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Abstract: Most common regression models for analyzing binary random
variables are logistic and probit regression models. However it is well known
that the estimates of regression coefficients for these models are not robust
to outliers [26]. The robit regression model [1, 16] is a robust alternative
to the probit and logistic models. The robit model is obtained by replacing
the normal (logistic) distribution underlying the probit (logistic) regression
model with the Student’s t−distribution. We consider a Bayesian analysis of
binary data with the robit link function. We construct a data augmentation
(DA) algorithm that can be used to explore the corresponding posterior dis-
tribution. Following [10] we further improve the DA algorithm by adding a
simple extra step to each iteration. Though the two algorithms are basically
equivalent in terms of computational complexity, the second algorithm is
theoretically more efficient than the DA algorithm. Moreover, we analyze
the convergence rates of these Markov chain Monte Carlo (MCMC) algo-
rithms. We prove that, under certain conditions, both algorithms converge
at a geometric rate. The geometric convergence rate has important theoreti-
cal and practical ramifications. Indeed, the geometric ergodicity guarantees
that the ergodic averages used to approximate posterior expectations sat-
isfy central limit theorems, which in turn allows for the construction of
asymptotically valid standard errors. These standard errors can be used to
choose an appropriate (Markov chain) Monte Carlo sample size and allow
one to use the MCMC algorithms developed in this paper with the same
level of confidence that one would have using classical (iid) Monte Carlo.
The results are illustrated using a simple numerical example.
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1. Introduction

The logistic and probit regression models are commonly used in practice to
analyze binary data. However, the estimators of the regression coefficients for
these popular models are not robust to outliers [26]. [16] proposed a robust
alternative to the logistic and probit models which he called the robit regression
model. In order to describe the robit model, suppose that Y = (Y1, Y2, . . . , Yn)
is a vector of n independent binary random variables such that P (Yi = 1) =
Fν(x

T
i β), where Fν(·) is the cdf of the univariate Student’s t distribution with

known and fixed degrees of freedom ν, the xi’s, i = 1, 2, . . . , n are p× 1 known
vector of covariates associated with Yi and β is the p × 1 vector of unknown
regression coefficients. The joint probability mass function (pmf) of Y is given
by

p(y|β) =
n
∏

i=1

(

Fν(x
T
i β)

)yi
(

1− Fν(x
T
i β)

)1−yi

, (1.1)

where y = (y1, y2, . . . , yn). The above model, as an alternative to the logistic
model, has been previously suggested by [24] and [1]. Both probit and logistic
regression models can be well approximated by the robit model. In fact, a robit
link with about seven degrees of freedom provides an excellent approximation
to the logit link, and the probit link can be well approximated by a robit link
with large degrees of freedom. Gelman and Hill [7, chap. 6] showed that in the
presence of outliers, the robit model, unlike the logistic and probit models, can
effectively downweight the discordant data points for a better model fitting. On
the other hand, in the absence of any discrepancy in the data set, if the data
actually come from say, a logistic model, then the estimated response curve
obtained by fitting the robit model is close to the true logistic model.

We consider a Bayesian analysis of binary data with the pmf of Y as defined
in (1.1) and a normal prior on β. The posterior density π(β|y) is given by

π(β|y) = 1

m(y)

n
∏

i=1

(

Fν(x
′
iβ)

)yi
(

1− Fν(x
′
iβ)

)1−yi

× φp(β;βa,Σ
−1
a ), (1.2)

where φp(β;βa,Σ
−1
a ) is the density of the p-dimensional normal distribution

with mean βa, dispersion matrix Σ−1
a , evaluated at β, m(y) is the normalizing

constant, that is, m(y) =
∫

Rp p(y|β)φp(β;βa,Σ
−1
a )dβ. Proper choice of the

dispersion matrix, Σ−1
a is important. One choice is to take Σa = cXTX for

some constant c, where X is the n×p design matrix [see e.g. 38]. The simplicity
of this choice of Σa is that only one hyper-parameter c needs to be specified.
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Inference based on (1.2) often reduces to calculation of (posterior) expecta-
tions

Eπh :=

∫

Rp

h(β)π(β|y)dβ.

Unfortunately, Eπh is a ratio of two intractable integrals which are not available
in closed form. Moreover, classical Monte Carlo methods based on independent
and identically distributed (iid) samples are problematic when p is large. In this
case we may resort to MCMC methods. Here we construct a data augmentation
(DA) algorithm that can be used to explore the posterior density π(β|y). DA al-
gorithms, like its deterministic counterpart the EM algorithms, often suffer from
slow convergence [see e.g. 36]. In the case when the prior mean βa = 0, following
[10] we present an alternative MCMC algorithm, called the sandwich algorithm,
that is computationally equivalent to the DA algorithm, but converges faster to
the stationary distribution and is more efficient (See Section 3 for details).

Let {βm}∞m=0 be the Markov chain associated with either the DA or the
sandwich algorithm. Let

L1(π) =

{

h : Rp → R

∣

∣

∣

∫

Rp

|h(β)|π(β|y) dβ < ∞
}

.

Similarly, let L2(π) denote the vector space of real-valued functions that are
square integrable with respect to the target density π(β|y). If h ∈ L1(π) and

the Markov chain {βm}∞m=0 is Harris ergodic, then h̄m := (1/m)
∑m−1

j=0 h(βj)

is a consistent estimator of Eπh since by ergodic theorem h̄m → Eπh with
probability 1 as m → ∞. However, in practice we need to choose the sample
size m. The sample size m must be large enough to ensure that the Monte
Carlo error h̄m − Eπh is sufficiently small and this is where an approximate
distribution of h̄m −Eπh can be used. In fact if there is a central limit theorem
(CLT) for h, that is,

√
m(h̄m − Eπh)

d−→ N(0, σ2
h), as m → ∞, (1.3)

and if σ̂2
h is a consistent estimator of the asymptotic variance σ2

h, then an asymp-
totic 95% confidence interval (CI) for Eπh based on m iterations of the chains
can be constructed as h̄m ± 2σ̂h/

√
m. If we are satisfied with the width of the

CI, we stop, otherwise, we increase the sample size m to achieve the desired
level of precision. Unfortunately, unlike in the case of classical Monte Carlo
methods based on iid draws from the target distribution, the second moment
condition (h ∈ L2(π)) is no longer enough to guarantee a Markov chain CLT
(1.3). The most common method of establishing the CLT in (1.3) is to show that
the Markov chain {βm}∞m=0 is geometrically ergodic (see Section 2 for the defi-
nition), and this requires a deep theoretical convergence analysis of the chain.
Moreover, due to the serial correlation in the Markov chain, the asymptotic vari-
ance σ2

h has a complicated form, and consistent estimation of σ2
h is a challenging

problem. On the other hand, if {βm}∞m=0 is geometrically ergodic then results
in [9, 12, 2], and [6] show that specialized techniques such as the regenerative
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simulation and the batch means can be used to construct consistent estimators
of σ2

h. (For more on standard errors of MCMC based estimates, see [13] and
[5].) The main result in this paper is a proof that, under certain easily verifiable
conditions on n, ν, c, and the design matrix X , the Markov chains underlying
the DA and sandwich algorithms presented here converge at a geometric rate.
As described above, our convergence rate results allow one to use the MCMC
algorithms developed in this paper with the same level of confidence that one
would have using classical (iid) Monte Carlo.

