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Abstract: We investigate two models for the following setup: We consider
a stochastic process X ∈ C[0, 1] whose distribution belongs to a parametric
family indexed by ϑ ∈ Θ ⊂ R. In case ϑ = 0, X is a generalized Pareto
process. Based on n independent copies X

(1), . . . ,X(n) of X, we estab-
lish local asymptotic normality (LAN) of the point process of exceedances
among X

(1), . . . ,X(n) above an increasing threshold line in each model.
The corresponding central sequences provide asymptotically optimal se-

quences of tests for testing H0 : ϑ = 0 against a sequence of alternatives
Hn : ϑ = ϑn converging to zero as n increases. In one model, with an un-
derlying exponential family, the central sequence is provided by the number
of exceedances only, whereas in the other one the exceedances themselves
contribute, too. However it turns out that, in both cases, the test statistics
also depend on some additional and usually unknown model parameters.

We, therefore, consider an omnibus test statistic sequence as well and
compute its asymptotic relative efficiency with respect to the optimal test
sequence.
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1. Introduction

In the recent three decades, the focus of univariate extreme value theory has
shifted from the investigation of maxima (minima) in a sample to the inves-
tigation of exceedances above a high threshold. This approach towards large
observations eased accessing the field of extreme value theory and became a
crucial tool for various applied disciplines, such as building dykes.

Since the publications of the articles by Balkema and de Haan (1974) and
Pickands (1975) it is known that exceedances above a high threshold can reason-
ably be modeled only by (univariate) generalized Pareto distributions (GPD),
resulting in the peaks-over-threshold approach (POT). Due to practical neces-
sity, the focus of extreme value theory has moved in recent years to multivariate
observations as well. Accordingly, the investigation of multivariate exceedances
enforced the definition and investigation of multivariate GPD. This investigation
is still lively continuing as even the definition of multivariate GPD is under de-
bate; see, for instance, Tajvidi (1996, PaperB), Beirlant et al. (2004, Section 8.3),
Rootzén and Tajvidi (2006) and Falk, Hüsler and Reiss (2010, Chapter 5).

As already mentioned by de Haan and Ferreira (2006, p. 293): Infinite-di-
mensional extreme value theory is not just a theoretical extension of multivari-

ate extreme value theory to a more abstract context. It serves to solve concrete

problems as well. Such concrete problems are, e.g., observing dykes and tides
along their whole width and not only at a finite set of observation points. There
is, consequently, the need for a POT approach for functional data and for gen-
eralized Pareto processes as well. Again, the data exceeding some kind of a high
threshold are modeled by a functional counterpart of a GPD; see Aulbach, Falk
and Hofmann (2012a) and Ferreira and de Haan (2012). The current paper deals
with optimal tests that check for particular models whether those exceedances
do, in fact, arise from such a kind of process.

1.1. Basic mathematical material

Following Buishand, de Haan and Zhou (2008) and Ferreira and de Haan (2012),
a standard generalized Pareto process, i.e., a generalized Pareto process with
ultimately uniform tails in the margins, is defined as follows. For convenience,
we use bold font such as V for stochastic processes and default font such as
f for non stochastic functions. All operations on functions such as f ≤ 0 are
meant pointwise.

Definition 1.1. Let U be an on (0, 1) uniformly distributed random variable
(rv) and let Z = (Zt)t∈[0,1] ∈ C[0, 1] be a stochastic process on the interval [0, 1]
having continuous sample paths. We require that U and Z are independent and
choose an arbitrary constant M < 0. Then

V := (Vt)t∈[0,1] :=

(

max

(

−
U

Zt
,M

))

t∈[0,1]

. (1)
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defines a standard generalized Pareto process (GPP) if 0 ≤ Zt ≤ m, E(Zt) = 1,
t ∈ [0, 1], hold for some constant m ≥ 1. A stochastic process Z ∈ C[0, 1] with
these two properties will be called a generator.

The role of the constantM is twofold: On the one hand it prevents division by
zero in the definition (1) of a GPP, on the other hand it reflects the fact that the
behavior of a GPP is prescribed only in its upper tail, i.e., above the constantM .
Note that the finite-dimensional marginal distributions of V are multivariate
GPD with ultimately uniform tails; see, e.g., Aulbach, Bayer and Falk (2012).

The process V in (1) is characterized by the fact that its functional distri-
bution function (df) is given by

P (V ≤ f) = 1−E

(

sup
t∈[0,1]

(|f(t)|Zt)

)

, f ∈ Ē−[0, 1], ‖f‖∞ ≤ min

(

|M | ,
1

m

)

.

We set Ē−[0, 1] := {f ∈ E[0, 1] : f ≤ 0} where E[0, 1] denotes the set of all
bounded functions f : [0, 1] → R that have only a finite number of discontinu-
ities. The space C[0, 1] of continuous functions is, obviously, a subset of E[0, 1].
A suitable choice of f ∈ Ē−[0, 1] allows the immediate incorporation of the finite
dimensional distributions of V in its functional df: Choose 0 ≤ t1 < · · · < td ≤ 1,
x1, . . . , xd ≤ 0 and put f(t) :=

∑d
i=1 xi1{ti}(t). Then

P (V ≤ f) = P (Vti ≤ xi, i = 1, . . . , d).

It is, moreover, obvious that

‖f‖D := E

(

sup
t∈[0,1]

(|f(t)|Zt)

)

, f ∈ E[0, 1],

defines a norm on E[0, 1], called D-norm with generator Z; see Aulbach, Falk
and Hofmann (2012b). This representation of the df of V in terms of a D-norm
is in complete analogy with the multivariate case of a GPD. We refer again to
Falk, Hüsler and Reiss (2010, Section 5.1).

For each standard GPP there is a corresponding standard max-stable process
(MSP), i.e., a stochastic process η = (ηt)t∈[0,1] ∈ C[0, 1] such that

P (η ≤ f) = exp (−‖f‖D) , f ∈ Ē−[0, 1]. (2)

Note that this implies P (ηt ≤ x) = exp(x), x ≤ 0, t ∈ [0, 1]. On the other
hand, the df of each max-stable process η having standard negative exponential
margins has a representation as in Equation (2); we refer to Aulbach, Falk and
Hofmann (2012b) for details.

