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Abstract: The paper concerns the problem of pointwise adaptive estima-
tion in regression when the noise is heteroscedastic and incorrectly known.
The use of the local approximation method, which includes the local poly-
nomial smoothing as a particular case, leads to a finite family of estimators
corresponding to different degrees of smoothing. Data-driven choice of lo-
calization degree in this case can be understood as the problem of selection
from this family. This task can be performed by a suggested in Katkovnik
and Spokoiny (2008) FLL technique based on Lepski’s method. An impor-
tant issue with this type of procedures – the choice of certain tuning param-
eters – was addressed in Spokoiny and Vial (2009). The authors called their
approach to the parameter calibration “propagation”. In the present paper
the propagation approach is developed and justified for the heteroscedastic
case in presence of the noise misspecification. Our analysis shows that the
adaptive procedure allows a misspecification of the covariance matrix with
a relative error of order (log n)−1, where n is the sample size.
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1. Introduction

Consider a regression model

Y = f +Σ
1/2
0 ε, ε ∼ N (0, In) (1.1)

with response vector Y ∈ R
n and unknown diagonal covariance matrix Σ0 =

diag(σ2
0,1, . . . , σ

2
0,n). Let X be a Borel subset of Rn and Xi be fixed elements

of X . Denote by f : X → R the unknown regression function, then with f =
(f(X1), . . . , f(Xn))

⊤ model (1.1) can be written as

Yi = f(Xi) + σ0,i εi, i = 1, . . . , n. (1.2)

Given a point x ∈ X , the target of estimation is the value of f(x). The idea is
to replace model (1.2) by a local parametric model

yi = fθ(Xi) + σi ǫi, i : Xi ∈ Uh(x), (1.3)

where σi > 0 are known, Uh(x)
def
= {t : ‖t − x‖ ≤ h/2} and θ ∈ Θ ⊂ R

p is
an unknown parameter to be estimated. Denote by Ψ = (Ψ1, . . . ,Ψn) a p × n
design matrix. In the considered set-up the covariance matrix Σ0 is not known
exactly and Σ = diag(σ2

1 , . . . , σ
2
n) stands for the available covariance matrix.

Then the approximate model used instead of the true one reads as follows:

y = Ψ⊤θ +Σ1/2ε. (1.4)

Employing inside of Uh(x) one of the well-developed parametric methods we can

estimate θ by θ̃(y1, . . . , yd;x) and then use the estimator f
θ̃(Y1,...,Yd)

(x) based on

the observations from the “true” model (1.2) for estimation of f(x). Therefore
we have to choose the local model (correspondingly, the collection of estimators
of fθ(·), θ ∈ Θ) and the appropriate degree of locality h. This method of local
approximation originated from [37, 8, 19, 38, 20, 21, 40, 22].

In what follows we consider approximation by local linear models of the type:

yi = Ψiθ + σi ǫi, i : Xi ∈ Uh(x), (1.5)



Adaptation in heteroscedastic regression 863

where Ψi = Ψ(Xi) = (ψ1(Xi−x), . . . , ψp(Xi−x))⊤ is a vector of basis functions
{ψj(·)} which already are fixed. Thus the model is misspecified in two places:
in the form of the regression function and in the error distribution. The main
issue then is to choose the appropriate bandwidth h such that the estimator

f
θ̃h
(x)

def
=

p∑

j=1

θ̃
(j)
h (x)ψj(0) (1.6)

built on the base of localized data would provide a relevant estimator for f(x).
For this purposes the bandwidths selection should be done in a data-driven way,
and this problem can be formulated as adaptive selection from the finite family
{f

θ̃h
(x)}h>0. Notice also that the coefficients θ(j)(x) as well as their estimators

depend on x and should be calculated for every particular point of interest x.
On the other side the localization reduces influence of the choice of the functions
{ψj(·)} allowing to use simple collections.

The proposed approach includes the important class of polynomial regres-
sions, see [11, 22, 31, 41]. For example in the univariate case x ∈ R, due to the
Taylor theorem, the approximation of the unknown function f(t) for t close to x
can be written in the following form: fθ(t) = θ(0) + θ(1)(t−x) + · · ·+ θ(p−1)(t−
x)p−1/(p − 1)! with the parameter θ = (θ(0), θ(1), . . . , θ(p−1))⊤ corresponding
to the values of f(·) and its derivatives at the point x, if they exist. The design
matrix Ψ then consists of the columns

Ψi =
(
1, Xi − x, . . . , (Xi − x)p−1/(p− 1)!

)⊤
, i = 1, . . . , n,

and corresponds to the well known polynomial smoothing. If the regression
function is sufficiently smooth, then, up to a reminder term, for any t close to x,
f(t) ≈ fθ(t) and the estimator of f(x) at x is given by f̃(x) = f

θ̃(x)(x) = θ̃(0).

The local constant fit at a given point x ∈ R is covered as well with p = 1. In
this case the “design” matrix is a row Ψ = (1, . . . , 1) and fθ(Xi) = Ψ⊤

i θ =
θ(0) = fθ(x), i = 1, . . . , n. This type of approximation in our set-up with known
constant noise is treated in [23] and [36].

Nonparametric estimation in heteroscedastic regression under the L2 losses
was studied in [17, 18] and series of papers [13, 14]. One should mention very
interesting paper [9] on aggregation estimation under empirical losses in het-
eroscedastic Gaussian regression. For estimation of the mean with L2-risk in
Gaussian homoscedastic model with unknown variance the penalties allowing
to deal with the complexity of such a collection of models were proposed in [4].
However the problem of “local model selection” addressed in the present paper
is quite different to the model selection in the sense of [5] and [32] related to
estimation with global risk. In this set-up an amazing progress is achieved for
the model selection in heteroscedastic not necessary Gaussian regression model
in [2, 3, 34]. The minimax pointwise estimation in heteroscedastic regression is
in focus of [7].
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2. Estimation procedure

2.1. Local parametric estimation

Using the conceptual framework given in the introduction we choose the maxi-
mum likelihood estimation as a parametric method used inside of a smoothing
window. Let us briefly recall the idea of the local likelihood method dating back
to [6] and [39].

If the response variables Yi are independent and have a density v(y, s(Xi)),
then the joint log-density of the sample is given by L(s) =

∑n
i=1 log v(Yi, s(Xi))

leading to the “global” maximum likelihood estimation. Let as before fθ(·) be a
function entirely described by a vector θ ∈ Θ ⊂ R

p. The local likelihood model
does not assume that s(Xi) = fθ(Xi), but one fits the “parametric” model
locally within the smoothing window described by weights W(x) = {wi(x)}ni=1.
The local log-likelihood is defined as

L(W , θ) =

n∑

i=1

log v(Yi, fθ(Xi))wi(x). (2.1)

The local likelihood estimator θ̃(x) is a maximizer of this weighted sum, θ̃(x) =
argmaxθ L(W , θ). It is worth pointing out that in spite of the term “local likeli-
hood” seems to be standard, see [31] for example, if the weights wi are allowed
to take values different from zero and one, the quantity defined by (2.1) is not
a log-likelihood in the probabilistic sense even if the data indeed locally follows
the parametric model with v(Yi, fθ(Xi)) for all i : wi(x) > 0. However, the lo-
cal, or more correctly, weighted log-likelihood inherits most of useful properties
from its “global” counterpart, c.f. Proposition 4.3. And – what is of particular
importance – the true value of the parameter θ maximizes the expectation of
(2.1), see [31] p.72. This property in more general set-up leads to the minimum
contrast −L(W , θ) estimation.

Leaving the computational aspects aside, the key issue of this method is a
proper choice of the largest smoothing window where the parametric fit fθ is
still adequate. Putting differently, if we consider a finite collection of smoothing
windows and corresponding (quasi) MLE’s, the target is a data-driven selection
from this family. In what follows we explore this approach.

Fix a point x ∈ R
d as a center of localization and basis {ψj}. Denote by

Ψi = Ψ(Xi − x) = (ψ1(Xi − x), . . . , ψp(Xi − x))⊤, i = 1, . . . , n,

the vectors of basis functions centered at x. For the next nonparametric “se-
lection” step we need a sequence of nested windows. Let for every x a finite
sequence of scales Wk(x), k = 1, . . . ,K, be given by matrices

Wk(x) = diag(wk,1(x), . . . , wk,n(x)),

where the weights wk,i(x) ∈ [0, 1] can be understood, for instance, as smoothing
kernels wk,i(x) = W ((Xi − x)h−1

k ). A particular localizing function w(·,·)(x) is
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assumed to be fixed; the aim is to choose on the base of available data an index
k of an “optimal” scale. To simplify the notation we sometimes suppress the
dependence on the reference point x. Denote by

Wk
def
= Σ−1/2WkΣ

−1/2 = diag

(
wk,1

σ2
1

, . . . ,
wk,n

σ2
n

)
, k = 1, . . . ,K. (2.2)

Let Θ be a compact subset ofRp. Inside of any window given byWk, k = 1, . . .K,
according to (2.1) for each k we calculate the (quasi) MLE θ̃k = θ̃k(x) =

(θ̃
(0)
k (x), . . . , θ̃

( p−1)
k (x))⊤ of θ:

θ̃k
def
= argmax

θ∈Θ
L(Wk, θ), (2.3)

where L(Wk, θ) is the weighted log-likelihood corresponding to the joint distri-
bution of independent sample with Yi ∼ N

(
Ψ⊤

i θ, σ
2
i

)
:

L(Wk, θ) = −1

2

n∑

i=1

|Yi −Ψ⊤
i θ|2

wk,i

σ2
i

+R (2.4)

= −1

2
(Y −Ψ⊤θ)⊤Wk(Y −Ψ⊤θ) +R.

Here R stands for the terms independent of θ. If the p× p matrix Bk = Bk(x)
given by

Bk
def
= ΨWkΨ

⊤ =

n∑

i=1

ΨiΨ
⊤
i

wk,i

σ2
i

(2.5)

is positive definite at the point x, Bk(x) ≻ 0, then θ̃k = θ̃k(x) given by

θ̃k = B−1
k ΨWkY = B−1

k

n∑

i=1

ΨiYi
wk,i

σ2
i

(2.6)

is a linear estimator. Recall that in the case of polynomial basis {tq, q =

0, . . . , p − 1} for every fixed k the first coordinate of θ̃k(x) is the local poly-
nomial estimator for the value of f(x).

In what follows we assume that n > p and detBk(x) > 0 for any k = 1, . . . ,K.
One needs to keep in mind that for example, if w1,· =W ((·−x)h−1

1 ) is a finitely
supported kernel function, one can always find a bandwidth h1 so small that
the matrix B1(x) is degenerated. This implies that the smallest value of h1
should be chosen in order to guarantee B1(x) ≻ 0. More precisely we assume
the following:

(A1) The p×n matrix ΨW1(x) is of full row rank, that is its rows are linearly
independent as the Euclidean vectors.

Remark 2.1. In view of Assumption (A2) below in Section 2.2, it is sufficient
to formulate this assumption only for k = 1, the positive definiteness of other
Bk’s follows automatically.
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Remark 2.2. The empirical semi-norm of a function g(·) given by ‖g‖2n =
n−1

∑n
i=1 g

2(Xi), Xi ∈ X , is generated by the “empirical” scalar product as-
sociating the scalar product in R

n: 〈g, f〉n = n−1
∑n

i=1 g(Xi)f(Xi) with the
functions g(·) and f(·). Given a weight function s(·) > 0 one can define in a
similar way a weighted empirical scalar product

〈g, f〉n,s = n−1
n∑

i=1

g(Xi)f(Xi)s(Xi)

and the corresponding weighted empirical semi-norm. Thus we see that given
σ(·) > 0 and a collection of functions {wk,·(x), k = 1, . . . ,K}, the matrices
n−1Bk(x) are the Gram matrices of the localized basis functions ψ1, . . . , ψp

centered at x. That is for any k = 1, . . . ,K we have

n−1Bk(x) = ( 〈ψν(· − x)
√
wk,· , ψη(· − x)

√
wk,·〉n,σ )1≤ν≤η≤p,

where

〈 g(· − x)
√
wk,· , f(· − x)

√
wk,· 〉n,σ = n−1

n∑

i=1

g(Xi − x)f(Xi − x)wk,i(x)σ
−2
i

with σi = σ(Xi) > 0 and wk,i(x) = wk,Xi
(x). It is well known that any Gram

matrix is non-negative definite. Correspondingly, Bk ≻ 0 if and only if the
rows of ΨW1(x)

1/2 are linearly independent. In view of (A2) it is sufficient to
formulate this assumption only for k = 1. We require slightly more: the rows
of ΨW1(x) to be independent. This guarantees that all the variances Var[θ̃k]

are non-degenerated. Indeed, from (3.1) below we have Var[θ̃k] = B−1
k B̃kB

−1
k ,

where B̃k(x) = ΨWkΣ0WkΨ
⊤ is a Gram matrix of the same as Bk(x) type,

but generated by the scalar products 〈g(· − x)wk,· , f(· − x)wk,·〉n,σ
The formulas in (2.6) give a sequence of estimators {θ̃k(x), k = 1, . . . ,K}. It

was noticed in [1] that in the case when the true data distribution is unknown the
QMLE is a natural estimator for the parameter maximizing the expected log-
likelihood. That is for every k = 1, . . . ,K, the estimator θ̃k(x) can be considered
as an estimator of

θ∗
k(x)

def
= argmax

θ∈Θ
EL (Wk, θ) (2.7)

= argmin
θ∈Θ

(f −Ψ⊤θ)⊤Wk(f −Ψ⊤θ)

= B−1
k ΨWkf = B−1

k

n∑

i=1

Ψif(Xi)
wk,i

σ2
i

. (2.8)

Recall that we do not assume f = Ψ⊤θ even locally. It is known from [42]

that in the presence of a model misspecification for every k the QMLE θ̃k is
a strongly consistent estimator for θ∗

k(x), which also is the minimizer of the
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weighted Kullback-Leibler [26] information criterion:

θ∗
k(x) = argmin

θ∈Θ

n∑

i=1

KL
(
N (f(Xi), σi) ,N

(
Ψ⊤

i θ, σi
))
wk,i(x)

= argmin
θ∈Θ

n∑

i=1

|f(Xi)−Ψ⊤
i θ|2

wk,i(x)

σ2
i

with KL(P, Pθ)
def
= EP

[
log
(
dP/dPθ

)]
. For properties of the Kullback-Leibler

divergence see, for example, [41].
It follows from the above definition of θ∗

k(x) and from (2.3) that the QMLE

θ̃k admits a decomposition into deterministic and stochastic parts:

θ̃k = B−1
k ΨWk(f +Σ

1/2
0 ε) = θ∗

k +B−1
k ΨWkΣ

1/2
0 ε (2.9)

Eθ̃k = θ∗
k, (2.10)

where ε ∼ N (0, In). Notice that if f ≡ Ψ⊤θ, then θ∗
k ≡ θ for any k, and the

classical parametric set-up takes place.

