
Electronic Journal of Statistics

Vol. 7 (2013) 91–104
ISSN: 1935-7524
DOI: 10.1214/12-EJS761

Cartesian displays of

many interval estimates∗

Mario Peruggia

Department of Statistics
The Ohio State University

Columbus, Ohio
e-mail: peruggia@stat.osu.edu

Jason Hsu

Department of Statistics
The Ohio State University

Columbus, Ohio
and

Eli Lilly and Company
Indianapolis, Indiana

e-mail: jch@stat.osu.edu

and

Yifan Huang

Pfizer, Inc.
Groton, Connecticut

e-mail: yifan.huang@pfizer.com

Abstract: We consider the problem of constructing static graphical rep-
resentations of a large number of interval estimates. Because of clutter, tra-
ditional graphical summaries are visually ineffective for representing more
then a few intervals. The Cartesian displays introduced in this article over-
come the limitations stemming from visual clutter and can represent effec-
tively very many intervals. The construction of a Cartesian display for sym-
metric intervals is first presented in the context of a multiple comparisons
application. Generalizations involving the representation of asymmetric in-
tervals are then introduced and used to summarize aspects of the posterior
distributions of numerous parameter contrasts in two hierarchical Bayes
models.
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1. Introduction

In many statistical applications inferential conclusions are summarized numer-
ically by interval estimates. Sometimes intervals may be formed by combining
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point estimates of location with corresponding measures of accuracy. Perhaps
most commonly this happens when sample means and standard errors are com-
puted for several groups of observations. In other circumstances, the intervals
may arise from direct calculation of their end-points, as is the case for con-
fidence intervals constructed by inverting a test procedure. In this article we
address the issue of constructing static graphical representations of very many
interval estimates. The goal is to offer a synoptic representation of the intervals
that is more readily amenable to making comparisons and drawing meaningful
conclusions than a simple listing of their numerical values.

Typical graphical displays represent intervals estimates as line segments or
some other two-dimensional entity. Examples from the multiple comparison lit-
erature are the line-by-line display implemented by numerous software packages,
the mean-mean scatterplot of Hsu and Peruggia (1994) and the comparison cir-
cles of Sall (1992). These types of representations tend to become cluttered and
break down visually when the number of entities to be plotted is larger than
about ten. From a practical perspective, the principal reason why these displays
do not scale up to represent hundreds or thousands of intervals lies in the size
of the graphical entities that are being plotted (intervals, circles, etc.).

We illustrate how the smallest possible graphical entities, points, can be used
to represent intervals visually. The basic premise underlying the representations
that we introduce is that any interval can be summarized by two numbers (in
infinitely many ways, in fact). Once a well defined rule for transforming an
interval into a unique pair of numbers has been established, the elements of the
pair can be regarded as the coordinates of a point to be plotted in the Cartesian
plane. The shift of focus from elements of Euclidean geometry (the segments) to
elements of analytic geometry (the corresponding points in the Cartesian plane)
yields static graphical representations with distinctive features that are effective
for handling large numbers of intervals.

The rest of the article is organized as follows. In Section 2 we identify three
salient features that should be captured by any graphical representation of in-
terval estimates. Within the context of multiple comparisons applied to a well
known data set on automobile fuel efficiency, we review how the popular line-by-
line display summarizes the three salient features and we identify some short-
comings. We describe Cartesian displays in Section 3 (for symmetric intervals)
and in Section 4 (for asymmetric intervals). We motivate the basic display in
Sections 3.1 and illustrate its construction in Section 3.2 using the same fuel
efficiency data set. This example gives us the opportunity to examine the pros
and cons of the display and to compare them to those of the line-by-line display
in a situation with a limited number of intervals. Then, in Sections 4.1 and 4.2,
we give two substantive examples centered on Bayesian hierarchical modeling of
examination scores and of response times, illustrating the great potential bene-
fits that accrue from the use of Cartesian displays in situations involving very
many intervals. In Section 5 we summarize the benefits of Cartesian displays,
discuss their limitations, and outline some additional applications and possible
improvements.