1.2. Overview of the current paper

We replace the rv U in equation (1) by a rv W ≥ 0 which is independent of Z,
too. However, the distribution of W is different from the uniform one and, thus,
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the process

X := (Xt)t∈[0,1] :=

(

max

(

−
W

Zt
,M

))

t∈[0,1]

(3)

is no longer a standard GPP.
This gives rise to the following problem: Based on the exceedances in a sample

of n independent copies X(1), . . . ,X(n) of X above a high threshold line, how
close can the df of W get to that of U with the difference still being detected?

The distance between the df of W and U will be measured in terms of their
densities, i.e., we will assume parametric models for the distance of the density
of W from the constant function one, see equations (4) and (5) below. As we
consider exceedances above a high threshold, only the lower end of the density
of W matters.

Within these parametric models {Hϑ : ϑ ∈ Θ} for the df Hϑ of W we can
derive optimal tests detecting the deviation of the distribution of the upper tail
of X from that of V , i.e., the deviation of ϑ from zero. This is the content of
the present paper, which is organized as follows.

In Section 2 we require that the df Hϑ of W has a density hϑ near zero, which
satisfies for some δ > 0 the expansion

hϑ(u) = 1 + ϑuδ + o(uδ) as u ↓ 0 (4)

with some parameter ϑ ∈ Θ, where zero is an inner point of Θ ⊂ R. The standard
exponential df, for instance, satisfies this condition with δ = 1 and ϑ = −1. The
null-hypothesis ϑ = 0 is meant to be the uniform distribution on (0, 1).

In Section 3 we assume that the distribution of W belongs to an exponential
family given by the probability density

hϑ(u) = C(ϑ) exp(ϑT (u)), 0 ≤ u ≤ 1, ϑ ∈ R. (5)

In both models we establish local asymptotic normality (LAN) of the point
process of exceedances amongX(1), . . . ,X(n) above an increasing threshold line.
The results, which are stated in Theorem 2.3 and Theorem 3.2, provide in each
model the corresponding central sequence and, thus, optimal tests for testing
ϑ = 0 against a sequence of alternatives ϑn converging to zero as the sample size
increases. It turns out that the particular values of the exceedances contribute
to the central sequence only in model (4), whereas in the exponential family (5)
the number of exceedances alone yields the central sequence.

Different to the present paper, in which we focus on parametric models for the
rv W and view Z as a functional nonparametric nuisance parameter, Aulbach
and Falk (2012) considered a particular parametric model for the distribution of
the generatorZ, indexed by β > 0. This model goes back to de Haan and Pereira
(2006). LAN of a point process of exceedances above a high constant threshold
function was established within this setup. The central sequence turned out
to be just the number of exceedances. As an application, obtained from LAN-
theory, it was shown that within this parametric model the frequency estimator
of the underlying β0 is asymptotically efficient.
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The fact that just the number of realizations in shrinking sets provides the
central sequence was characterized for truncated processes in quite a general
framework in Falk (1998) and Falk and Liese (1998).

It turns out that the central sequences and, thus, the asymptotically optimal
tests within our setup depend on further parameters of the generator process Z,
which might be unknown in practice. We, therefore, consider an omnibus test
for testing ϑ = 0 as well. We compute its asymptotic relative efficiency (ARE)
with respect to the optimal test in each model. While ARE is positive in model
(4), it turns out to be zero in model (5).

To make the presentation more fluid, the proofs of our main results are post-
poned to Section 4.

2. Testing in δ-neighborhoods of a standard GPP

This section deals with optimal tests in the model introduced in (4). We assume
that the df of the rv W ≥ 0 in (3) belongs to a parametric family {Hϑ : ϑ ∈ Θ}
of distributions, where Θ is an open subset of R containing 0. By H0 we denote
the uniform distribution on the interval (0, 1). In addition to (4), it is required
that there is some u0 ∈ (0, 1) such that the density hϑ(u) of Hϑ(u) exists for
u ∈ [0, u0], ϑ ∈ Θ, and satisfies for some δ ∈ (0, 1] the expansion

hϑ(u) = 1 + ϑuδ + rϑ(u), u ∈ [0, u0], (6)

where rϑ(0) = 0, ϑ ∈ Θ, and

sup
0<|ϑ|≤ε0

∣

∣

∣

∣

rϑ(u)

ϑuδ

∣

∣

∣

∣

= o(1) (7)

as u ↓ 0 for some ε0 > 0. Obviously, (7) is equivalent with rϑ(u) = o(ϑuδ) as
u ↓ 0, uniformly for |ϑ| ≤ ε0. Since we have h0 = 1 and r0 = 0, (6) and (7)
imply in particular the representation

hϑ(u) = h0(u)
(

1 +O
(

(H0(u))
δ
))

,

i.e., the lower tail of Hϑ is in a δ-neighborhood of H0; see Falk, Hüsler and Reiss
(2010, Section 2.2).

Example 2.1. Take the exponential model

Hϑ(u) :=
exp(ϑu)− 1

ϑ
, 0 ≤ u ≤ log(1 + ϑ)/ϑ, ϑ ∈ [−1,∞),

with the convention H0(u) = limϑ→0 Hϑ(u) = u, u ∈ [0, 1]. Hϑ is the df of the
rv log(1+ϑU)/ϑ, where U is uniformly on (0, 1) distributed. The density of Hϑ

satisfies

hϑ(u) = exp(ϑu)

= 1 + ϑu+ (exp(ϑu)− 1− ϑu)

=: 1 + ϑu+ rϑ(u), 0 ≤ u ≤ log(1 + ϑ)/ϑ,
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and, thus, condition (6) and (7) are satisfied with ϑ ∈ Θ = (−1, 1), u0 = 1 and
δ = 1.

Moreover, we assume

A := E

(

inf
t∈[0,1]

Zt

)

> 0. (8)

As inft∈[0,1] Zt ≥ 0, this condition is equivalent with the assumption that
inft∈[0,1] Zt is not the constant function zero. Condition (8) is, for instance,
satisfied if Z = 2U , where U = (Ut)t∈[0,1] ∈ C[0, 1] is a copula process such

that −U ∈ D(η), η ∈ C[0, 1] being a standard MSP. This is implied by the fact
that in this case P

(

inft∈[0,1] Ut > 0
)

= 1, which can bee seen by elementary
arguments.

