Ph

ε(v)

)

≤ Cρ∗n2
−2j0(s+1/2+δ+d)2j0 . (26)

Putting (19) and (26) together and choosing j0 such that

2−j0(s+1/2+δ+d) = c0(ρ
∗
n)

−1/2,

where c0 denotes a well chosen constant, for any estimator f̃ (d) of f (d), we have

δ−2
j0

sup
f(d)∈Bs

p,r(M)

E

(∫ 1

0

(
f̃ (d)(t)− f (d)(t)

)2
dt

)
≥ c exp

(
(α/2)2j0 − Cc202

j0
)

≥ c,

where

δj0 = c2−j0s = c(ρ∗n)
−s/(2s+2δ+2d+1).

This complete the proof of Theorem 4.2.
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