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Abstract: In a linear model relevance of a categorical predictor with or-
dered levels is typically tested by use of the standard F -test (known from
statistical textbooks). Such a test can also be applied for testing whether
the regression function is linear in the ordinal predictor’s class labels. In
this paper we propose an alternative (restricted) likelihood ratio test for
these hypotheses which is especially suited for ordinal predictors and is
based on the mixed model formulation of penalized dummy coefficients.
We show in simulation studies that the new test is more powerful than
the standard F -test in many situations. The advantage of the new test is
especially striking when the number of ordered levels is moderate or large.
Using the relationship to mixed effect models and robust existent fitting
software obtaining the test and its null distribution is very fast; a fast R
implementation is provided.
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1. Introduction

We consider an ordinal covariate x with levels k = 0, . . . ,K. Such ordinal pre-
dictors are, for example, often found in the social sciences. Frequently, however,

∗To whom correspondence should be addressed.
†This research was supported in part by DFG project GE2353/1-1.

1935

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/11-EJS661
mailto:jan.gertheiss@stat.uni-muenchen.de
mailto:franzi.oehrlein@gmx.de


1936 J. Gertheiss and F. Oehrlein

they are treated as continuous and the class label is directly used as explana-
tory variable in a (linear) regression model for predicting a response variable y.
Thomas (1997), for example, used linear regression to describe the relationship
between a manager’s values and his or her success, with values being coded
using an ordinal scale ranging from 1 (lowest priority) to 18 (highest priority).
Labowitz (1970) used ordinally scaled prestige ratings to predict suicide rates
for different occupations. Also Kim (1975, 1978) argues that Pearson’s correla-
tion can be used to quantify the association between two variables if one (or
even both) of these is ordinal. But not only in the social sciences, ordinal co-
variates play an important role. In particular when rating schemes are used,
variables are often ordinally scaled; and schemes like that are found in many
fields, such as medicine. For example, cell characteristics may be graded on or-
dinal scales with 1 being the closest to normal tissue and 10 the most anaplastic
(Wolberg and Mangasarian, 1990), or see WHO (2001), Cieza et al. (2004) and
Section 7 for an example from rehabilitation medicine.

In standard linear models the conditional expectation E(y|x) of y given an
ordinal predictor x, is assumed to have a simple form

E(y|x) = α+ δx,

or equivalently

y = α+ δx+ ǫ, (1)

where ǫ is a zero-mean random variable. Typically, such models make the ad-
ditional assumption that ǫ is normal and has variance σ2. So for given data
(yi, xi), i = 1, . . . , n, we have

yi = α+ δxi + ǫi,

with independent identically distributed (iid) ǫi ∼ N(0, σ2). Such iid normal
errors ǫi are assumed throughout this paper.

Even though model (1) is often used in practice, the variable x is ordinal and
may alternatively be included using dummy-coding as

y = α+
K∑

k=0

βkmk + ǫ, (2)

where the dummy variables mk are defined as

mk =

{
1 if x = k,
0 otherwise.

That means, a one-dimensional variable x coding the factor level by a single
number is transformed into a multivariate variable (m0, . . . ,mK)T. For example,
if x has levels 0, . . . , 5, x = 3 is transformed into (0, 0, 0, 1, 0, 0)T. Each dummy
variable mk has its own (dummy) regression coefficient βk. For identifiability,
we specify reference category k = 0, such that β0 = 0.
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Whether methods for interval-level data (as model (1)) can also be used for
ordinal variables has long been debated, in particular in the social sciences;
see, for example, Winship and Mare (1984), Labowitz (1970) and Mayer (1970,
1971). In the framework considered here, the question whether the linear model
(1) is sufficient may be answered using a formal statistical test. Indeed, model
(1) is a special case of the more flexible model (2), as (1) can be obtained from
model (2) by imposing the restrictions

βk = kβ1, k = 2, . . . ,K, (3)

or, equivalently,

βk+1 − 2βk + βk−1 = 0, k = 1, . . . ,K − 1. (4)

As restrictions (3) (and (4)) are linear and the parameter space of θ = (α, β1, . . .
. . . , βK)T from model (2) is RK+1, it follows that model (1) can be tested against
model (2) using a standard F -test. If one is interested in the global test whether
the predictor x is necessary, the null-hypothesis βk = 0 for all k = 1, . . . ,K can
also be tested using a standard F -test.

These F -tests are shortly summarized in the next section. Section 3 shows
how penalized estimates for dummy-coded ordinal predictors can be obtained,
and in Section 4 these estimates are derived in the context of linear mixed mod-
els. Using the mixed model formulation, we propose an alternative (restricted)
likelihood ratio test for checking linearity – i.e., distinguish between model (1)
and (2) – and checking relevance of an ordinal predictor (Section 5). Simula-
tion studies in Section 6 show that the proposed test distinctly outperforms the
standard F -test in many situations. In Section 7, real data examples are given.

2. Standard F-tests

Assuming normal errors ǫ, the F -test can be used to test linear null-hypotheses
of the form H0: Cθ = d, where θ = (α, β1, . . . , βK)T denotes the coefficient
vector from the dummy model (2) and C is a r× (K +1) matrix of rank r. The
matrix C and vector d define the linear hypotheses that are to be tested. For
testing, the likelihood ratio statistic

λ =
maxθ∈H0

L(θ)

maxθ∈H0∪HA
L(θ)

can be used, with L(θ) denoting the data likelihood evaluated at the parameter
vector θ. HA denotes the alternative hypothesis Cθ 6= d. Assuming H0 is true,
the monotone transformation

F =
n−K − 1

r
{λ−2/n − 1} =

n−K − 1

r

SSE0 − SSE

SSE

follows an F -distribution with (r, n − K − 1) degrees of freedom (see, e.g.,
Rao et al. (2008)). SSE denotes the sum of squared errors under the full model,
and SSE0 is the sum of squared errors if restrictions Cθ = d hold.
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If model (1) is tested against model (2), then r = K− 1, d = (0, . . . , 0)T, and

C =









0 2 −1 0 · · · 0

0 3 0 −1
. . .