Note that (8) and Hölder’s inequality also give

B := E

(

inf
t∈[0,1]

Z1+δ
t

)

> 0. (9)

2.1. Local asymptotic normality

In order to derive asymptotically optimal tests in this model, we first establish
LAN of the point process of exceedances

Nn,c(B) :=
∑

i≤n

ε
supt∈[0,1]

(

X
(i)
t /c

)(B ∩ [0, 1]), B ∈ B,

where X(i), i ≤ n, are independent copies of X in (3) and c < 0. B denotes the
σ-field of Borel sets of R and εx is the point measure with mass one at x. Note
that

sup
t∈[0,1]

Xt

c
≤ u ⇐⇒ X ≥ cu, u ∈ [0, 1], (10)

i.e., the random point measureNn,c actually represents those observations among
X(1), . . . ,X(n) which exceed the constant threshold function c.

Denote those observations among supt∈[0,1](X
(i)
t /c) with supt∈[0,1](X

(i)
t /c)≤ 1,

i ≤ n, by Y1, . . . , Yτ(n) in the order of their outcome. Then we have

Nn,c(B) =
∑

k≤τ(n)

εYk
(B), B ∈ B.

By Theorem 1.4.1 in Reiss (1993) we may assume without loss of generality that
Y1, Y2, . . . are independent copies of a rv Y with df

Pϑ(Y ≤ u) =
Pϑ(X ≥ cu)

Pϑ(X ≥ c)
, 0 ≤ u ≤ 1,

under parameter ϑ, and that they are independent of the total number τ(n),
which is binomial B (n, Pϑ (X ≥ c))-distributed.
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In the next lemma we provide the density fϑ,c of supt∈[0,1] (Xt/c) and, thus,
the density of Y under ϑ, which is fϑ,c/Pϑ(X ≥ c). By P ∗ Z we denote the
distribution of a rv Z.

Lemma 2.2. Suppose that the distribution of the rv W in (3) belongs to the

family {Hϑ : ϑ ∈ Θ}. Then there is some c0 < 0 such that the density fϑ,c(u),
with respect to the Lebesgue measure, of the rv sup0≤t≤1 (Xt/c) exists for ϑ ∈ Θ,

c ∈ [c0, 0), u ∈ [0, 1], and it is given by

fϑ,c(u) = |c|

∫ m

0

z hϑ(|c| zu)

(

P ∗ inf
t∈[0,1]

Zt

)

(dz).

Furthermore there exists ε0 > 0 such that

fϑ,c(u) = |c|A+ ϑ |c|
1+δ

Buδ + o
(

ϑ |c|
1+δ
)

(11)

uniformly for |ϑ| ≤ ε0 and u ∈ [0, 1] as c ↑ 0; note that f0,c(u) = |c|A.

Proof. Let m be given as in Definition 1.1 and u0, ε0, δ be given as in equations
(6) and (7). Then we obtain for c0 > max {M,−u0/m}, ϑ ∈ Θ, c ∈ [c0, 0) and
u ∈ [0, 1] by conditioning on inft∈[0,1] Zt = z and Fubini’s theorem

Pϑ(X ≥ cu) = Pϑ

(

max

(

−
W

Zt
,M

)

≥ cu, t ∈ [0, 1]

)

= Pϑ

(

W ≤ |c|u inf
t∈[0,1]

Zt

)

=

∫ m

0

Hϑ(|c| zu)

(

P ∗ inf
t∈[0,1]

Zt

)

(dz).

This representation implies that supt∈[0,1] (Xt/c) has the density

fϑ,c(u) = |c|

∫ m

0

z hϑ(|c| zu)

(

P ∗ inf
t∈[0,1]

Zt

)

(dz)

= |c|A+ ϑ |c|
1+δ

uδB + o
(

ϑ |c|
1+δ
)

as c ↑ 0, uniformly for |ϑ| ≤ ε0 and u ∈ [0, 1]. (Note that rϑ(|c| zu) = o(ϑ |c|
δ
)

uniformly for |ϑ| ≤ ε0, u ∈ [0, 1] and z ∈ [0,m] as c ↑ 0.) As H0(u) = u, we have
h0(u) = 1, u ∈ [0, 1], which completes the proof.

If c0 ≤ c < 0, then we have P0(Y ≤ u) = u, i.e., the distribution Lϑ,c(Y ) of
Y under ϑ is then dominated by L0,c(Y ) with pertaining density given by

dLϑ,c(Y )

dL0,c(Y )
(u) =

fϑ,c(u)

f0,c(u)

P0(X ≥ c)

Pϑ(X ≥ c)
, u ∈ [0, 1].
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The distribution Lϑ(Nn,c) ofNn,c under ϑ is, in this case, dominated by L0(Nn,c)
– see, e.g., Theorem 3.1.2 in Reiss (1993) – and we obtain from Reiss (1993, Ex-
ample 3.1.2) that the density of Lϑ(Nn,c) with respect to L0(Nn,c) is given by

dLϑ(Nn,c)

dL0(Nn,c)
(µ) =





µ([0,1])
∏

i=1

fϑ,c(yi)

f0,c(yi)

P0(X ≥ c)

Pϑ(X ≥ c)





×

(

Pϑ(X ≥ c)

P0(X ≥ c)

)µ([0,1])(
1− Pϑ(X ≥ c)

1 − P0(X ≥ c)

)n−µ([0,1])

where µ =
∑µ([0,1])

i=1 εyi , 0 ≤ y1, . . . , yµ([0,1]) ≤ 1 and µ([0, 1]) ≤ n. The loglikeli-
hood ratio is, consequently,

Ln,c(ϑ | 0) := log

{

dLϑ(Nn,c)

dL0(Nn,c)
(Nn,c)

}

=
∑

i≤τ(n)

log

(

fϑ,c(Yi)

f0,c(Yi)

P0(X ≥ c)

Pϑ(X ≥ c)

)

+ τ(n) log

(

Pϑ(X ≥ c)

P0(X ≥ c)

)

+ (n− τ(n)) log

(

1− Pϑ(X ≥ c)

1 − P0(X ≥ c)

)

. (12)

We let in the sequel c = cn depend on the sample size n with cn ↑ 0 and,
equally, ϑ = ϑn with ϑn → 0 as n → ∞. Precisely, we put with arbitrary ξ ∈ R

ϑn := ϑn(ξ) :=
ξ

(

n |cn|
1+2δ)1/2

. (13)

The following result provides the desired LAN property of Nn,c; it is a crucial
tool for deriving asymptotically optimal tests in the subsequent subsection. By
→D0 we denote ordinary weak convergence under ϑ = 0; the constants A, B are
given in equations (8), (9) and (11).