The remainder of this paper is organized as follows. Section 2, contains a
description of the DA algorithm as well as the statement of our results regarding
convergence rates of the DA algorithm. In Section 3, we show how the group
action recipe of [10] can be used to improve the DA algorithm. Our results are
illustrated using a simple example in Section 4. A short discussion appears in
Section 5. Technical results and proofs are relegated to the Appendices.

2. The geometric ergodicity of the Data Augmentation algorithm

2.1. The Data Augmentation algorithm

We mentioned in the introduction that sampling directly from (1.2) is rather
difficult. But, as we explain now, it is easy to construct a data augmentation
algorithm for (1.2) by introducing two sets of new (latent) random variables.
In particular, let z1, . . . , zn be n independent variables with zi ∼ tν(x

T
i β, 1)

where tν(µ, 1) denotes the univariate Student’s t distribution with location µ,
scale 1 and degrees of freedom ν. If we define Yi = IR+

(zi), then Y1, . . . , Yn

are n independent Bernoulli random variables with P (Yi = 1) = P (zi > 0) =
Fν(x

T
i β). Thus z1, . . . , zn can be thought of as latent variables underlying the

binary data y. Now we use the fact that t distribution can be expressed as a
scale mixture of normal distributions, that is, if zi|λi ∼ N(µ, 1/λi) and λi ∼
Gamma (ν/2, ν/2), then the marginal distribution of zi is tν(µ, 1). The joint
posterior density of (β, λ, z) given y is

π(β, (λ, z)|y)

=
1

m(y)

[ n
∏

i=1

{

IR+
(zi)I{1}(yi) + IR

−

(zi)I{0}(yi)
}

φ
(

zi;x
T
i β,

1

λi

)

q
(

λi,
ν

2
,
ν

2

)

]

× φp

(

β;βa,Σ
−1
a

)

; λi ∈ R+, zi ∈ R, β ∈ Rp, (2.1)

where R+ = (0,∞), R− = (−∞, 0], IA(·) is the indicator function of the set
A, z = (z1, . . . , zn), λ = (λ1, . . . , λn), φ(x; a, b) is the density of the univariate
normal distribution with mean a, variance b, evaluated at the point x, that
is φ ≡ φ1, and q(ω; a, b) is the gamma density with shape parameter a, scale
parameter b, evaluated at ω (i.e., q(ω; a, b) = baωa−1e−bω/Γ(a)).

The β marginal density of (2.1) is π(β|y), that is,
∫

Rn

∫

R
n
+

π(β, (λ, z)|y)dλdz = π(β|y).
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Thus we can use π(β, (λ, z)|y) to construct a DA algorithm with stationary den-
sity π(β|y) if we can sample from the two conditional densities π(λ, z|β, y) and
π(β|z, λ, y) ([35, 8]). In fact, straightforward calculations show that β|λ, z, y ∼
Np

(

β̂, (XTΛX +Σa)
−1

)

, where

β̂ = (XTΛX +Σa)
−1(XTΛz +Σaβa),

and Λ is the n× n diagonal matrix with diagonal elements λ1, . . . , λn. We can
draw from π(λ, z|β, y) by first drawing from π(z|β, y) and then from π(λ|z, β, y).
It can be shown that conditional on (β, y), z1, . . . , zn are independent with
zi|β, y ∼ T tν(x

T
i β, yi), where T tν(x

T
i β, yi) denote the truncated t distribution

with mean xT
i β, variance 1 and degrees of freedom ν that is truncated left at

0 if yi = 1 and truncated right at 0 if yi = 0. Sampling from the truncated t
distribution can be done by the inversion method. Lastly, conditional on (z, β, y),
λi’s are independent with λi|z, β, y ∼ Gamma ((ν + 1)/2, (ν + (zi − xT

i β)
2)/2)

for i = 1, . . . , n. A single iteration of the DA algorithm uses the current state β
to produce the new state β′ through the following two steps:

1. Draw {(λi, zi), i = 1, 2, . . . , n} by first drawing zi ∼ T tν(x
T
i β, yi) and then

draw λi ∼ Gamma
(

ν+1
2 ,

ν+(zi−xT
i β)2

2

)

.

2. Then draw β′ ∼ Np

(

β̂, (XTΛX +Σa)
−1

)

.

The Markov transition density of the DA algorithm is given by

k(β′|β) =
∫

R
n
+

∫

Rn

π(β′|λ, z, y)π(λ, z|βy) dz dλ .

Note that, while the Markov transition density does depend on the data, y,
and the design matrix X , these quantities are fixed, so this dependence is sup-
pressed in the notation. The basic theory of DA algorithms implies that k(β′|β)
is reversible with respect to the posterior density π(β|y); i.e., we have

k(β′|β)π(β|y) = k(β|β′)π(β′|y),
for all β, β′ ∈ Rp. It follows immediately that the posterior density is invariant
for the chain; i.e.,

∫

Rp

k(β′|β)π(β|y) dβ′ = π(β′|y),

for all β ∈ Rp. Let Z denote the subset of Rn where z lives, that is, Z is the
Cartesian product of n positive and negative half lines (R+ and R−), where
the ith component is either R+ (if yi = 1) or R− (if yi = 0). Note that, the
joint posterior density π(β, (λ, z)|y) is strictly positive on Rp× (Rn

+×Z). So the
Markov chain {βm}∞m=0 driven by k(β′|β) is Harris ergodic; that is, irreducible,
aperiodic and Harris recurrent (Tan and Hobert [34, Lemma 1], Hobert [8]). See
[22] for definitions of irreducibility, aperiodicity and Harris recurrence. Harris
ergodicity implies that, no matter how the chain is started, the chain converges
to its stationary distribution and that ergodic average based on the DA algo-
rithm, h̄m converges almost surely to its population counterpart, which is, of
course, the (posterior) expectation Eπh.
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2.2. Geometric convergence of the DA algorithm

We begin with defining what it means for the DA algorithm to converge at
a geometric rate. Let K(·, ·) denote the Markov transition function (Mtf) of
the DA Markov chain; that is, K(β,A) =

∫

A
k(β′|β)dβ′ for β ∈ Rp and a

measurable set A ⊂ Rp. Also for m = 2, 3, . . . the m-step Markov transition
function of {βm}∞m=0 is defined inductively as

Km
(

β,A
)

= Pr
(

βm ∈ A|β0 = β
)

=

∫

Rp

Km−1
(

β′, A
)

K
(

β, dβ′
)

,

where K1 ≡ K. Let Π(·|y) denote the probability measure corresponding to
the posterior density π(β|y). Harris ergodicity implies that the total variation
distance between the probability measuresKm

(

β, ·
)

and Π(·|y) decreases to zero
as m gets large; that is, for any starting value, β ∈ Rp, we have

∥

∥Km
(

β, ·
)

−Π(·|y)
∥

∥

TV
↓ 0 as m → ∞ .

