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Abstract: We establish global rates of convergence of the Maximum Like-
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n−1/3(logn)γ for γ = (5d − 4)/6.

AMS 2000 subject classifications: Primary 62G07, 62H12; secondary
62G05, 62G20.
Keywords and phrases: Empirical processes, global rate, Hellinger met-
ric, interval censoring, multivariate, multivariate monotone functions.

Received October 2012.

1. Introduction and overview

Our main goal in this paper is to study global rates of convergence of the
Maximum Likelihood Estimator (MLE) in one simple model for multivariate
interval-censored data. In section 3 we will show that under some reasonable
conditions the MLE converges in a Hellinger metric to the true distribution
function on R

d at a rate no worse than n−1/3(log n)γd for γd = (5d−4)/6 for all
d ≥ 2. Thus the rate of convergence is only worse than the known rate of n−1/3

for the case d = 1 by a factor involving a power of log n growing linearly with
the dimension. These new rate results rely heavily on recent bracketing entropy
bounds for d−dimensional distribution functions obtained by Gao (2012).

We begin in Section 2 with a review of interval censoring problems and known
results in the case d = 1. We introduce the multivariate interval censoring model
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of interest here in Section 3, and obtain a rate of convergence for this model
for d ≥ 2 in Theorem 3.1. Most of the proofs are given in Section 4, with the
exception being a key corollary of Gao (2012), the statement and proof of which
are given in the Appendix (Section 6). Finally, in Section 5 we introduce several
related models and further problems.

2. Interval censoring (or current status data) on R

Let Y ∼ F0 on R
+, and let T ∼ G0 on R

+ be independent of Y . Suppose that
we observe X1, . . . , Xn i.i.d. as X = (∆, T ) where ∆ = 1[Y≤T ]. Here Y is often
the time until some event of interest and T is an observation time. The goal is
to estimate F0 nonparametrically based on observation of the Xi’s.

To calculate the likelihood, we first calculate the distribution of X for a
general distribution function F : note that the conditional distribution of ∆
conditional on T is Bernoulli:

(∆|T ) ∼ Bernoulli(p(T ))

where p(T ) = F (T ). If G0 has density g0 with respect to some measure µ on
R

+, then X = (∆, T ) has density

pF,g0(δ, t) = F (t)δ(1− F (t))1−δg0(t), δ ∈ {0, 1}, t ∈ R
+,

with respect to the dominating measure (counting measure on {0, 1})× µ.
The nonparametric Maximum Likelihood Estimator (MLE) F̂n of F0 in this

interval censoring model was first obtained by Ayer et al. (1955). It is simply
described as follows: let T(1) ≤ · · · ≤ T(n) denote the order statistics correspond-
ing to T1, . . . , Tn and let ∆(1), . . . ,∆(n) denote the corresponding ∆’s. Then the
part of the log-likelihood of X1, . . . , Xn depending on F is given by

ln(F ) =

n∑

i=1

{∆(i) logF (T(i)) + (1−∆(i)) log(1− F (T(i)))}

≡
n∑

i=1

{∆(i) logFi + (1 −∆(i)) log(1− Fi)} (2.1)

where

0 ≤ F1 ≤ · · · ≤ Fn ≤ 1. (2.2)

It turns out that the maximizer F̂n of (2.1) subject to (2.2) can be described as
follows: let H∗ be the (greatest) convex minorant of the points {(i,∑j≤i ∆(j)) :
i ∈ {1, . . . , n}}:

H∗(t) = sup

{
H(t) : H(i) ≤

∑
j≤i ∆(j) for each 0 ≤ i ≤ n

H(0) = 0, and H is convex

}
.
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Let F̂i denote the left-derivative of H∗ at T(i). Then (F̂1, . . . , F̂n) is the unique

vector maximizing (2.1) subject to (2.2), and we therefore take the MLE F̂n of
F to be

F̂n(t) =

n∑

i=0

F̂i1[T(i),T(i+1))(t)

with the conventions T(0) ≡ 0 and T(n+1) ≡ ∞. See Ayer et al. (1955) or
Groeneboom and Wellner (1992), pages 38-43, for details.

Groeneboom (1987) initiated the study of F̂n and proved the following lim-
iting distribution result at a fixed point t0.

Theorem 2.1 (Groeneboom, 1987). Consider the current status model on R
+.

