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1. Introduction

In this paper, we are concerned with conditional density estimation. Such a
model brings more information than the well-studied regression model; for in-
stance, it may reveal multimodality. Yet, references about conditional density
estimation are rather scarce, even for nonadaptive procedures. For independent
data, we can cite for instance Györfi and Kohler [GK07] for a histogram based
procedure, or Faugeras [Fau07] for a copula-based kernel estimator. For mixing
data, De Gooijer and Zerom [DGZ03] and Fan and Yim [FY04] propose kernel
methods. For Markov chains, nonadaptive estimation of the transition density
is considered for instance in [Rou69, Bir83, DG83], and we also refer to [Lac07]
for a more complete bibliography. But, in order to reach the optimal rate of
convergence, those methods require the smoothness of the function to estimate
to be known, so as to choose adequately some tuning parameter.

Adaptive estimators of the conditional density have only recently been pro-
posed. For independent data, Efromovich [Efr07, Efr08] and Brunel, Comte and
Lacour [BCL07] give oracle inequalities and adaptivity results in the minimax
sense. Efromovich [Efr07, Efr08] uses a Fourier decomposition to build a block-
wise-shrinkage Efromovich-Pinsker estimator, whereas Brunel et al. [BCL07]
perform model selection based on a penalized least-squares criterion. Regard-
ing dependent data, Clémençon [Clé00b] and Lacour [Lac07] study adaptive
estimators of the conditional density for Markovian observations, the former via
wavelet thresholding, and the latter via model selection. Besides, the procedures
proposed by [Efr07, Efr08, BCL07, Lac07] are all able to adapt to anisotropy;
otherwise said, the conditional density to estimate is allowed to have unknown
and different degrees of smoothness in each direction.

But the smoothness of the function to estimate may also vary spatially. If the
risk of the estimator is measured via some Lq-norm, one way to take into ac-
count that inhomogeneous behaviour is to consider functions whose smoothness
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is measured in a Lp-norm, with p < q. Among the aforementioned references,
only Clémençon [Clé00b] is able to cope with inhomogeneous smoothness. In the
simpler framework of density estimation, without conditioning variables, adap-
tation to inhomogeneity has been studied in the following works. Thresholding
methods, in a univariate framework, are proposed by Hall, Kerkyacharian and
Picard [HKP98] for independent data, Clémençon [Clé00a] for Markovian data,
and Gannaz and Wintenberger [GW10] for a wide class of weakly dependent
data. Piecewise polynomial selection procedures based on a penalized contrast
have also been considered, and consist in selecting from the data a best partition
and a best piecewise polynomial built on that partition. Thus, Comte and Mer-
levède [CM02] estimate the univariate density of absolutely regular stationary
processes, in discrete or continuous time, selecting a best partition among the
collection of all the partitions of [0, 1] built on a thin regular grid via a least-
squares criterion. Besides, three papers have lately considered density estima-
tors inspired from the “multiresolution histogram” of Engel [Eng94, Eng97], or
the “dyadic CART procedure” of Donoho [Don97]. Willett and Nowak [WN07]
select best piecewise polynomials built on partitions into dyadic cubes via a pe-
nalized maximum likelihood contrast. Klemelä [Kle09] and Blanchard, Schäfer,
Rozenholc and Müller [BSRM07] select best histograms based on partitions into
dyadic rectangles via a penalized criterion based on the L2-distance for the first
one, and on Kullback-Leibler divergence for the second ones. But all these pro-
cedures only reach optimal rates of convergence up to a logarithmic factor, and
only [Kle09] is able to prove adaptivity both to anisotropy and inhomogeneity.

In this paper, we provide an estimator of the conditional density via a piece-
wise polynomial selection procedure based on an adequate least-squares cri-
terion. To deal with the possible dependence of the observations, we mainly
use β-mixing coefficients and their coupling properties. Thus, our dependence
assumptions, while being satisfied by a wide class of Markov chains, are not
restricted to Markovian assumptions. We first prove nonasymptotic oracle type
inequalities fulfilled by any collection of partitions satisfying some mild struc-
tural conditions. We then consider the collection of partitions into dyadic rectan-
gles, as [Kle09] or [BSRM07]. We obtain oracle-type inequalities and adaptivity
results in the minimax sense, without logarithmic factor, over a wide range of
Besov smoothness classes that may contain functions with inhomogeneous and
anisotropic smoothness, whether the data are independent or satisfy suitable
dependence assumptions. The adaptivity of our procedure greatly relies on the
approximation result proved in [Aka10]. Moreover, determining in practice the
penalized estimator based on that collection only requires a computational com-
plexity linear in the size of the sample.