Cartesian displays 93

2. Summarizing salient features of interval estimates with a
traditional display: The fuel consumption example

We illustrate the basic ideas in the context of a multiple comparison application
to the Fuel data from the data frame fuel.frame contained in the R library
SemiPar. These are data on 117 makes of cars published in the April 1990 issue
of Consumer Reports. The factor Type classifies makes of cars into six general
categories: Small, Sporty, Compact, Medium, Large, and Van. To analyze how
the response variable Fuel (which represents the gallons of fuel consumed by
each make of car to travel 100 miles) is affected by the factor Type, we fit a one-
way anova model and computed Tukey-Kramer 95% simultaneous confidence
intervals for all pairwise comparisons using the R function TukeyHSD(). Because
the factor Type has six levels, this yields (6×5)/2 = 15 non-redundant intervals,
where, for a given comparison, we call an interval redundant if the interval for
the negative of that comparison has already been constructed.

The top panel of Figure 1 exhibits the line-by-line display of the 15 simul-
taneous confidence intervals produced by R. In this particular application the
intervals to be displayed are symmetric. For each pairwise comparison, there are
three salient features to be conveyed:

(a) The position of the interval. Because in this example the intervals are
symmetric, the center is a natural summary, but any other well identified
point, such as the lower bound of the interval, would do as well.

(b) The extent of the interval. This could be summarized by the width of the
interval, or, for the case of a symmetric interval, by its half-width.

(c) The identification of the interval. In this example, appropriate labeling
should enable one to identify the specific car categories involved in the
comparison.

Quite generally, any effective graphical representation of interval estimates
should convey these three features. How they are conveyed and the relative
importance given to them will affect the eventual look of the display. In the
line-by-line display of Figure 1, position and extent can both be read off the
horizontal axis. The vertical axis is reserved for identification and the intervals
are listed in lexicographical order. The latter choice emphasizes ease of look-
up for specific comparisons, but the visual appearance of the display depends
on the choice of labels. For example, the look of the display is not invariant
with respect to translation of the labels into another language. In addition,
comparisons involving “Compact” vehicles against all other types are easier
to make, say, than comparisons involving “Van.” This is because the intervals
for comparisons against ‘Compact” are all grouped together, while those for
comparisons against “Van” are scattered throughout the display and, as noted
in Cleveland and McGill (1984), objects close together can be compared more
easily. This difficulty could be overcome by displaying the set of intervals for
the redundant comparisons, at the expense of taking up twice as much vertical
space, or of doubling the density of displayed intervals, or of some combination
thereof.
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Fig 1. Line-by-line display of the 15 simultaneous confidence intervals for the fuel consump-
tion data. The intervals in the top panel are ordered lexicographically and those in the bottom
panel are ordered according to the values of the point estimates of the contrasts.

This example illustrates some of the consequences of using the vertical axis
for identification. On the plus side, the lexicographical ordering offers ease of
look-up of specific comparisons, especially when the total number of comparisons
is small. On the minus side, the visual appearance of the display is not invariant
with respect to the choice of labeling. However, if the goal is to show ordering
with respect to some specific inferential feature rather than to facilitate look-
up, it is possible to conjure up other meaningful arrangements of the intervals
that are invariant with respect to relabeling. One way to do so, illustrated in
the bottom panel of Figure 1, is to consider the 15 contrasts with positive
estimated values and order the corresponding intervals according to the size
of such values. This display originates from a hybrid use of the vertical axis, in
which the intervals are arranged according to the order statistics of the summary
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measure used to capture location. The identification labels must still be read
off the vertical axis and the actual values of location and extent must still be
read off the horizontal axis. The ordering has the advantage of making certain
characteristics of the data more obvious. For example, the four non-significant
comparisons are more easily identified in the bottom panel of Figure 1.