Suppose that 0 < F0(t0), G0(t0) < 1 and suppose that F and G are differentiable
at t0 with strictly positive derivatives f0(t0) and g0(t0) respectively. Then

n1/3(F̂n(t0)− F0(t0)) →d c(F0, G0)Z

where

c(F0, G0) = 2

(
F0(t0)(1 − F0(t0))f0(t0)

2g0(t0)

)1/3

and

Z = argmin{W (t) + t2}

where W is a standard two-sided Brownian motion starting from 0.

The distribution of Z has been studied in detail by Groeneboom (1989) and
computed by Groeneboom and Wellner (2001). Balabdaoui and Wellner (2012)
show that the density fZ of Z is log-concave.

van de Geer (1993) (see also van de Geer (2000)) obtained the following
global rate result for pF̂n

. Recall that the Hellinger distance h(p, q) between two
densities with respect to a dominating measure µ is given by

h2(p, q) =
1

2

∫
{√p−√

q}2dµ.

Proposition 2.2 (van de Geer, 1993). h(pF̂n
, pF0) = Op(n

−1/3).

Now for any distribution functions F and F0 the (squared) Hellinger distance
h2(pF , pF0) for the current status model is given by

h2(pF , pF0) =
1

2

{∫
(
√
F −

√
F0)

2dG0 +

∫
(
√
1− F −

√
1− F0)

2dG0

}

=
1

2

∫ {(
√
F −

√
F0)(

√
F +

√
F0)}2

(
√
F +

√
F0)2

dG0

+
1

2

∫ {(
√
1− F −

√
1− F0)(

√
1− F +

√
1− F0)}2

(
√
1− F +

√
1− F0)2

dG0
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≥ 1

8

∫
(F − F0)

2dG0 +
1

8

∫
((1− F )− (1− F0))

2dG0

=
1

4

∫
(F − F0)

2dG0, (2.3)

and hence Proposition 2.2 yields

∫ ∞

0

(F̂n(z)− F0(z))
2dG0(z) = Op(n

−2/3), (2.4)

or ‖F̂n − F0‖L2(G0) = Op(n
−1/3).

For generalizations of these and other asymptotic results for the current sta-
tus model to more complicated interval censoring schemes for real-valued ran-
dom variables Y , see e.g. Groeneboom and Wellner (1992), van de Geer (1993),
Groeneboom (1996), van de Geer (2000), Schick and Yu (2000), and Groene-
boom, Maathuis and Wellner (2008a,b).

Our main focus in this paper, however, concerns one simple generalization of
the interval censoring model for R introduced above to interval censoring in R

d.
We now turn to this generalization.

3. Multivariate interval censoring: multivariate current status data

Let Y = (Y1, . . . , Yd) ∼ F0 on R
+d ≡ [0,∞)d, and let T = (T1, . . . , Td) ∼ G0

on R
+d be independent of Y . We assume that G0 has density g0 with re-

spect to some dominating measure µ on R
d. Suppose we observe X1, . . . , Xn

i.i.d. as X = (∆, T ) where ∆ = (∆1, . . . ,∆d) is given by ∆j = 1[Yj≤Tj ],
j = 1, . . . , d. Equivalently, with a slight abuse of notation, X = (Γ, T ) where
Γ = (Γ1, . . . ,Γ2d) is a vector of length 2d consisting of 0’s and 1’s and with at
most one 1 which indicates which of the 2d orthants of R+d determined by T the
random vector Y belongs. More explicitly, define K ≡ 1 +

∑d
j=1(1 −∆j)2

j−1.

Then set Γk ≡ 1{k = K} for k = 1, . . . , 2d, so that ΓK = 1 and Γl = 0 for
l ∈ {1, . . . , 2d} \ {K}. Much as for univariate current status data, Y represents
a vector of times to events, T is a vector of observation times, and the goal
is nonparametric estimation of the joint distribution function F0 of Y based
on observation of the Xi’s. See Dunson and Dinse (2002), Jewell (2007), Wang
(2009), and Lin and Wang (2011) for examples of settings in which data of this
type arises.