Theorem 2.3. Suppose that cn ↑ 0, n |cn|
1+2δ

→ ∞ as n → ∞. Then we obtain

for ϑn as in (13) the expansion

Ln,cn(ϑn | 0) =
ξB

(1 + δ)A1/2
(Zn1 + Zn2)−

ξ2B2

2A(2δ + 1)
+ oP0(1)

→D0 N

(

−
ξ2B2

2A(2δ + 1)
,

ξ2B2

A(2δ + 1)

)

with Zn1 := τ(n)−n|cn|A
(n|cn|A)1/2

→D0 N(0, 1) and

Zn2 :=
1 + δ

τ(n)1/2

∑

k≤τ(n)

(

Y δ
k −

1

1 + δ

)

→D0 N

(

0,
δ2

2δ + 1

)

being independent.
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2.2. Testing ϑ = 0 against ϑ = ϑn

Denote by uα = Φ−1(1− α) the (1− α)-quantile of the standard normal df. By
the Neyman-Pearson lemma and Theorem 2.3, the test statistic

ϕ1 (Nn,cn) = 1(uα,∞)

(

(2δ + 1)1/2

1 + δ
(Zn1 + Zn2)

)

defines an asymptotically optimal level-α test, based on Nn,cn , for H0 : ϑ = 0

against ϑn = ϑn(ξ) = ξ/(n |cn|
1+2δ

)1/2 with ξ > 0. As ϕ1 (Nn,cn) does not
depend on ξ, this test is asymptotically optimal, uniformly in ξ > 0, within the
class of tests that depend on Nn,cn .

The corresponding uniformly asymptotically optimal test for H0 against
ϑn(ξ) with ξ < 0 is

ϕ2 (Nn,cn) = 1(−∞,−uα)

(

(2δ + 1)1/2

1 + δ
(Zn1 + Zn2)

)

.

The asymptotic power functions of these tests are provided by Theorem 2.3
as well. By LeCam’s third lemma we obtain that under ϑn = ϑn(ξ)

Ln,cn(ϑn | 0) =
ξB

(1 + δ)A1/2
(Zn1 + Zn2)−

ξ2B2

2A(2δ + 1)
+ oPϑn

(1)

→Dϑn
N

(

ξ2B2

2A(2δ + 1)
,

ξ2B2

A(2δ + 1)

)

with

Zn1 + Zn2 →Dϑn
N

(

ξB(1 + δ)

A1/2(2δ + 1)
,
(1 + δ)2

2δ + 1

)

.

The asymptotic power functions of ϕi are, consequently, given by

lim
n→∞

Eϑn(ξ) (ϕi (Nn,cn)) = 1− Φ

(

uα −
|ξ|B

A1/2(2δ + 1)1/2

)

. (14)

If supt∈[0,1] Zt = m a.s., then supt∈[0,1]Xt = max(−W/m,M). In this case
we obtain a non censored observation Y by considering only those realizations
of supt∈[0,1]Xt greater than c, i.e.,

sup
t∈[0,1]

Xt ≥ c ⇐⇒ W ≤ |c|m,

provided c > M . As M and m are assumed to be unknown, one has to let the
threshold c = cn depend on n and shrink to zero as n increases. The Neyman-
Pearson lemma for testing the density

hϑ(u) = 1 + ϑuδ + o(uδ) against hϑ0(u) = 1, 0 ≤ u ≤ 1,

based on the non censored observations Yi, i ≤ τ(n), is then given by the second
part Zn2 of the central sequence in Theorem 2.3. As the test ϕi(Nn,cn) uses the
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complete process Nn,cn and not only Yi, i ≤ τ(n), also the number τ(n) of non
censored observations contributes to the central sequence.

A disadvantage of the optimal test statistics ϕi (Nn,cn) is the fact that they
require explicit knowledge of the constants A and δ. To overcome this disadvan-
tage, we consider in the following an alternative test.

2.3. An omnibus test

Recall that the observations Y1, Y2, . . . are independent and, under ϑ = 0, uni-
formly on (0, 1) distributed rv if the threshold c is close to zero. Conditional
on the assumption that there is at least one exceedance, i.e., conditionally on
τ(n) > 0, the test statistic

Tn,c :=
1

τ(n)1/2

τ(n)
∑

k=1

Φ−1(Yk)

is under H0 exactly N(0, 1)-distributed. By Φ we denote the standard normal
df. This test statistic is analogous to that in Falk and Michel (2009) for testing
for a multivariate generalized Pareto distribution.

The next result provides the asymptotic distribution of Tn,cn under the al-
ternative ϑn = ϑn(ξ) as n → ∞.

Proposition 2.4. Under the assumptions of Theorem 2.3 we have

Tn,cn →Dϑn
N

(

ξ
B

A1/2

∫ ∞

−∞

x(Φ(x))δϕ(x) dx, 1

)

.

From Proposition 2.4 we obtain that

ϕ∗
1 (Nn,cn) := 1(uα,∞) (Tn,cn) , ϕ∗

2 (Nn,cn) := 1(−∞,−uα) (Tn,cn)

are one-sided tests for testing ϑ > 0 and ϑ < 0, respectively, against 0. Their
asymptotic power functions are given by

β(ξ) := lim
n→∞

Eϑn(ξ) (ϕ
∗
i (Nn,cn))

= 1− Φ

(

uα − |ξ|
B

A1/2

∫ ∞

−∞

x(Φ(x))δϕ(x) dx

)

, ξ ∈ R.
(15)

The asymptotic relative efficiency of ϕ∗
i (Nn,cn) with respect to ϕi (Nn,cn) is,

by (14) and (15), given by the ratio

(

|ξ|B
∫∞

−∞
x(Φ(x))δϕ(x) dx/A1/2

)2

(

|ξ|B/
(

A1/2(2δ + 1)1/2
))2 = (2δ + 1)

(∫ ∞

−∞

x(Φ(x))δϕ(x) dx

)2

,

which is independent of ξ.
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Denote by kn := min
{

k ∈ N : Eϑn(ξ) (ϕ
∗
i (Nk,ck)) ≥ Eϑn(ξ) (ϕi (Nn,cn))

}

the
least sample size, for which ϕ∗

i (Nkn,ckn ) performs, at ϑn(ξ), at least as good
as ϕi (Nn,cn), i = 1, 2. The relative efficiency of ϕ∗

i (Nkn,ckn ) with respect to
ϕi (Nn,cn) is then defined as n/kn. From (14) and (15) we obtain that

lim
n→∞

n |cn|
1+2δ

kn |ckn |
1+2δ

= (2δ + 1)

(∫ ∞

−∞

x(Φ(x))δϕ(x) dx

)2

=: ARE(δ), (16)

see Section 10.2 in Pfanzagl (1994) for the underlying reasoning. If we put, for
example, cn := −n−ε/(1+2δ), n ∈ N, for some ε ∈ (0, 1), then equation (16)
yields

lim
n→∞

n1−ε

k1−ε
n

= ARE(δ),

or
kn ∼

n

ARE(δ)1/(1−ε)

as n → ∞. By ∼ we denote asymptotic equivalence, i.e., the ratio of left and
right hand side converges to one.