...
...

...
...

. . .
. . . 0

0 K 0 · · · 0 −1









,

or, equivalently,

C =









0 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1









.

In the case when testing the global null hypothesis H0: βk = 0 for all k =
1, . . . ,K, the C matrix becomes C = (0|IK), where IK is the K × K identity
matrix, and r = K.

3. Penalized estimates for ordinal predictors

When estimating the regression parameters in model (2) estimates may become
unstable if the number of levels K is moderate or large. To address this prob-
lem Gertheiss and Tutz (2009) proposed a penalized maximum likelihood (ML)
estimate. Specifically, the penalized log-likelihood

lp(θ) = l(θ)− γJ(θ) (5)

is maximized, with l(θ) denoting the usual, non-penalized, likelihood. By adding
the penalty J(θ), estimates of the regression parameters can be stabilized. The
choice of the penalty J(θ) is crucial. Because the categories of the predictor x
are ordered, it may be assumed that the response y (or its conditional expecta-
tion) changes smoothly between two adjacent levels k and k − 1 of x. This led
Gertheiss and Tutz (2009) to propose the quadratic difference penalty

J(θ) =

K∑

k=1

(βk − βk−1)
2 = βTΩ1β, (6)

where β = (β1, . . . , βK)T, penalty matrix Ω1 = DT
1 D1, and

D1 =











1 0 0 · · · 0
−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1











. (7)
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An implementation of this penalty for ordinal predictors is provided in the
R package ordPens (Gertheiss, 2011), and also given in the Appendix. The
strength of the penalization in (5) is controlled by the penalty parameter γ.

With γ = 0, pure ML estimates are obtained. With γ → ∞, all estimates β̂k

equal β0 = 0, which means that in the model response y is not influenced by
predictor x. If β̂k = 0 ∀k is desired for some γ < ∞, a group lasso (Yuan and Lin,
2006) penalty can be used (see Gertheiss et al. (2011) for details).

Under the assumption that the true coefficient vector β is non-linear but
smooth, it has been shown in Gertheiss and Tutz (2009) that parameter estima-
tion and prediction can be substantially improved using the proposed penalized
likelihood compared to unpenalized likelihood, simple ridge estimation, or linear
regression on the category labels.

Similarly, if deviations from a linear function – that is, from model (1) – are
to be penalized, the penalty has the form

J(θ) =
K−1∑

k=1

(βk+1 − 2βk + βk−1)
2 = βTΩ2β, (8)

with penalty matrix Ω2 = DT
2 D2, and

D2 =











−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1











. (9)

In principle, penalties of higher order are also possible, but we found these
two penalties to be especially useful for ordinal predictors because: (1) they
incorporate the ordinal scale level of x; and (2) penalize derivations from a model
without predictor x, and a linear model based on the class labels, respectively.

The penalty parameter γ can be chosen based on the data. Popular ap-
proaches are (leave-one-out/K-fold/generalized) cross-validation or information
criteria, such as AIC or BIC. In the next section we propose to use the duality
between penalized likelihood and linear mixed models, which allows the esti-
mation of the penalty parameter, γ, using ML or REML; this also provides a
natural framework for testing hypotheses of constancy β1 = · · · = βK = β0 = 0
and linearity.

4. Penalized estimates and linear mixed models

4.1. Linear mixed models

In a linear mixed model with one variance component it is assumed that

y = Xξ + Zu+ ǫ, (10)
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where y = (y1, . . . , yn) is the vector of response values, ξ is the p-dimensional
vector of fixed effects, u is the q-dimensional vector of random effects, ǫ =
(ǫ1, . . . , ǫn)

T is the error vector, and X and Z are adequate design matrices
(see, for example, Ruppert et al. (2003), or Crainiceanu and Ruppert (2004)).
For the vectors of random variables u and ǫ, we assume

E

(
u
ǫ

)

=

(
0
0

)

, cov

(
u
ǫ

)

=

(
τ2G 0
0 σ2In

)

,

where In denotes the n× n identity matrix (iid errors are assumed). Under the
assumption of normal u and ǫ, we have

y|u ∼ N(Xξ + Zu, σ2In), u ∼ N(0, τ2G),

and maximizing the likelihood of (y, u) over the unknown ξ and u, leads to the
criterion (cf. Ruppert et al., 2003)

σ−2(y −Xξ − Zu)T(y −Xξ − Zu) + uT(τ2G)−1u,

or, equivalently,

(y −Xξ − Zu)T(y −Xξ − Zu) + (σ2/τ2)uTG−1u.

Minimization of these loss functions leads to estimates
(

ξ̃
ũ

)

= (MTM + (σ2/τ2)B)−1MTy, (11)

with M = (X |Z) and

B =

(
0 0
0 G−1

)

.