3. Cartesian displays for symmetric intervals

With regard to the features identified in Section 2, the Cartesian displays that
we introduce in this article reserve the horizontal and vertical axes for the rep-
resentation of location and extent. In general, these displays are based on the
specification of a well-defined rule to map an interval into a point. For exam-
ple, as shown in Sections 3.2, symmetric multiple comparison intervals can be
summarized by their centers and half-widths in what we call location-spread
displays. Alternative rules for mapping non-symmetric intervals into points are
illustrated in Section 4.

3.1. Kulpa’s midpoint-radius representation

The location-spread display was suggested to us by the midpoint-radius repre-
sentation introduced in Kulpa (2003) to describe interval arithmetic. A summary
review is contained in Hayes (2003) and the basic definition is as follows.

Definition 3.1. The midpoint-radius representation is the function that maps
a compact interval [a, b] into the point of coordinates ((a+ b)/2, (b− a)/2).

The first coordinate (the midpoint) is the center of the interval and the second
coordinate is its half-width (the radius). Figure 2 illustrates the mapping and can
be used as a guide to understand its properties. For the statistical applications
that we consider the following properties are most relevant.

• An interval [a, b] is mapped into the point of intersection between the
ray of slope +1 emanating from the point (a, 0) and the ray of slope −1
emanating from the point (b, 0).

Once the point corresponding to an interval is given, the previous property yields
a straightforward means of determining if a given reference value r is contained
in the interval. In fact:

• All points included in the closure of the quadrant of vertex (r, 0) and
delimited by the two diagonal rays of slopes +1 and −1 correspond to
intervals that contain r. All remaining points correspond to intervals that
do not contain r.

Often, to determine statistical significance, a reference value of interest is r = 0.
Then, to assess if the interval corresponding to a given point contains or does
not contain r = 0, it is enough to ascertain the location of the point relative
to the quadrant defined by the main diagonal rays emanating from (0, 0). For
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Fig 2. Illustration of the midpoint-radius mapping. A segment is mapped into the vertex
opposite the base of an isosceles triangle with 45 degree base angles. The base of the triangle
is given by the segment itself.

example, in Figure 2, the point ((a+b)/2, (b−a)/2) lies inside the quadrant and
its corresponding interval [a, b] contains r = 0 while the point ((c+d)/2, (d−c)/2)
lies outside the quadrant and its corresponding interval [c, d] does not contains
r = 0. Reference values r 6= 0 can also be of interest, for example in practical
equivalence applications.

3.2. Location-spread displays: The fuel consumption example

revisited

Figure 3 exhibits the location-spread display of the simultaneous confidence
intervals for the Fuel consumption data. (Sample R code for generating color
versions of the display can be downloaded from the first author’s web page
(www.stat.osu.edu/~peruggia/papers/lsp.txt). The display is constructed
by plotting the center of each interval, summarizing location, along the hor-
izontal axis and the corresponding half-width, summarizing extent, along the
vertical axis and is thus the graph of the images of the 15 simultaneous con-
fidence intervals under the midpoint-radius mapping. The points in Figure 3
are all plotted to the right of the vertical line through the origin because they
correspond to the intervals for the same 15 pairwise contrasts with positive es-
timated values displayed in the bottom panel of Figure 1. In this case the left
part of the figure could be omitted, but we decided to keep it to illustrate the
general look of a location-spread display.