Figure 1 displays the function ARE(δ) for δ ∈ [0, 1]. While it is nearly linear
for δ ∈ [0.25, 1] with approximate maximum value 0.24 and minimum value
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Fig 1. Asymptotic relative efficiency ARE(δ) as defined in (16).
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0.035, roughly, ARE(δ) quickly converges to zero for δ less than 0.25. With
cn chosen as above, this means that the minimum sample size kn, for which
ϕ∗
i (Nkn,cn) performs, at ϑn(ξ), as good as the optimal test ϕi (Nn,cn) with

sample size n, is asymptotically equivalent to n/ARE(δ)1/(1−ε) and, thus, an
increasing multiple of n as δ shrinks to zero. This explains the significance of
the asymptotic relative efficiency defined above.

3. Testing in an exponential family model

In this section we assume that the distribution of W belongs to an exponential
family given by the probability densities on the interval [0, 1]

hϑ(u) = C(ϑ) exp(ϑT (u)), 0 ≤ u ≤ 1, ϑ ∈ R,

where T : [0, 1] → R is a bounded Borel-measurable function satisfying

lim
u↓0

T (u) =: C ∈ R,

and C(ϑ) is defined by

C(ϑ) :=
1

∫ 1

0 exp(ϑT (u)) du
, ϑ ∈ R.

An obvious example is the family of truncated exponential distributions hav-
ing the densities

hϑ(u) = C(ϑ) exp(ϑu), 0 ≤ u ≤ 1, ϑ ∈ R,

where C(ϑ) = ϑ/(exp(ϑ) − 1) with the convention C(0) = limϑ→0 ϑ/(exp(ϑ) −
1) = 1.

Remark 3.1. From the arguments in the proof of Lemma 2.2 we obtain that
the rv sup0≤t≤1 (Xt/c) has for c < 0 close to zero and each ϑ ∈ R on [0, 1] the
Lebesgue-density

fϑ,c(u) = |c|

∫ m

0

zhϑ(|c| zu)

(

P ∗ inf
0≤t≤1

Zt

)

(dz), 0 ≤ u ≤ 1.

In what follows we put with arbitrary ξ ∈ R

ϑn := ϑn(ξ) :=
ξ

(n |cn|)1/2A1/2
(

C −
∫ 1

0
T (u) du

) ,

where we require that C 6=
∫ 1

0
T (u) du.

Theorem 3.2. Suppose that |cn| → 0, n |cn| → ∞ as n → ∞. Then we obtain

for the loglikelihood ratio in (12) the expansion

Ln,cn(ϑn | 0) = ξZn1 −
ξ2

2
+ oP0(1).
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The test statistic

φ1(Nn,cn) := 1(uα,∞)(Zn1)

defines by the Neyman-Pearson lemma an asymptotically optimal level-α test,
based onNn,cn , for the null-hypothesis ϑ = 0 against the sequence of alternatives

ϑn = ϑn(ξ) = ξ/((n |cn|)
1/2A1/2(C−

∫ 1

0 T (u) du)) with ξ > 0. As φ1(Nn,cn) does
not depend on ξ, this test is asymptotically optimal uniformly in ξ > 0, within
the class of tests that depend on Nn,cn . The corresponding uniformly optimal
test for ϑ = 0 against ϑn(ξ) with ϑ < 0 is

φ2(Nn,cn) := 1(−∞,−uα)(Zn1).

From LeCam’s third lemma we obtain that under ϑn = ϑn(ξ)

Ln,cn(ϑn | 0) = ξZn1 −
ξ2

2
+ oPn(1) →Dϑn

N

(

ξ2

2
, ξ2
)

,

with

Zn1 →Dϑn
N(ξ, 1).

The asymptotic power functions of φi, i = 1, 2, are, consequently, given by

lim
n→∞

EPϑn
(φi(Nn,cn)) = 1− Φ(uα − |ξ|), i = 1, 2.

Next we compute the performance of the statistic Tn,c = τ(n)−1/2 ×
∑τ(n)

k=1 Φ−1(Yk) for the testing problem ϑ = 0 against ϑn(ξ).

Lemma 3.3. We have

Eϑn,cn

(

Φ−1(Y )
)

= o(ϑn), Varϑn,cn

(

Φ−1(Y )
)

= 1 + o(ϑ2
n).

Lemma 3.3 together with the central limit theorem implies that Tn,cn →Dϑn,cn

N(0, 1) independent of ξ and, thus, different to the optimal test based on Zn1,
the test statistic Tn,cn is not capable to detect the alternative ϑn = ϑn(ξ).

4. Proofs

The proofs of the main results of this paper are given in this section.

Proof of Theorem 2.3. First we compile several facts that will be used in the
proof. From Lemma 2.2 we obtain

P0(X ≥ cn) = P (V ≥ cn) = |cn|A (Fact 1)

and, thus, a suitable version of the central limit theorem implies

τ(n)− n |cn|A

(n |cn|A)1/2
→D0 N(0, 1). (Fact 2)
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Moreover, we conclude from Lemma 2.2 for |ϑ| ≤ ε0

Pϑ(X ≥ cn)− P0(X ≥ cn) = |cn|
1+δ ϑ

1 + δ
B + o

(

ϑ |cn|
1+δ
)

(Fact 3)

and, thus,

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
=

1

(n |cn|)1/2
ξB

(1 + δ)A
+ o

(

1

(n |cn|)1/2

)

.