4.2. Penalized dummy variables in linear mixed models

Formula (11) shows that the vector (ξ̃, ũ)T is a ridge type estimator with penalty
parameter (σ2/τ2) where only the random effects are penalized. This equiva-
lence between ridge and mixed model estimates offers the opportunity to obtain
penalized estimates of dummy coefficients by using mixed models methodology.
If penalty (6) is employed, we can write ξ = α, u = β (with β as defined in (6)),
G−1 = Ω1 (Ω1 is an invertible K ×K matrix), γ = (σ2/τ2). Design matrices X
and Z contain ones and dummy variables m1, . . . ,mK , respectively.

However, the model can be simplified by using the reparametrization u =
(u1, . . . , uK)T with

uk = βk − βk−1, k = 1, . . . ,K. (12)

Then Z contains modified dummy variables z1, . . . , zK with

zk =

{
1 if x ≥ k,
0 otherwise.

(13)
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In this case, G−1 is just the K ×K identity matrix IK , since with (12) we have
u = D1β (see (7)).

Deriving the penalized estimator with second-order difference penalty (8) us-
ing a linear mixed model with identity matrixG−1 is only slightly more involved.
The linear part of the dummy-coded design matrix has to be separated from the
non-linear part. This can be done by writing X = (1|χ) with χ = (x1, . . . , xn)

T

(remember: xi are observations of x ∈ {0, . . . ,K}) and ξ = (α, δ). Now, the ran-
dom effects u1, . . . , uK−1 have to specify deviations of model (2) from linearity.
To achieve this, we write

uk = βk+1 − 2βk + βk−1. (14)

Parameterizations (β1, . . . , βK)T and (δ, u1, . . . , uK−1)
T are equivalent because








δ
u1

...
uK−1








=













1 0 0 0 · · · 0
−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1


















β1

...
βK




 ,

and






β1

...
βK




 =












1 0 · · · · · · 0

2 1
. . .

...

3 2 1
. . .

...
...

. . .
. . .

. . . 0
K · · · 3 2 1



















δ
u1

...
uK−1








.

Thus, the design matrix Z in model (10) needs to contain variables z1, . . . , zK−1

with

zk =

{
x− k if x > k,
0 otherwise.

(15)

In Appendix A, it is explained more explicitly how design matrix Z and
variables zk are constructed.

4.3. Estimation of variance/penalty parameters

The advantage of using the mixed model formulation of the penalized estimates
is that the penalty parameter γ equals σ2/τ2, and likelihood methods for esti-
mating σ2 and τ2 can be used for estimating γ. A direct consequence of this is
that testing the two hypotheses we are interested in can be reduced to testing
certain zero variance components. For estimating σ2 and τ2, ML or restricted
maximum likelihood (REML) estimation are typically used. ML estimation is
based on the the marginal model

y ∼ N(Xξ,Σ),
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with covariance matrix Σ = τ2ZGZT+ σ2In. The log-likelihood of y under this
model is

l(ξ,Σ) = −
1

2
{n log(2π) + log |Σ|+ (y −Xξ)TΣ−1(y −Xξ)}.

Maximization over the unknown parameters in ξ and Σ leads to ML estimates.
For any fixed Σ, l(ξ,Σ) is maximized over ξ by ξ̃ = (XTΣ−1X)−1XTΣ−1y,
which equals ξ̃ from (11), cf. Ruppert et al. (2003). If G is just the identity
matrix, as it is for our penalized estimates, matrix Σ becomes τ2ZZT + σ2In,
where only τ2 and σ2 are unknown. Crainiceanu and Ruppert (2004) use another
parametrization: With ϑ = τ2/σ2 and Vϑ = In + ϑZZT, we have Σ = σ2Vϑ. So
the log-likelihood becomes

l(ξ, σ2, ϑ) = −
1

2

{

n log(σ2) + log |Vϑ|+
(y −Xξ)TV −1

ϑ (y −Xξ)

σ2
+ n log(2π)

}

.

A second parameter estimation criterion for our model is the restricted log-
likelihood (cf. Harville, 1977; Crainiceanu et al., 2005)

lR(ξ, σ
2, ϑ) = l(ξ, σ2, ϑ) +

p

2
log(σ2)−

1

2
log |XTV −1

ϑ X |,

where p denotes the number of columns of the fixed effects design matrix X . In
case of a first-difference penalty on adjacent dummy coefficients we have p = 1;
if derivations from linearity are penalized, p = 2.

5. (Restricted) likelihood ratio tests

When testing for the relevance of the ordinal predictor x, we have H0: β1 =
· · · = βK = β0 = 0. Using the random effects u1, . . . , uK defined in (12), this
hypothesis is equivalent to

H0 : τ2 = 0 (equivalently, ϑ = 0),

because the coefficients uk have mean zero and variance τ2. The alternative
hypothesis is

HA : τ2 > 0 (equivalently, ϑ > 0),

which means that dummy coefficients are nonzero.
When testing whether dummy coefficients follow a linear trend over the cat-

egories of x, we define the random effects u1, . . . , uK−1 as done in (14), and test
again H0: τ

2 = 0 (equivalently, ϑ = 0) against HA: τ
2 > 0 (equivalently, ϑ > 0).

Since ϑ = τ2/σ2 = γ−1, the null-hypotheses given are equivalent to maximum
penalization γ → ∞ when employing penalties (6) and (8), respectively.