2.2. Adaptive bandwidth selection

Let a point x ∈ X ⊂ R
n, basis {ψj} and method of localization w(·,·)(x) be

fixed. The crucial assumption for the procedure under consideration to work
is that the localizing schemes (scales) Wk(x) = diag(wk,1(x), . . . , wk,n(x)) are
nested, see Remark 2.6. We say that the localizing schemes are nested if for the
corresponding matrices the following ordering condition is fulfilled:

(A2) For any fixed x and the method of localization with w(·,·)(x) ≥ 0 the
following relation holds:

W1(x) ≤ . . . ≤ Wk(x) ≤ . . . ≤ WK(x).

The inequalities are understood componentwise: for 1 ≤ l ≤ k ≤ K Wl(x) ≤
Wk(x) ⇔ wk,i(x) − wl,i(x) ≥ 0 for all i = 1, . . . , n. For the kernel smoothing
this condition means the following. Given a sequence of bandwidths 0 < h1 <
. . . < hk < . . . < hK ≤ 1 let wk,i(x) = W ((Xi − x)h−1

k ) ∈ [0, 1] be such that
W (u/hl) ≤ W (u/hk) for any 0 < hl < hk < 1, and W (u) → 0 as ‖u‖ → ∞, or
even is compactly supported. Also it is intrinsically assumed that, starting from
the smallest window, at every step of the procedure every new window contains
at least p new design points.

Given the point x ∈ X , basis {ψj} and method of localization w(·,·)(x), we
look for the estimator fθ̂(x) of f(x) having form (1.6), where the coefficients

θ̂(j)(x) are the components of the estimator

θ̂(x)
def
= θ̃k̂(x) = (θ̃

(1)

k̂
(x), . . . , θ̃

(p)

k̂
(x))⊤, (2.11)
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corresponding to the adaptive choice of the index k̂ ∈ {1, . . . ,K}, i.e. to the

choice of the scale. One should keep in mind that k̂ is a random variable taking
values in {1, . . . ,K}.

The selection of θ̂(x) from {θ̃k(x)}, k = 1, . . . ,K, can be done by applica-
tion of the Lepski [27] method to comparing of the maximized log-likelihoods

L(Wk, θ̃k). This is the idea of the fitted local likelihood (FLL) technique sug-
gested in [23]. More precisely, to describe the test statistic, define for any θ,
θ′ ∈ Θ the corresponding log-likelihood ratio:

L(Wk, θ, θ
′)

def
= L(Wk, θ)− L(Wk, θ

′), (2.12)

with L(Wk, θ) defined by (2.4).
For every l = 1, . . . ,K, the “fitted” log-likelihood ratio is defined as follows:

L(Wl, θ̃l, θ
′)

def
= max

θ∈Θ
L(Wl, θ, θ

′).

By Lemma 4.2, for any scale index l and parameter vector θ this quantity is
quadratic in θ:

2 L(Wl, θ̃l, θ) = (θ̃l − θ)⊤Bl(θ̃l − θ).

This prompts, see Remark 2.6, to use the FLL-statistics :

Tlk
def
= 2L(Wl, θ̃l, θ̃k)

= (θ̃l − θ̃k)
⊤Bl(θ̃l − θ̃k) , l < k. (2.13)

In the algorithm (2.14) the scale corresponding to k = 1 is assumed to provide
B1 ≻ 0 and to be sufficiently small assuring nonsignificant deviation of the
parametric fit from the true model and k = 1 is always accepted. Then the
adaptive index k̂ is selected by Lepski’s selection rule with the statistics {Tlm}:

k̂ = max {k ≤ K : Tlm ≤ zl, 1 ≤ l < m ≤ k} . (2.14)

Finally put θ̂ = θ̃k̂.
The procedure (2.14) involves parameters z1, . . . , zK−1. As in the classical

Lepski procedure, c.f. [27] and [29], the inequalities in (2.14) control the risk of
estimators for the case of dominating bias. The opposite case of the negligible
w.r.t. the noise bias can be easily controlled in view of the Wilks-type result of
Proposition 4.3, c.f. Corollary 4.4 and Remark 2.6:

E|2 L(Wk, θ̃k, θ
∗
k)|r ≤ C(p, r) (2.15)

with the constant C(p, r) explicitly given by (4.8) in Appendix.

Let θ̂k denote the last accepted estimate after the first k steps of the proce-
dure:

θ̂k
def
= θ̃min{k,k̂}. (2.16)

Suppose at this step that the critical values z1, . . . , zK−1 have being fixed satis-
fying the following set of K − 1 conditions:
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Definition 2.1 (Propagation conditions (PC)). Let for a given α ∈ (0, 1] and
r > 0 the critical values z1, . . . , zK−1 satisfy

E0,Σ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r ≤ αC(p, r) for all k = 2, . . . ,K, (2.17)

where C(p, r) is defined by (4.8) and E0,Σ stands for the expectation w.r.t. the
measure N (0,Σ).

Remark 2.3. “True” value of θ. Lemma 4.1 from Section 4 shows that in the
“no bias” situation the Gaussian distribution provides a nice pivotality property:
the actual value of the parameter θ is not important for the risk of adaptive
estimate, so one can put θ = 0 in (2.17).

Remark 2.4. Calculation of the thresholds. Clearly at any step k ≤ K of
the algorithm the “current value” of the adaptive estimator θ̂k depends on the
thresholds z1, . . . , zk−1. The theoretical aspects related to the heteroscedasticity
of model and incorrectly known variance is the focus of the present paper. Thus
we do not detail the practical aspects of the thresholds calibration only men-
tioning that in practice this can be done by Monte Carlo simulations under the
known “parametric” measure N (0,Σ). Moreover one needs to calculate them
only once. For detailed consideration of the practical aspects of the calibration as
well as for the computational results see [36] or [23] focused on the image denois-
ing by local constant fitting, where the similar idea was proposed. Demo-versions
of the software are available on the web page http://www.cs.tut.fi/˜lasip/.

Remark 2.5. Loss power r and “confidence” level α. The choice of the param-
eters α and r is free and depends only on desired accuracy results and procedure
performance. The basic oracle result of Theorem 3.3 is formulated in terms of
polynomial loss function with index r/2. Therefore the choice of r in the PC’s
determines the final risk bounds. The constant α appears in the second order
term of the bound.

A detailed explanation of the heuristics behind the PC’s and the role of the
parameters r and α from the hypothesis testing point of view is given in [36],
pp. 2789-2790. Below in Remark 2.6 we present other heuristics for the procedure
and PC’s, also explaining why α ≤ 1. Here we just mention that the result of
Proposition 3.1 shows that up to the constants the critical values z1, . . . , zK−1

are of the form zk = C1r(K − k) +C2 log(K/α) +C3. Therefore the high value
of r along with small α enlarge zk’s and make the procedure less sensitive to
deviations of the parametric fit from the true model resulting in acceptance of
a larger smoothing window. Small r and α close to one may result in a less
stable performance of the procedure and undersmoothing. The free choice of
these parameters allows a practical adjustment of the procedure to a particular
data set.

Remark 2.6. Some heuristics behind the procedure. Let us give an explanation
in the spirit of the example with two Hölder classes (naturally nested w.r.t. the
smoothness parameters!) from [27], p.2. Let we have only two scales W1(x) ≤
W2(x) and, correspondingly, two MLE estimators θ̃1(x) and θ̃2(x). The aim is
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to select automatically from {θ̃1, θ̃2}. Assume that the noise is known and that
either the parametric model (1.4) is true “globally”, i.e. on W2 and consequently
(due to (A2)) on W1, either (1.4) is satisfied only on W1. Two wrong choices
are possible:

(I) θ̂ = θ̃1 in the global parametric situation when the correct estimator is θ̃2;

(II) θ̂ = θ̃2 when the parametric model is true only on W1 and the correct

estimator is θ̃1.

These two situations are highly asymmetric.
Consider (I). Here θ∗

1 = θ∗
2 = θ and E = Eθ, that is Eθθ̃1 = θ∗

1 = θ∗
2 = Eθ θ̃2.

We have accepted the worst estimator corresponding to the smaller amount of
data θ̂ = θ̃1 with larger variance. Since W1(x) ≤ W2(x), by (3.2) we have

Var θ̃1 = B−1
1 � B−1

2 = Var θ̃2 for the binary weights; for the non-binary

weights in [0, 1] Var θ̃l � B−1
l , l = 1, 2, and the matrices B−1

l serve as mono-

tonized bounds for the variances. Adding and subtracting L(W2, θ̃2) we get

L(W2, θ̂, θ)I{θ̂ = θ̃1} = L(W2, θ̃1, θ̃2) + L(W2, θ̃2, θ).

Let r = 1. The risk of this log-likelihood ratio is

Eθ|2 L(W2, θ̂, θ)|I{θ̂ = θ̃1} ≤ Eθ|2 L(W2, θ̃1, θ̃2)|+ Eθ|2 L(W2, θ̃2, θ)|.

The second term of the RHS is bounded with C(p, 1) by Corollary 4.4. On the

contrary, the first term related to the “pure noise” (the value θ cancels in θ̃2−θ̃1)
by the second statement of Lemma 4.7 can be much larger than C(p, 1). However,
because the distribution of this quantity does not depend on the unknown pa-
rameter θ, its risk can be easily controlled by the choice of the threshold z1. Thus
we have arrived at the PC: z1 should provide Eθ|2 L(W2, θ̃1, θ̃2)| ≤ αC(p, 1)
with some α ∈ (0, 1].

In a general case at this place one needs exponential inequalities to bound the
large deviations of the stochastic term in the “no noise” situation. For analysis
of large deviations of a contrast function related to the considered here approach
see [16].

Turn now to (II). Here θ∗
1 6= θ∗

2. Similarly to the previous case we have

E|2 L(W1, θ̂, θ
∗
1)|I{θ̂ = θ̃2} ≤ E|2 L(W1, θ̃2, θ̃1)|+ E|2 L(W1, θ̃1, θ

∗
1)|

and as in (I) the second term of the RHS is bounded with C(p, 1). But one
can say nothing about the first term and the only way to control it is the
procedure: we say that the choice θ̂ = θ̃2 is acceptable in this situation if
2 L(W1, θ̃1, θ̃2) ≤ z1, where z1 is the threshold fixed by the PC. To choose from
more than two estimators the selection rule at every step k accepts the estimator
θ̃k if and only if 2 L(Wl, θ̃l, θ̃k) ≤ zl for all l < k with the proviso that θ̃k−1

had been accepted at the previous step of the procedure.
Note also that exactly this part of the procedure can cause the well-known

oversmoothing effect of the Lepski-type procedures, because one admits over-
smoothing in the range of threshold. The threshold corresponding to the oracle
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scale presents also in the leading term of the risk, c.f. Theorem 3.3. That is why
it is so important to select the smallest possible sequence of thresholds and it
is shown in [36] p. 2791 that the PC’s provide such a sequence. However, to
fix the thresholds by simulations as in [36] the exact knowledge of the noise is
required. This explains the interest of the author to the noise misspecification
and generalization of the propagation approach to this set-up.

3. Theoretical study

In order to infer on the admissible level of misspecification for “model” covari-
ance matrix from (1.4) we need to introduce a parameter δ reflecting the relative
variability in errors:

(A3) There exists δ ∈ [0, 1) such that

1− δ ≤ σ2
0,i/σ

2
i ≤ 1 + δ for all i = 1, . . . , n.

Remark 3.1. Clearly, the value of δ is not available. This parameter is used
to trace the influence of the erroneously known noise. The procedure given by
(2.13), (2.14) and (2.17) does not require knowledge of δ or of the true covariance
matrix Σ0.

3.1. Upper bound for the critical values

For any real symmetric matrices A and B we write A � B if ϑ⊤Aϑ ≤ ϑ⊤B ϑ
for all vectors ϑ, or, equivalently, if and only if the matrix B−A is nonnegative
definite. Assuming (A3), the true covariance matrix Σ0 � Σ(1 + δ), and the

variance of the estimate θ̃k is bounded with B−1
k :

Vk
def
= Var θ̃k = B−1

k ΨWkΣ0WkΨ
⊤B−1

k (3.1)

� (1 + δ)B−1
k ΨWkΣWkΨ

⊤B−1
k

= (1 + δ)B−1
k ΨΣ−1/2W2

kΣ
−1/2Ψ⊤B−1

k

� (1 + δ)B−1
k ΨΣ−1/2WkΣ

−1/2Ψ⊤B−1
k

= (1 + δ)B−1
k ΨWkΨ

⊤B−1
k

= (1 + δ)B−1
k . (3.2)

The last inequality follows from the observation that all entries of the diagonal
“weight” matrix Wk do not exceed one, implying W2

k � Wk. The strict equality
takes place if {wk,i} ∈ {0, 1} and the noise is known, i.e. if δ = 0. To justify
the procedure it is necessary to show that the critical values fixed by (PC) are
finite. This will be obtained under the following assumption:

(A4) Let for some constants u0 and u such that 1 < u0 ≤ u for any 2 ≤ k ≤ K
the matrices Bk satisfy

u0Ip � B
−1/2
k−1 Bk B

−1/2
k−1 � uIp
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Remark 3.2. In the “one dimensional case” p = 1, that is for the local constant
fitting, the “matrix” Bk =

∑n
i=1 wk,iσ

−2
i ≥ Bk−1 is just a weighted “local

sample size”. Assume for simplicity that σ2
i ≡ σ2, the weights are rectangular

kernels wk,i(x) = I{|Xi − x| ≤ hk/2} and the design is equidistant. Then for n
sufficiently large

1

n
Bk =

1

nσ2

n∑

i=1

I

{∣∣∣∣
i

n
− x

∣∣∣∣ ≤
hk
2

}
≈ hk
σ2
,

and Assumption (A4) with u0 = u means that the bandwidths grow geometri-
cally: hk = uhk−1.