(Fact 4)

Hence, Taylor expansion log(1 + ε) = ε− ε2/2 + o(ε2) as ε → 0 implies

τ(n) log

(

Pϑn(X ≥ cn)

P0(X ≥ cn)

)

+ (n− τ(n)) log

(

1− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

)

= τ(n)

{

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
−

1

2

(

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)2

+O

(

∣

∣

∣

∣

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

∣

∣

∣

∣

3
)}

+ (n− τ(n))

{

P0(X ≥ cn)− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

+O
(

|Pϑn(X ≥ cn)− P0(X ≥ cn)|
2
)

}

= τ(n)
Pϑn (X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
+ (n− τ(n))

P0(X ≥ cn)− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

−
τ(n)

2

(

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)2

+ oP0(1)

as

τ(n)

∣

∣

∣

∣

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

∣

∣

∣

∣

3

∼ nP0(X ≥ cn)O

(

1

(n |cn|)3/2

)

→n→∞ 0,

where ∼ denotes asymptotic equivalence. The preceding convergence to zero
follows from the condition n |cn|

1+2δ →n→∞ ∞ and the equivalence

(n− τ(n)) |Pϑn(X ≥ cn)− P0(X ≥ cn)|
2 ∼ O (|cn|) →n→∞ 0.

From the law of large numbers and Fact 1 we obtain

τ(n)

(

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)2

∼ n |cn|A

(

1

(n |cn|)1/2
ξB

(1 + δ)A
+ o

(

1

(n |cn|)1/2

))2

→n→∞
ξ2B2

(1 + δ)2A
.
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Moreover,

τ(n)
Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
+ (n− τ(n))

P0(X ≥ cn)− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

=
Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)(1− P0(X ≥ cn))
(τ(n) − nP0(X > cn))

= (n |cn|A)
1/2

(

1

(n |cn|)1/2
ξB

(1 + δ)A(1 + o(1))
+ o

(

1

(n |cn|)1/2

))

×
τ(n)− nP0(X ≥ cn)

(n |cn|A)1/2

=
ξB

(1 + δ)A1/2
Zn1 + oP0(1).

Altogether we have shown so far that

τ(n) log

(

Pϑn(X ≥ cn)

P0(X ≥ cn)

)

+ (n− τ(n)) log

(

1− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

)

=
ξB

(1 + δ)A1/2
Zn1 −

ξ2B2

2(1 + δ)2A
+ oP0(1).

Next we show

∑

k≤τ(n)

log

(

fϑn,cn(Yk)

f0,cn(Yk)

P0(X ≥ cn)

Pϑn(X ≥ cn)

)

=
ξB

A1/2(1 + δ)
Zn2 −

ξ2B2δ2

2A(2δ + 1)(1 + δ)2
+ oP0(1).

We have by Lemma 2.2

fϑn,cn(Yk)

f0,cn(Yk)
= 1 +

ξ

(n |cn|)1/2
B

A
Y δ
k + r0(Yk, ϑn, cn),

where r0(Yk, ϑn, cn) = o((n |cn|)
−1/2

) uniformly for k and n with

E0 (r0(Y1, ϑn, cn)) =

∫ 1

0

r0(t, ϑn, cn)
f0,cn(t)

P0(X ≥ cn)
dt

=

∫ 1

0

(

fϑn,cn(t)

f0,cn(t)
− 1−

ξ

(n |cn|)1/2
B

A
tδ
)

f0,cn(t)

P0(X ≥ cn)
dt

=
Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
−

ξ

(n |cn|)1/2
B

(1 + δ)A

and

Var0 (r0(Y1, ϑn, cn)) ≤ E0

(

r20(Y1, ϑn, cn)
)

= o (1/(n |cn|)) .
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Using again the Taylor expansion log(1 + ε) = ε − ε2/2 + O(ε3) as ε → 0, we
deduce

∑

k≤τ(n)

log

(

fϑn,cn(Yk)

f0,cn(Yk)

P0(X ≥ cn)

Pϑn(X ≥ cn)

)

=
∑

k≤τ(n)

log

(

1 +
ξ

(n |cn|)1/2
B

A
Y δ
k + r0(Yk, ϑn, cn)

)

− τ(n) log

(

1 +
Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)

=
∑

k≤τ(n)

(

ξ

(n |cn|)1/2
B

A
Y δ
k + r0(Yk, ϑn, cn)−

ξ2

2n |cn|

B2

A2
Y 2δ
k

)

− τ(n)

(

Pϑn(X ≥ cn)−P0(X ≥ cn)

P0(X ≥ cn)
−

1

2

(

Pϑn(X ≥ cn)−P0(X ≥ cn)

P0(X ≥ cn)

)2
)

+ oP0 (1)

=
∑

k≤τ(n)

(

ξ

(n |cn|)1/2
B

A

(

Y δ
k −

1

1 + δ

)

+ r0(Yk, ϑn, cn)− E0(r0(Y1, ϑn, cn))

)

−
ξ2

2n |cn|

B2

A2

∑

k≤τ(n)

Y 2δ
k +

τ(n)

n |cn|

ξ2B2

2(1 + δ)2A2
+ oP0(1)

=
τ(n)1/2

(n |cn|)1/2
1

τ(n)1/2
ξB

A

∑

k≤τ(n)

(

Y δ
k −

1

1 + δ

)

−
τ(n)

2n |cn|

ξ2B2

A2

1

τ(n)

∑

k≤τ(n)

Y 2δ
k +

τ(n)

n |cn|

ξ2B2

2(1 + δ)2A2
+ oP0(1)

=
ξB

A1/2

1

τ(n)1/2

∑

k≤τ(n)

(

Y δ
k −

1

1 + δ

)

−
ξ2B2δ2

2A(2δ + 1)(1 + δ)2
+ oP0(1)

→D0 N

(

−
ξ2B2δ2

2A(2δ + 1)(1 + δ)2
,

ξ2B2δ2

A(2δ + 1)(1 + δ)2

)

by the law of large numbers and the central limit theorem. This completes the
proof of Theorem 2.3.