To calculate the likelihood, we first calculate the distribution of X for a
general distribution function F : note that the conditional distribution of Γ con-
ditional on T is Multinomial:

(Γ|T ) ∼ Mult2d(1, p(T ;F ))

where p(T ;F ) = (p1(T ;F ), . . . , p2d(T ;F )) and the probabilities pj(t;F ), j =

1, . . . , 2d, t ∈ R
+d are determined by the F measures of the corresponding sets.
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Then our model P for multivariate current status data is the collection of all den-
sities with respect to the dominating measure (counting measure on {0, 1}2d)×µ
given by

2d∏

j=1

pj(t;F )γjg0(t)

for some distribution function F on R
+d where t ∈ R

+d and γj ∈ {0, 1} with
∑2d

j=1 γj = 1.
Now the part of the log-likelihood that depends on F is given by

ln(F ) =

n∑

i=1

2d∑

j=1

Γi,j log pj(T i;F ),

and again the MLE F̂n of the true distribution function F0 is given by

F̂n = argmax{ln(F ) : F is a distribution function on R
+d}. (3.1)

For example, when d = 2, we can write Γ1 = ∆1∆2, Γ2 = (1 − ∆1)∆2,
Γ3 = ∆1(1−∆2), and Γ4 = (1−∆1)(1−∆2), and then

p1(T ;F ) = F (T1, T2),

p2(T ;F ) = F (∞, T2)− F (T1, T2),

p3(T ;F ) = F (T1,∞)− F (T1, T2),

p4(T ;F ) = 1− F (T1,∞)− F (∞, T2) + F (T1, T2).

Thus

PF (Γ = γ|T ) =
4∏

j=1

pj(T ;F )γj , for γ = (γ1, γ2, γ3, γ4), γj ∈ {0, 1},
4∑

j=1

γj = 1.

Note that

pj(t;F ) =

∫

[0,∞)2
1Cj(t)(y)dF (y), j = 1, . . . , 4 (3.2)

where

C1(t) = [0, t1]× [0, t2],

C2(t) = [0, t1]× (t2,∞),

C3(t) = (t1,∞)× [0, t2],

C4(t) = (t1,∞)× (t2,∞).

Characterizations and computation of the MLE (3.1), mostly for the case
d = 2 have been treated in Song (2001), Gentleman and Vandal (2002), and
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Maathuis (2005, 2006). Consistency of the MLE for more general interval cen-
soring models has been established by Yu, Yu and Wong (2006). For an inter-
esting application see Betensky and Finkelstein (1999). This example and other
examples of multivariate interval censored data are treated in Sun (2006) and
Deng and Fang (2009). For a comparison of the MLE with alternative estimators
in the case d = 2, see Groeneboom (2012a).

An analogue of Groeneboom’s Theorem 2.1 has not been established in the
multivariate case. Song (2001) established an asymptotic minimax lower bound
for pointwise convergence when d = 2: if F0 and G0 have positive continuous
densities at t0, then no estimator has a local minimax rate for estimation of
F0(t0) faster than n−1/3. By making use of additional smoothness hypotheses,
Groeneboom (2012a) has constructed estimators which achieve the pointwise
n−1/3 rate, but it is not yet known if the MLE achieves this.

Our main goal here is to prove the following theorem concerning the global
rate of convergence of the MLE F̂n.

Theorem 3.1. Consider the multivariate current status model. Suppose that
F0 has supp(F0) ⊂ [0,M ]d and that F0 has density f0 which satisfies

c−1
1 ≤ f0(y) ≤ c1 for all y ∈ [0,M ]d (3.3)

where 0 < c1 < ∞. Suppose that G0 has density g0 which satisfies

c−1
2 ≤ g0(y) ≤ c2 for all y ∈ [0,M ]d. (3.4)

Then the MLE p̂n ≡ pF̂n
of p0 ≡ pF0 satisfies

h(p̂n, p0) = Op

(
(log n)γ

n1/3

)

for γ ≡ γd ≡ (5d− 4)/6.

Since the inequality (2.3) continues to hold in R
d for d ≥ 2 (with 1/4 replaced

by 1/8 on the right side), we obtain the following corollary:

Corollary 3.2. Under the conditions of Theorem 3.1 it follows that
∫

R+d

(F̂n(z)− F0(z))
2dG0(z) = Op(n

−2/3(logn)β)

for β ≡ βd = 2γd = (5d− 4)/3.