We used shading and other graphical symbols to emphasize the properties
outlined above. In particular, the reference quadrant delimited by the two main
diagonals through the origin is shaded as in Figure 4 of Hayes (2003). The
four points falling inside the reference quadrant represent non-significant dif-
ferences in mean fuel consumption according to car type (the corresponding

www.stat.osu.edu/~peruggia/papers/lsp.txt
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Fig 3. The location-spread display for the fuel consumption data. For each point in the display
the horizontal dimension is the center of a Tukey-Kramer simultaneous confidence interval
and the vertical dimension is the half-width of the interval. The comparisons involving Small

cars are represented by the triangular symbols.

intervals contain zero). All remaining points lie outside the quadrant and repre-
sent significant differences. Comparisons with reference values other than zero
is facilitated by the drawing of equally spaced rays of slope 1 to the right of
the origin and of slope −1 to the left of the origin. (In a color display, each
ray can be color-coded based on how far from the origin the ray intersects the
horizontal axis.) Following the rays in Figure 3 we can see, for example, that
only one interval lies entirely to the right of the reference value r = 1.

Having reserved the horizontal and vertical axes for representing location and
extent, we are left with the task of identification. One possible approach is direct
labeling. For example, in Figure 3, we used direct labeling to identify the four
non-significant comparisons. To reduce clutter we shortened the labels, denoting
the six vehicle categories Small, Sporty, Compact, Medium, Large, and Van by
S, X, C, M, L, and V, respectively. Still, direct labeling of all plotted points would
render the graph too hard to decipher and only interesting subsets of points
should be labeled. Many software packages provide tools for doing this inter-
actively. Different plotting symbols (and/or color) can also be used effectively.
For example, if one wishes to emphasize one or more subsets of comparisons,
a subset-specific symbol can be used to plot the points corresponding to the
comparisons in each subset. This is done in Figure 3, where all comparisons
involving car type Small are represented by a triangle.

As a consequence of the fact that well-defined summaries of location and ex-
tent are mapped into the horizontal and vertical axes, the location-spread repre-
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sentation is invariant with respect to relabeling. In addition, because points can
be drawn as smaller graphical entities than segments, the display can represent
a large number of interval estimates and still remain intelligible. Situations such
as those illustrated in the remainder of the article, in which very large num-
bers of interval estimates are involved, make it clear that Cartesian displays can
be much more effective than traditional displays like the line-by-line plots of
Figures 1.

4. Cartesian displays for asymmetric intervals

In this section we present two Cartesian displays that are variants of the
location-spread display and are useful to represent intervals that are not sym-
metric about a point estimate.

4.1. M-M2Q displays: A school comparison survey

We consider a large number of comparisons concerning inner London schools
based on a Bayesian hierarchical model developed in Spiegelhalter et al. (1996)
using a subset of the data originally analyzed in Goldstein et al. (1993). The
response variable is an examination achievement score, averaged over study
subjects, collected on 1978 pupils attending 38 different schools. Spiegelhalter
et al. (1996) use both pupil level and school level covariates to specify a normal
linear regression model for the examination achievement scores. For each school
the regression model contains a random intercept term, αj , j = 1, . . . , 38, (α1,j

in the original notation) that the authors regard as the residual school effect
after adjusting for the covariates.

Based on a set of M MCMC draws from the posterior distributions of the
school specific intercepts, Spiegelhalter et al. (1996) construct estimates of the
posterior marginal distribution of each school’s ranking, which they summa-
rize by a point estimate and a 95% credible interval. The school specific in-
tercepts can also be used to estimate contrasts of interest involving specific
schools. For the purpose of illustration we consider estimation of the poste-
rior distributions of all pairwise contrasts αj − αk, j 6= k, j = 1, . . . , 38,
k = 1, . . . , 38. The empirical distribution of each contrast can be simply con-

structed by combining the differences α
(m)
j − α

(m)
k , m = 1, . . . ,M , based on

the output at iteration m of the MCMC algorithm. This produces a total of
38 × 37 = 1, 406 non-degenerate empirical distributions that we would like to
summarize graphically. There is, of course, redundancy in this set of distribu-

tions because α
(m)
j − α

(m)
k = −(α

(m)
j −α

(m)
k ), but eliminating this redundancy

would still leave 703 distributions, a very large number given that we wish to
present a graphical summary of all of them at once.