Proof of Proposition 2.4. First we compute the asymptotic mean and variance
of Φ−1(Y ) under ϑn and cn for n → ∞. From Lemma 2.2 we obtain that the
density of Y under ϑn is for 0 ≤ u ≤ 1 and cn ≥ c0 given by

pϑn,cn(u) =
fϑn,cn(u)

Pϑn(X ≥ cn)

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

zhϑn(|cn|uz)

(

P ∗ inf
0≤t≤1

Zt

)

(dz).
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From Fubini’s theorem and the substitution u 7→ Φ(x) we, therefore, obtain

Eϑn,cn

(

Φ−1(Y )
)

=

∫ 1

0

Φ−1(u)pϑn,cn(u) du

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ 1

0

Φ−1(u)hϑn(|cn|uz) du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ ∞

−∞

xhϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

where ϕ(x) = Φ′(x) = (2π)−1/2 exp(−x2/2), x ∈ R, is the density of the stan-
dard normal df Φ.

From condition (6) we obtain the expansion

∫ m

0

z

∫ ∞

−∞

xhϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=

∫ m

0

z

∫ ∞

−∞

x
(

1 + ϑn (|cn|Φ(x)z)
δ
+ rϑn (|cn|Φ(x)z)

)

ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= ϑn |cn|B

∫ ∞

−∞

x (Φ(x))
δ
ϕ(x) dx + o

(

ϑn |cn|
δ
)

.

From Fact 1 and Fact 3 we obtain

Pϑn(X ≥ cn) = P0(X ≥ cn) + |cn|
1+δ ϑn

1 + δ
+ o

(

ϑn |cn|
1+δ
)

= |cn|A+ |cn|
1+δ ϑn

1 + δ
B + o

(

ϑn |cn|
1+δ
)

and, thus,

Eϑn,cn

(

Φ−1(Y )
)

=
ϑn |cn|

δ
B
∫∞

−∞
x (Φ(x))

δ
ϕ(x) dx + o

(

ϑn |cn|
δ)

A+ |cn|
δ ϑn

1+δB + o
(

ϑn |cn|
δ)

=

ξ
(n|cn|)1/2

B
∫∞

−∞ x (Φ(x))
δ
ϕ(x) dx + o

(

ϑn |cn|
δ)

A+ |cn|
δ ϑn

1+δB + o
(

ϑn |cn|
δ)

=
ξ

(n |cn|)1/2
B

A

∫ ∞

−∞

x (Φ(x))
δ
ϕ(x) dx + o

(

1

(n |cn|)1/2

)

Equally, we obtain

Eϑn,cn

(

(

Φ−1(Y )
)2
)

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ ∞

−∞

x2hϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)
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=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ ∞

−∞

x2
(

1 + ϑn (|cn|Φ(x)z)
δ
+ rϑn (|cn|Φ(x)z)

)

× ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

∼ 1

and, thus, the asymptotic variance of Φ−1(Y ) is under ϑn and cn for n → ∞
equivalent to 1.

Finally we have the expansion

Eϑn,cn(τ(n)) = nPϑn(X ≥ cn)

= n |cn|A+ (n |cn|)
1/2 B

1 + δ
+ o

(

n |cn|
1+δ
)

= n |cn|A(1 + o(1)).

Now we can compute the asymptotic distribution of Tn,cn under ϑn. We have

Tn,cn =
1

τ(n)1/2

τ(n)
∑

k=1

Φ−1(Yk)

=
1

τ(n)1/2

τ(n)
∑

k=1

(

Φ−1(Yk)− Eϑn,cn

(

Φ−1(Y )
))

+ τ(n)1/2Eϑn,cn

(

Φ−1(Y )
)

,

where the first term is by a suitable version of the central limit theorem asymp-
totically standard normal distributed, and

τ(n)1/2Eϑn,cn

(

Φ−1(Y )
)

∼ Eϑn,cn

(

τ(n)1/2
)

Eϑn,cn

(

Φ−1(Y )
)

∼ (n |cn|A)
1/2 ξ

(n |cn|)1/2
B

A

∫ ∞

−∞

x (Φ(x))
δ
ϕ(x) dx

∼ ξ
B

A1/2

∫ ∞

−∞

x (Φ(x))
δ
ϕ(x) dx,

which completes the proof of Proposition 2.4.

Proof of Theorem 3.2. Again we compile several facts first.

C(ϑn) = 1− ϑn

∫ 1

0

T (u) du+ o(ϑn), n ∈ N. (Fact 5)

This follows from the expansion exp(x) = 1 + x+ o(x) as x → 0:

C(ϑn) =
1

∫ 1

0
exp(ϑT (u)) du

=
1

1 + ϑn

∫ 1

0
T (u) du+ o(ϑn)

.

Moreover, we have

Pϑn(X ≥ cn)− P0(X ≥ cn)

= ϑn |cn|A

(

C −

∫ 1

0

T (u) du

)

+ o(ϑn |cn|)
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=

(

|cn|

n

)1/2

A1/2ξ + o

(

(

|cn|

n

)1/2
)

. (Fact 6)

This can be seen as follows. From Remark 3.1 and Fact 5 we obtain

Pϑn(X ≥ cn)− P0(X ≥ cn)

=

∫ 1

0

fϑn,cn(u) du−

∫ 1

0

f0.cn(u) du

= |cn|

∫ m

0

z

∫ 1

0

hϑn(|cn| zu)− 1 du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= |cn|

∫ m

0

z

∫ 1

0

C(ϑn) exp (ϑnT (|cn| zu))− 1 du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= |cn|

∫ m

0

z

∫ 1

0

(

1− ϑn

∫ 1

0

T (x) dx+ o(ϑn)

)

(1 + ϑnC + o(ϑn))− 1 du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= ϑn |cn|A

(

C −

∫ 1

0

T (x) dx

)

+ o(ϑn |cn|),

which is Fact 6.
Fact 6 together with Fact 1 yields

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)
=

1

(n |cn|)1/2
ξ

A1/2
+ o

(

1

(n |cn|)1/2

)

. (Fact 7)

Repeating the arguments in the proof of Theorem 2.3 one shows that

τ(n) log

(

Pϑn(X ≥ cn)

P0(X ≥ cn)

)

+ (n− τ(n)) log

(

1− Pϑn(X ≥ cn)

1− P0(X ≥ cn)

)

= ξ
τ(n) − nP0(X ≥ cn)

(n |cn|A)1/2
−

ξ2

2
+ oP0(1)

= ξZn1 −
ξ2

2
+ oP0(1),

i.e., it is sufficient to prove

∑

k≤τ(n)

log

(

fϑn,cn(Yk)

f0,cn(Yk)

P0(X ≥ cn)

Pϑn(X ≥ cn)