The test problems introduced above are nonstandard because under the null
hypothesis the parameter of interest (τ2, resp. ϑ) is on the boundary of the
parameter space. Nevertheless, the (log) likelihood ratio test statistic LRTn
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may be used. Following Crainiceanu and Ruppert (2004) and Crainiceanu et al.
(2005), we define

LRTn = 2

{

sup
H0∪HA

l(ξ, σ2, ϑ)− sup
H0

l(ξ, σ2, ϑ)

}

. (16)

Because in our case the fixed effects contained in ξ are the same under the null
and the alternative hypotheses, we can also use the restricted likelihood ratio
statistic (cf. Crainiceanu et al., 2005)

RLRTn = 2

{

sup
H0∪HA

lR(ξ, σ
2, ϑ)− sup

H0

lR(ξ, σ
2, ϑ)

}

. (17)

Crainiceanu and Ruppert (2004) derived the finite sample and asymptotic dis-
tributions of LRTn and RLRTn when testing for a zero random effects variance
in linear mixed models with one variance component. Because of the mixed
model representation of penalized dummy variables, these results can also be
used for testing relevance and linearity of ordinal predictors.

With g denoting the number of random effects (that means, g = K or g =
K−1, depending on the penalty employed), let µs,n and νs,n be the g eigenvalues
of matrices ZT(In−X(XTX)−1XT)Z and ZTZ, respectively. Then, as a special
case of Theorem 1 in Crainiceanu and Ruppert (2004),

LRTn =D sup
ϑ≥0

[

n log

{

1 +
Nn(ϑ)

Dn(ϑ)

}

−

g
∑

s=1

log(1 + ϑνs,n)

]

, (18)

where =D denotes equality in distribution, and

Nn(ϑ) =

g
∑

s=1

ϑµs,n

1 + ϑµs,n
w2

s , Dn(ϑ) =

g
∑

s=1

w2
s

1 + ϑµs,n
+

n−p
∑

s=q+1

w2
s ,

and ws are independent N(0, 1), s = 1, . . . , n − p; see also Crainiceanu et al.
(2003). For the restricted likelihood ratio statistic (see Crainiceanu and Ruppert,
2004), we obtain

RLRTn =D sup
ϑ≥0

[

(n− p) log

{

1 +
Nn(ϑ)

Dn(ϑ)

}

−

g
∑

s=1

log(1 + ϑνs,n)

]

. (19)

Crainiceanu and Ruppert (2004) also give an algorithm for simulating the dis-
tributions of LRTn and RLRTn, which is implemented in the R package RLRsim
(Scheipl, 2010). Since REML estimates of the variance parameters are preferable
to ML (cf. Ruppert et al., 2003) and restricted likelihood based tests have been
seen to perform better than those using the unrestricted likelihood (Morrell,
1998), we will focus on RLRTn.
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6. Simulation studies

To investigate the performance of the proposed restricted likelihood ratio test,
and to compare it to the standard F -test, we run several simulation studies.
We will first consider the null hypothesis of constancy/relevance, i.e., H0: β1 =
· · · = βK = β0 = 0. Then we will check linearity of dummy coefficients, i.e., H0:
βk+1 − 2βk + βk−1 = 0, k = 1, . . . ,K − 1. All computations are done using the
statistical program R (R Development Core Team, 2010). For calculating the
proposed restricted likelihood ratio statistic, we use the R package amer (Scheipl,
2011), since user defined basis functions (e.g., zk as defined in (13), resp. (15))
can easily be added. To perform the test, we use RLRsim (Scheipl, 2010). A more
detailed description of the corresponding R-code is given in Appendix B.

6.1. Testing for relevance

We consider three scenarios with three different regression functions that are
defined on the the categories 0, . . . ,K of predictor x, see the left panels in
Figures 1, 2 and 3. The response y is generated according to model (2) with
standard normal error. We assume a sample size of n = 100. The effect strength
is controlled by the parameter a ∈ [0, 1], where a = 0 means that y is not in-
fluenced by x, i.e., the null hypothesis H0: β1 = · · · = βK = β0 = 0 is true
(green lines). For each regression function considered, the red line corresponds
to a = 1. The other lines in the left panels of Figures 1, 2 and 3 correspond to
a = 0.1, 0.2, . . . , 0.9. We consider two nonlinear functions (Figure 1 and 2) and a
linear one (Figure 3), and investigate the power of the proposed restricted likeli-
hood ratio test (RLRT) as a function of a for different values of K (middle/right
panels of Figures 1, 2 and 3). Note, since k = 0, . . . ,K, e.g., K = 4 means that
predictor x has 5 levels. The power of the test is computed as the proportion
of rejections of H0 over 10,000 (independent) repetitions of data generation and
testing. The significance level is α = 0.05 (dotted lines in Figure 1, 2 and 3).

We compare the proposed RLRT (red lines) to some alternative tests. The
standard F -test is carried out by the R function anova() from the base dis-
tribution (R Development Core Team, 2010). We compare the intercept model
(fitted by lm(y~1)) and the model with dummy-coded predictor x (fitted by
lm(y~factor(x))). In addition, we fit a linear model with the group labels of
x as predictors (lm(y~x)), and compare it to the intercept model. The results
of these F -tests are indicated as Fanova and Flm, respectively.

Alternatively to linear modeling of x, analysts may also fit a smooth regres-
sion model using the gam() function from the mgcv package (Wood, 2006; Wood,
2011), and check significance of the smooth term (however, this would incorrectly
treat x as continuous). For comparison, we also add results for such a test to
Figures 1, 2 and 3, when a P-spline basis (Eilers and Marx, 1996) is used and
derivations from a constant line over categories of x are penalized. The number
of basis functions is chosen as the default value in mgcv, which is 9 in our case and
seems sufficient since the true regression functions (see Figures 1, 2 and 3) are
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Fig 1. Left: The first set of considered regression functions (for K = 9) when testing null
hypothesis H0: β1 = · · · = βK = β0 = 0, which is true for a = 0 (green lines). The red lines
correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9. Right: Proportions of rejections of
H0 as a function of a when RLRT, Fanova, Flm and Fgam are applied.

quite smooth and can hence be well approximated by a rather low-dimensional
B-spline basis. The test used is the approximative F -test proposed by Wood
(2006), which is part of the default gam-output. So the test is labeled as Fgam.