Now we are able to demonstrate the finiteness of the critical values.

Proposition 3.1 (Theoretical choice of the critical values). Assume (A1)−(A2)
and (A4). The adaptive procedure defined by (2.13), (2.14) and (2.17) is well
defined in the sense that the choice of the critical values of the form

zk =
4

µ

{
r(K − k) log u+ log (K/α)− p

4
log(1− 4µ)− log(1 − u−r) + C(p, r)

}

(3.3)
provides the conditions (2.17) for all k ≤ K. Particularly,

E0,Σ|(θ̃K − θ̂)⊤BK(θ̃K − θ̂)|r ≤ αC(p, r). (3.4)

In (3.3) µ ∈ (0, 1/4) is an arbitrary constant, u > 1 is given by Assumption
(A4), r > 0 and α ∈ (0, 1] are from the PC’s, and

C(p, r) = log

{
22r[Γ(2r + p/2)Γ(p/2)]1/2

Γ(r + p/2)

}
.

The proof is given in Section 4.2.

Remark 3.3. Dependence of the thresholds on the parameters r and α in con-
nection with the performance of the procedure is discussed in Remark 2.5.

Dependance on the number of scales. For kernel estimators, c.f. Remark 3.2,
Assumption (A4) essentially means a geometrical grid of bandwidths hk−1 =
u−1hk implying h1 = u−(K−1)hK . Thus (K−1) logu = log(hK/h1), where log u
is a fixed constant, say equal to log 2. Since hK ≤ 1 and h1 ≥ 1/n, the number
of scales is at most of order logn, that is K ≍ log(hK/h1) ≤ logn and is related
to the “adaptive factor” to pay for the pointwise adaptation, c.f. (2.11) in [30]
p. 2518 and the discussion therein. The leading term in (3.3) is const.(K − k)
and it shows that the thresholds zk linearly decrease in k providing stability of
the procedure at the first steps and sensitivity to deviations of the parametric
fit from the true model at the further steps of the algorithm. The thresholds
are at most of order logn and this “log” disappears at the “last point” k = K.
That is if the parametric assumption is true, there is no “log-payment”, c.f.
Remark 3.6.
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3.2. Quality of estimation in the nearly parametric case

The critical values of the procedure z1, . . . , zK−1 were selected by the propa-
gation conditions (2.17) under the measure N (θ,Σ) that is probably not con-
firmed by the data. Let now the maximizers θ∗

1, . . . , θ
∗
k of the expected local

log-likelihoods are only approximately equal, say to θ, up to some k ≤ K and
the covariance matrix is Σ0. The meaning of “approximately equal” will be
explained below.

The aim is to justify the use of the critical values in this situation. For
this purposes we study the discrepancy between the joint distributions of lin-
ear estimators θ̃1, . . . , θ̃k for k = 1, . . . ,K under the “no bias” assumption
corresponding to the distributions with mean θ∗

1 = · · · = θ∗
k = θ and possi-

bly incorrectly specified covariance matrix Σ, and in the general situation with
θ∗
1 6= · · · 6= θ∗

k and covariance Σ0. Denote the expectations w.r.t. these measures
by Eθ,Σ := Ek,θ,Σ and Ef ,Σ0 := Ek,f ,Σ0 respectively and the p× k matrix of the
first k estimators and the expectations correspondingly by

Θ̃k
def
= (θ̃1, . . . , θ̃k),

Θ∗
k

def
= Ef ,Σ0Θ̃k = (θ∗

1, . . . , θ
∗
k),

Θk
def
= Eθ,ΣΘ̃k = (θ, . . . , θ).

Let A ⊗ B stand for the Kronecker product of matrices A = (ai,j)1≤i≤m,1≤j≤n

and B defined as

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · ·

am1B am2B · · · amnB


 .

Denote the pk × pk covariance matrices of vec Θ̃⊤
k = (θ̃

⊤

1 , . . . , θ̃
⊤

k ) ∈ R
pk by

Σk
def
= Varθ,Σ[vec Θ̃k] = Dk(Jk ⊗ Σ)D⊤

k , (3.5)

Σk,0
def
= Varf ,Σ0 [vec Θ̃k] = Dk(Jk ⊗ Σ0)D

⊤
k , (3.6)

where the matrix Jk is a k × k matrix with all its elements equal to 1, and the
pk × nk block diagonal matrix Dk is defined as follows:

Dk
def
= D1 ⊕ · · · ⊕Dk = diag(D1, . . . , Dk),

Dl
def
= B−1

l ΨWl, l = 1, . . . , k. (3.7)

By Lemma 4.8 from Section 4 under Assumption (A3) with the same δ the
similar relation holds for the covariance matrices Σk and Σk,0 of the sets of
linear estimators:

(1− δ)Σk � Σk,0 � (1 + δ)Σk , k ≤ K. (3.8)
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In spite of by Lemma 4.10 the moment generating function of vec Θ̃K has
the form corresponding to the multivariate normal distribution this represen-
tation makes sense only if ΣK is nonsingular. Notice that rank(JK ⊗ Σ) = n.
From JK ⊗ Σ � 0 it follows only that ΣK � 0, similarly, ΣK,0 � 0. However,
without any additional assumptions it is easy to show, see Lemma 4.9, that for
rectangular kernels ΣK ≻ 0. On the other hand, due to (3.8), it is enough to re-
quire nonsingularity only for the matrix ΣK corresponding to the approximate
model (1.4), and its choice belongs to a statistician. In what follows we assume
that ΣK ≻ 0.

Denote by P
k
θ,Σ = N (vecΘk,Σk) and by P

k
f ,Σ0

= N (vecΘ∗
k,Σk,0), k =

1, . . . ,K, the distributions of vec Θ̃k under the assumption that the parametric
model (1.4) is true up to the scale k and under the assumption that nonpara-
metric model (1.1) takes place. Denote also the Radon-Nikodym derivative by

Zk
def
=

dPk
f ,Σ0

dPk
θ,Σ

. (3.9)

Then Lemma 4.11 gives the Kullback-Leibler divergence between these mea-
sures:

2KL(Pk
f ,Σ0

,Pk
θ,Σ)

def
= 2Ef ,Σ0 log(Zk)

= ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk, (3.10)

where

∆(k)
def
= b(k)⊤Σ−1

k b(k) (3.11)

b(k)
def
= vecΘ∗

k − vecΘk. (3.12)

If there would be no any “noise misspecification”, i.e. if δ ≡ 0 implying Σ = Σ0,
then ∆(k) = b(k)⊤Σ−1

k b(k) = 2KL(Pk
f ,Σ,P

k
θ,Σ). Under Assumption (A2), the

quantity ∆(k) grows with k, so following the terminology suggested in [36], we
introduce the small modeling bias condition:

(SMB) Let for some k ≤ K and θ exist a finite constant ∆ ≥ 0 such that
∆(k) ≤ ∆.

Monotonicity of ∆(k) and (SMB) immediately imply that

sup
1≤l≤k

∆(l) ≤ ∆.

Relation (3.8) yields −pkδ ≤ tr(Σ−1
k Σk,0) − pk ≤ pkδ. Thus the statement of

Lemma 4.11 gives a bound for the Kullback-Leibler divergence in terms of δ:

− pk

2
log(1 + δ) +

∆(k)

2
− pkδ

2
≤ KL(Pk

f ,Σ0
,Pk

θ,Σ) (3.13)

≤ −pk
2

log(1 − δ) +
∆(k)

2
+
pkδ

2
.



Adaptation in heteroscedastic regression 875

Moreover, if δ = δ(n) and δ(n) → 0+ as n→ ∞

∆(k)− 2pkδ + o(δ) ≤ 2KL(Pk
f ,Σ0

,Pk
θ,Σ) ≤ ∆(k) + 2pkδ + o(δ). (3.14)

This means that, if for some k Assumption (SMB) is fulfilled and δ = O(1/K),
then the Kullback-Leibler divergence between the measuresPk

θ,Σ and P
k
f ,Σ0

is
bounded by a small constant.

Now one can state the crucial property for obtaining the final oracle result.

Theorem 3.2 (Propagation property). Assume (A1) − (A4) and (PC). Then
for any k ≤ K the following upper bounds hold:

E|(θ̃k − θ)⊤Bk(θ̃k − θ)|r/2

≤ C(p, r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆(k)

2(1 − δ)

}
,

E|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r/2

≤ (αC(p, r))1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆(k)

2(1 − δ)

}
,

where ϕ(δ)
def
=

{
1 for homogeneous errors,
2(1+δ)
(1−δ)2 − 1 otherwise.

Here θ̃k = θ̃k(x) is the QMLE defined by (2.3), θ is the parameter from (1.4),

θ̂k(x) = θ̃min k,k̂(x) is the adaptive estimate at the kth step of the procedure,

C(p, r) is the constant from the PC’s defined in (4.8) and p is the number of
basis functions used for the linear fitting.

The proof is given in Subsection 4.4.

Remark 3.4. Bounds (4.32) and (4.31) obtained in the proof of the theorem
(Section 4.4) give a condition on the relative error in the noise misspecification.
Let δ = δ(n) → 0+ as n→ ∞. Then for every k ≤ K

ϕ(δ)
∆(k)

1 + δ
− 2pkδ + o(δ) ≤ logEθ,Σ[Z

2
k ] ≤ ϕ(δ)

∆(k)

1− δ
+ 2pkδ + o(δ)

with Zk defined by (3.9). This bound implies, up to the additive constant
0.5 log

(
αC(p, r)

)
, the same asymptotic behavior for the logarithm of the risk of

adaptive estimate logE‖B1/2
k (θ̃k− θ̂k)‖r at each step of the procedure. Because

by (SMB) the quantity ∆(k) is supposed to be bounded by a small constant,
and K is of order logn, see Remark 3.3, the expectation Eθ,Σ[Z

2
k ] is small if

δ = O(1/ logn) and, consequently, the risk E‖B1/2
k (θ̃k − θ̂k)‖r is bounded, c.f.

(2.17). This means that for a plug-in estimator of the variance only the loga-
rithmic in sample size quality is needed. This observation is of particular impor-
tance, since it is known from [35] that over classes of functions with bounded
second derivative the rate n−1/2 of variance estimation is achievable only for
the dimension d ≤ 8.
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Remark 3.5. The propagation property guarantees that the adaptive proce-
dure does not stop with large probability while ∆(k) is small, i.e. under (SMB),
and if the relative error δ in the noise is sufficiently small.

3.3. Quality of estimation in the nonparametric case: The oracle

result

Define the oracle index as the largest index k ≤ K such that (SMB) holds:

k∗
def
= max{k ≤ K : ∆(k) ≤ ∆}. (3.15)

Theorem 3.3. Let ∆(1) ≤ ∆, i.e. the first estimate is always accepted in

the testing procedure. Let ΣK ≻ 0 and k∗ be the oracle index. Let θ̃k∗ be the
nonadaptive estimator defined by (2.6) corresponding to k∗ and θ̂ be an output
of the procedure (2.13) – (2.14). Then under (PC) and assumptions (A1) −
(A4), (SMB) and the risk between the adaptive and oracle estimators is bounded
with the following expression:

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2 (3.16)

≤ z
r/2
k∗ + (αC(p, r))1/2(1 + δ)pk

∗/4(1− δ)−3pk∗/4 exp

{
ϕ(δ)

∆

2(1 − δ)

}
,

where ϕ(δ) is as in Theorem 3.2 and C(p, r) is the constant from the PC’s
defined in (4.8).

Remark 3.6. The second term in the RHS of (3.16) is bounded with a constant
with the proviso that δ = O(1/ logn), see Remark 3.4, and the leading term is

z
r/2
k∗ that by Proposition 3.1 has the form zk∗ = C1r(K − k∗) + C2 log(K/α) +
C3. The leading term K is at most of order logn, see Remark 3.3, and is the
unavoidable payment for the pointwise adaptation, see Theorem 2 on the lower
bound in [27]. This term cancels if k∗ = K, that is when the deviation of
the parametric fit from the true model is not significant for all observations.
This means that the parametric set-up takes place globally and there is no
adaptation involved. The canceling of the log term at the last point of the
range of adaptation in the rate is a common feature of this type procedures, sf.
[27, 29, 30].

The LHS of the inequality (3.16) is the mathematical expectation of the oracle

log-likelihood ratio |2 L(Wk∗ , θ̃k∗ , θ̂)|r/2, or the risk of the difference between

the adaptive estimator θ̂ and its nonadaptive counterpart θ̃k∗ normalized by the
bound for the variance of the oracle estimator. Recall that by (3.2) in the case

of binary weights the matrix B−1
k∗ = Var θ̃k∗ ; generally we have only Var θ̃k∗ �

B−1
k∗ . Loosely speaking, the result says that the risk of adaptive estimator is

of order of the oracle variance multiplied by the logarithmic in sample size
factor zk∗ .
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Proof. By the definition of the adaptive estimate θ̂ = θ̃k̂. Because the events

{k̂ ≤ k∗} and {k̂ > k∗} are disjunct, one can write

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2

= E|(θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂)|r/2I{k̂ ≤ k∗}

+ E|(θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂)|r/2I{k̂ > k∗}.

If k̂ ≤ k∗ then θ̂k∗

def
= θ̃min{k∗,k̂} = θ̃k̂. Thus, to bound the first summand, it is

enough to apply Theorem 3.2 with k = k∗.
To bound the second expectation, i.e. to bound the fluctuations of adaptive

estimate θ̂ at the steps of the procedure for which the (SMB) condition is not

fulfilled anymore, just notice that for k̂ > k∗ the quadratic form coincides with
the test statistic Tk∗,k̂

(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)

= (θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂) = Tk∗,k̂.