)

= oP0(1). (17)

Repeating the arguments in the proof of Fact 6 we obtain

fϑn,cn(u)− f0,cn(u)

f0,cn(u)

=
1

A

∫ m

0

z (hϑ(|cn| zu)− 1)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)
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=
1

A

∫ m

0

z (C(ϑn) exp(ϑnT (|cn| zu))− 1)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=
1

A

∫ m

0

z

(

ϑnC − ϑn

∫ 1

0

T (x) dx+ o(ϑn)

) (

P ∗ inf
0≤t≤1

Zt

)

(dz)

= O(ϑn)

uniformly for u ∈ [0, 1] and n ∈ N. The expansion log(1+ ε) = ε− ε2/2+O
(

ε2
)

for ε → 0 together with Fact 7, thus, yields,

∑

k≤τ(n)

log

(

fϑn,cn(Yk)

f0,cn(Yk)

P0(X ≥ cn)

Pϑn(X ≥ cn)

)

=
∑

k≤τ(n)

log

(

1 +
fϑn,cn(Yk)− f0,cn(Yk)

f0,cn(Yk)

)

− τ(n) log

(

1 +
Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)

=
∑

k≤τ(n)

(

fϑn,cn(Yk)− f0,cn(Yk)

f0,cn(Yk)
−

1

2

(

fϑn,cn(Yk)− f0,cn(Yk)

f0,cn(Yk)

)2
)

− τ(n)
Pϑn (X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

+
τ(n)

2

(

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)2

+OP0

(

1

n |cn|
1/2

)

.

Note that

EP0 (fϑn,cn(Y )) =

∫ 1

0

fϑn,cn(u) du = Pϑn(X ≥ cn)

and

f0,cn(u) = |cn|A = P0(X ≥ cn).

We, thus, obtain

∑

k≤τ(n)

log

(

fϑn,cn(Yk)

f0,cn(Yk)

P0(X ≥ cn)

Pϑn(X ≥ cn)

)

=
∑

k≤τ(n)

fϑn,cn(Yk)− Pϑn(X ≥ cn)

|cn|A
−

1

2

∑

k≤τ(n)

(

fϑn,cn(Yk)− Pϑn(X ≥ cn)

|cn|A

)2

+
τ(n)

2

(

Pϑn(X ≥ cn)− P0(X ≥ cn)

P0(X ≥ cn)

)2

+OP0

(

1

n |cn|
1/2

)
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=: In − IIn + IIIn +OP0

(

1

n |cn|
1/2

)

.

From Fact 7 we obtain

IIIn ∼
n |cn|A

2

(

1

(n |cn|)1/2
ξ

A1/2
+ o

(

1

(n |cn|)1/2

))2

∼
ξ2

2
. (18)

Next we show that In = oP0(1). This assertion follows, if we show that

EP0

(

(

fϑn,cn(Yk)− Pϑn(X ≥ cn)

|cn|A

)2
)

= o

(

1

n |cn|

)

. (19)

By elementary arguments we obtain

EP0

(

(

fϑn,cn(Yk)− Pϑn(X ≥ cn)

|cn|A

)2
)

=
1

c2nA
2
EP0

(

(∫ m

0

z

∫ 1

0

hϑn(|cn| zY )− hϑn(|cn| zu)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

)2
)

=
C(ϑn)

2

A2
EP0

((∫ m

0

z

∫ 1

0

exp(ϑnT (|cn| zY ))− exp(ϑnT (|cn| zu)) du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

)2
)

= o(ϑ2
n)

which is (19).
Finally we have

EP0

(

(

fϑn,cn(Y )− |cn|A

|cn|A

)2
)

=
1

A2
EP0

(

(∫ m

0

z(hϑn(|cn| zY )− 1)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

)2
)

=
1

A2
EP0

(

(
∫ m

0

z(C(ϑn) exp(ϑnT (|cn| zY ))− 1)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

)2
)

=
1

A2
EP0

(

(∫ m

0

z

((

1− ϑn

∫ 1

0

T (u) du+ o(ϑn)

)

(1 + ϑnT (|cn| zY ) + o(ϑn))− 1

)

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

)2
)

= ϑ2
n

(

C −

∫ 1

0

T (u) du

)2

+ o(|cn|
2
ϑ2
n).
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The law of large numbers implies

IIn →n→∞ −
ξ2

2

in probability, and, hence, (18) yields

IIIn − IIn = oP0(1).

We, thus, have established (17), which completes the proof of Theorem 3.2.

Proof of Lemma 3.3. We have

Eϑn,cn

(

Φ−1(Y )
)

=

∫ 1

0

Φ−1(u)pϑn,cn(u) du

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ 1

0

hϑn(|cn|uz) du

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ ∞

−∞

xhϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz).

Fact 7 implies

∫ m

0

z

∫ ∞

−∞

xhϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=

∫ m

0

z

∫ ∞

−∞

xC(ϑn) exp (ϑnT (|cn|Φ(x)z))ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=

∫ m

0

z

∫ ∞

−∞

x

(

1− ϑn

∫ 1

0

T (u) du+ o(ϑn)

)

(1 + ϑnC + o(ϑn))ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

=

∫ m

0

z

∫ ∞

−∞

x

(

1 + ϑn

(

C −

∫ 1

0

T (u) du

)

+ o(ϑn)

)

ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= o(ϑn).

We have, moreover,

Eϑn,cn

(

(

Φ−1(Y )
)2
)

=
|cn|

Pϑn(X ≥ cn)

∫ m

0

z

∫ ∞

−∞

x2hϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz),
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where
∫ m

0

z

∫ ∞

−∞

x2hϑn(|cn|Φ(x)z)ϕ(x) dx

(

P ∗ inf
0≤t≤1

Zt

)

(dz)

= A+ ϑn

(

C −

∫ 1

0

T (u) du

)

A+ o(ϑn).

From Fact 1 and Fact 6 we obtain

Pϑn(X ≥ cn) = |cn|A+

(

|cn|

n

)1/2

A1/2ξ + o

(

(

|cn|

n

)1/2
)

and, thus,
Eϑn,cn

(

Φ−1(Y )
)

= o(ϑn)

and

Varϑn,cn

(

Φ−1(Y )
)

= Eϑn,cn

(

(

Φ−1(Y )
)2
)

− Eϑn,cn

(

Φ−1(Y )
)2

= 1 + o(ϑn).
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