We construct a global summary of interesting aspects of all distributions by
means of a Cartesian display as follows. First, for each contrast αj − αk, we
compute the 0.025 quantile, qj,k(0.025), the median, qj,k(0.5), and the 0.975
quantile, qj,k(0.975), of the corresponding empirical distribution. We want to
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Fig 4. The M-M2Q display for the school comparison data. For each point in the display the
horizontal dimension is the median of the posterior distribution of a pairwise contrast and
the vertical dimension is either the median minus the 0.025 quantile or the 0.975 quantile
minus the median, depending on whether the point is to the right or to the left of the vertical
ray through the origin. The contrasts involving School 17 are plotted using different symbols
depending to the denomination of the other school entering the comparison.

be able to determine from the Cartesian display which 95% credible intervals
[qj,k(0.025), qj,k(0.975)] lie entirely to the left or to the right of zero (with a slight
abuse of terminology, we will call such intervals significant). We use the hori-
zontal axis to capture location and the vertical axis to capture extent. Precisely,
if the median is positive, we summarize the credible interval by the position-
extent pair given by (Pj,k = qj,k(0.5), Ej,k = qj,k(0.5)− qj,k(0.025)) (because
the median is positive, the interval is entirely to the right of zero if and only if
Ej,k < Pj,k). If the median is negative, we summarize the credible interval by
the position-extent pair given by (Pj,k = qj,k(0.5), Ej,k = qj,k(0.975)−qj,k(0.5))
(because the median is negative, the interval is entirely to the left of zero if and
only if Ej,k < −Pj,k). The scatterplot of the position-extent pairs thus deter-
mined is then constructed, yielding what we call the M-M2Q display shown in
Figure 4. (“M-M2Q” stands for “Median-Median to Quantile”.)

There are a few features of Figure 4 worth mentioning. First, the chosen
summary measures of position and extent do not identify uniquely the credible
intervals [qj,k(0.025), qj,k(0.975)], because the intervals need not be symmetric
about qj,k(0.5). Yet, as explained in the previous paragraph, if a point in the
M-M2Q display lies outside of the shaded reference quadrant, then the credible
interval does not contain zero, and vice versa. Thus, this choice of (Pj,k, Ej,k)
pairs accomplishes the important goals of conveying direct visual information
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about the point estimate of a given contrast (the median value Pj,k) and about
whether or not the contrast is significant.

Figure 4 represents summaries of all 1, 406 non-degenerate contrasts (includ-
ing the redundant ones). To reduce the blob-like effect of overplotting we used
a very small plotting symbol. The foremost visual message conveyed by the fig-
ure is that the vast majority of points lie inside the reference quadrant. This
is an indication that most differences between schools are of little importance,
confirming the statement in Goldstein et al. (1993) that “few schools can be
separated reliably.”

Simple graphical devices allow us to use the M-M2Q display to concentrate
easily on contrasts involving specific schools. In Figure 4 we employed larger
plotting characters to emphasize all pairwise comparisons of the type α17 −αk,
k 6= 17, k = 1, . . . , 38, involving School 17. School 17 is the school that attains
the second to last posterior median ranking using the approach of Spiegelhalter
et al. (1996), with only School 5 attaining a worse posterior median ranking.
This is reflected in the fact that all but one of the median estimates for the
contrasts under consideration are negative and, consequently, all but one of the
larger symbols in the display are plotted to the left of the vertical line through
the origin. However, only a small number of these contrasts have a posterior
distribution that is concentrated away from zero, as can be seen from the fact
that most of the points fall inside the reference quadrant.

In addition, specific plotting characters are used to code the school denom-
ination of the other school entering the comparison (triangle for Church of

England, plus sign for Roman Catholic, circle for State school, and times
sign for other). From this plotting character coding, some inferences can be
readily made at a visual level. For example, it is immediate to notice that
School 17 (a Church of England school) is not significantly different than any
of the schools in the other category. Also, interestingly, the most prominent dif-
ference is the one with another Church of England school, corresponding to
the triangle toward the left hand side of the display.