From Figures 1, 2 and 3 it follows that in these cases RLRT is among the most
powerful tests. It clearly outperforms Fanova, particularly when the number of
levels of x is high. Flm is only superior to RLRT if the true underlying regression
function is linear (3). Fgam does not seem to be as powerful as RLRT for ordinal
predictors (particularly in Figures 2 and 3). Furthermore, Fgam may not be a
reliable α-level test, as, for example, shown by Scheipl et al. (2008). Though in
Figures 1, 2 and 3 it seems that Fgam has correct size, this is not the case. In our
simulations for a = 0, the proportion of rejections of H0 was mostly higher than
0.05 when Fgam was applied. More precisely, if K ∈ {9, 14, 19}, the (observed)
size of Fgam was between 0.06 and 0.07 (which can be seen if the respective plots
in Figure 1, 2 and 3 are zoomed in). Fanova, Flm and RLRT, by contrast, have
correct size.
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Fig 2. Left: The second set of considered regression functions (for K = 9) when testing null
hypothesis H0: β1 = · · · = βK = β0 = 0, which is true for a = 0 (green lines). The red lines
correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9. Right: Proportions of rejections of
H0 as a function of a when RLRT, Fanova, Flm and Fgam are applied.

6.2. Testing for linearity

To investigate if the proposed restricted likelihood ratio test for ordinal predic-
tors is also suitable for testing linearity, we consider three types of nonlinear
functions, see the left panels in Figures 4, 5 and 6. Now the extent of non-
linearity is controlled by parameter a ∈ [0, 1], where a = 0 means that the
conditional expectation of y given predictor x is a linear function of the x-levels
0, . . . ,K. That means, (assuming dummy model (2)) the null hypothesis H0:
βk+1 − 2βk + βk−1 = 0, k = 1, . . . ,K − 1, is true – indicated by green lines in
the left panels of Figures 4, 5 and 6. Red lines correspond to a = 1 again, and
the other lines to a = 0.1, 0.2, . . . , 0.9.

We compare the proposed RLRT, the standard F -test Fanova (as described in
Section 2) and the approximative F -test Fgam from mgcv (Wood, 2006; Wood,
2011) when x is treated as a continuous covariate. For Fgam, we use the procedure



Testing linearity and relevance of ordinal predictors 1947

0 1 2 3 4 5 6 7 8 9

0.
0

0.
5

1.
0

1.
5

2.
0

k

du
m

m
y 

co
ef

fic
ie

nt

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

K = 4

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova

Flm
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 9

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova

Flm
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 14

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova

Flm
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 19

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova

Flm
Fgam

Fig 3. Left: The third set of considered regression functions (for K = 9) when testing null
hypothesis H0: β1 = · · · = βK = β0 = 0, which is true for a = 0 (green lines). The red lines
correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9. Right: Proportions of rejections of
H0 as a function of a when RLRT, Fanova, Flm and Fgam are applied.

suggested by Scheipl et al. (2008): We fit a model in which the smooth term
represents only the deviations from linearity, which is done by fitting a model
with an explicit linear term in x and an additional P-spline term in x with
first-order difference penalization. We also tried the more general approximative
F -test for comparing two nested GAMs as proposed by Wood (2006). But in our
case this test was far away from being an α-level test (sometimes with rejection
rates of around 20%, or even higher, for a = 0).

For data generation, we use dummy model (2), again with standard normal
error and n = 100. As before, we set α = 0.05 and give rejection rates (computed
over 10,000 simulated data sets) for the different tests as a function of a (right
panels of Figures 4, 5 and 6). For a true function as given in Figures 4 and 6,
RLRT distinctly outperforms Fgam and Fanova, with differences between RLRT
and Fanova becoming larger with increasing K. For a small number of levels K,
Fanova and Fgam perform almost equally. If K is actually small and the true
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Fig 4. Left: The first set of considered regression functions (for K = 9) when testing the
null hypothesis of linearity H0: βk+1 − 2βk + βk−1 = 0, k = 1, . . . ,K − 1, which is true for
a = 0 (green lines). The red lines correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9.
Right: Proportions of rejections of H0 as a function of a when RLRT, Fanova, and Fgam are
applied.

regression function tends towards a smoothed step function (Figure 5, left),
Fanova and Fgam are superior to RLRT, as seen in Figure 5 (top). But also
in this case, such superiority is not found anymore when the number of levels
increases.

7. Real data examples

7.1. Rent standard data

We consider data from the Munich rent standard 2003. All larger German cities
publish so-called rent standards for having guidelines available to tenants, land-
lords, renting advisory boards and experts. Rent standards are used, in par-
ticular, to determine the local comparative rent, cf. Gertheiss and Tutz (2010).



Testing linearity and relevance of ordinal predictors 1949

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4

k

du
m

m
y 

co
ef

fic
ie

nt

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

K = 4

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 9

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 14

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova
Fgam

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K = 19

a

pr
op

or
tio

n 
of

 r
ej

ec
tio

ns

RLRT
Fanova
Fgam

Fig 5. Left: The second set of considered regression functions (for K = 9) when testing the
null hypothesis of linearity H0: βk+1 − 2βk + βk−1 = 0, k = 1, . . . , K − 1, which is true for
a = 0 (green lines). The red lines correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9.
Right: Proportions of rejections of H0 as a function of a when RLRT, Fanova, and Fgam are
applied.