4. Proofs

Here we give the proof of Theorem 3.1. The main tool is a method developed
by van de Geer (2000). We will use the following lemma in combination with
Theorem 7.6 of van de Geer (2000) or Theorem 3.4.1 of van der Vaart and
Wellner (1996) (Section 3.4.2, pages 330-331). Without loss of generality we can
take M = 1 where M is the upper bound of the support of F (see Theorem 3.1).
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Let P be a collection of probability densities p on a sample space X with
respect to a dominating measure µ. Define

G(conv) ≡
{

2p

p+ p0
: p ∈ P

}
, (4.1)

σ(δ) ≡ sup{σ ≥ 0 :

∫

{p0≤σ}

p0dµ ≤ δ2} for δ > 0, (4.2)

G(conv)
σ ≡

{
2p

p+ p0
1[p0>σ] : p ∈ P

}
, for σ > 0. (4.3)

The following general result relating the bracketing entropies logN[ ](·,G(conv),

L2(P0)), logN[ ](·,G(conv)
σ(ǫ) , L2(P0)), logN[ ](·,P,L2(Qσ(ǫ))), and logN[ ](·,P,

L2(Q̃σ(ǫ))) is due to van de Geer (2000).

Lemma 4.1 (van de Geer, 2000). For every ǫ > 0

logN[ ](3ǫ,G(conv), L2(P0)) ≤ logN[ ](ǫ,G(conv)
σ(ǫ) , L2(P0)) (4.4)

≤ logN[ ](ǫ/2,P , L2(Qσ(ǫ))) (4.5)

= logN[ ]

(
ǫ/2√

Qσ(ǫ)(X )
,P , L2(Q̃σ(ǫ))

)
(4.6)

where dQσ ≡ p−1
0 1[p0>σ]dµ and Q̃σ ≡ Qσ/Qσ(X ).

Proof. We first show that (4.4) holds. Suppose that {[gL,j, gU,j ], j = 1, . . . ,m}
are ǫ-brackets with respect to L2(P0) for G(conv)

σ(ǫ) with

G(conv)
σ(ǫ) ⊂

m⋃

j=1

[gL,j, gU,j], m = N[ ](ǫ,G(conv)
σ(ǫ) , L2(P0)).

Then for g ∈ G(conv), let gσ ≡ g1[p0>σ] be the corresponding element of G(conv)
σ(ǫ) .

Suppose that gσ ∈ [gL,j, gU,j ] for some j ∈ {1, . . . ,m}. Then

g = g1[p0≤σ] + gσ

{
≤ g1[p0≤σ] + gU,j ≡ g̃U,j

≥ 0 + gL,j ≡ g̃L,j,

where, by the triangle inequality, 0 ≤ g ≤ 2 for all g ∈ G(conv), and the definition
of σ(ǫ), it follows that

∥∥g̃U,j − g̃L,j

∥∥
P0,2

≤
∥∥gU,j − gL,j

∥∥
P0,2

+ 2ǫ ≤ 3ǫ.

Thus {[g̃L,j, g̃U,j ] : j ∈ {1, . . . ,m}} is a collection of 3ǫ−brackets for G(conv)

with respect to L2(P0) and hence (4.4) holds.
Now we show that (4.5) holds. Suppose that {[pL,j, pU,j ] : j = 1, . . . ,m} is a

set of ǫ/2−brackets with respect to L2(Qσ) for P with

P ⊂
m⋃

j=1

[pL,j, pU,j ] and m = N[ ](ǫ/2,P , L2(Qσ(ǫ))).
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Suppose p ∈ [pL,j , pU,j] for some j. Then, since

2p

p+ p0
1[p0>σ]





≤ 2pU,j

pU,j+p0
1[p0>σ] ≡ gU,j,

≥ 2pL,j

pU,j+p0
1[p0>σ] ≡ gL,j

where

|gU,j − gL,j|

=

∣∣∣∣
2pU,j

pU,j + p0
1[p0>σ] −

2pL,j

pU,j + p0
1[p0>σ]

∣∣∣∣

=
2(pU,j − pL,j)

pL,j + p0
1[p0>σ] ≤

2|pU,j − pL,j|
p0

1[p0>σ].

Thus
∥∥gU,j − gL,j‖P0,2 ≤ 2

∥∥pU,j − pL,j

∥∥
Qσ,2

≤ ǫ,

and hence {[gL,j, gU,j ] : j = 1, . . . ,m} is a set of ǫ-brackets with respect to

L2(P0) for G(conv)
σ . This shows that (4.5) holds.

It remains only to show that (4.6) holds. But this is easy since ‖g‖2Qσ,2
=

‖g‖2
Q̃σ,2

·Qσ(X ).