Note that the above expression gives no information about the rate at which
the total variation distance converges to zero. The Markov chain is called ge-
ometrically ergodic if there exists a function M : Rp → [0,∞) and a constant
r ∈ (0, 1) such that, for all m,

∥

∥Km
(

β, ·
)

−Π(·|y)
∥

∥

TV
≤ M(β)rm .

It is known that if a reversible Markov chain is geometrically ergodic, then there
is a CLT (1.3) for every function that is square integrable with respect to the
stationary distribution [29]. Unfortunately, Harris ergodicity of a Markov chain,
which is generally easy to verify, does not imply geometric ergodicity. We will
establish geometric ergodicity of the DA algorithm by establishing the so-called
drift condition, which we now describe. (See Jones and Hobert [13] for a gentle
introduction to these ideas.)

A function V : Rp → R+ is said to be unbounded off compact sets if, for each
α > 0, the level set {β : V (β) ≤ α} is compact. We say that a geometric drift
condition holds if there exists a V : Rp → R+ that is unbounded off compact
sets and constants ρ ∈ [0, 1), and L ∈ R such that, for all β ∈ Rp,

(KV )(β) ≤ ρV (β) + L

where

(KV )(β) =

∫

Rp

V (β′) k(β′|β) dβ′ .

The function V is called the drift function. Since π(β, (λ, z)|y) > 0 for all
(β, λ, z) ∈ Rp × Rn

+ × Z, a geometric drift condition implies that the DA algo-
rithm is geometrically ergodic (Meyn and Tweedie [22, chap. 15.], Hobert [8]).

Let W be an n × p matrix whose ith row is wT
i where wi = xiI{0}(yi) −

xiI{1}(yi). We now define two conditions on y and X which are used to prove
the geometric ergodicity of the DA algorithm.
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A1 The design matrix X has full rank, and
A2 there exists a vector a = (a1, ..., an)

T with ai > 0 for all i = 1, 2, . . . , n
such that WT a = 0 .

[32] provide a simple way to check the condition A2 that can be easily imple-
mented in most statistical software languages. By establishing a drift condition
for the DA algorithm we prove the following theorem in Appendix B.

Theorem 1. Assume that A1 and A2 hold. The DA algorithm is geometrically
ergodic if Σa = cXTX, ν > 2 and

n <
cν

(ν + 1)(1 + 2
√

βT
a X

TXβa)
. (2.2)

Ideally, we would like to be able to say that the DA algorithm is geometri-
cally ergodic for any n, ν, y,X, and Σa. As mentioned in the Introduction, the
assumption Σa = cXTX is made in the literature and this simple choice requires
only one hyperparameter c to be specified. Several inequalities used in the proof
of Theorem 1 heavily depends on this assumption. Similarly the conditions A1
and A2 are crucial in our proof. The condition ν > 2 guarantees the existence of
finite second moment of the latent t random variables. In our opinion, the most
restrictive of all conditions is (2.2), which is a direct consequence of the several
inequalities we have used in the proof. Note that (2.2) implies that n < c. Thus
when n is large, the elements of the prior covariance matrix becomes small.
We prove Theorem 1 by establishing a drift condition using the drift function
V (β) = βTXTXβ. We believe that a substantial reduction of the conditions in
Theorem 1 would require the use of a different drift function V (β), which means
starting over from square one.

In practice often it is assumed that βa = 0. For the rest of this article, we
assume that βa = 0 and in this case the posterior density of β becomes

π̃(β|y) = 1

m(y)

n
∏

i=1

(

Fν(x
T
i β)

)yi
(

1− Fν(x
T
i β)

)1−yi

× φp(β; 0,Σ
−1
a ). (2.3)

We can derive the corresponding complete posterior density π̃(β, (λ, z)|y) just
by replacing φp(β;βa,Σ

−1
a ) with φp(β; 0,Σ

−1
a ) in (2.1), and use it to construct

a data augmentation algorithm for π̃(β|y). Obviously, a single iteration of this
DA algorithm uses the current state β to produce the new state β′ through the
following two steps:

1. Draw {(λi, zi), i = 1, 2, . . . , n} by first drawing zi ∼ T tν(x
T
i β, yi) and then

draw λi ∼ Gamma
(

ν+1
2 ,

ν+(zi−xT
i β)2

2

)

.

2. Then draw β′ ∼ Np

(

(XTΛX +Σa)
−1XTΛz, (XTΛX +Σa)

−1
)

.

Corollary 1. Let {β̃m}∞m=0 be the Markov chain underlying the above DA algo-
rithm for π̃(β|y). From Theorem 1 it follows that under conditions A1 and A2,
{β̃m}∞m=0 is geometrically ergodic if Σa = cXTX, ν > 2 and n < cν/(ν + 1).
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As explained in [36], the standard DA algorithms often suffer from slow conver-
gence. In the next section we present algorithms that have faster convergence
than {β̃m}∞m=0.

3. Sandwich algorithms

Over the last decade, several authors have shown that it is possible to drasti-
cally improve the convergence behavior of DA algorithms by adding a simple,
computationally inexpensive “extra step” to each iteration of the DA algorithms
(see, e.g., [21, 19, 36, 10]). In this section, following [10], we construct improved
DA algorithms for π̃(β|y). Let π̃(λ, z|y) =

∫

Rp π̃(β, (λ, z)|y)dβ, that is π̃(λ, z|y)
is the (λ, z) marginal density of the complete posterior density π̃(β, (λ, z)|y).
Straightforward calculations show that

π̃(λ, z|y) ∝ e−
1
2
[zTΛz−zT ΛX(XTΛX+Σa)

−1XTΛz]

|XTΛX +Σa| 12
|Λ| ν+1

2
−1 e−

ν
2
Σλi

×
n
∏

i=1

[

IR+
(zi)I{1}(yi) + IR

−

(zi)I{0}(yi)
]

.