But the index k̂ was accepted by the procedure, this means that Tl,k̂ ≤ zl for

all l < k̂ and therefore for l = k∗. Thus

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2I{k̂ > k∗} ≤ z
r/2
k∗ .

3.4. Componentwise oracle risk bounds

Theorem 3.3 provides the oracle risk bound for the adaptive estimator θ̂(x) =

θ̃k̂(x) of the parameter vector θ(x) ∈ R
p corresponding to the estimator f̂

θ̂
(x)

of type (1.6). It is interesting to have a look at the oracle quality of estimation
of the components θ(1), . . . , θ(p) of the vector θ having in mind that the choice
of polynomial basis leads to the direct estimation of the value of regression
function and the derivatives by the coordinates of θ̂.

Denote by LPk(p−1) a local polynomial estimator of order p−1 corresponding
to the kth degree of localization and by LP ad(p−1) its adaptive counterpart, i.e.

LP ad(p−1)
def
= LPk̂(p−1). If the basis is polynomial and the regression function

f(·) is sufficiently smooth in a neighborhood of x, then θ̂(x) is the LP ad(p− 1)
of the vector (f(x), f ′(x), . . . , f (p−1)(x))⊤ of the values of the function f and
its derivatives at the reference point x ∈ R

d.
Therefore we are going to obtain a similar to the previous section oracle result

for the components of the vector θ̂(x), namely for e⊤j θ̂(x), j = 1, . . . , p, where
ej is the jth canonical basis vector in R

p. As a corollary of this general result
in the case of polynomial basis we get an oracle risk bound for LP ad(p − 1)
estimator of the function f and its derivatives at the point x.
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LPk(p− 1) estimator of f (j−1)(x) is given by

f̃
(j−1)
k (x) = e⊤j θ̃k(x), j = 1, . . . , p, (3.17)

f̃k(x) = f̃
(0)
k (x) = e⊤1 θ̃k(x).

Then the adaptive local polynomial estimators are defined as follows:

f̂ (j−1)(x) = e⊤j θ̂(x), j = 1, . . . , p, (3.18)

f̂(x) = e⊤1 θ̂(x).

Similarly, the adaptive estimators of the function f and its derivatives corre-
sponding to the kth step of the procedure are given by

f̂
(j−1)
k (x)

def
= e⊤j θ̂k(x), j = 1, . . . , p. (3.19)

Thus, if the basis is polynomial, the estimator f̂(x)
def
= f̂ (0)(x) is the LP ad(p−1)

estimator of the value f(x), and f̂ (j−1)(x) with j = 2, . . . , p are, correspondingly,
the LP ad(p− 1) estimators of the values of its derivatives. However the results
of Theorems 3.3 and 3.9 hold for any basis satisfying the conditions of the
theorems. For the study below we need the following assumptions:

(A5) There exists a positive finite number σmax(k) such that for i : Xi ∈
Uhk

(x), with the neighborhood of the estimation point Uhk
(x) given by

Wk the variances of errors from the parametric (known) model (1.4) are
locally uniformly bounded:

σ2
i ≤ σ2

max(k).

(A6) Let assumption (A5) be satisfied. There exists a number Λ0 > 0 such that
for any k = 1, . . . ,K the smallest eigenvalue λp(Bk) ≥ nhdkΛ0σ

−2
max(k) for

n sufficiently large.

Remark 3.7. The first assumption is not restrictive at all, since it is about
the known variance from the model we use for the construction of estimators.
The last assumption is stronger than the requirement Bk(x) ≻ 0. Lemmas 1.5,
1.4 in [41] shows that this assumption holds for nonnegative kernels, which are
bounded from below on a set of positive Lebesgue measure. The constant Λ0 is
related to the smallest eigenvalue of the matrix B from Lemma 3.13.

Thus for any k = 1, . . .K and for any γ ∈ R
p we have

γ⊤B−1
k γ ≤ σ2

max(k)

nhdkΛ0
‖γ‖2 ≤ σ2

max(k)

nhdkΛ0
‖γ‖2, (3.20)

where
σ2
max(k)

def
= max

1≤l≤k
σ2
max(l)σ

2
max(k)

def
= max

1≤l≤k
σ2
max(l). (3.21)

Thus we have the following bound:



Adaptation in heteroscedastic regression 879

Lemma 3.4. Let (A5) and (A6) be satisfied. Then for any j = 1, . . . , p and
k, k′ = 1, . . .K the following bound holds:

(
nhdkΛ0

σ2
max(k)

)1/2

|e⊤j θ̃k − e⊤j θ̃k′ | ≤ ‖B1/2
k (θ̃k − θ̃k′)‖.

Proof. By (3.20) taking γ = B
1/2
k (θ̃k − θ̃k′) we have

|e⊤j θ̃k − e⊤j θ̃k′ |2 ≤ ‖θ̃k − θ̃k′‖2

= ‖B−1/2
k B

1/2
k (θ̃k − θ̃k′)‖2

≤ σ2
max(k)

nhdkΛ0
‖B1/2

k (θ̃k − θ̃k′ )‖2.

To obtain the “componentwise” oracle risk bounds we need to recheck the
“propagation property”. Firstly, notice that the “propagation conditions” (2.17)
on the choice of the critical values z1, . . . , zK−1 imply the similar bounds for the

components e⊤j θ̂k(x). Recall that θ̂k
def
= θ̃min{k,k̂}. By (2.17), Lemma 3.4 and the

pivotality property from Lemma 4.1 we have the following simple observation
that serves as a componentwise counterpart of PC:

Lemma 3.5. Under the propagation conditions (PC) for any θ ∈ R
p and all

k = 2, . . . ,K we have:

(
nhdkΛ0

σ2
max(k)

)r

Eθ,Σ|e⊤j θ̃k(x)− e⊤j θ̂k(x)|2r ≤ E0,Σ‖B1/2
k (θ̃k − θ̂k)‖2r

≤ αC(p, r).

Here E0,Σ stands for the expectation w.r.t. N (0,Σ) and C(p, r) is given by (4.8).

As before we suppress the dependence on x. To get the propagation property
we study for k = 1, . . . ,K the joint distributions of e⊤j θ̃1, . . . , e

⊤
j θ̃k, that is the

distribution of e⊤j Θ̃k, the jth row of the matrix Θ̃k. Obviously,

Ef ,Σ0 [e
⊤
j Θ̃k] = e⊤j Θ

∗
k = (e⊤j θ

∗
1, . . . , e

⊤
j θ

∗
k),

Eθ,Σ[e
⊤
j Θ̃k] = e⊤j Θk = (e⊤j θ, . . . , e

⊤
j θ).

Recall that the matrices Σk,0 and Σk have a block structure. Now, for instance,
to study the estimator of the first coordinate of the vector θ = θ(x), or of f(x)
in the case of the polynomial basis, we take the first elements of each block and
so on.

Denote the covariance matrices of the jth elements of the vectors θ̃1, . . . , θ̃k
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by

Σk,j
def
=

{
covθ,Σ

[
θ̃
(j)
l , θ̃(j)m

]}
1≤l≤m≤k

= Dk,j(Jk ⊗ Σ)D⊤
k,j , (3.22)

Σk,0,j
def
=

{
covf ,Σ0

[
θ̃
(j)
l , θ̃(j)m

]}
1≤l≤m≤k

= Dk,j(Jk ⊗ Σ0)D
⊤
k,j , (3.23)

where Jk is a k×k matrix with all its elements equal to 1, and the k×nk block
diagonal matrices Dk,j is defined by

Dk,j
def
= e⊤j D1 ⊕ · · · ⊕ e⊤j Dk,=

(
Ik ⊗ e⊤j

)
Dk

Dl
def
= B−1

l ΨWl, l = 1, . . . , k. (3.24)

Moreover, the following representation holds:

Σk,j =
(
Ik ⊗ e⊤j

)
Dk

(
Jk ⊗ Σ

)
D⊤

k

(
Ik ⊗ e⊤j

)⊤

=
(
Ik ⊗ ej

)⊤
Σk

(
Ik ⊗ ej

)
, (3.25)

where Σk is defined by (3.5). Similarly,

Σk,0,j =
(
Ik ⊗ ej

)⊤
Σk,0

(
Ik ⊗ ej

)
. (3.26)

Thus, the important relation (3.8) is preserved for Σk,j and Σk,0,j obtained by
picking up the (j, j)th elements of each block of Σk and Σk,0 respectively.

With usual notation γ(j) for the jth component of γ ∈ R
k, denote by

bj(k)
def
= (e⊤

j (θ
∗
1 − θ), . . . , e⊤j (θ

∗
k − θ))⊤

= ((θ∗
1 − θ)(j), . . . , (θ∗

k − θ)(j))⊤ ∈ R
k (3.27)

∆j(k)
def
= bj(k)

⊤Σ−1
k,j bj(k). (3.28)

Proposition 3.6 (“Componentwise” propagation property). Under the condi-
tions (A1)− (A6) and (PC) for any k ≤ K the following upper bound holds:

(
nhdkΛ0

σ2
max(k)

)r/2

E|e⊤j θ̃k(x) − e⊤j θ̂k(x)|r

≤ (αE|χ2
p|r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆j(k)

2(1 − δ)

}
(3.29)

with ϕ(δ) as in Theorem 3.2, σ2
max(k) defined in (3.21), Λ0 from (A6), α ∈ (0, 1]

and r > 0 from (PC).

Corollary 3.7. Let the basis be polynomial. Then under the conditions of the

preceding theorem E|f̃ (j−1)
k (x) − f̂

(j−1)
k (x)|r satisfies (3.29)
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Proof. The proof essentially follows the line of the proof of Theorem 3.2. If the
distributions of vec Θ̃k were Gaussian, then any subvector is also Gaussian.

Denote by
P
k,j
θ,Σ = N

(
(e⊤j θ, . . . , e

⊤
j θ)

⊤,Σk,j

)

and by
P
k,j
f ,Σ0

= N
(
(e⊤j θ

∗
1, . . . , e

⊤
j θ

∗
k)

⊤,Σk,0,j

)

k = 1, . . . ,K, the distributions of e⊤j Θ̃k under the parametric assumption and
in the nonparametric case correspondingly.

By the Cauchy-Schwarz inequality and Lemma 3.5

(
nhdkΛ0

σ2
max(k)

)r/2

E|e⊤j θ̃k(x)− e⊤j θ̂(x)|r ≤ (αE|χ2
p|r)1/2

(
Eθ,Σ[Z

2
k,j ]
)1/2

with the Radon-Nikodym derivative given by Zk,j = dPk,j
f ,Σ0

/dPk,j
θ,Σ. By inequal-

ities (3.25) and (3.26) the analog of (A3) is preserved for Σk,0,j and Σk,j , that
is, there exists δ ∈ [0, 1) such that

(1 − δ)Σk,j � Σk,0,j � (1 + δ)Σk,j (3.30)

for any k ≤ K and j = 1, . . . , p. Then the assertion of the theorem follows by
the Taylor expansion at the point (e⊤

j θ, . . . , e
⊤
j θ)

⊤ and (3.30) similarly to the
proof of Theorem 3.2.

At this point we introduce the “componentwise” small modeling bias condi-
tions:

(SMBj) Let for some j = 1, . . . , p, k(j) ≤ K and θ(j) = e⊤j θ exist a finite
constant ∆j ≥ 0 such that

∆j(k(j)) ≤ ∆j , (3.31)

where ∆j(k) is defined by (3.28).

Definition 3.8. For each j = 1, . . . , p the oracle index k∗(j) is defined as the
largest index of the scale for which the (SMBj) condition holds, that is

k∗(j) = max{k ≤ K : ∆j(k) ≤ ∆j}. (3.32)

Proposition 3.9. Assume (A1) − (A6) and (PC). Let h1, the smallest band-

width, be such that the first estimator e⊤j θ̃1(x) is always accepted by the adaptive
procedure. Let k∗(j) be the oracle index defined by (3.32). Then we have for the
risk between the jth coordinates of the adaptive and oracle estimator:

(
nhdk∗(j)Λ0

σ2
max(k

∗)

)r/2

E|e⊤
j θ̃k∗(j)(x) − e⊤j θ̂(x)|r (3.33)

≤ z
r/2
k∗(j) + (αE|χ2

p|r)1/2(1 + δ)pk
∗

j /4(1− δ)−3pk∗

j /4 exp

{
ϕ(δ)

∆j

2(1− δ)

}
,

where ϕ(δ) is as in Theorem 3.6.
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Corollary 3.10. For the polynomial basis under the conditions of the preced-

ing theorem the risk between the adaptive and oracle estimators E|f̃ (j−1)
k∗(j) (x) −

f̂ (j−1)(x)|r satisfies (3.33).

Remark 3.8. The statements of this and the preceding proposition are of the
same type that their vector counterparts. They are needed for asymptotical
results of the last section.

Proof. To simplify the notation we suppress the dependence on j in the index k.
Similarly to the proof of Theorem 3.3 we consider the disjunct events {k̂ ≤ k∗}
and {k̂ > k∗}. Therefore,

E|e⊤j θ̃k∗(x) − e⊤j θ̂(x)|r

= E|e⊤j θ̃k∗(x) − e⊤j θ̂(x)|r I{k̂ ≤ k∗}
+ E|e⊤j θ̃k∗(x) − e⊤j θ̂(x)|r I{k̂ > k∗}.

By Lemma 3.4 and the definition of the test statistic Tk∗,k̂ the second summand
can be easily bounded:

(
nhdk∗Λ0

σ2
max(k

∗)

)r/2

E|e⊤
j θ̃k∗(x)− e⊤j θ̂(x)|r I{k̂ > k∗}

≤ E‖B1/2
k∗ (θ̃k∗(x)− θ̂(x))‖r I{k̂ > k∗}

≤ z
r/2
k∗ .

To bound the first summand we use the “componentwise” analog of Theo-
rem 3.2, namely Theorem 3.6 that completes the proof.