This paper is organized as follows. We begin by describing the framework
and the estimation procedure, and we present an evaluation of the risk on one
model. This study allows to understand what bound for the L2-risk we seek
to obtain. The choice of a penalty yielding an oracle-type inequality is the
topic of Section 3.1. Section 3.2 is devoted to the collection of partitions into
dyadic rectangles, and adaptivity results are proved for an adequate penalty.
We show in Section 4 that all these results can be extended to dependent data.
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In Section 5, the practical implementation of our estimator is explained and
some simulations are presented, both for independent and dependent data. Most
proofs are deferred to Section 6.

2. Framework and estimation procedure

In this section we define a contrast and we deduce a collection of estimators ŝm.
In order to understand which modelm we should choose, we give an evaluation of
the risk for each estimator ŝm. This allows us to define the penalized estimator.

2.1. Framework and notation

Let {Zi}i∈Z = {(Xi, Yi)}i∈Z be a strictly stationary process, where, for all i ∈ Z,
Xi and Yi take values respectively in [0, 1]d1 and [0, 1]d2, with d1 and d2 posi-
tive integers. We assume that the variables (Xi)i∈Z admit a bounded marginal
density f with respect to the Lebesgue measure. Given some integer n ≥ 2, our
aim is to estimate, on the basis of the observation of (Z1, . . . , Zn), the marginal
density s of Yi conditionally to Xi. Thus, our parameter of interest s is the real-
valued function of d variables, where d = d1 + d2, such that, for all x ∈ [0, 1]d1,
s(x, .) : [0, 1]d2 → R is the density of Yi conditionally to Xi = x. In particular, if
(Xi)i∈Z is a homogeneous Markov chain of order 1, and Yi = Xi+1 for all i ∈ Z,
then s is the transition density of the chain (Xi)i∈Z.

Let us introduce some standard notation. For any real-valued function t de-
fined and bounded on some set D, we set

ι(t) = inf
x∈D

|t(x)| and ‖t‖∞ = sup
x∈D

|t(x)|.

We denote by L2([0, 1]
d1 × [0, 1]d2) the set of all real-valued functions which are

square integrable with respect to the Lebesgue measure. Since f is bounded, we
can also define on L2([0, 1]

d1 × [0, 1]d2) the semi-scalar product

〈t, u〉f =

∫

[0,1]d1×[0,1]d2
t(x, y)u(x, y)f(x)dxdy

and the associated semi-norm ‖.‖f .

2.2. Contrast and estimator on one model

In order to estimate the conditional density s, we consider the empirical criterion
γ described in [BCL07] and defined on L2([0, 1]

d1 × [0, 1]d2) by

γ(t) =
1

n

n
∑

i=1

[

∫

[0,1]d2
t2(Xi, y)dy − 2t(Xi, Yi)

]

.
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Due to the nature of the function to estimate, the contrast used here borrows
both from the classical regression and density least-squares contrasts. This con-
trast verifies:

Es[γ(t)− γ(s)] = Es

[∫

(t2 − s2)(X1, y)dy − 2(t− s)(X1, Y1)

]

=

∫∫

(t2 − s2)(x, y)f(x)dxdy

− 2

∫∫

(t− s)(x, y)s(x, y)f(x)dxdy

=

∫∫

(t2 − 2ts+ s2)(x, y)f(x)dxdy = ‖s− t‖2f ,

so that s minimizes t 7→ Es[γ(t)] over L2([0, 1]
d1 × [0, 1]d2). Thus, a natural

way to build an estimator of s consists in minimizing γ over some subset of
L2([0, 1]

d1 × [0, 1]d2), that we choose here as a space of piecewise polynomial
functions with degree smaller than a given nonnegative integer r. More precisely,
for a partition m of [0, 1]d1 × [0, 1]d2 into rectangles, we denote by Sm the space
of all real-valued piecewise polynomial functions on [0, 1]d1 × [0, 1]d2 which are
polynomial with coordinate degree ≤ r on each rectangle of m. We define a best
estimator of s with values in the model Sm by setting

ŝm = argmin
t∈Sm

γ(t).

An explicit formula for computing ŝm is given in Section 5.