This lemma is based on van de Geer (2000), pages 101 and 103. Note that
our constants differ slightly from those of van de Geer.

Lemma 4.2. Suppose that F0 has density f0 which satisfies, for some 0 < c1 <
∞,

1

c1
≤ f0(y) ≤ c1 for all y ∈ [0, 1]d. (4.7)

Then p0 (which we can identify with the vector p0(·, F0)) satisfies

p0,1(t;F0)

{
≤ c1

∏d
j=1 tj

≥ c−1
1

∏d
j=1 tj ,

for all t ∈ [0, 1]d,

...

p0,2d(t;F0)

{
≤ c1

∏d
j=1(1− tj)

≥ c−1
1

∏d
j=1(1− tj),

for all t ∈ [0, 1]d.

Proof. This follows immediately from the general d version of (3.2) and the
assumption on f0.

These inequalities can also be written in the following compact form: For
k = 1 +

∑d
j=1(1− δj)2

j−1 with δj ∈ {0, 1},

p0,k(t;F0)

{
≤ c1

∏d
j=1 t

δj
j (1− tj)

1−δj

≥ c−1
1

∏d
j=1 t

δj
j (1− tj)

1−δj ,
for all t ∈ [0, 1]d.
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Lemma 4.3. Suppose that the assumption of Lemma 4.2 holds. Suppose, more-
over, that G0 has density g0 which satisfies

1

c2
≤ g0(y) ≤ c2 for all y ∈ [0, 1]d. (4.8)

Then
∫

[p0≤σ]

p0dµ ≤ 2d(c1c2)
2σ.

Furthermore, with σ(δ) ≡ δ2/(2d(c1c2)
2) we have

∫

[p0≤σ(δ)]

p0dµ ≤ δ2.

Proof. The first inequality follows easily from Lemma 4.2: note that

∫

[p0≤σ]

p0dµ =

2d∑

k=1

∫

[pk(t,F0)≤σ]

pk(t, F0)g0(t)dt

≤ 2d
∫

[F0(t)g0(t)≤σ]

F0(t)g0(t)dt

≤ 2dc1c2

∫

[c−1
1 c−1

2

∏
d
j=1 tj≤σ]

d∏

j=1

tj dt ≤ 2d(c1c2)
2σ.

The second inequality follows from the first inequality of the lemma.

Lemma 4.4. If the hypotheses of Lemmas 4.2 and 4.3 hold, then the measure
Qσ defined by dQσ ≡ (1/p0)1{p0 > σ}dµ has total mass Qσ(X ) given by

∫
dQσ =

∫

{p0>σ}

1

p0
dµ

=
2d∑

j=1

∫

{t: p0,j(t)g0(t)>σ}

1

p0,j(t)g0(t)
dt

≤ 2d
∫

{t∈[0,1]d:
∏

d
j=1 tj>σ/(c1c2)}

c1c2∏d
j=1 tj

dt (4.9)

=
2dc1c2
d!

(log(c1c2/σ))
d. (4.10)

Proof. This follows from Lemma 4.2, followed by an explicit calculation. In
particular, the equality in (4.10) follows from
∫

[
∏

d
j=1 tj>b]

1
∏d

j=1 tj
dt =

∫

[
∑

d
1 xj≤log(1/b)]

dx by the change of variables tj=e−xj ,

=
1

d!
(log(1/b))

d
for 0 < b ≤ 1
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where the second equality follows by induction: it holds easily for d = 1 (and
d = 2); and then an easy calculation shows that it holds for d if it holds for
d− 1.

Lemma 4.5. If the hypotheses of Lemmas 4.2 and 4.3 hold, and d ≥ 2, then

logN[ ](ǫ,G(conv), L2(P0)) ≤ K
[log(1/ǫ)]

5d/2−2

ǫ

for all 0 < ǫ < some ǫ0 and some constant K < ∞.