3.5. SMB and the bias-variance trade-off

It was shown in [36] that the small modeling bias (SMB1 here) condition given
by (3.31) can be obtained from the “bias-variance trade-off” relations. Notice
that our set-up includes the set-up from [36] as a particular (p = 0, δ = 0,
σ(·) ≡ σ is a known constant) case. To prove that the similar relation holds in
the present case we need the following definition. Let the basis be polynomial.
Given a point x and method of localization w, for any j = 1, . . . , p the “ideal
adaptive bandwidths”, see [29] and [30], is defined as follows:

k⋆(j) = max{k ≤ K : bk,f(j−1) (x) ≤ Cj(w)σk,j(x)
√
d(n)}, (3.34)

where Cj(w) is a constant depending on the choice of the smoother w,

bk,f(j−1) (x) = sup
1≤l≤k

|e⊤j θ∗
l (x)− f (j−1)(x)|,

σ2
k,j(x) = Varf ,Σ0 [e

⊤
j θ̃k(x)],

d(n) = log(hK/h1),



Adaptation in heteroscedastic regression 883

and f (0) stands for the function f itself. To bound the “modeling bias” ∆j(k)
we need the following assumption:

(A7) There exists a constant sj > 0 such that for all k ≤ K

Σ−1
k,j � sjΣ

−1
k,j,diag (3.35)

where Σk,j,diag = diag
(
Varθ,Σ[e

⊤
j θ̃1(x)], . . . ,Varθ,Σ[e

⊤
j θ̃k(x)]

)
is a diagonal

matrix composed of the diagonal elements of Σk,j .

Remark 3.9. In order to understand the meaning and fulfillment of this as-
sumption let us consider for simplicity the case of local constant fitting (p = 0).
Then (3.35) can be rewritten as

∃ s > 0 : Rk = Σ
−1/2
k,diagΣkΣ

−1/2
k,diag � s−1Ik ∀k ≤ K,

where Σk = (cov[θ̃l, θ̃m])1≤l≤m≤k is a k × k positive definite matrix, Σk,diag =

diag(v1, . . . , vk) with vl = Varθ,Σ[θ̃l] > 0, l = 1, . . . , k. We immediately see the
following:

1. Since Rk ≻ 0, it is known that for any symmetric matrix A one can find
a sufficiently small in absolute value real number τ s.t. Rk − τA ≻ 0.

2. Rk = (ρlm)1≤l≤m≤k is a correlation matrix with entries

ρlm = (vlvm)−1/2 cov[θ̃l, θ̃m].

Moreover, 1 ≥ ρlm > 0 since for wk,i ∈ [0, 1] the estimators are strictly
positively correlated. Indeed,

θ̃k =

(∑

i

wk,i

σ2
i

)−1∑

i

wk,i

σ2
i

Yi,

cov[θ̃l, θ̃m] =

(∑

i

wl,i

σ2
i

)−1(∑

i

wm,i

σ2
i

)−1∑

i

wl,iwm,iσ
2
0,i

σ4
i

> 0.

The strict inequality takes place because the estimators have a common
support and therefore are dependent. Below we shall see that (A7) es-
sentially means that the estimators should not be correlated too strongly,
which in its turn is provided by the assumption on the “geometrical growth
of the scales”, i.e. by (A4). Indeed, since ρlm > 0, we have by direct cal-
culations

(1− ρmax)Ik � Rk � (1− ρmax)Ik + ρmaxJk,

where ρmax = max1≤l<m≤k{ρlm} is the maximal correlation of the off-
diagonal elements of Σk and Jk is a k × k matrix with all its elements
equal to one. Thus we see that s = (1 − ρmax)

−1 explodes when the
maximal correlation (except for the variations) is close to one.
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3. Connection with (A4). Assume that the weights wl,i = I{‖Xi−x‖ ≤ hl/2}.
Then for l < m

ρ2lm =

∑
i wl,iσ

2
0,iσ

−4
i∑

i wl,iσ2
0,iσ

−4
i

=

∑
i wl,i∑
iwm,i

for σ0,i = σi = /s. Also we have vm/vl = Bl/Bm = ρ2lm. Since u ≥ u0 > 1,

assumption (A4) provides 0 < u−(m−l)/2 ≤ ρlm ≤ u
−(m−l)/2
0 < 1.

We have the following result:

Lemma 3.11. Let the weights {wk,i(x)} satisfy (4.19) and the basis be polyno-
mial {1, t − x, (t − x)2/2!, . . . , (t − x)p−1/(p − 1)!}. Granted assumptions (A1)
– (A4) and (A7) for any (possibly fixed) n, any given point x, smoothing func-
tion w and j = 1, . . . , p the choice of k(j) = k⋆(j) defined by (3.34) with
d(n) = 1 implies the (SMBj) condition ∆j(k(j)) ≤ ∆j with the constant
∆j < 2sjC

2
j (w)(1 − u−1

0 )−1 <∞.

Proof. Consider the quantity bj(k)
⊤Σ−1

k,j,diagbj(k). For the polynomial basis

e⊤j θ(x) = f (j−1)(x). In view of (4.19) the matrix Σk,j,diag is particularly simple:

Σk,j,diag = diag(e⊤j B
−1
1 ej , . . . , e

⊤
j B

−1
k ej)

= diag(Varθ,Σ[θ̃
(j)

1 (x)], . . . ,Varθ,Σ[θ̃
(j)

k (x)]),

that is Σk,j,diag is a diagonal matrix of the variances of the jth coordinates of

vectors θ̃1, . . . , θ̃k. Then by (A4) and (3.2)

bj(k)
⊤Σ−1

k,j,diagbj(k) =

k∑

l=1

|e⊤j θ∗
l − f (j−1)(x)|2
e⊤j B

−1
l ej

≤
(
bk,f(j−1) (x)

)2 k∑

l=1

1

e⊤j B
−1
l ej

≤
(
bk,f(j−1) (x)

)2

e⊤j B
−1
k ej

k∑

l=1

u
−(k−l)
0

≤
(
bk,f(j−1) (x)

)2
(1 + δ)

σ2
k,j(x)(1 − u−1

0 )
.

By (3.34) with d(n) = 1 the choice of k = k⋆(j) implies
(
bk,f(j−1) (x)

)2 ≤
C2

j (w)σ
2
k,j(x). Thus

bj(k)
⊤Σ−1

k,j,diagbj(k) ≤ (1 + δ)C2
j (w)(1 − u−1

0 )−1

and

∆j(k) = bj(k)
⊤Σ−1

k,jbj(k) ≤ sjC
2
j (w)(1 + δ)(1 − u−1

0 )−1

< 2sjC
2
j (w)(1 − u−1

0 )−1 <∞,

since u0 from (A4) is strictly larger than 1.
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Remark 3.10. The assumption that the weights {wk,i(x)} satisfy (4.19), that is
that they are of the indicator-type, seems to bee too restrictive. This assumption
allows to show the connection between the small modeling bias condition and
the classical bias-variance trade-off without technical complications for any n,
including the case of the fixed sample size. Relaxing of the consideration to the
asymptotic case does not require such an assumption on the weights, see the
lemmas below. Moreover, since this section essentially serves for checking the
rate of convergence of the adaptive estimator at a point w.r.t. the Hölder classes
of functions and since by (A2) the windows are nested, to get the first impression
it is enough to consider the design in R, as in the case of the nested windows the
generalization of the adaptive procedure to R

d is straightforward. On the con-
trary non-nested windows that are related to estimation on anisotropic classes
require drastic modifications of the procedure, see [24] and [25].

Lemma 3.12. Let the basis be polynomial and for each k the weight function
wk,·(x) = W ((· − x)h−1

k ) be nonnegative, bounded with suppW (·) ⊂ [0, 1] and
such that the Lebesgue measure of the set {u : W (u)2 > 0} is strictly positive.
Let Xi = i/n, i = 1, . . . , n, and hk = hk(n) be a sequence s.t. hk(n) → 0 and
nhk(n) → ∞ as n → ∞. Let the variance be either known (σi ≡ σ0,i = σ(·))
and continuous at the neighborhood of x, either the known “model” variance be
locally bounded: i.e. ∃ 0 < σmin(k) ≤ σmax(k) <∞ s.t. σmin(k) ≤ σi ≤ σmax(k)
for ∀ i : wk,i(x) > 0. For a square matrix A by Adiag we denote a diagonal
matrix with the same entries as the main diagonal of A. Then

1.

e⊤j Var[θ̃k(x)]el = O
( σ2(x)

nhj+l−1
k

)
= O

(
e⊤j B

−1
k el

)
,

as n→ ∞;
2. For n sufficiently large we have

σ−2
max(k) diag(µ1(W ), h2kµ2(W ), . . . , h

2(p−1)
k µ2(p−1)(W ))

. (nhk)
−1(Bk(x))diag

. σ−2
min(k) diag(µ1(W ), h2kµ2(W ), . . . , h

2(p−1)
k µ2(p−1)(W ))

with the moments of the kernel W (·) defined by

µπ(W ) =

∫
uπW (u)du;

3. By (3.1) Var θ̃k = B−1
k B̃kB

−1
k , where B̃k = ΨWkΣ0WkΨ

⊤ is a Gram
matrix (c.f. Remark 2.2) and therefore the Hölder inequality is applicable
to its off-diagonal elements. Since

(B̃k)diag = diag
( n∑

i=1

w2
k,i(x)

σ2
i

σ2
0,i

σ2
i

, . . . ,

n∑

i=1

(Xi − x)2(p−1)

((p− 1)!)2
w2

k,i(x)

σ2
i

σ2
0,i

σ2
i

)
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and assuming (A3) similarly to the statement 2 we have for n sufficiently
large

(nhk)
−1e⊤j B̃kej

.
1 + δ

σ2
min(k)

diag(µ1(W
2), h2kµ2(W

2), . . . , h
2(p−1)
k µ2(p−1)(W

2))

and the bounds for the variance of jth coordinate of θ̃k:

(1− δ)σ2
min(k)

nh
1+2(j−1)
k

. e⊤j Var[θ̃k]ej .
(1 + δ)σ2

max(k)

nh
1+2(j−1)
k

.

That is e⊤j Var[θ̃k]ej = O(e⊤
j B

−1
k ej). The constants depend on σ2

min(k),

σ2
max(k) and the moments of W and W 2.

Remark 3.11. When the constants are not the target in the study of conver-
gence rate, the last display allows to substitute in the balance equation (3.34)
the variance by the (j, j)th component of B−1

k , with the proviso that δ is “well
behaved”, c.f. Remark 3.4.

Proof. The statement of the lemma and its proof is essentially in the spirit of
the Theorem 2.1 in [33] and Theorem 3.1 in [11], where the study was performed
for the random design.

Lemma 3.13. Let for each k the weight function wk,·(x) = W ((· − x)h−1
k ) be

nonnegative, bounded with suppW (·) ⊂ [0, 1] and such that the Lebesgue measure
of the set {u : W (u) > 0} is strictly positive. Let Xi = i/n, i = 1, . . . , n, and
hk = hk(n) be a sequence s.t. hk(n) → 0 and nhk(n) → ∞ as n → ∞. Let

Ψ(u) = (1, u, . . . , up−1/(p− 1)!)⊤ and Ψi
def
= Ψ(i/n− x).

1. Denote by B♯
k = B♯

k(x) = ΨWkΨ
⊤ =

∑n
i=1 ΨiΨ

⊤
i wk,i. Then with H =

diag(1, hk, . . . , h
p−1
k ) we have

(nhk)
−1H−1B♯

kH
−1 → B =

∫
Ψ(u)Ψ⊤(u)W (u)du

as n → ∞, where the matrix B is positive definite and independent on x
and n.

2. Moreover, assuming the known “model” variance be locally bounded: i.e.
∃ 0 < σmin(k) ≤ σmax(k) < ∞ s.t. σmin(k) ≤ σi ≤ σmax(k) for ∀i :
wk,i(x) > 0 we have for sufficiently large n:

0 ≺ σ−2
max(k)B � (nhk)

−1H−1BkH
−1 � σ−2

min(k)B.

Proof. The first statement of the lemma is based on the convergence of Riemann
sums. The non-degenerateness of B is the Lemma 1.4 in [41] and follows from
the fact that the polynomials of degree ≤ p − 1 have at most p − 1 different
zeros.
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To justify the second statement it is enough to remark that σ−2
max(k)B

♯
k �

Bk � σ−2
min(k)B

♯
k and that the first statement implies (nhk)

−1γ⊤H−1B♯
kH

−1γ →
γ⊤Bγ for any vector γ.

Remark 3.12. Using the standard technique it is easy to derive from the above
result that for estimation of functions over Hölder classes the methodology pro-
posed in [23] and [36] and generalized in the present paper delivers the minimax
rate of convergence up to a logarithmic factor, see the following subsection for
details.

3.6. Rates of convergence

At this section d = 1 and the basis is polynomial with the columns of the design
matrix Ψ given by

Ψi = Ψ(Xi − x) =
(
1, Xi − x, . . . , (Xi − x)p−1/(p− 1)!

)⊤
.

. The polynomial weights W ∗
l, i are given by

W ∗
l, i(x) = e⊤1 B

−1
l Ψiwl,i(x)/σ

2
i (3.36)

withBl ≻ 0 defined by (2.5) and the variance term given by σ2
l (x)

def
= Ef [|e⊤1 θ̃l(x)−

e⊤1 θ
∗
l (x)|2]. Here

e⊤1 θ
∗
l (x) = Ef [f̃l(x)] =

n∑

i=1

W ∗
l, i(x)f(Xi)

is a local linear smoother of the function f at the point x corresponding to lth
scale. Define the “monotonized” bias by

bk,f (x) = sup
1≤l≤k

|e⊤1 θ∗
l (x)− f(x)|. (3.37)

Before proceeding with analysis of the convergence rate we need to derive
bounds for the bias and variance.

(A8) Let the known “model” variance be locally bounded: i.e. ∃ 0 < σmin(k) ≤
σmax(k) <∞ s.t. σmin(k) ≤ σi ≤ σmax(k) for ∀ i : wk,i(x) > 0.

(A9) There exists a real number a0 > 0 such that for any interval A ⊆ [0, 1]
and all n ≥ 1

1

n

n∑

i=1

I{Xi ∈ A} ≤ a0 max

{∫

A

dt,
1

n

}
.