2.3. Risk on one model

In this subsection, we fix some partition m of [0, 1]d1 × [0, 1]d2 into rectangles
and give some upper-bound for the risk of ŝm when Z1, . . . , Zn are independent.
As for all the theorems stated in the sequel, we evaluate that risk in the random
semi-norm ‖.‖n naturally associated to our problem, and defined, for all t ∈
L2([0, 1]

d1 × [0, 1]d2), by

‖t‖2n =
1

n

n
∑

i=1

∫

[0,1]d2
t2(Xi, y)dy

(remember that our problem is a mixture of regression in the x-direction and of
density estimation in the y-direction). However, it is also possible to control the
classical L2-norm, using a truncated estimator (see, for instance, Corollary 3.2
in Section 3). Besides, for any partition m′ of a unit cube into rectangles, we
denote by |m′| the number of rectangles in m′ and say that the partition m′

is regular if all its rectangles have the same dimensions. For the risk of the
estimator ŝm, we can prove the following result.
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Proposition 2.1. Let m be a partition of [0, 1]d1 × [0, 1]d2 built on a regular
partition m⋆

1×m⋆
2, where m

⋆
1 and m⋆

2 are regular partitions of [0, 1]d1 and [0, 1]d2

into cubes such that

|m⋆
1| ≤

n

log2(n)
and |m⋆

2| ≤ n.

Let sm be the orthogonal projection of s on Sm for the norm ‖.‖, and Dm

denote the dimension of Sm, so that Dm = (r + 1)d|m|. Assume that s and f
are bounded, and that f is also bounded from below by a positive constant. If the
variables Z1, . . . , Zn are independent, then

Es

[

‖s− ŝm‖2n
]

≤ 2‖s− sm‖2f + 11‖s‖∞
Dm

n
+
C

n
,

where C only depends on r, d, ι(f), ‖f‖∞, ‖s‖∞.

We recover approximately in the upper-bound stated in Proposition 2.1 the
usual decomposition into a squared bias term, of order ‖s−sm‖2f , and a variance
term of order ‖s‖∞Dm/n, proportional to the dimension of the model Sm. A
major interest of such a bound is that it allows to understand how to build
an optimal estimator from the minimax point of view. Let us first recall that
when s belongs to classical classes of functions with isotropic smoothness σ
(isotropic Besov classes for instance), a minimax estimator over such a class
reaches the estimation rate n−2σ/(2σ+d). Roughly speaking, when s belongs to
a well-chosen class of isotropic functions with smoothness σ measured in a Lp-

norm with p ≥ 2, the bias term ‖s− sm‖2f is at most of order D
−2σ/d
m for any

regular partition m into cubes. If we knew at least the smoothness parameter
σ, we could choose some regular partition mopt(σ) into cubes realizing a good

compromise between the bias and the variance terms, i.e. such that D
−2σ/d
mopt(σ)

and Dmopt(σ)/n are of the same order. We would then obtain with ŝmopt(σ) an

estimator that reaches the optimal estimation rate n−2σ/(2σ+d) whatever p ≥ 2.
But when s has isotropic smoothness σ measured in a Lp-norm with p < 2,

one can only ensure that the bias term ‖s − sm‖2f is at most of order D
−2σ/d
m

for some irregular partition m into cubes that does not only depend on σ, but
must be adapted to the inhomogeneity of s over the unit cube (see for instance
Section 3.2 and [Aka10]). Thus, there exists some well-chosen irregular partition
mopt(s) into cubes such that Dmopt(s) is of order n

d/(2σ+d) but that reaches the

estimation rate n−2σ/(2σ+d) only at s, and probably not on the whole class of
functions with smoothness σ in a Lp-norm with p < 2. Last, if s has anisotropic
smoothness, similar properties still hold, with partitions into rectangles - regular
or not depending on the homogeneity of s- whose dimensions are adapted to the
anisotropy of s.

2.4. Penalized estimator

We give ourselves a finite collection M of partitions of [0, 1]d1× [0, 1]d2 into rect-
angles. The aim is to choose the best estimator among the collection {ŝm}m∈M
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without assumption on the smoothness of s. To do so, we use the model se-
lection method introduced by [BBM99] which allows us to select an estimator
only from the data, by minimizing a penalized criterion. Thus, we consider the
random selection procedure

m̂ = argmin
m∈M

{γ(ŝm) + pen(m)}

and the penalized estimator
s̃ = ŝm̂,

where pen : M → R
+ is a so-called penalty function that remains to be chosen so

that s̃ performs well. The choice of the collection of partitions M is discussed is
the next section. The practical implementation of the penalized estimator based
on the collection of partitions into dyadic rectangles is described in Section 5.

3. Main result

In this section, we study the risk of the penalized estimator s̃ for independent
data, first with a general collection of partitions, secondly with a relevant choice
of collection that ensures the optimal estimation of a possibly inhomogeneous
and anisotropic function s.