Proof. This follows by combining the results of Lemmas 4.3 and 4.4 with Lem-
ma 4.1, and then using Corollary 6.2 of the bracketing entropy bound of Gao
(2012) and stated here as Theorem 6.1. Here is the explicit calculation:

logN[ ](6ǫ,G(conv), L2(P ))

≤ logN[ ]

(
ǫ√

Qσ(ǫ)(X )
,P , L2(Q̃σ(ǫ))

)
by Lemma 4.1

≤ logN[ ]


 ǫ√

2dc1c2
d! [log((c1c2)3 ·2d/(ǫ2)]d

,P , L2(Q̃σ(ǫ))


 by Lemmas 4.3 and 4.4

≤ logN[ ]

(
V ǫ

[log(1/ǫ)]
d/2

,P , L2(Q̃σ(ǫ))

)
for V = Vd(c1, c2)

≤ K
[log(1/ǫ)]d/2

V ǫ

[
log

(
(log(1/ǫ))d/2

V ǫ

)]2(d−1)

by Corollary 6.2(b)

≤ K̃
[log(1/ǫ)]

5d/2−2

ǫ

for ǫ sufficiently small.

Proof. (Theorem 3.1) This follows from Lemma 4.5 and Theorem 7.6 of van de
Geer (2000) or Theorem 3.4.1 of van der Vaart and Wellner (1996) together
with the arguments given in Section 3.4.2. By Lemma 4.5 the bracketing entropy
integrals

J[ ](δ,G(conv), L2(P0)) ≡
∫ δ

0

√
1 + logN[ ](ǫ,G(conv), L2(P0)) dǫ

.

∫ δ

0

ǫ−1/2 {log(1/ǫ)}3γd/2 dǫ

where the bound on the right side behaves asymptotically as a constant times
2δ1/2(log(1/δ))3γd/2 with 3γd ≡ 5d/2 − 2, and hence (using the notation of
Theorem 3.4.1 of van der Vaart and Wellner (1996)), we can take φn(δ) =
K2δ1/2(log(1/δ))3γd/2. Thus with rn ≡ n1/3/(logn)β with β = γd we find that
r2nφn(1/rn) ∼ K̃

√
n and hence the claimed order of convergence holds.
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5. Some related models and further problems

There are several related models in which we expect to see the same basic
phenomenon as established here, namely a global convergence rate of the form
n−1/3(logn)γ in all dimensions d ≥ 2 with only the power γ of the log term
depending on d. Three such models are:
(a) the “in-out model” for interval censoring in R

d;
(b) the “case 2” multivariate interval censoring models studied by Deng and
Fang (2009); and
(c) the scale mixture of uniforms model for decreasing densities in R

+d.
Here we briefly sketch why we expect the same phenomenon to hold in these
three cases, even though we do not yet know pointwise convergence rates in any
of these cases.

5.1. The “in-out model” for interval censoring in R
d

The “in-out model” for interval censoring in R
d was explored in the case d = 2

by Song (2001). In this model Y ∼ F on R
2, R is a random rectangle in R

2

independent of Y (say [U, V ] = {x = (x1, x2) ∈ R
2 : U1 ≤ x1 ≤ V1, U2 ≤ x2 ≤

V2} where U and V are random vectors in R
2 with U ≤ V coordinatewise). We

observe only (1R(Y ), R), and the goal is to estimate the unknown distribution
function F .

Song (2001) (page 86) produced a local asymptotic minimax lower bound for
estimation of F at a fixed t0 ∈ R

2. Under the assumption that F has a positive
density f at t0, Song (2001) showed that any estimator of F (t0) can have a
local-minimax convergence rate which is at best n−1/3. Groeneboom (2012a)
has shown that this rate can be achieved by estimators involving smoothing
methods. Based on the results for current status data in R

d obtained in Theo-
rem 3.1 and the entropy results for the class of distribution functions on R

d, we
conjecture that the global Hellinger rate of convergence of the MLE F̂n(t0) will
be n−1/3(logn)ν for all d ≥ 2 where ν = νd.

5.2. “Case 2” multivariate interval censoring models in R
d

Recall that “case 2” interval censored data on R is as follows: suppose that Y ∼
F0 on R

+, the pair of observation times (U, V ) with U ≤ V determines a ran-
dom interval (U, V ], and we observe X = (∆, U, V ) = (∆1,∆2,∆3, U, V ) where
∆1 = 1{Y ≤ U}, ∆2 = 1{U < Y ≤ V }, and ∆3 = 1{V < Y }. Nonparametric
estimation of F0 based on X1, . . . , Xn) i.i.d. as X has been discussed by a num-
ber of authors, including Groeneboom and Wellner (1992), Geskus and Groene-
boom (1999), and Groeneboom (1996). Deng and Fang (2009) studied gener-
alizations of this model to R

d, and obtained rates of convergence of the MLE
with respect to the Hellinger metric given by n−(1+d)/(2(1+2d)(logn)d

2/(2(2d+1)

in the case most comparable to the multivariate interval censoring model stud-
ied here. While this rate reduces when d = 1 to the known rate n−1/3(log n)1/6,
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it is slower than n−1/3(log n)ν for some ν when d > 1 due to the use of en-
tropy bounds involving convex hulls (see Deng and Fang (2009), Proposition
A.1, page 66) which are not necessarily sharp. We expect that rates of the form
n−1/3(logn)ν with ν > 0 are possible in these models as well.