(A10) The localizing functions (kernels) wk,i have compact supports belonging
to [0, 1]:

wk,i(x) = 0 if |Xi − x| > hk.
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This immediately implies the similar property for the local polynomial
weights:

W ∗
k,i(x) = 0 if |Xi − x| > hk.

(A11) There exists a finite number wmax such that

sup
k,i

|wk,i(x)| ≤ wmax.

Remark 3.13. Assumption (A3) implies that the conditional number

κ(Σ)
def
=

σ2
max

σ2
min

(3.38)

of covariance matrix from the misspecified model (1.4) is finite.

Lemma 3.14. Assume (A1)−(A3), (A6) and (A8)−(A11). Let h′1 be the small-
est bandwidth providing (A6) and h′′1 be the smallest bandwidth s.t. the first esti-

mator θ̃1 is accepted by the adaptive procedure. Denote by h1 ≥ max{1/(2n), h′1,
h′′1}. Let the regression function f(·) belong to the Hölder class Σ(β, L) on [0, 1],

and let {f̃k(x)}Kk=1 be the LPk(p − 1) estimators of f(x) with p − 1 = ⌊β⌋.
Then for sufficiently large n and any hk satisfying hK > . . . > hk > . . . > h1,
k = 1, . . . ,K, we have

|bk,f (x)| ≤ C2κ(Σ)
Lhβk

(p− 1)!
,

σ2
k(x) ≤ (1 + δ)

σ2
max

nhkΛ0

with C2 = 2wmaxa0
√
e/Λ0 and δ ∈ [0, 1) from (A3).

The proof is moved to Appendix.

Proposition 3.15. Let the model (1.4) be satisfied. Assume (A1)− (A4), (A6)
and (A8) − (A11). Let h′1 be the smallest bandwidth providing (A6) and h′′1 be

the smallest bandwidth s.t. the first estimator θ̃1 is accepted by the adaptive
procedure. Denote by h1 ≥ max{1/(2n), h′1, h′′1}. Let the regression function f(·)
belong to the Hölder class Σ(β, L) on [0, 1] and let {f̃k(x)}Kk=1 be the LPk(p−1)
estimators of f(x) with p − 1 = ⌊β⌋. Then for sufficiently large n for adaptive
estimator obtained by the procedure we have

E|f̂(x)− f(x)|r ≍
( logn

n

) βr
2β+1

.

Proof. If the model (1.4) is true, then ∆ = 0 and one can take k∗ from (3.34)
with d(n) = logn leading, in view of the preceding lemma, to the choice of the

optimal bandwidth hk∗(x) of order (logn/n)
1

2β+1 . The oracle bound of Propo-
sition 3.9 gives

E|f̂(x)− f̃k∗(x)|r .
( logn

nhk∗(x)

)r/2
.
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Since k∗ is an unknown but deterministic, f̃k∗(x) is a standard local polyno-
mial estimator. Therefore its quality of estimation is known:

E|f(x)− f̃k∗(x)|r . (1/n)
βr

2β+1 ≪ (logn/n)
βr

2β+1

and the assertion follows by application of (a + b)r ≤ C(r)(ar + br), a, b ≥ 0,
where the constant C(r) = 2r−1 for r ≥ 1 and is equal to one for 0 < r < 1.

The rate
(
logn
n

) βr
2β+1 is known to be optimal, c.f. [27].

Proposition 3.16. Assume (A1)−(A4), (A6)−(A11) and δ = O(1/ logn). Let
h′1 be the smallest bandwidth providing (A6) and h′′1 be the smallest bandwidth

s.t. the first estimator θ̃1 is accepted by the adaptive procedure. Denote by h1 ≥
max{1/(2n), h′1, h′′1}. Let the regression function f(·) belong to the Hölder class

Σ(β, L) on [0, 1], and let {f̃k(x)}Kk=1 be the LPk(p− 1) estimators of f(x) with
p − 1 = ⌊β⌋. Then for sufficiently large n for the adaptive estimator delivered
by the procedure we have

E|f̂(x) − f(x)|r .
( logγ n

n

) βr
2β+1

with γ = (2β + 1)/(2β).

Proof. Because now we need to have (SMB) fulfilled, we must take k∗ from (3.34)

with d(n) = 1 leading to the suboptimal choice of hk∗(x) of order (1/n)
1

2β+1 and
the assertion follows.

4. Appendix

4.1. Pivotality and local parametric risk bounds

Lemma 4.1 (Pivotality property). Let (A2) hold. Let θ∗
1 = · · · = θ∗

κ
= θ for

some κ ≤ K. Then for any k ≤ κ the risk associated with the adaptive estimate
at every step of the procedure does not depend on the parameter θ:

Eθ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r = E0|(θ̃k − θ̂k)

⊤Bk(θ̃k − θ̂k)|r,

where E0 denotes the expectation w.r.t. the centered measures N (0,Σ) or
N (0,Σ0).

Proof. At each step k of the procedure the adaptive estimator θ̂k coincides with
one of the nonadaptive estimators θ̃1, . . . , θ̃k. If θ̂k = θ̃k, this means that the
deviation from the parametric model is not significant and the procedure passes
to the next step. On the contrary, θ̂k = θ̃m form < k means that for some l ≤ m
the value of the test statistic Tl,m+1 is strictly larger than the threshold zl and
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the procedure had terminated. Thus one can write the following decomposition:

Eθ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r

=
k∑

m=1

Eθ‖B1/2
k (θ̃k − θ̃m)‖2rI{θ̂k = θ̃m}

=
k−1∑

m=1

Eθ‖B1/2
k (θ̃k − θ̃m)‖2rI{∃ l ≤ m : ‖B1/2

l (θ̃l − θ̃m+1)‖2 > zl}.

In the last line the definition of Tl,m+1 given by (2.13) is used. Since for any

k ≤ κ under the assumptions of lemma θ̃k = θ + B−1
k ΨWkΣ

1/2
0 ε, the value

of θ cancels in the differences θ̃k − θ̃m and θ̃l − θ̃m+1 for all l ≤ m < k, and
therefore can be taken equal to zero.

To justify the statistical properties of the considered procedure we need the
following simple observation. Let for any θ, θ

′ ∈ Θ the corresponding log-
likelihood ratio L(Wk, θ, θ

′) be defined by (2.12). Then

2 L(Wk, θ, θ
′) = ‖W1/2

k (Y −Ψ⊤θ
′)‖2 − ‖W1/2

k (Y −Ψ⊤θ)‖2.

Lemma 4.2 (Quadratic shape of the fitted log-likelihood). Let for every k =
1, . . . ,K the fitted log likelihood (FLL) be defined as follows:

L(Wk, θ̃k, θ
′)

def
= max

θ∈Θ
L(Wk, θ, θ

′).

Then
2 L(Wk, θ̃k, θ) = (θ̃k − θ)⊤Bk(θ̃k − θ). (4.1)

Proof. Notice that L(Wk, θ) defined by (2.4) is quadratic in θ. The assertion

follows from the second order Taylor series expansion around the point θ̃k,
because it is the point of maximum, and the second derivative is the constant
matrix Bk.

Let the matrix S be defined as follows:

S
def
= Σ

1/2
0 WkΨ

⊤B−1
k ΨWkΣ

1/2
0 . (4.2)

Then for the distribution of L(Wk, θ̃k, θ
∗
k) one observes so-called “Wilks phe-

nomenon”, c.f. [12], described by the following theorem:

Proposition 4.3. Let the regression model be given by (1.1) and the parameter
θ∗
k = θ∗

k(x) maximizing the expected local log-likelihood be defined by (2.7). Then
for any k = 1, . . . ,K the following equality in distribution takes place:

2 L(Wk, θ̃k, θ
∗
k)

d
= λ1(S)ε

2
1 + · · ·+ λp(S)ε

2
p (4.3)

with p = rank(Bk) = dimΘ = p. Here λ1(S), . . . , λp(S) are the non-zero eigen-
values of the matrix S, and εi are independent standard normal random vari-
ables.
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Moreover, under (A3) the maximal eigenvalue λmax(S) ≤ 1 + δ, and for any
z > 0

P

{
2 L(Wk, θ̃k, θ

∗
k) ≥ z

}
≤ P {η ≥ z/(1 + δ)} , (4.4)

where η is a random variable distributed according to the χ2 law with p degrees
of freedom.

Remark 4.1. Generally, if Bk is degenerated, the number of terms in (4.3) is
p ≤ dimΘ.

Proof. By Lemma 4.2 and the decomposition (2.9) it holds that:

2 L(Wk, θ̃k, θ
∗
k) = (θ̃k − θ∗

k)
⊤Bk(θ̃k − θ∗

k)

= (B−1
k ΨWkΣ

1/2
0 ε)⊤Bk(B

−1
k ΨWkΣ

1/2
0 ε)

= ε⊤Sε,

where the symmetric matrix S is defined by (4.2). Then by the Schur theorem
there exist an orthogonal matrix M and the diagonal matrix Λ composed of the
eigenvalues of S such that S = M⊤ΛM. For ε ∼ N (0, In) and an orthogonal

matrix M it holds that ε
def
= Mε ∼ N (0, In). Indeed, EMε = Eε = 0 and

VarMε = EMε(Mε)⊤ = ME(εε⊤)M⊤ = MM⊤ = In.

Therefore,

2 L(Wk, θ̃k, θ
∗
k)

d
= ε⊤Λε , ε ∼ N (0, In) .

On the other hand, the matrix S can be written as S = Σ
1/2
0 W

1/2
k ΠkW

1/2
k Σ

1/2
0

with Πk = W
1/2
k Ψ⊤B−1

k ΨW
1/2
k . Since Πk is symmetric and idempotent, i.e.

Π2
k = Πk, it is an orthogonal projector on the linear subspace of dimension

p = rank(Bk) spanned by the rows of Ψ. Moreover, rank(Πk) = tr(Πk) =

tr(W
1/2
k Ψ⊤B−1

k ΨW
1/2
k ) = tr(B−1

k ΨWkΨ
⊤) = tr(B−1

k Bk) = tr(Ip) = p.
Therefore Πk has only p unit eigenvalues and n − p zero ones. Notice also

that the n× n matrix S has rank(S) = rank(ΠkW
1/2
k Σ

1/2
0 ) = rank(Πk) = p as

well. Thus 2 L(Wk, θ̃k, θ
∗
k)

d
= λ1(S)ε

2
1 + · · · + λp(S)ε

2
p, where λ1(S), . . . , λp(S)

are the non-zero eigenvalues of the matrix S.
Recall the definition of the matrix norm induced by the L2 vector norm:

‖A‖2,in def
=
√
λmax(A⊤A). (4.5)

Assumption (A3) allows to bound the induced L2-norm of the matrix S:

‖S‖2,in = ‖Σ1/2
0 W

1/2
k ΠkW

1/2
k Σ

1/2
0 ‖2,in

≤ ‖Σ1/2
0 W

1/2
k ‖2,in‖Πk‖2,in‖W1/2

k Σ
1/2
0 ‖2,in

= λmax(WkΣ0)λmax(Πk)

= max
i

{wk,i

σ2
0,i

σ2
i

}

≤ (1 + δ)max
i

{wk,i} ≤ 1 + δ.
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Therefore, the largest eigenvalue of matrix S is bounded: λmax(S) ≤ 1 + δ.

P
{
λ1(S)ε

2
1 + · · ·+ λp(S)ε

2
p ≥ z

}
≤ P

{
λmax(S)(ε

2
1 + · · ·+ ε2p) ≥ z

}

provides the last assertion.

Corollary 4.4 (Quasi-parametric risk bounds). Let the model be given by (1.1)
and θ∗

k = θ∗
k(x) be defined by (2.7). Assume (A3). Then for any µ < 1/(1 + δ)

we have

E exp{µL(Wk, θ̃k, θ
∗
k)} ≤ [1− µ(1 + δ)]

−p/2
, (4.6)

E|2 L(Wk, θ̃k, θ
∗
k)|r ≤ (1 + δ)rC(p, r) , (4.7)

where
C(p, r) = E|χ2

p|r = 2rΓ(r + p/2)/Γ(p/2). (4.8)

Proof. By (4.3) and independence of εi

E exp{µL(Wk, θ̃k, θ
∗
k)} = E exp

{
µ

2

p∑

i=1

λi(S)ε
2
i

}

=

p∏

i=1

E exp
{µ
2
λi(S)ε

2
i

}

=

p∏

i=1

[1− µλi(S)]
−1/2

≤ [1− µλmax(S)]
−p/2

≤ [1− µ(1 + δ)]−p/2.

Let η ∼ χ2
p. Integration by parts yields the second inequality:

E|2 L(Wk, θ̃k, θ
∗
k)|r =

∫ ∞

0

P

{
2 L(Wk, θ̃k, θ

∗
k) ≥ z

}
rzr−1dz

≤ r

∫ ∞

0

P {η ≥ z/(1 + δ)} zr−1dz

= (1 + δ)r E|η|r.

4.2. Proof of the bounds for the critical values

Denote for any l < k the variance of difference θ̃k − θ̃l by Vlk:

Vlk
def
= Var(θ̃k − θ̃l) ≻ 0. (4.9)

Then there exists a unique matrix V
1/2
lk ≻ 0 such that (V

1/2
lk )2 = Vlk.
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Lemma 4.5. Assume (A1) − (A4). If θ∗
1 = · · · = θ∗

k = θ for k ≤ K, then for
any l < k we have

P

{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}

≤ P {η ≥ z/t0} ,
P

{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}

≤ P {η ≥ z/t1} ,

where t0 = 2(1 + δ)(1 + u
−(k−l)
0 ), t1 = 2(1 + δ)(1 + u(k−l)), 1 < u0 ≤ u are the

constants from the assumption (A4) and η is a χ2
p-distributed random variable.

Proof. Decomposition (2.9) of θ̃k into deterministic θ∗
k and stochastic parts and

the assumption of lemma imply

θ̃l − θ̃k = B−1
l ΨWlΣ

1/2
0 ε−B−1

k ΨWkΣ
1/2
0 ε

d
= V

1/2
lk ξ,

where ξ is a standard normal vector in R
p. Thus by Lemma 4.2 for any l < k

2 L(Wl, θ̃l, θ̃k) = ‖B1/2
l (θ̃l − θ̃k)‖2 d

= ξ⊤V
1/2
lk BlV

1/2
lk ξ.