Suppose that R((λ, z), (dλ′, dz′)) is a Markov transition function on Rn
+ × Z

that is reversible with respect to π̃(λ, z | y). Consider adding an extra step to
the DA algorithm where, after (λ, z) is drawn in the first step, we move to a new
value, (λ′, z′) ∼ R((λ, z), ·), before drawing new value of β. To be more specific,

let {β̆m}∞m=0 be a new Markov chain that proceeds from the current state β to
the next state β′ via the following three steps

1. Draw {(λi, zi), i = 1, 2, . . . , n} by first drawing zi ∼ T tν(x
T
i β, yi) and then

draw λi ∼ Gamma
(

ν+1
2 ,

ν+(zi−xT
i β)2

2

)

.
2. Draw (λ′, z′) ∼ R((λ, z), ·)
3. Then draw β′ ∼ Np

(

(Σa +XTΛ′X)−1XTΛ′z′, (XTΛ′X +Σa)
−1

)

,

where Λ′ is the n × n diagonal matrix with elements of λ′ on the diagonal.
Note that the first and third steps are the same as the DA algorithm. [37] call
the above algorithm the “sandwich algorithm” since the draw from R((λ, z), ·)
is sandwiched between the two steps of the DA algorithm. We will provide a
specific R later in this section.

A routine calculation shows that the reversibility ofR with respect to π̃(λ, z|y)
implies that the sandwich chain, {β̆m}∞m=0, is reversible with respect to the tar-
get (posterior) density, π̃(β|y). The sandwich algorithm is known to converge
faster than the DA algorithm. In order to make precise comparisons of the DA
and sandwich algorithms, we need to introduce some notations. Let

L2
0(π̃) = {h ∈ L2(π̃) :

∫

Rp

h(β) π̃(β|y) dβ = 0},
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that is, L2
0(π̃) is the subspace of L2(π̃) of mean zero functions. Then L2

0(π̃) is a
Hilbert space with inner product defined as

〈h1, h2〉 =
∫

Rp

h1(β)h2(β) π̃(β|y) dβ ,

and the norm is ‖h‖ =
√

〈h, h〉. Let K̃, K̆ : L2
0(π̃) → L2

0(π̃) denote the usual

Markov operators defined by the DA chain {β̃m}∞m=0 and the sandwich chain

{β̆m}∞m=0, respectively. In particular, K̃ maps h ∈ L2
0(π̃) to

(K̃h)(β) :=

∫

Rp

h(β′) k̃(β′|β) dβ′ ,

where k̃(β′|β) is the Markov transition density of the DA chain {β̃m}∞m=0 defined
in Section 2.2. The Markov operator K̆ is similarly defined. The reason that
we define K̃ as an operator on L2

0(π̃) (instead of L2(π̃)) is to eliminate the
eigenvalue 1 associated with constant eigenfunction from its spectrum [See e.g.
23]. Let ‖K̃‖ and ‖K̆‖ denote the (operator) norms of K̃ and K̆, for example,

‖K̃‖ = sup
h∈L2

0
(π̃),‖h‖=1

‖K̃h‖ .

In general, the closer the norm of a Markov operator is to 0, the faster the
corresponding Markov chain converges [see, e.g., 18]. There are close connections
between convergence properties discussed in the previous section and the norm
of a Markov operator. Indeed, a reversible Markov chain is geometrically ergodic
if and only if the norm of the corresponding Markov operator is strictly less
than 1 [29, 30]. From Roy [31] we know that, ‖K̆‖ ≤ ‖K̃‖, and hence the
sandwich chain converges at least as fast as the DA chain.

Another criterion that is used to compare Markov chains (with the same
stationary distribution) is efficiency ordering. Let h ∈ L2(π̃) and we want to
estimateEπ̃h. Define σ̃2

h to be the asymptotic variance in the CLT for the ergodic
averages hm based on the DA algorithm if such a CLT exists, and ∞ otherwise.
Similarly define σ̆2

h for the sandwich algorithm. Sandwich chain is said to be
at least as efficient as the DA chain if σ̆2

h ≤ σ̃2
h for all h ∈ L2(π̃). In this case

after running the two chains for equal number of iterations, we may expect that
the sandwich algorithm results in a shorter CI for Eπ̃h than the DA algorithm.
This is why if the two algorithms are similar in terms of simulation effort, we
prefer the sandwich algorithm over the DA. In fact, the results in Hobert and
Marchev [10] can be used to show that K̃ − K̆ is a positive operator, that is,
〈(K̃ − K̆)h, h〉 ≥ 0 for all h ∈ L2

0(π̃), and this implies that the sandwich chain
is at least as efficient as the DA chain [23].

Recall that the only difference between a single iteration of the DA algorithm
with that of the sandwich algorithm is that the sandwich algorithm has an ex-
tra step according to the Mtf R. Following [19] and [17], [10] gave a recipe of
constructing R that involves group actions and (left) Haar measure. In order
to use Hobert and Marchev’s [2008] group action recipe, let G be the multi-
plicative group R+ where group composition is defined as multiplication. The
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multiplicative group R+ is unimodular with Haar measure ̺(dg) = dg/g, where
dg denotes the Lebesgue measure on R+. We now define a (left) group action of
G on Rn

+ × Z (the support of the density π̃(λ, z|y)) as g(λ, z) = (λ, gz) where
gz = (gz1, · · · , gzn). (It is easy to verify that the above is a valid group action.)
If g ∈ G and h : Rn

+×Z → R is an integrable function (with respect to Lebesgue
measure), straightforward calculations show that

∫

R
n
+

∫

Z

h(λ, z)dzdλ = χ(g)

∫

Rn

∫

Z

h(g(λ, z))dzdλ, (3.1)

where χ(g) = gn. Also it is easy to see that χ(g−1) = 1/χ(g) and χ(g1, g2) =
χ(g1)χ(g2). Here χ(g) plays the role of the function j defined in Hobert and
Marchev [10, page 543]. Consider a distribution on G with density function

π(λ, gz | y)χ(g)̺(dg)
∫

G
π(λ, gz | y)χ(g) ̺(dg) = (zTΛ1/2(I−Q)Λ1/2z)

n
2 gn−1 e

− g2

2
zTΛ1/2(I−Q)Λ1/2z

2(n−2)/2Γ(n/2)
dg,

where Q = Λ1/2X(XTΛX +Σa)
−1XTΛ1/2, or, equivalently

g2 ∼ Gamma

(

n

2
,
zTΛ1/2(I −Q)Λ1/2z

2

)

. (3.2)

Note that d(λ, z) :=
∫

G π(λ, gz | y)χ(g) ̺(dg) is positive for all (λ, z) ∈ Rn
+ ×Z

and finite for almost all (λ, z) ∈ Rn
+ ×Z.