4.2. Lower and upper bound displays

In this section we illustrate the use of Cartesian displays to represent interval
estimates computed in the analysis of a large set of response time data. The
data were collected on four subjects over ten non-consecutive days in a series
of recognition memory trials designed to measure how long it would take the
subjects to react to certain stimuli. The details of the experiment, the Bayesian
hierarchical model fit to the data, and various inferential issues are described
in Peruggia (2007) and Craigmile, Peruggia and Van Zandt (2012). For the
purpose of this discussion it suffices to know that, on any given day, each subject
was presented with two lists of 40 stimuli. The Bayesian hierarchical model
assumes a Weibull likelihood for the (shifted) response times, with parameters
related to the subjects and to specific experimental conditions. In particular, the
model contains 80 shape parameters ri,d,l, where i, 1 ≤ i ≤ 4, indexes subject,
d, 1 ≤ d ≤ 10, indexes day, and l, 1 ≤ l ≤ 2, indexes list.
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Fig 5. The lower and upper bound display for the shape parameter contrasts in the response
time data example. The top left panel represents all 72 contrasts, labeled according to the
subject × list combination. The top right panel represents contrasts for earlier days (circles)
and later days (triangles). The bottom panels represent all list 1 contrasts for subject 1 (left)
and subject 2 (right).

In these types of experiments, as subjects become more accustomed to the
tasks they are required to perform, their response times tend to become shorter
and more regular. So, it is interesting to determine if the posterior distributions
of the model parameters provide any evidence of that. Here we focus on the
shape parameters of the Weibull distributions and consider all 4 × 9 × 2 = 72
contrasts of the type ∆i,d,l = ri,d,l − ri,1,l, measuring, for a given subject and
list, the departure of the shape parameter on day d from the shape parameter
on day 1.

In the top-left panel of Figure 5 we display the equal-tailed 95% posterior
probability intervals for the 72 contrasts by plotting the upper limit Ui,d,l of
each interval against its lower limit Li,d,l. We call this Cartesian plot a lower
and upper bound display. Compared to the M-M2Q display of Section 4.1, there
is now a unique correspondence between the points in the plot and the corre-
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sponding intervals, but the point estimates of the contrasts are not displayed.
This representation uses the horizontal and vertical axes in concert to sum-
marize location and extent. Identification is accomplished by using a different
plotting character for each subject × list combination.

The figure outlines several characteristics of the contrasts. First, quite a few
points lie outside the shaded region representing the portion of the NW refer-
ence quadrant of vertex (0, 0) contained in the plotting region. This fact indicates
that the corresponding intervals do not contain zero and underscores the pres-
ence of important differences in the values of the shape parameters entering the
contrasts. Second, the dashed lines delineate a quadrant with vertex (−0.5, 0.5).
We are interested in points falling inside this quadrant because the interval
(−0.5, 0.5) covers a small (arbitrary) region centered at zero and, if the 95%
probability interval for a contrast is entirely contained in this small interval, the
two shape parameters involved in the contrast can reasonably be regarded as
essentially equivalent. (In this respect, this is an illustration of the application
of the methodology to a “practical equivalence,” rather than a “significance”
problem.) On this basis we can conclude that only a handful of shape parame-
ters are essentially equivalent and that most of these equivalent parameters are
for the same subject × list combination denoted by an asterisk.

In the top-right panel of Figure 5 we display the equal-tailed 95% posterior
probability intervals for the 16 contrasts between the shape parameters for day
1 and days 2 and 3 (circles) and the 16 contrasts between the shape parameters
for day 1 and days 9 and 10 (triangles). Because of the relative locations of the
triangles and the circles, it is apparent that the differences in shape parameters
from baseline tend to become larger as days go by.