By the Schur theorem there exists an orthogonal matrix M such that

ξ⊤V
1/2
lk BlV

1/2
lk ξ

d
= ε⊤M⊤ΛlkMε,

where ε is a standard normal vector,

Λlk = diag(λ1(V
1/2
lk BlV

1/2
lk )), . . . , λp(V

1/2
lk BlV

1/2
lk ))

and p = rank(Bl). Therefore,

2 L(Wl, θ̃l, θ̃k)
d
= λ1(V

1/2
lk BlV

1/2
lk )ε21 + · · ·+ λp(V

1/2
lk BlV

1/2
lk )ε2p,

where λj(V
1/2
lk BlV

1/2
lk ), j = 1, . . . , p, are the nonzero eigenvalues of V

1/2
lk BlV

1/2
lk .

Similarly,

2 L(Wk, θ̃k, θ̃l)
d
= λ1(V

1/2
lk BkV

1/2
lk )ε21 + · · ·+ λp(V

1/2
lk BkV

1/2
lk )ε2p.

Denoting by η a χ2
p-distributed random variable we get

P

{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}
,

P

{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}
.

For any square matrices A and B we have (A−B)(A⊤−B⊤) � 2(AA⊤+BB⊤).
Applying this bound to the variance of the difference of estimators we obtain

Vlk =
(
B−1

l ΨWlΣ
1/2
0 −B−1

k ΨWkΣ
1/2
0

)(
B−1

l ΨWlΣ
1/2
0 −B−1

k ΨWkΣ
1/2
0

)⊤

� 2(B−1
l ΨWlΣ0WlΨ

⊤B−1
l +B−1

k ΨWkΣ0WkΨ
⊤B−1

k )

= 2Vl + 2Vk,
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where Vl = Var θ̃l, l ≤ k. By (3.2) and Assumption (A4) we have

Vl � (1 + δ)B−1
l ,

Vk � (1 + δ)B−1
k � (1 + δ)u

−(k−l)
0 B−1

l ,

Vlk � 2(1 + δ)(1 + u
−(k−l)
0 )B−1

l .

Therefore,

Bl � 2(1 + δ)(1 + u
−(k−l)
0 )V −1

lk . (4.10)

This provides the following bound:

λmax(V
1/2
lk BlV

1/2
lk ) = sup

‖γ‖=1

γ⊤V
1/2
lk BlV

1/2
lk γ

≤ 2(1 + δ)(1 + u
−(k−l)
0 ). (4.11)

Similarly,

Vlk � 2(1 + δ)(1 + u(k−l))B−1
k ,

λmax(V
1/2
lk BkV

1/2
lk ) ≤ 2(1 + δ)(1 + u(k−l)). (4.12)

These bounds imply

P

{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}

≤ P

{
η ≥ z

[
2(1 + δ)(1 + u

−(k−l)
0 )

]−1
}

P

{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ P

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}

≤ P

{
η ≥ z

[
2(1 + δ)(1 + u(k−l))

]−1
}

Lemma 4.6. Under the conditions of preceding lemma for any l < k, µ0 < t−1
0 ,

µ1 < t−1
1 we have

E exp{µ0 L(Wl, θ̃l, θ̃k)} ≤ [1− µ0t0]
−p/2,

E exp{µ1 L(Wk, θ̃k, θ̃l)} ≤ [1− µ1t1]
−p/2,

where t0 = 2(1 + δ)(1 + u
−(k−l)
0 ), t1 = 2(1 + δ)(1 + u(k−l)) and the constants

1 < u0 ≤ u are from Assumption (A4).

Proof. The statement of the lemma is justified similarly to the proof of Corol-
lary 4.4. The bounds (4.11) and (4.12) imply the bounds for the corresponding
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moment generating functions:

E exp{µL(Wl, θ̃l, θ̃k)} =

p∏

j=1

E exp{µ
2
λj(V

1/2
lk BlV

1/2
lk )ε2j}

=

p∏

j=1

[1− µλj(V
1/2
lk BlV

1/2
lk )]−1/2

≤ [1− µλmax(V
1/2
lk BlV

1/2
lk )]−p/2

≤ [1− 2µ(1 + δ)(1 + u
−(k−l)
0 )]−p/2 ,

E exp{µL(Wk, θ̃k, θ̃l)} ≤ [1− µλmax(V
1/2
lk BkV

1/2
lk )]−p/2

≤ [1− 2µ(1 + δ)(1 + u(k−l))]−p/2.

Lemma 4.7. Under the conditions of Lemma 4.5 for any l < k we have

E|2 L(Wl, θ̃l, θ̃k)|r ≤ 2rC(p, r)(1 + δ)r(1 + u
−(k−l)
0 )r,

E|2 L(Wk, θ̃k, θ̃l)|r ≤ 2rC(p, r)(1 + δ)r(1 + u(k−l))r,

where C(p, r) is given by (4.8).

Remark 4.2. The RHS’s of Lemmas 4.6 and 4.7 are highly asymmetric. Recall
that here θ∗

1 = · · · = θ∗
k = θ, l < k and 1 < u0 ≤ u. The bounds for the

log-likelihood ratio corresponding to the l-th scale L(Wl, θ̃l, θ̃k) are close to the

bounds for their parametric counterpart L(Wl, θ̃l, θ) given by Corollary 4.4. It
is not surprising because, if the parametric model is satisfied up to the scale
k, for the MLE θ̃k more data were used and the estimator θ̃k w.r.t. θ̃l acts
approximately as the true parameter θ. On the contrary, the risk bounds for
L(Wk, θ̃k, θ̃l) are quite large since for the larger k-th scale θ̃l is a bad estimator
with large variance.

Proof. Integration by parts and Lemma 4.5 yield for the second assertion

E|2 L(Wk, θ̃k, θ̃l)|r = r

∫ ∞

0

P

{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
z
r−1dz

≤ r

∫ ∞

0

P

{
η ≥ z

[
2(1 + δ)(1 + u(k−l))

]−1
}
z
r−1dz

= 2r(1 + δ)r(1 + u(k−l))rE|η|r,
where η ∼ χ2

p. The first assertion is proved similarly.

Proof of Theorem 3.1 Theoretical choice of the critical values. The risk corres-
ponding to the adaptive estimate can be represented as a sum of risks of the
false alarms at each step of the procedure:

E0,Σ|(θ̃k−θ̂k)
⊤Bk(θ̃k−θ̂k)|r =

k−1∑

m=1

E0,Σ|(θ̃k−θ̃m)⊤Bk(θ̃k−θ̃m)|rI{θ̂k = θ̃m}.

(4.13)
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By the definition of the last accepted estimate θ̂k, for any m = 1, . . . , k − 1,
the event {θ̂k = θ̃m} happens if for some l = 1, . . . ,m the statistic Tl,m+1 > zl.
Thus

{θ̂k = θ̃m} ⊆
m⋃

l=1

{Tl,m+1 > zl}.

It holds also that for any positive µ

I{Tl,m+1 > zl} = I{2 L(Wl, θ̃l, θ̃m+1)− zl > 0}
≤ exp

{µ
2
L(Wl, θ̃l, θ̃m+1)−

µ

4
zl

}
.

This and the Cauchy-Schwarz inequality imply form = 1, . . . , k−1 the following
bound:

E0,Σ|(θ̃k − θ̃m)⊤Bk(θ̃k − θ̃m)|rI{θ̂k = θ̃m} (4.14)

= E0,Σ|2 L(Wk, θ̃k, θ̃m)|rI{θ̂k = θ̃m}

≤
m∑

l=1

e−
µ
4 zlE0,Σ

[
|2 L(Wk, θ̃k, θ̃m)|r exp

{µ
2
L(Wl, θ̃l, θ̃m+1)

}]

≤
m∑

l=1

e−
µ
4 zl

{
E0,Σ

[
|2 L(Wk, θ̃k, θ̃m)|2r

]} 1
2
{
E0,Σ

[
exp {µL(Wl, θ̃l, θ̃m+1)}

]} 1
2

.

By the first statement of Lemma 4.6 with δ = 0

E0,Σ

[
exp {µL(Wl, θ̃l, θ̃m+1)}

]
≤ [1− 2µ(1 + u

−(m+1−l)
0 )]−

p
2

for any µ < [2(1 + u
−(m+1−l)
0 ]−1. Since u0 > 1 we have [2(1 + u

−(m+1−l)
0 ]−1 >

1/4 and the statement is valid for any µ ∈ (0, 1/4). Inequality [1 − 2µ(1 +

u
−(m+1−l)
0 )]−p/2 < [1− 4µ]−p/2 provides for any µ ∈ (0, 1/4)

E0,Σ

[
exp {µL(Wl, θ̃l, θ̃m+1)}

]
< (1− 4µ)−p/2. (4.15)

By the second statement of Lemma 4.7

E0,Σ|2 L(Wk, θ̃k, θ̃m)|2r ≤ C(p, 2r)22r(1 + uk−m)2r. (4.16)

Putting together (4.13), (4.14), (4.15) and (4.16) we obtain

E0,Σ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r

≤ 2r
√
C(p, 2r)(1 − 4µ)−p/4

k−1∑

m=1

m∑

l=1

e−
µ
4 zl(1 + uk−m)r

= 2r
√
C(p, 2r)(1 − 4µ)−p/4

k−1∑

l=1

e−
µ
4 zl

k−1∑

m=l

(1 + uk−m)r

≤ 22r
√
C(p, 2r)(1− 4µ)−p/4(1− u−r)−1

k−1∑

l=1

e−
µ
4 zlur(k−l),
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because −(k − l) < −(m− l) and

k−1∑

m=l

(1 + u(k−m))r = ur(k−l)
k−1∑

m=l

(u−(k−l) + u−(m−l))r

< 2rur(k−l)
k−1∑

m=l

u−r(m−l)

< 2rur(k−l)(1− u−r)−1.

Since ur(k−l) ≤ ur(K−l) for any l < k ≤ K the choice of the threshold of the
form

zl =
4

µ

{
r(K − l) logu+ log (K/α)− p

4
log(1− 4µ)− log(1− u−r) + C(p, r)

}

with an arbitrary constant µ ∈ (0, 1/4), u > 1 from Assumption (A4), r > 0
and α ∈ (0, 1] from the PC’s and with

C(p, r) = log

{
22r[Γ(2r + p/2)Γ(p/2)]1/2

Γ(r + p/2)

}

provides the required by PC bounds

E0,Σ|(θ̃l − θ̂l)
⊤Bl(θ̃l − θ̂l)|r ≤ αC(p, r) for all l = 2, . . . ,K.

4.3. Matrix results

Lemma 4.8. The matrices Jk ⊗ Σ and Jk ⊗ Σ0 are positive semidefinite for
any k = 2, . . . ,K.

Moreover, under Assumption (A3) with the same δ, the similar to (A3) rela-
tion holds for the covariance matrices Σk and Σk,0 of linear estimates:

(1− δ)Σk � Σk,0 � (1 + δ)Σk , k ≤ K.

Proof. Symmetry of Jk and Σ, (respectively, Σ0 ) implies symmetry of Jk ⊗ Σ,
(respectively, Jk ⊗ Σ0). Notice that any vector γnk ∈ R

nk can be represented

as a partitioned vector γ⊤nk = ((γ
(1)
nk )

⊤, (γ
(2)
nk )

⊤, . . . , (γ
(k)
nk )

⊤), with γ
(l)
nk ∈ R

n,
l = 1, . . . , k. Then

γ⊤nk(Jk ⊗ Σ)γnk =
( k∑

l=1

γ
(l)
nk

)⊤
Σ
( k∑

l=1

γ
(l)
nk

)
= γ̃⊤n Σ γ̃n, (4.17)

where γ̃n
def
=
∑k

l=1 γ
(l)
nk ∈ R

n. Because Σ ≻ 0 it implies γ̃⊤n Σ γ̃n > 0 for all

γ̃n 6= 0. But even for γnk 6= 0, if its subvectors {γ(l)nl } are linearly dependent, γ̃n
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can be zero. Thus there exists a nonzero vector γ such that γ⊤(Jk ⊗ Σ)γ = 0.
This means positive semidefiniteness.

The second assertion follows from the observation that Assumption (A3) due
to the equality (4.17) also holds for the Kronecker product

(1− δ)Jk ⊗ Σ � Jk ⊗ Σ0 � (1 + δ)Jk ⊗ Σ. (4.18)

Therefore

(1 − δ)Dk(Jk ⊗ Σ)D⊤
k � Dk(Jk ⊗ Σ0)D

⊤
k � (1 + δ)Dk(Jk ⊗ Σ)D⊤

k .

Lemma 4.9. Fix x ∈ R
d. Suppose that the weights {wl, i(x)} satisfy

wl, i(x)wm, i(x) = wl, i(x) , l ≤ m. (4.19)

Then under Assumptions (A1), (A2), (A4) the covariance matrix Σk defined by
(3.5) is nonsingular with

detΣk = detB−1
k

k∏

l=2

det(B−1
l−1 −B−1

l ) > 0 , k = 2, . . . ,K. (4.20)

Remark 4.3. The condition (4.19) holds for rectangular kernels with nested
supports.

Proof. The condition (4.19) implies

WlΣWm = diag(wl,1wm,1/σ
2
1 , . . . , wl,nwm,n/σ

2
n) = Wl

for any l ≤ m. Thus the blocks of Σk simplify to

DlΣD
⊤
m = B−1

l ΨWlΣWmΨ⊤B−1
m = B−1

l ΨWlΨ
⊤B−1

m

and Σk has a simple structure:

Σk =




B−1
1 B−1

2 B−1
3 . . . B−1

k

B−1
2 B−1

2 B−1
3 . . . B−1

k
...

...
...

...
...

B−1
k B−1

k B−1
k . . . B−1

k


 .

Then the determinant of Σk coincides with the determinant of the following
irreducible block triangular matrix:

detΣk =

∣∣∣∣∣∣∣∣∣∣∣

B−1
1 −B−1

2 B−1
2 −B−1

3 . . . B−1
k−1 −B−1

k B−1
k

0 B−1
2 −B−1

3 . . . B−1
k−1 −B−1

k B−1
k

...
...