Some of the data the Munich rent standard is based on can be found in the data
archive of the Department of Statistics at the University of Munich.1 We use the
data to investigate the relationship between the rent per square meter (in Euro)
and the number of rooms of the corresponding apartment, but we only consider
new buildings, with ‘new’ meaning (according to the official rent standard def-
initions) that the building has been constructed after 1977. In Figure 7 (left)
boxplots of the observed rents per square meter are shown for apartments with
1, 2, . . . , 6 rooms. In seems that the rent (per square meter) decreases for apart-
ments with more rooms. When looking at the mean rents in each group – that
is, fitting a dummy model by pure ML – it seems that rents decrease at first, but
then increase for apartments with 5 and 6 rooms (green ◦ in Figure 7, right). If

1http://www.statistik.lmu.de/service/datenarchiv

http://www.statistik.lmu.de/service/datenarchiv
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Fig 6. Left: The third set of considered regression functions (for K = 9) when testing the
null hypothesis of linearity H0: βk+1 − 2βk + βk−1 = 0, k = 1, . . . ,K − 1, which is true for
a = 0 (green lines). The red lines correspond to a = 1, black lines to a = 0.1, 0.2, . . . , 0.9.
Right: Proportions of rejections of H0 as a function of a when RLRT, Fanova, and Fgam are
applied.

a first-order difference penalty is imposed on adjacent dummy coefficients, rents
for 4, 5 and 6 rooms seem to be (almost) equal (red ∗ in Figure 7, right). When
using a P-spline, fitted rents are very similar (blue ⋄ in Figure 7, right).

To check whether there are significant differences between the rents per square
meter in apartments with a different number of rooms, we may use classical
ANOVA, that is, the standard F -test. Though rents seem to be different in
Figure 7, the test indicates just borderline significance on the 0.1-level (p-value
0.0995). Results for the approximative F -test from the gam-output are similar (p-
value 0.097). The proposed RLRT for ordinal predictors, however, indicates that
rents are differing significantly on the 0.05-level (p-value 0.023). Nonlinearity
that has been observed in Figure 7 is not indicated as significant by any of
the considered tests. A possible explanation is that in the groups which are
“responsible” for nonlinearity, namely 5 and 6, there are only a few observations
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Fig 7. Boxplots of the observed rents per square meter (in Euro) against the number of rooms
of the considered apartments (left), and the corresponding fitted mean rents (right). For fitting,
we used unpenalized ML estimation of dummy coefficients (green ◦), penalized estimation with
first-difference penalty on adjacent dummy coefficients with the penalty parameter estimated
by REML (red ∗), and a penalized spline (using the gam-function from mgcv, blue ⋄).

available (5 and 4, respectively), as seen from Figure 7 (left), where widths of
the boxes are proportional to the square-roots of the number of observations in
each group.

7.2. ICF data

As another example, we consider patients with chronic widespread pain (CWP)
and investigate the bivariate association between a score of physical health and
the ICF category ‘individual attitudes of immediate family members’. The ICF
– the International Classification of Functioning, Disability and Health – pro-
vides a unified and standard language and framework for the description of
functioning and disability (see WHO, 2001). The ICF consists of about 1400
so-called ICF categories, each of which refers to a health or a health-related
domain. Category e410 ‘individual attitudes of immediate family members’ is
a so-called environmental factor. For environmental factors a differentiation is
made between barriers and facilitators resulting in the coding scheme −4 (com-
plete barrier), . . . , −1 (mild barrier), 0 (no barrier/facilitator), +1 (mild facili-
tator), . . . , +4 (complete facilitator). That means, e410 indicates whether, and
to what extend, attitudes of family member are rather a barrier or a facilitator
with respect to the patients’ daily life. We investigate the relationship between
e410 and a physical health component summary measure which is based on the
SF-36 questionnaire (Ware and Sherbourne, 1992; McHorney et al., 1993). The
data analyzed have been collected in a multicenter, international study (sample
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Fig 8. Boxplots of the observed physical health component scores for the different levels of ICF
category ‘individual attitudes of immediate family members’ with ordinal coding scheme −4
(complete barrier), . . . , −1 (mild barrier), 0 (no barrier/facilitator), +1 (mild facilitator),
. . . , +4 (complete facilitator).

size n = 420), and are part of the R package ordPens (Gertheiss, 2011), see
Gertheiss et al. (2011) and Cieza et al. (2004) for details.

Figure 8 shows boxplots of the observed physical health component scores for
the different levels of the ‘individual attitudes of immediate family members’.
For testing whether there are differences between the levels, we use Fanova, Fgam

and the proposed RLRT. All three tests indicate highly significant differences
with p-values being given in Table 1. Figure 9 (left) shows the corresponding
fitted mean health scores for each level of ICF category e410, where penalizing
methods impose a penalty on deviations from constancy. The right panel of
Figure 9 shows the analogous plot if deviations from linearity are penalized.
The relationship seems highly nonlinear. And indeed, the corresponding tests
indicate highly significant deviations from linearity, see Table 1 (right). It is
also seen that the p-values of RLRT for both testing constancy and linearity are
much smaller than those of Fanova and Fgam. Though all tests imply that the
null-hypotheses of constancy and linearity can be rejected, the smaller p-values
may become relevant if more than one ICF category is considered and p-values
have to be adjusted.