The lower left panel depicts all list 1 contrasts for subject 1 and the lower
right panel depicts all list 1 contrasts for subject 2. Both panels contain the
slanted reference line of equation UB = 1+LB in upper bound vs. lower bound
space. Points falling below, on, or above the line correspond to intervals of width
smaller, equal, or larger than 1, respectively. The two panels have noticeably
different characteristics. All intervals for subject 1 are located closely and have
roughly the same width. The intervals for subject 2 exhibit more scatter in their
locations and have a tendency to become wider as their lower bounds increase.

5. Discussion

In this article we introduced a class of graphical tools, the Cartesian displays,
that can be used to represent statically a very large number of interval esti-
mates and we illustrated their effectiveness with three applications. There are,
of course, many other situations in which these displays might prove useful.
Gene expression analysis and other applications in bioinformatics often involve
a large number of inferences that one wishes to represent graphically. In drug
discovery, for example, thousands or tens of thousands of molecular compounds
may be screened for activities against cancer cell lines. We have also found
these displays very useful for illustrating to medical researchers the impact of
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the common practice of dichotomizing a continuous response and fitting a lo-
gistic regression model for the derived 0-1 variable. For example, in this case,
a location-spread display can be constructed by dichotomizing the response at
several different levels and plotting selected estimated coefficients against the
half-widths of their corresponding confidence intervals. By doing so, it often be-
comes apparent that the coefficient for a given term might be significant at one
cutoff level and non-significant at a different level. The display can also illustrate
clearly that, in many cases, accuracy decreases as changes in the cutpoint render
the grouping of the observations more unbalanced. In particular, if the rate of
increase of the standard errors is roughly linear in the size of the estimates, it is
easy to show that the points in the display will tend to fall along straight lines.

Quite naturally, the method has some limitations. As previously mentioned,
direct labeling of the points is required for proper identification and this can
often be accomplished effectively through the use of different colors and plotting
characters. If many of the point estimates on which the intervals are based share
a common estimated accuracy (which often happens for balanced designs), then
the displays will present unappealing horizontal or diagonal streaks. Clearly,
overplotting may become an issue when thousands of points are plotted. Re-
ducing the size of the plotting character and increasing the size of the display
is often helpful, as is jittering. However, more specialized plotting techniques,
such as binning (Carr, 1991), will be required to deal with very large sets of
location-spread pairs.

In conclusion, we observe that Cartesian displays are convenient graphical
summary devices, with several features that make them powerful exploratory
data analysis tools. The main factor motivating our development of these dis-
plays was the need for a static graphical display of many interval estimates. As
noted before, the physical size of the plotting area may at times impede direct
labeling of all the points. In such situations it may be possible to divide the
points into meaningful subgroups, perhaps based on the values of some avail-
able covariates, create multiple Cartesian displays, and plot them in a trellis-like
arrangement.

For those cases in which no static version results in a satisfactory display, we
can envision useful interactive implementations. The simplest interactive ver-
sion can be implemented in R by starting with an unlabeled display and using
the point-and-click function identify() to generate the labels of individual
points of interest. A direct generalization of the identify() function would al-
low the user to click on a point to trigger the display of the label and additional
summary information concerning the associated interval that cannot be readily
inferred from the display. For the case of the M-M2Q displays of Section 4.1, for
example, the additional information could include the numerical values of the
median, quantiles and endpoints of the asymmetric interval. More sophisticated
implementations should include devices that can provide real-time visual feed-
back to the user. For displays with considerable overplotting, a zooming feature
may be helpful. Also, a brushing tool and dynamic linking to a data table could
help the user to visualize interesting groups of points. A menu driven interface
could then let the user label the identified points interactively for creation of a
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final display for a report. As another example, when constructing the M-M2Q
display of Section 4.1 a reference value other than zero could be of interest, in
which case one could simply subtract off such a value from the median and the
two quantiles corresponding to each credible interval and redraw the M-M2Q
display using the translated values. An interactive version of this procedure
could be implemented, where a slider is used to adjust the desired reference
value and the display is redrawn on the fly.
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