...
...

...
0 0 . . . B−1

k−1 −B−1
k B−1

k

0 0 0 0 B−1
k

∣∣∣∣∣∣∣∣∣∣∣
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implying

detΣk = det(B−1
1 −B−1

2 ) det(B−1
2 −B−1

3 ) · . . . · det(B−1
k−1 −B−1

k ) detB−1
k .

Clearly the matrix Σk is nonsingular if all the matrices B−1
l−1 − B−1

l are non-
singular. By (A1) and (A2) Bl ≻ 0 for any l. By (A4) there exists u0 > 1 such
that Bl � u0Bl−1, therefore B−1

l−1 −B−1
l � (1− 1/u0)B

−1
l−1 ≻ B−1

l−1 ≻ 0.

Lemma 4.10. In the “nonparametric situation” the moment generation func-
tion (mgf) of the joint distribution of θ̃1, . . . , θ̃K is

E exp
{
γ⊤(vec Θ̃K − vecΘ∗

K)
}
= exp

{
1

2
γ⊤ΣK,0 γ

}
. (4.21)

Thus, provided that ΣK,0 ≻ 0, it holds that vec Θ̃K ∼ N (vecΘ∗
K ,ΣK,0).

Similarly, in the “parametric situation”, if ΣK ≻ 0, then the joint distribution
of vec Θ̃K is N (vecΘK ,ΣK) with the mgf:

E exp
{
γ⊤(vec Θ̃K − vecΘK)

}
= exp

{
1

2
γ⊤ΣK γ

}
. (4.22)

Proof. Let γ ∈ R
pK be written in a partitioned form γ⊤ = (γ⊤1 , . . . , γ

⊤
K) with

γl ∈ R
p, l = 1, . . . ,K. Then the mgf for the centered random vector vec Θ̃K −

vecΘ∗
K ∈ R

pK , due to the decomposition (2.9) θ̃l = θ∗
l +DlΣ

1/2
0 ε with Dl =

B−1
l ΨWl, can be represented as follows:

E exp
{
γ⊤(vec Θ̃K − vecΘ∗

K)
}
= E exp

{ K∑

l=1

γ⊤l (θ̃l − θ∗
l )
}

= E exp
{ K∑

l=1

γ⊤l DlΣ
1/2
0 ε

}
= E exp

{( K∑

l=1

D⊤
l γl
)⊤

Σ
1/2
0 ε

}
.

A trivial observation that
∑K

l=1D
⊤
l γl is a vector in R

n and Σ
1/2
0 ε ∼ N (0,Σ0) by

(1.1) implies by the definition of ΣK,0 the first assertion of the lemma, because

E exp
{( K∑

l=1

D⊤
l γl
)⊤

Σ
1/2
0 ε

}
= exp

{
1

2

( K∑

l=1

D⊤
l γl
)⊤

Σ0

( K∑

l=1

D⊤
l γl
)}

= exp

{
1

2

(
D⊤

Kγ
)⊤

(JK ⊗ Σ0)D
⊤
Kγ

}
= exp

{
1

2
γ⊤ΣK,0 γ

}
,

here DK is defined by (3.24).

4.4. Proof of the propagation property

Lemma 4.11. The Kullback-Leibler divergence between the distributions of
vec Θ̃k under the true measure and under the “parametric” has the following
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form:

2KL(Pk
f ,Σ0

,Pk
θ,Σ)

def
= 2Ef ,Σ0 log

(
dPk

f ,Σ0

dPk
θ,Σ

)

= ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk, (4.23)

where

b(k)
def
= vecΘ∗

k − vecΘk (4.24)

∆(k)
def
= b(k)⊤Σ−1

k b(k). (4.25)

Proof. Denote the Radon-Nikodym derivative by Zk
def
= dPk

f ,Σ0
/dPk

θ,Σ. Then

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘk)‖2 (4.26)

can be considered as a quadratic function of vecΘk. By the Taylor expansion
at the point vecΘ∗

k the last expression reads as follows

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘ∗
k)‖2 + b(k)⊤Σ−1

k (y − vecΘ∗
k) +

1

2
∆(k).

Then the expression for the Kullback-Leibler divergence can be written in the
following way:

KL(Pk
f ,Σ0

,Pk
θ,Σ)

def
= Ef ,Σ0 log

(
Zk

)

=
1

2
log

(
detΣk

detΣk,0

)
+

1

2
∆(k)

+
1

2
E
{
‖Σ−1/2

k Σ
1/2
k,0 ξ‖2 − ‖ξ‖2 + 2b(k)⊤Σ−1

k Σ
1/2
k,0 ξ

}
,

where ξ ∼ N (0, Ipk). This implies

2KL(Pk
f ,Σ0

,Pk
θ,Σ) = ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk. (4.27)

In the case of homogeneous errors with σ0,i = σ0 and σi = σ, i = 1, . . . , n the
calculations simplify a lot. Now

Σk = σ2Vk, Σk,0 = σ2
0Vk

with a pk × pk matrix Vk defined as

Vk =
(
D1 ⊕ · · · ⊕Dk

)(
Jk ⊗ In

)(
D1 ⊕ · · · ⊕Dk

)⊤
,
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where Dl = (ΨWlΨ
⊤)−1ΨWl, l = 1, . . . , k does not depend on σ. Then ∆(k) =

σ−2∆1(k), with ∆1(k)
def
= b(k)⊤V−1

k b(k), detΣk/ detΣk,0 = (σ2/σ2
0)

pk, and the
expression for the Kullback-Leibler divergence reads as follows:

KL(Pk
f ,Σ0

,Pk
θ,Σ) = pk log

( σ
σ0

)
+

1

2
∆(k) +

pk

2

(σ2
0

σ2
− 1
)

(4.28)

= pk log
( σ
σ0

)
+

1

2σ2
b(k)⊤V−1

k b(k) +
pk

2

(σ2
0

σ2
− 1
)
,

implying the same asymptotic behavior as in (3.13).

Proof of Theorem 3.2 (Propagation property). Notice that for any nonnegative

measurable function g = g(Θ̃k) the Cauchy-Schwarz inequality implies

Ef ,Σ0 [g] = Eθ,Σ[gZk] ≤
(
Eθ,Σ[g

2]
)1/2(

Eθ,Σ[Z
2
k ]
)1/2

(4.29)

with the Radon-Nikodym derivative Zk = dPk
f ,Σ0

/dPk
θ,Σ. One gets the first

assertion taking g = |(θ̃k − θ)⊤Bk(θ̃k − θ)|r/2, and applying “the parametric
risk bound” with δ = 0 from (4.7):

E[g] ≤
(
Eθ,Σ|(θ̃k − θ)⊤Bk(θ̃k − θ)|r

)1/2(
Eθ,Σ[Z

2
k ]
)1/2

=
(
Eθ,Σ|2 L(Wk, θ̃k, θ)|r

)1/2(
Eθ,Σ[Z

2
k ]
)1/2

≤ (E|χ2
p|r)1/2

(
Eθ,Σ[Z

2
k ]
)1/2

.

The second assertion of the theorem is treated similarly by application of the
pivotality property from Lemma 4.1 and the propagation conditions (2.17).

To calculate Eθ,Σ[Z
2
k] let us consider logZk given by

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘk)‖2

as a function of vecΘ∗
k. Application of the Taylor expansion at the point vecΘk

yields

2 logZk = log
detΣk

detΣk,0
− ‖Σ−1/2

k,0 (y − vecΘk)‖2 + ‖Σ−1/2
k (y − vecΘk)‖2

+ 2b(k)⊤Σ−1
k,0(y − vecΘk)− b(k)⊤Σ−1

k,0b(k).
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With ξ ∼ N (0, Ipk) the second moment of the Radon-Nikodym derivative reads
as follows

Eθ,Σ[Z
2
k ]

=
detΣk

detΣk,0
exp{−b(k)⊤Σ−1

k,0b(k)}

× E exp{−‖Σ−1/2
k,0 Σ

1/2
k ξ‖2 + ‖ξ‖2 + 2b(k)⊤Σ−1

k,0Σ
1/2
k ξ}

=
detΣk

detΣk,0

[
det
(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)]−1/2

× exp{2b(k)⊤Σ−1
k,0Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k −Ipk

)−1
Σ

1/2
k Σ−1

k,0b(k)−b(k)⊤Σ−1
k,0b(k)}

=
detΣk

detΣk,0

[ pk∏

j=1

{2λj(Σ1/2
k Σ−1

k,0Σ
1/2
k )− 1}

]−1/2

× exp{b(k)⊤Σ−1/2
k,0

[
2Σ

−1/2
k,0 Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1
Σ

1/2
k Σ

−1/2
k,0 − Ipk

]

× Σ
−1/2
k,0 b(k)}. (4.30)

To estimate the obtained expression in terms of the level of noise misspecifica-
tion δ notice that the condition (3.8) implies

(
1

1 + δ

)pk

≤ detΣk

detΣk,0
≤
(

1

1− δ

)pk

,

(
1− δ

1 + δ

) pk
2

≤
[ pk∏

j=1

{2λj(Σ1/2
k Σ−1

k,0Σ
1/2
k )− 1}

]−1/2 ≤
(
1 + δ

1− δ

) pk
2

.

1− δ

1 + δ
Ipk �

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1

� 1 + δ

1− δ
Ipk.

Therefore the quantity in the exponent in (4.30) is bounded by:

(
2

1− δ

(1 + δ)2
− 1

)
b(k)⊤Σ−1

k,0b(k)

≤ b(k)⊤Σ
−1/2
k,0

[
2Σ

−1/2
k,0 Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k −Ipk

)−1
Σ

1/2
k Σ

−1/2
k,0 −Ipk

]
Σ

−1/2
k,0 b(k)

≤
(
2

1 + δ

(1− δ)2
− 1

)
b(k)⊤Σ−1

k,0b(k).

Moreover,

∆(k)

1 + δ
=

1

1 + δ
b(k)⊤Σ−1

k b(k)

≤ b(k)⊤Σ−1
k,0b(k)

≤ 1

1− δ
b(k)⊤Σ−1

k b(k) =
∆(k)

1− δ
.
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Finally,

(
1− δ

(1 + δ)3

) pk
2

exp

{(
2(1− δ)

(1 + δ)2
− 1

)
∆(k)

1 + δ

}

≤ Eθ,Σ[Z
2
k ] ≤

(
1 + δ

(1− δ)3

) pk
2

exp

{(
2(1 + δ)

(1− δ)2
− 1

)
∆(k)

1− δ

}
. (4.31)

In the case of homogeneous errors the expression for logZk reads as

logZk = pk log
( σ
σ0

)
+

1

2

( 1

σ2
− 1

σ2
0

)
‖V−1/2

k (y − vecΘk)‖2

+
1

σ2
0

b(k)⊤V−1
k (y − vecΘk)−

1

2σ2
0

b(k)⊤V−1
k b(k),

implying

Eθ,σ[Z
2
k ] =

(
σ2

σ2
0

)pk (
σ2
0

2σ2 − σ2
0

) pk
2

exp

{
b(k)⊤V−1

k b(k)

2σ2 − σ2
0

}
.

By Assumption (A3)

(
1− δ

(1 + δ)3

) pk
2

exp

{
∆1(k)

σ2(1 + δ)

}

≤ Eθ,σ[Z
2
k ] ≤

(
1 + δ

(1− δ)3

) pk
2

exp

{
∆1(k)

σ2(1− δ)

}
, (4.32)

where p is the dimension of the parameter set and k is the degree of the local-
ization.

4.5. Bounds for the bias and variance

Before proceeding with the proof we need to show that the weights W ∗
l, i(x)

defined by (3.36) preserve the reproducing polynomials property:

Lemma 4.12. Let x ∈ R be such that Assumptions (A1)− (A2) hold. Then the
weights defined by (3.36) satisfy

n∑

i=1

W ∗
l, i(x) = 1, (4.33)

n∑

i=1

(Xi − x)mW ∗
l, i(x) = 0 , m = 1, . . . , p− 1.

for all l = 1, . . . ,K and any design points {X1, . . . , Xn}.
Proof. The assertion can be easily obtained similarly to the proof of Proposition
1.12 from [41].
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Proof of Lemma 3.14. By Lemma 4.12 and the Taylor theorem with τi such
that the points τiXi are between Xi and x, and utilizing Assumption (A10) we
have with bl,f (x) = e⊤1 θ

∗
l (x) − f(x):

|bl,f (x)| ≤ 1

(p− 1)!

n∑

i=1

|f (p−1)(τiXi)− f (p−1)(x)||Xi − x|p−1|W ∗
l, i(x)|

≤ L

(p− 1)!

n∑

i=1

|τiXi − x|β−(p−1)|Xi − x|p−1|W ∗
l, i(x)|

≤ Lhβl
(p− 1)!

n∑

i=1

|W ∗
l, i(x)|.

Under the assumptions of the theorem the sum of the polynomial weights can
be bounded as follows:

n∑

i=1

|W ∗
l, i(x)| ≤ wmax

n∑

i=1

σ−2
i ‖B−1

l Ψi‖

≤ κ(Σ)
wmax

λ0nhl

n∑

i=1

‖Ψi‖ I{Xi ∈ [x− hl, x+ hl]}

≤ κ(Σ)
wmax

√
e

λ0
a0 max{2, 1

nhl
}

≤ κ(Σ)
2a0wmax

√
e

λ0
,

and the first assertion is justified in view of:

bk,f (x)
def
= sup

1≤l≤k
|bl,f (x)| ≤ κ(Σ)

2a0wmax
√
ea0

λ0

Lhβk
(p− 1)!

. (4.34)

To bound the variance, just notice that by (3.20) for any γ ∈ R
p

γ⊤B−1
k γ ≤ σ2

max

nhkΛ0
‖γ‖2.

Then under Condition (A3) by (3.2) for the variance term we have:

σ2
k(x) = e⊤1 Var θ̃k e1

≤ (1 + δ)e⊤1 B
−1
k e1

≤ (1 + δ)
σ2
max

nhkΛ0
.
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