We now provide an R for Step 2 of the sandwich algorithm. Given (λ, z), we
make the transition (λ, z) → (λ′, z′) by drawing g2 from (3.2) and setting λ′ = λ
(that is, λ is left unaltered) and z′ = gz. In other words, the corresponding
Markov operator R on L2

0(π̃(λ, z | y)) is defined as

(Rh)(λ, z) =

∫

G

h(λ, gz)π(λ, gz | y)χ(g)
d(λ, z)

̺(dg). (3.3)

From Hobert and Marchev’s [2008] Proposition 3, it follows that R is reversible
with respect to π̃(λ, z|y). Of course, the Markov chain driven by R is reducible,
which is a common feature of efficient sandwich algorithms [14]. Note that re-

ducibility ofR does not stop the sandwich algorithm {β̆m}∞m=0 from being Harris
ergodic. From our discussion before, we know that the above sandwich algorithm
is more efficient and converges faster than the DA algorithm. The extra step R,
which is the sole difference between the DA and sandwich algorithms, is just
a single draw from a univariate gamma density and since the computation of
the parameters of this gamma density does not involve any extra (compared to
the DA algorithm) computationally demanding calculation like matrix inver-
sion, the two algorithms are essentially equivalent in terms of computer time
per iteration. Following the proof of Corollary 1 in [32], we can show that the
sandwich algorithm inherits the geometric ergodicity of the DA algorithm.

Corollary 2. Under conditions A1 and A2, the Markov chain underlying the
sandwich algorithm is geometrically ergodic if Σa = cXTX, ν > 2 and n <
cν/(ν + 1).
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Note that, unlike most examples of sandwich algorithm available in literature,
in the above we do not let the group G act on Rn

+ ×Z through component-wise
multiplication; i.e., we do not define g(λ, z) = (gλ, gz). A similar group action
is used in [20] to improve a DA algorithm for a Bayesian logistic model. Now we
discuss what happens when G is allowed to act on the entire augmented space
Rn

+×Z through component-wise multiplication, that is g(λ, z) = (gλ, gz). Note
that, under the above group action, (3.1) holds if we replace χ(g) with g2n. To
construct the sandwich algorithm in this case, we must first demonstrate that
there is a probability density (with respect to the Haar measure ̺(dg)) that is
proportional to π(gλ, gz|y)g2n. In other words, we must show that d1(λ, z) :=
∫

G π(gλ, gz|y)g2n̺(dg) < ∞ for all (λ, z) ∈ Rn
+ ×Z. It can be shown that, as a

function of g,

π(gλ, gz|y)g2n

= agn(
3+ν
2

)e−
gν

∑
λi

2 e−
1
2
[g3zTΛz−g4zTΛX(gXT ΛX+Σa)

−1XTΛz]|gXTΛX +Σa|−
1
2 ,

where the constant a does not depend on g. Since Σa is positive semidefinite, it
follows that [28, page 70] (gXTΛX)−1 − (gXTΛX +Σa)

−1 is positive semidef-
inite. Thus,

zTΛX(gXTΛX +Σa)
−1XTΛz ≤ zTΛX(gXTΛX)−1XTΛz,

and hence

− 1

2
[g3zTΛz − g4zTΛX(gXTΛX +Σa)

−1XTΛz]

≤ −g3

2
zTΛ1/2[I − Λ1/2X(XTΛX)−1XTΛ1/2]Λ1/2z ≤ 0,

where the last inequality follows since I−Λ1/2X(XTΛX)−1XTΛ1/2 is an idem-
potent matrix. Since |gXTΛX +Σa| ≥ |Σa| [28, page 70] it follows that

π(gz, gλ|y)g2n ≤ a|Σa|−
1
2 gn(

3+ν
2

)e−
gν

∑
λi

2 ,

so

d1(λ, z) ≤ a|Σa|−
1
2

∫

G

gn(
3+ν
2

)−1e−
ν

∑
λi

2
gdg < ∞.

Now in order to construct an effective sandwich algorithm, we need a fast and
efficient way of sampling from the following density on R+ (with respect to
Lebesgue measure on R+)

tλ,z(g) :=
gn(

3+ν
2

)−1e−
gν

∑
λi

2 e−
1
2
[g3zTΛz−g4zTΛX(gXT ΛX+Σa)

−1XTΛz]

d1(λ, z)|gXTΛX +Σa| 12
.

Of course, in this case the Step 2 of the sandwich algorithm will be to draw
g ∼ tλ,z(g) and set z′ = gz as well as λ′ = gλ. Note that, even though the above
is a univariate density, it may be difficult to efficiently sample from tλ,z(g).
Also in this case, since λ is updated in step 2, an extra (compared to the DA
algorithm) matrix inversion is required in step 3 of the sandwich algorithm. This
is why we prefer the sandwich algorithm with Step. 2 as defined in (3.2).
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4. A numerical example

Suppose that n = 7, ν = 3, p = 2, β = (β0, β1). Let the data be y = (0, 0, 0, 1, 1,
0, 1), and the design matrix X = (1,x), where 1 is a vector of 1’s, and xT =
(0.010, 0.020, 0.030, 0.050, 0.060, 0.075, 0.100). In this section we illustrate our
theoretical results with the above data set.

Consider the prior on β to be φ(β, 0,Σ−1
a ), where Σa = cXTX for some c

to be chosen later. We want to approximate the posterior expectation of β1,
that is, Eπ̃h, where h(β) = β1. Since rank(X) = 2, the condition A1 holds. As
mentioned in [32], using the “simplex” function from the “boot” library in R [27]
we check that the condition A2 is satisfied for the above data. From Corollary 1
we know that if c > n(ν+1)/ν then the DA algorithm is geometrically ergodic.
We take c = n(ν + 1)/ν + 0.005 ≈ 9.338. We ran the DA algorithms for 2,000
iterations starting at β = (0, 0) and discard first 1,000 iteration as burn-in.
The estimate of Eπ̃β1 based on the remaining 1,000 iterations is h̄m =1.51.
Since the posterior density π̃(β|y) has finite moments of all orders, the results
in [12] imply that consistent estimator of asymptotic variance in the CLT can
be obtained by the method of batch means with batch size bm = ⌊m0.5⌋. We
use the “mcmcse” package in R [4] to compute the standard errors by batch
means with the default batch size bm = ⌊m0.5⌋. Note that we could also use the
regenerative simulation method to calculate the standard errors by constructing
a minorization condition as in [32]. The standard error for h̄m based on 1,000
iterations is 0.144. (The mean and standard deviation for this standard error
estimate based on 1,000 independent repetitions of the above simulation are
0.133 and 0.017 respectively.) Next, we find out how large m needs to be for the
half-width of the 95% interval to be below 0.10. Based on the standard error
calculated above, we need to run the DA chain for 4× 1000× (.144)2/(0.1)2 ≈
8, 294 iterations to achieve this level of accuracy. In fact after 9,000 iterations
of the chain, the 95% CI for Eπ̃β1 is given by 1.540 ± (2 × 0.049). (The mean
and standard deviation for the corresponding standard error estimate based on
1,000 independent repetitions are 0.044 and 0.003 respectively.)