5.3. Scale mixtures of uniform densities on R
+d

Pavlides (2008) and Pavlides and Wellner (2012) studied the family of scale
mixtures of uniform densities of the following form:

fG(x) =

∫

R+d

1
∏d

j=1 yj
1(0,y](x)dG(y) ≡

∫

R+d

1

|y|1(0,y](x)dG(y) (5.1)

for some distribution function G on (0,∞)d. (Note that we have used the no-

tation
∏d

j=1 yj = |y| for y = (y1, . . . , yd) ∈ R
+d.) It is not difficult to see that

such densities are decreasing in each coordinate and that they also satisfy

(∆dfG)(u, v] = (−1)d
∫

(u,v]

|y|−11(y,v]dG(y) ≥ 0

for all u, v ∈ R
+d with u ≤ v; here ∆d denotes the d−dimensional difference

operator. This is the same key property of distribution functions which results
in (bracketing) entropies which depend on dimension only through a logarithmic
term. The difference here is that the density functions fG need not be bounded,
and even if the true density f0 is in this class and satisfies f0(0) < ∞, then we

do not yet know the behavior of the MLE f̂n at zero. In fact we conjecture that:
(a) If f0(0) < ∞ and f0 is a scale mixture of uniform densities on rectangles

as in (5.1), then f̂n(0) = Op((logn)
β) for some β = βd > 0. (b) Under the

same hypothesis as in (a) and the hypothesis that f0 has support contained in
a compact set, the MLE converges with respect to the Hellinger distance with
a rate that is no worse than n−1/3(logn)ξ where ξ = ξd. Again Pavlides (2008)
and Pavlides and Wellner (2012) establish asymptotic minimax lower bounds
for estimation of f0(x0) proving that no estimator can have a (local minimax)
rate of convergence faster than n−1/3 in all dimensions. This is in sharp contrast
to the class of block-decreasing densities on R

+d studied by Pavlides (2012) and
by Biau and Devroye (2003): Pavlides (2012) shows that the local asymptotic
minimax rate for estimation of f0(x0) is no faster than n−1/(d+2), while Biau
and Devroye (2003) show that there exist (histogram type) estimators f̃n which
satisfy Ef0‖f̃n − f0‖1 = O(n−1/(d+2)).

6. Appendix

We begin by summarizing the results of Gao (2012). For a (probability) measure
µ on [0, 1]d, let F ≡ Fµ denote the corresponding distribution function given by

F (x) = Fµ(x) = µ([0, x]) = µ([0, x1]× · · · × [0, xd])
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for all x = (x1, . . . , xd) ∈ [0, 1]d. Let Fd denote the collection of all distribution
functions on [0, 1]d; i.e.

Fd = {F : F is a distribution function on [0, 1]d}.

For example, if λd denotes Lebesgue measure on [0, 1]d, then the corresponding

distribution function is F (x) = Fλd
(x) =

∏d
j=1 xj .

Theorem 6.1 (Gao, 2012). For d ≥ 2 and 1 ≤ p < ∞

logN[ ](ǫ,Fd, Lp(λd)) . ǫ−1 (log(1/ǫ))
2(d−1)

for all 0 < ǫ ≤ 1.

Our goal here is to use this result to control bracketing numbers for Fd with
respect to two other measures Cd and Rd,σ defined as follows. Let Cd denote
the finite measure on [0, 1]d with density with respect to λd given by

cd(u) =
d!

dd

d∏

j=1

1

u
1−1/d
j

· 1





d∑

j=1

u
1/d
j > d− 1



 .

For fixed σ > 0, let Rd,σ denote the (probability) measure on (0, 1]d with density
with respect to λd given by

rd,σ(t) =
d!

(log(1/σ))d
1

∏d
j=1 tj

1





d∏

j=1

tj > σ



 .