Concerning parameter estimation, results of different ordinal penalties seem
quite unalike (compare red ∗ in the left and right panel of Figure 9), whereas
spline fits (blue ⋄) with different penalties are very similar. However, differences
between the two types of ordinal penalties are mainly caused by differences with
respect to category 4 and, more importantly,−4. But the number of observations
in these extreme categories is very low. In category 4 we have just 10 observa-
tions, and only one in −4 (see Figure 8), which makes estimates of respective
dummy coefficients very unreliable. This uncertainty at the boundary is also re-
flected by pointwise confidence intervals as provided by amer or mgcv for splines
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Table 1

Results of different tests in terms of p-values when testing relevance and linearity of the
ordinal covariate ‘individual attitudes of immediate family members’. The physical health

component score shown in Figure 8 is considered as response

Testing Relevance Testing Linearity
p-values p-values

Fanova 3.0 · 10−4 3.4 · 10−4

Fgam 3.4 · 10−4 5.1 · 10−4

RLRT 1.8 · 10−5 7.7 · 10−6
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Fig 9. The fitted mean physical health scores for the different levels of e410 ‘individual at-
titudes of immediate family members’. For fitting, we used unpenalized ML estimation of
dummy coefficients (green ◦), penalized estimation with first- (left) and second-order (right)
difference penalty on adjacent dummy coefficients with the penalty parameter estimated by
REML (red ∗), and a penalized spline (using the gam-function from mgcv, blue ⋄) where devi-
ations from a constant (left) or linearity (right) are penalized.

(not shown). The test proposed here, by contrast, is not for hypotheses with re-
spect to single coefficients, but for global hypotheses of constancy and linearity.

8. Summary and discussion

We proposed a new test for ordinal predictors in the classical linear model.
When testing relevance or linearity of an ordinal covariate this can be inter-
preted as testing for a zero variance component in a linear mixed model. So the
proposed test is based on the restricted likelihood ratio test for zero variance
components in linear mixed models and uses the exact test distribution derived
by Crainiceanu and Ruppert (2004).

We showed that in many situations the new test outperforms the standard
F -test which is usually applied for categorical covariates, in particular – but
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not only – when the number of levels of the independent variable is high. The
proposed test was mostly also superior to (approximative) testing in additive
models that may be used if the ordinal predictor is treated as continuous and
modeled smoothly using splines. In addition, the latter test may not be a reliable
α-level test. So the presented RLRT for ordinal predictors can be seen as a very
powerful alternative to existing F -tests when the levels of a categorical covariate
are ordered. The advantages of the new test over existing F -tests, which may
lead to an increase in power, can be summarized as follows. While the stan-
dard F -test for categorical data only uses the predictor’s nominal scale level,
the proposed test also takes the covariate’s ordinal nature into account – thus
using more information. Differences between the new test and the approximate
test based on splines (and treating the ordinal predictor as continuous) are, on
the one hand, not such big. Both tests use basis expansions and a difference
penalty on basis coefficients. On the other hand, however, there are two impor-
tant differences: The proposed test is an exact test, whereas the approximate
test is not. Furthermore, with dummy-coding instead of, e.g., B-splines, the new
test uses basis functions that are somewhat natural for discrete data, as values
between predictor levels cannot be observed anyway. When only relevance of the
ordinal predictor is to be tested, predictor levels may also be directly included
in a linear model, assuming a linear relationship between the predictor level and
the response (if there is some dependence). If the relationship is in fact (almost)
linear, the corresponding F -test (or the equivalent t-test) is a very powerful
test. If the true dependence is, however, clearly nonlinear (as non-monotone, for
example), this F -test is often outperformed by the proposed RLR test.

In some situations it is less relevant of course to test whether there is a linear
relationship between class labels and the response; for example, when a movie
rating scheme is considered with labels “very bad”, “bad”, “okay”, “good”, “very
good”. In cases like that, however, it makes no sense either to assume such linear
relationship when testing for relevance, whereas dummy-coding of the predictor
seems to be adequate. Therefore the proposed RLRT is highly attractive when
in such situations relevance of the ordinal covariate is to be tested.

Though in our simulations we only considered one ordinal predictor, the test
is directly applicable to multiple regression problems if all additional covari-
ates can be treated as fixed effects that are not be tested simultaneously (see
Crainiceanu et al., 2005). In the case of more than one ordinal predictor that
may be treated as a random effect, approximations of the RLRT distribution
proposed by Greven et al. (2008) may be used.

For performing the test, existing software can be used and only a little ad-
ditional implementation is necessary, as given in the Appendix. Instead of R
package amer, mgcv could alternatively be used to fit the penalized regression
model. Only the ordinal predictor has to be coded in the right way and the ade-
quate penalty matrices need to be given. So ordinal predictors can be combined
with several other types of predictors, including even functional covariates, for
example. In addition, extensions to longitudinal or clustered data are possible
by including additional random effects.
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Appendix A: Construction of design matrix Z

We consider the linear mixed model (10) and the representation of penalized
dummy variables in the linear mixed models framework (see Subsection 4.2).

Penalizing deviations from a constant line

If penalty (6) is employed, we define ξ = α and uk = βk − βk−1, k = 1, . . . ,K,
and obtain the equivalent models

E[y|x = k] = α+ βk and E[y|x = k] = ξ + u1 + · · ·+ uk,

if k = 1, . . . ,K, and E[y|x = 0] = α, resp. E[y|x = 0] = ξ, if k = 0. So if
for observation i the ordinal predictor x has value xi, the ith row of (random
effects) design matrix Z has to be

(1, . . . , 1
︸ ︷︷ ︸

xi

, 0, . . . , 0
︸ ︷︷ ︸

K−xi

),

which leads to the definition of variables z1, . . . , zK as given in (13).