Next, we want to compare the performance of the DA and the sandwich
algorithm in the context of this example. From Corollary 2 we know that the
sandwich algorithm is also geometrically ergodic. The standard error estimate
corresponding to the sandwich chain based on 1,000 iterations is 0.124, which is
not significantly less than the estimate (0.144) corresponding to the DA chain. In
fact, based on 1,000 independent repetitions of the sandwich chain simulation
the mean and standard deviation for the standard error estimate are 0.132
and 0.017 respectively. The reason there is not much increase in efficiency by
running the sandwich chain instead of the DA chain is that here we are using
a very informative prior. In fact, the prior variances of β0 and β1 are 0.057
and 17.493 respectively. On the other hand, when we use a small value for c,
and hence the prior is more spread-out, we observe huge gains in efficiency
by using the sandwich algorithm instead of the DA algorithm. For example,
if we use c = 0.005, the prior variances of β0 and β1 become 107.935 and
32672.112. In this case after 20,000 iterations of the chains, the estimates of
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the standard errors corresponding to the DA and sandwich algorithms are 2.684
and 1.169 respectively. (Note that, Corollary 1 or Corollary 2 are not applicable
here anymore as c ≯ n(ν + 1)/ν; we are simply assuming that the CLT still
holds in this case.) These estimates suggest that, even in this simple example,
the DA algorithm requires about 2.6842/1.1692 ≈ 5.3 times as many iterations
as the sandwich algorithm to achieve the same level of precision. We repeated
the simulation 1,000 times independently and the above ratio estimates ranged
between 2.34 and 24.41.

5. Discussion

We present two MCMC algorithms for exploring the posterior density associated
with a Bayesian robit model with a normal prior on the regression coefficients.
The first one is a DA algorithm which is obtained using the fact that t distribu-
tion can be expressed as a scale mixture of normal distributions. We then use the
group action recipe given in [10] to construct an efficient sandwich algorithm.
Unlike most of the sandwich algorithms available in the literature, we do not con-
sider a group action on the entire augmented space defined through component-
wise multiplication. The sandwich algorithm converges faster than the DA al-
gorithm in the Markov operator norm sense. Also, the sandwich algorithm is
more efficient than the DA algorithm in the sense that the asymptotic variance
in the CLT under the sandwich algorithm is no larger than that under the DA
algorithm. Since the only difference between a single iteration of the sandwich
algorithm and that of the DA algorithm is a univariate draw from a gamma
distribution, the two algorithms are essentially equivalent in terms of computa-
tional effort. Thus, we prefer the sandwich algorithm to the DA algorithm.

We prove that, under certain conditions, both DA and sandwich algorithms
converge at a geometric rate. These convergence rate results are important from
a practical standpoint because geometric ergodicity guarantees the existence of
central limit theorems which are essential for the calculation of valid asymptotic
standard errors for MCMC based estimates. Our results are illustrated through
a numerical example.

In this paper we have considered a multivariate normal prior distribution
for the regression coefficients β. As a possible avenue for future work, it would
be interesting to see if the methods presented here can be used to establish
geometric convergence of MCMC algorithms for Bayesian robit models with
other priors on β, e.g., a multivariate Student’s t prior or an improper uniform
prior. Recently [20] [also see 11] showed that a DA algorithm can be obtained
for Bayesian logistic models using the mixture normal representation of logistic
distribution. It would also be interesting to see if the DA algorithms for Bayesian
logistic regression converge at a geometric rate.

Appendix A: A Mill’s ratio type result for Student’s t distribution

The following result can be gleaned from [25], but here we give a proof for
completeness.
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Lemma 1. For u > 0 we have

1

(1− Fν(u))(ν + u2)
ν−1

2

≥ u

κ
,

where κ = Γ((ν − 1)/2) νν/2/(2
√
πΓ(ν/2)) and as before Fν(·) is the cdf of

tν(0, 1).

Proof. Let U ∼ tν(0, 1), that is, U follows the t-distribution with mean 0, vari-
ance 1 and ν d.f. The pdf of U is

fν(u) =
Γ(ν+1

2 )

Γ(ν2 )
√
νπ

1

(1 + u2

ν )
ν+1

2

,−∞ < u < ∞ .

Then,

1− Fν(u) =

∫ ∞

u

fν(t)dt

=
Γ(ν+1

2 )

Γ(ν2 )
√
νπ

∫ ∞

u

1

(1 + t2

ν )
ν+1

2

dt

=
1

Γ(ν2 )
√
νπ

∫ ∞

u

∫ ∞

0

w
ν+1

2
−1 exp

[

−
(

1 +
t2

ν

)

w
]

dw dt

=
1

Γ(ν2 )
√
νπ

∫ ∞

0

w
ν−1

2 e−w

∫ ∞

u

e−
t2w
ν dt dw .

Since u > 0, using a well known bound for Mill’s ratio [3, p. 175] we have

∫ ∞

u

e−
t2w
ν dt =

√

ν

2w

∫ ∞

√
2u
ν w

e−
v2

2 dv

≤
√

ν

2w

1
√

2w
ν u

e−
u2w
ν

=
ν

2uw
e−

u2w
ν .

Therefore, we have

1− Fν(u) ≤ ν

Γ(ν2 )
√
νπ

1

2u

∫ ∞

0

w
ν−1

2
−1e−w(1+u2

ν )dw

=
1

2u

√

ν

π

1

Γ(ν2 )

Γ(ν−1
2 )

(1 + u2

ν )
ν−1

2

,

or, equivalently
1

(1− Fν(u))(ν + u2)
ν−1

2

≥ u

κ
.
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Appendix B: Proof of Theorem 1

Proof. We use V (β) = βTXTXβ to establish a drift condition. Since X is
assumed to have full rank (condition A1), the level sets {β : V (β) ≤ α} are
compact. By Fubini’s theorem, we have

(KV )(β) =

∫

Rp

V (β′) k(β′ |β) dβ′

=

∫

Z

∫

R
n
+

∫

Rp

V (β′)π(β′ |λ, z, y)π(λ, z |β, y) dβ′ dλ dz

=

∫

Z

∫

R
n
+

∫

Rp

V (β′)π(β′ |λ, z, y)π(λ | z, β, y)π(z |β, y) dβ′ dλ dz

=

∫

Z

{
∫

R
n
+

(
∫

Rp

V (β′)π(β′ |λ, z, y) dβ′

)

π(λ | z, β, y) dλ
}

π(z |β, y) dz

= E
[

E
{

E
(

V (β′)
∣

∣λ, z, y
) ∣

∣ z, β, y
}

∣

∣ β, y
]

, (B.1)

where, as the notation suggests, the (conditional) expectations are with respect
to the densities π(β |λ, z, y), π(λ | z, β, y) and π(z |β, y) in the given order. The
inner-most expectation in (B.1) is with respect to π(β |λ, z, y), which is a multi-
variate normal density. The next level expectation is with respect to π(λ | z, β, y),
which is a product of univariate gamma densities. And, lastly, the outer-most ex-
pectation is with respect to π(z |β, y), which is a product of truncated Student’s
t densities.