Corollary 6.2. (a) For each d ≥ 2 it follows that for ǫ ≤ ǫ0(d)

logN[ ](2
d/2ǫ,Fd, L2(Cd)) . ǫ−1 (log(1/ǫ))

2(d−1)
.

(b) For each d ≥ 2 and σ ≤ σ0(d) it follows that for ǫ ≤ ǫ0(d)/2

logN[ ](2
d/2+1ǫ,Fd, L2(Rd,σ)) . ǫ−1 (log(1/ǫ))

2(d−1)
.

Proof. We first prove (a). We set p ≡ pd = 2rd ≡ 2r where r ≡ rd = 2d− 1 and
s = (d − 1/2)/(d − 1) satisfy r−1 + s−1 = 1. Let {[gj, hj ], j = 1, . . . ,m} be a
collection of ǫ−brackets for Fd with respect to Lp(λd). (Thus for d = 2, r = 3,
s = 3/2, and p = 6, while for d = 4, r = 7, s = (13/2)/3 = 13/6, and p = 14.)
By Theorem A.1 we know that m . ǫ−1(log(1/ǫ))2(d−1). Now we bound the
size of the brackets [gj , hj] with respect to Cd. Using Hölder’s inequality with
1/r + 1/s = 1 as chosen above we find that

∫

[0,1]d
(hj − gj)

2cd(u)du ≤
(∫

[0,1]d
|hj − gj|2rdu

)1/r

·
(∫

[0,1]d
cd(u)

sdu

)1/s

≤ (ǫp)1/r · 2d/s ≤ 2dǫ2. (6.1)
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Here are some details of the computation leading to (6.1):

∫

[0,1]d
cd(u)

sdu =

∫

[0,1]d

(
d!

dd

)s d∏

j=1

1

u
(d−1/2)/d
j

· 1





d∑

j=1

u
1/d
j > d− 1



 du

=

(
d!

dd

)s

· (2d)d
∫

[0,1]d
1





d∑

j=1

x2
j > d− 1



 dx

≤
(
d!

dd

)s

· (2d)d ·
∫

[0,1]d
1





d∑

j=1

xj > d− 1



 dx

≤
(
d!

dd

)s

· (2d)d ·
∫

[0,1]d
1





d∑

j=1

tj < 1



 dt

= 2d
(
d!

dd

)s−1

≤ 2d.

To prove (b) we introduce monotone transformations tj(uj) and their inverses
uj(tj) which relate cd and rd,σ: we set

uj(tj) ≡
(
log(tj/σ)

log(1/σ)

)d

,

tj(uj) ≡ σ exp(u
1/d
j log(1/σ))

for j = 1, . . . ,m. These all depend on σ > 0, but this dependence is suppressed
in the notation.

For the same brackets [gj , hj ] used in the proof of (a), we define new brackets

[g̃j, h̃j ] for j = 1, . . . ,m by

g̃j(t) ≡ g̃j,σ(t) = gj(u(t)) = gj(u1(t1), . . . , ud(td)),

h̃j(t) ≡ h̃j,σ(t) = hj(u(t)) = hj(u1(t1), . . . , ud(td))).

Then it follows easily by direct calculation using

d∏

j=1

tj = σd exp


log(1/σ)

d∑

j=1

u
1/d
j


 ,

dt =

d∏

j=1

{
σ exp(log(1/σ)u

1/d
j ) · d−1u

1/d−1
j · log(1/σ)(duj)

}

=
σd(log(1/σ))d

dd

d∏

j=1

tj ·
d∏

j=1

u
−(1−1/d)
j · du
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



d∏

j=1

tj > σ



 =



exp


log(1/σ)

d∑

j=1

u
1/d
j


 > σ−(d−1)





=



log(1/σ)

d∑

j=1

u
1/d
j > (d− 1) log(1/σ)





=





d∑

j=1

u
1/d
j > d− 1



 ,

that
∫

[0,1]d
(h̃j(t)− g̃j(t))

2rd,σ(t)dt =

∫

[0,1]d
(hj(u)− gj(u))

2cd(u)du.

Thus for σ ≤ σ0(d) we have

‖h̃j − g̃j‖L2(Rd,σ) ≤ 2d/2+1ǫ

by the arguments in (a). Hence the brackets [g̃j , h̃j] yield a collection of 2d/2+1ǫ−
brackets for Fd with respect to L2(Rd,σ), and this implies that (b) holds.
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