Penalizing deviations from linearity

We define random effects uk as second order differences uk = (βk+1 − βk) −
(βk − βk−1) = βk+1 − 2βk + βk−1, k = 1, . . . ,K − 1. The linear trend over cate-
gories (that is not to be penalized) is denoted by δ. Original dummy coefficients
β1, . . . , βK are obtained from δ, u1, . . . , uK−1 by the back-transformation (see
Subsection 4.2)






β1

...
βK




 =












1 0 · · · · · · 0

2 1
. . .

...

3 2 1
. . .

...
...

. . .
. . .

. . . 0
K · · · 3 2 1



















δ
u1

...
uK−1








.

So if x = 0, the model is still E[y|x = 0] = α; if x ≥ 1, we have equivalent
models

E[y|x = k] = α+ βk, k = 1, . . . ,K
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and

E[y|x = 1] = α+ 1δ

E[y|x = 2] = α+ 2δ + 1u1

E[y|x = 3] = α+ 3δ + 2u1 + 1u2

E[y|x = 4] = α+ 4δ + 3u1 + 2u2 + 1u3

...

Therefore the ith row of (fixed effects) design matrix X is just (1, xi), with xi

denoting the value of ordinal predictor x observed at subject i. If xi ∈ {0, 1},
the ith row of (random effects) design matrix Z is just (0, . . . , 0). But if xi = 2,
we have (1, 0, . . . , 0); if xi = 3, (2, 1, 0, . . . , 0); if xi = 4, (3, 2, 1, 0, . . . , 0); etc. In
general, for xi ≥ 4, we have (xi − 1, . . . , 2, 1, 0, . . . , 0). So if x = 5, for example,
the new variables z1, z2, . . . that are defined to build Z, have values

z1 = 4, z2 = 3, z3 = 2, z4 = 1, z5 = · · · = zK−1 = 0,

which leads to definition (15).

Appendix B: R-code for the proposed RLRT for ordinal predictors

This appendix provides some example R code that can be used to carry out the
proposed restricted likelihood ratio test for ordinal predictors. At first, we need
some packages:

> library(amer)

> library(RLRsim)

Then we define the basis functions that can be used within amer to impose
the suggested penalties via a mixed model formulation. Function cd() specifies
dummy variables such that constancy over categories of the ordinal predictor
can be tested, and ld() effects second-order difference penalization such that
linearity can be tested. Note, functions given below take predictor vector x with
numeric values 1,2,3,...

> cd <- function(x, by = NULL, allPen = FALSE, diag = FALSE, varying = NULL) {

+ n <- length(x)

+ call <- as.list(expand.call())

+ X <- matrix(0, n, 0)

+ Z <- matrix(rep(x, max(x) - 1), n, max(x) - 1)

+ Z <- Z - matrix(rep(1:(max(x) - 1), n), dim(Z)[1], dim(Z)[2], byrow = T)

+ Z[Z < 0] <- 0

+ Z[Z > 1] <- 1

+ res <- list(X = X, Z = Z)

+ attr(res, "call") <- as.call(call)

+ return(res)

+ }

> ld <- function(x, by = NULL, allPen = FALSE, diag = FALSE, varying = NULL) {

+ n <- length(x)

+ call <- as.list(expand.call())

+ X <- cbind(x - 1)



Testing linearity and relevance of ordinal predictors 1957

+ Z <- matrix(rep(x, max(x) - 2), n, max(x) - 2)

+ Z <- Z - matrix(rep(2:(max(x) - 1), n), dim(Z)[1], dim(Z)[2], byrow = T)

+ Z[Z < 0] <- 0

+ res <- list(X = X, Z = Z)

+ attr(res, "call") <- as.call(call)

+ return(res)

+ }

For reproducibility, we set
> set.seed(1701)

Now we generate a data set of size 100 with ordinal predictor x having lev-
els 1,...,10:
> n <- 100

> x <- c(1:10, sample(1:10, n - 10, replace = T))

For given x, response y is normal, and the conditional expection of y – the
true regression function – is nonlinear in x.
> y <- 4/9 * (x - 1) - 1/30 * (x - 1) * (x - 10) + rnorm(100)

> dyx <- data.frame(y, x)

Now we assume that we would like to test if y is actually influenced by x.
Therefore we fit a linear (mixed) model with first-difference penalization using
amer:
> fm1 <- amer(y ~ cd(x), data = dyx, basisGenerators = c("cd"))

The proposed test can then be done using exactRLRT() from the package
RLRsim, where for models with only one variance component only the model
under the alternative need to be specified (see the help files of exactRLRT for
details):
> RLR1 <- exactRLRT(fm1)

The test result is obtained by looking at the corresponding p-value:
> RLR1$p.value

[1] 0

To test if the influence of x on y is linear in the class labels of x, we fit a
linear (mixed) model with second-order difference penalization, and carry out
the test for a zero variance component:
> fm2 <- amer(y ~ ld(x), data = dyx, basisGenerators = c("ld"))

> RLR2 <- exactRLRT(fm2)

> RLR2$p.value

[1] 0.0021

For comparison, we also carry out the standard F -test:
> fm0 <- lm(y ~ x, data = dyx)

> fm2a <- lm(y ~ factor(x), data = dyx)

> anova(fm0, fm2a)

Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ factor(x)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 98 101.131

2 90 83.467 8 17.664 2.3808 0.02247 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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