Starting with the innermost expectation, we have

E
(

V (β′)|λ, z, y
)

= E
(

β′TXTXβ′|λ, z, y
)

= tr
(

(XTX)(XTΛX +Σa)
−1

)

+ (zTΛX + βT
a Σa)(X

TΛX +Σa)
−1

×XTX(XTΛX +Σa)
−1(XTΛz +Σaβa), (B.2)

where tr(·) denote the trace of a matrix. Note that,

tr
(

(XTX)(XTΛX +Σa)
−1

)

= tr
((

n
∑

i=1

xix
T
i

)

(XTΛX +Σa)
−1

)

=

n
∑

i=1

xT
i (X

TΛX +Σa)
−1xi

=

n
∑

i=1

xT
i

(

n
∑

j=1

(λj + c)xjx
T
j

)−1

xi,

where the last equality follows from our assumption that Σa = cXTX . Now

xT
i

(

n
∑

j=1

(λj + c)xjx
T
j

)−1

xi =
1

λi + c
xT
i

(

n
∑

j=1

λj + c

λi + c
xjx

T
j

)−1

xi
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Since
n
∑

j=1

λj + c

λi + c
xjx

T
j =

1

λi + c

(

XTΛX +Σa

)

is a positive definite matrix and

n
∑

j=1

λj + c

λi + c
xjx

T
j − xix

T
i =

∑

j 6=i

λj + c

λi + c
xjx

T
j

is positive semidefinite, from Roy and Hobert’s [2010] Lemma 3, it follows that

xT
i

(

n
∑

j=1

(λj + c)xjx
T
j

)−1

xi ≤
1

λi + c
.

Therefore,

tr
(

(XTX)(XTΛX +Σa)
−1

)

≤
n
∑

i=1

1

λi + c
≤ n

c
.

Now we consider the second term in (B.2). Note that

(zTΛX + βT
a Σa)(X

TΛX +Σa)
−1XTX(XTΛX +Σa)

−1(XTΛz +Σaβa)

= zTΛX(XTΛX +Σa)
−1XTX(XTΛX +Σa)

−1XTΛz

+ βT
a Σa(X

TΛX +Σa)
−1XTX(XTΛX +Σa)

−1Σaβa

+ 2zTΛX(XTΛX +Σa)
−1XTX(XTΛX +Σa)

−1Σaβa

= A+B + C, (B.3)

where A,B and C denote the first, second and the third terms in the above
expression. Note that, all of these three terms are functions of random vectors
z and λ as well as the prior covariance matrix Σ−1

a and the data (y,X). We will
analyze each of these three terms separately. We begin with the second term.
Note that

B = βT
a Σa(X

TΛX +Σa)
−1XTX(XTΛX +Σa)

−1Σaβa

≤ βT
a Σa(X

TΛX +Σa)
−1

[1

c

(

XTΛX + cXTX
)]

(XTΛX +Σa)
−1Σaβa

=
1

c
βT
a Σa(X

TΛX +Σa)
−1

(

XTΛX +Σa

)

(XTΛX +Σa)
−1Σaβa

=
1

c
βT
a Σa(X

TΛX +Σa)
−1Σaβa,

where the inequality follows from the fact that 1
cX

TΛX is a positive semidefinite
matrix and the second equality is due to our assumption that Σa = cXTX .
Since XTΛX is positive semidefinite, it follows that [see e.g. 28, page 70] Σ−1

a −
(XTΛX +Σa)

−1 is positive semidefinite. So we have

B ≤ 1

c
βT
a ΣaΣ

−1
a Σaβa =

1

c
βT
a Σaβa = βT

a X
TXβa.
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Let us denote the constant βT
a X

TXβa by L1. Next, we consider the last term
in (B.3). By Cauchy-Schwartz inequality, we have

zTΛX(XTΛX +Σa)
−1XTX(XTΛX +Σa)

−1Σaβa ≤
√
A.B ≤

√

L1

√
A.

Therefore, we have C ≤ 2
√
L1

√
A. We will analyze the first term A in (B.3)

later. Putting all of this together, from (B.2) we have

E(V (β′)|z, λ, y) ≤ n

c
+A+B + C ≤ n

c
+ L1 +A+ 2

√

L1

√
A. (B.4)

Now we consider the second level expectation in (B.1), that isE{E(V (β′) |λ, z, y) |
z, β, y

}

. Note that

E
{

E
(

V (β′)
∣

∣λ, z, y
) ∣

∣ z, β, y
}

≤ n

c
+ L1 + E(A|z, β, y) + 2

√

L1E(
√
A|z, β, y)

≤ n

c
+ L1 + E(A|z, β, y) + 2

√

L1

√

E(A|z, β, y)

≤ n

c
+ L1 + E(A|z, β, y) + 2

√

L1(1 + E(A|z, β, y))

=
n

c
+ L1 + 2

√

L1 + (1 + 2
√

L1)E(A|z, β, y),
(B.5)

where the first inequality follows from (B.4), second inequality is an application
of the Jensen’s inequality and the last inequality is due to the fact that

√
x ≤

1 + x for x ≥ 0. Now we will construct an upper bound of E(A|z, β, y). By
similar arguments that was used before to bound the term B, we have

A = zTΛX(XTΛX +Σa)
−1XTX(XTΛX +Σa)

−1XTΛz

≤ zTΛX(XTΛX +Σa)
−1

[1

c

(

XTΛX + cXTX
)]

(XTΛX +Σa)
−1XTΛz

=
1

c
zTΛX(XTΛX +Σa)

−1(XTΛX +Σa)(X
TΛX +Σa)

−1XTΛz

=
1

c
zTΛX(XTΛX +Σa)

−1XTΛz.

Since Σa is positive semidefinite, we know that (XTΛX)−1 − (XTΛX +Σa)
−1

is positive semidefinite. So we have

A ≤ 1

c
zTΛX(XTΛX)−1XTΛz.

Now,

zTΛz− zTΛX(XTΛX)−1XTΛz = zTΛ
1
2

(

I −Λ
1
2X(XTΛX)−1XTΛ

1
2

)

Λ
1
2 z ≥ 0.

Therefore, we have

A ≤ 1

c
zTΛz =

1

c

n
∑

i=1

λiz
2
i ≤ 1

c

n
∑

i=1

λi

n
∑

i=1

z2i .
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Thus we have

E(A|z, β, y) ≤ 1

c

(

n
∑

i=1

z2i

)

E
(

n
∑

i=1

λi|z, β, y
)

.

Now recall that π(λ|z, β, y) is product of n univariate Gamma densities with

λi|z, β, y ∼ Gamma
(ν + 1

2
,
ν + (zi − xT

i β)
2

2

)

.

So we have

E
(

n
∑

i=1

λi|z, β, y
)

≤
n
∑

i=1

ν + 1

ν + (zi − xT
i β)

2
≤ n(ν + 1)

ν
.

Thus

E
(

A|z, β, y
)

≤ n(ν + 1)

cν

n
∑

i=1

z2i ,

and so from (B.5) we have

E
{

E
(

V (β′)
∣

∣λ, z, y
) ∣

∣ z, β, y
}

≤ n

c
+ L1 + 2

√

L1 + (1 + 2
√

L1)
n(ν + 1)

cν

n
∑

i=1

z2i .

Finally, we consider the outer-most expectation in (B.1). Note that

(KV )(β) = E
[

E
{

E
(

V (β′)
∣

∣λ, z, y
)
∣

∣ z, β, y
}

∣

∣β, y
]

≤ n

c
+ L1 + 2

√

L1 + (1 + 2
√

L1)
n(ν + 1)

cν

n
∑

i=1

E(z2i |β, y). (B.6)

In order to calculate
∑n

i=1 E(z2i |β, y), recall that conditional on (β, y), z1, . . . , zn
are independent with zi|β, y ∼ T tν(x

T
i β, yi). Since ν > 2, simple calculations

using the results in [15] show that

E(z2i |β, y) =



















ν
ν−2 + (xT

i β)
2 − κ(xT

i β)

1−Fν(xT
i β)

· 1

(ν+(xT
i β)2)

ν−1
2

if yi = 0

ν
ν−2 + (xT

i β)
2 +

κ(xT
i β)

Fν(xT
i β)

· 1

(ν+(xT
i β)2)

ν−1
2

if yi = 1

where κ is as defined in Appendix A or we can simply write

E(z2i |β, y) =
ν

ν − 2
+ (wT

i β)
2 − κ

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2

.

So

n
∑

i=1

E(z2i |β, y) =
nν

ν − 2
+

n
∑

i=1

(wT
i β)

2 − κ

n
∑

i=1

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2

(B.7)
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Note that
∑n

i=1 E(z2i |β = 0, y) = nν
ν−2 . In order to bound the above expression

when β ∈ Rp \ {0}, as in [32] we construct a partition of the set Rp \ {0}
using the n hyperplanes defined by wT

i β = 0. For a positive integer m, define
Nm = {1, 2, . . . ,m}. Let D1, D2, . . . , D2n denote all the subsets of Nn, and, for
each j ∈ N2n , define a subset of the p-dimensional Euclidean space as follows:

Sj =
{

β ∈ Rp \ {0} : wT
i β ≤ 0 for all i ∈ Dj and wT

i β > 0 for all i ∈ D̄j

}

where D̄j denotes the complement of Dj ; that is, D̄j = Nn \Dj . Note that the
sets Sj ’s are disjoint, ∪2n

j=1Sj = Rp \ {0}, and some of the Sj’s may be empty.
Since the condition A2 is in force, following [32] we can show that if Sj is

nonempty, then so are Dj and D̄j . Now define E =
{

j ∈ N2n : Sj 6= ∅
}

. For
each j ∈ E, define

Rj(β) =

∑

i∈Dj
(wT

i β)
2

∑n
i=1(w

T
i β)

2
=

∑

i∈Dj
(wT

i β)
2

∑

i∈Dj
(wT

i β)
2 +

∑

i∈Dj
(wT

i β)
2
.

and
ρj = sup

β∈Sj

Rj(β) .

From [32] we know that ρj < 1 for all j ∈ E. Now we consider the following
Mill’s ratio type expression for Student’s t distribution

u

(1− Fν(u))(ν + u2)
ν−1

2

.

Since ν > 2, it is clear that if we define

M = sup
u∈(−∞,0]

∣

∣

∣

∣

u

(1− Fν(u))(ν + u2)
ν−1

2

∣

∣

∣

∣

,

then M ∈ (0,∞). From Lemma 1 we know that when u > 0,

u

(1− Fν(u))(ν + u2)
ν−1

2

≥ u2

κ
.

Fix j ∈ E. It follows from (B.7) and above two results that for all β ∈ Sj , we
have
n
∑

i=1

E(z2i |β, y) =
nν

ν − 2
+

n
∑

i=1

(wT
i β)

2 − κ
∑

i∈Dj

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2

− κ
∑

i∈D̄j

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2

≤ nν

ν − 2
+

n
∑

i=1

(wT
i β)

2 + κ
∑

i∈Dj

∣

∣

∣

∣

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2

∣

∣

∣

∣

− κ
∑

i∈D̄j

wT
i β

1− Fν(wT
i β)

· 1

(ν + (wT
i β)

2)
ν−1

2
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≤ nν

ν − 2
+ nκM +

n
∑

i=1

(wT
i β)

2 −
∑

i∈D̄j

(wT
i β)

2

=
nν

ν − 2
+ nκM +

∑

i∈Dj

(wT
i β)

2

=
nν

ν − 2
+ nκM +Rj(β)

n
∑

i=1

(wT
i β)

2

≤ nν

ν − 2
+ nκM + ρjV (β)

Therefore, since ⊎j∈ESj = Rp \ {0}, it follows that for all β ∈ Rp, we have

n
∑

i=1

E(z2i |β, y) ≤
nν

ν − 2
+ nκM + ρ′V (β) ,

where ρ′ := max
j∈E

ρj < 1. Finally from (B.6)

(KV )(β) ≤ n

c
+ L1 + 2

√

L1 + (1 + 2
√

L1)
n(ν + 1)

cν

n
∑

i=1

E(z2i |β, y)

≤ L+ ρV (β), (B.8)

where L := n
c +L1+2

√
L1+

n(ν+1)
cν (1+2

√
L1)(

nν
ν−2+nκM) and ρ = ρ′ n(ν+1)

cν (1+

2
√

βT
a X

TXβa). Since ρ′ < 1 and n < cν

(ν+1)(1+2
√

βT
a XTXβa)

, ρ is also less than

1. So the DA chain is geometrically ergodic.
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