3.1. Oracle inequality

Ideally, we would like to choose a penalty pen such that s̃ is almost as good as
the best estimator in the collection {ŝm}m∈M, in the sense that

Es

[

‖s− s̃‖2n
]

≤ C min
m∈M

Es

[

‖s− ŝm‖2n
]

(3.1)

for some positive constant C. Theorem 3.1 below suggests a form of penalty
yielding an inequality akin to

Es

[

‖s− s̃‖2n
]

≤ C min
m∈M

{

‖s− sm‖2f +
Dm

n

}

. (3.2)

Yet, as recalled in the previous section, for each m ∈ M, Es

[

‖s− ŝm‖2n
]

is
expected to be of order ‖s− sm‖2f +Dm/n. So, Inequality (3.2) is expected to
be almost as good as Inequality (3.1). In order to deal with a large collection
M that may contain irregular partitions, we only impose a minor structural
condition on M. That assumption ensures that all the models are included in a
biggest model, without imposing that the models be nested as in [BCL07]. We
also assume that s and f are bounded.

Assumption (P1) All the partitions in the collection M are built on a regular
partition m⋆ of [0, 1]d into cubes such that

|m⋆|2 ≤ n
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Assumption (B)

s ≤ ‖s‖∞ <∞, 0 < ι(f) ≤ f ≤ ‖f‖∞ <∞

We establish an oracle type inequality for a very general collection of partitions.
Thus we state the following model selection theorem.

Theorem 3.1. Let M be a collection of partitions satisfying Assumption (P1)
and {Lm}m∈M be a family of reals greater than or equal to 1, that may depend
on n, such that

∑

m∈M

exp(−Lm|m|) ≤ 1. (3.3)

Assume that (Zi)1≤i≤n are independent and s, f satisfy Assumption (B). If the
penalty satisfies, for all m ∈ M,

pen(m) = κ

(

‖s‖∞ +
(2r + 1)d

ι(f)

)

L2
mDm

n

for some large enough positive absolute constant κ, then

Es

[

‖s− s̃‖2n
]

≤ C1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2f +
Dm

n

}

. (3.4)

where C1 is a positive constant that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.
Theorem 3.1 is only proved in its general version for dependent data (see

Theorem 4.1 in Section 4.3).
The penalty contains unknown terms, but in practice, ‖s‖∞ and ι(f) can

be replaced with an estimator, as in [BM97] (Proposition 4) for instance, and
κ is calibrated via a simulation study. To state a result with the precise re-
placement, we choose m•

1 and m•
2 regular partitions of [0, 1]d1 and [0, 1]d2 into

cubes such that m• = m•
1 × m•

2 verifies Assumption (P1). We define f̂m•

1
=

argmint∈Fm•

1

n−1
∑n

i=1[‖t‖2 − 2t(Xi)], where Fm•

1
is the space of all functions

on [0, 1]d1 which are polynomial with coordinate degree ≤ r on each rectangle of

m•
1, and estimate ι(f) by ι̂(f) = infx∈[0,1]d1 f̂m•

1
(x). We also impose Besov-type

smoothness assumptions on f and s. For σ = (σ1, . . . , σd) ∈ (0, r + 1)d, R > 0,
p > 0, we refer to [Tri06] (Chapter 5) for a definition of the anisotropic Besov
space Bσ

pp′ and the associated norm ‖.|Bσ

pp′‖, and we introduce the anisotropic
Besov balls

B(σ, p, R) = {t : [0, 1]d → R s.t. ‖t|Bσ

pp′‖ ≤ R}, (3.5)

where p′ = ∞ if 0 < p ≤ 1 or p ≥ 2, and p′ = p if 1 < p < 2. We recall that,
due to the continuous embeddings stated for instance in [Tri06], Bσ

p∞ contains
all the spaces Bσ

pp′ , for p′ > 0, so our choice of p′ in the definition of B(σ, p, R)
is the less stringent one for 0 < p ≤ 1 or p ≥ 2. Last, we set σ = min1≤l≤d σl
and denote by H(σ) the harmonic mean of σ1, . . . , σd, i.e.

1

H(σ)
=

1

d

d
∑

l=1

1

σl
.
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Corollary 3.1. Assume that s ∈ B(σ, p, R) and f ∈ B(α, p, R1) with

H(σ)

d
>

1

p
+

1

2

H(σ)

σ
,

H(α)

d1
>

(

1

p
− 1

2

)

+

+
H(α)

α
.

Assume that |m•
1| ≥ lnn and, for all m ∈ M,

pen(m) = κ̄

(

‖ŝm•‖∞ +
(2r + 1)d

ι̂(f)

)

L2
mDm

n

for some large enough positive constant κ̄. Then, under the assumptions of The-
orem 3.1, for n large enough,

Es

[

‖s− s̃‖2n
]

≤ C′
1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2 + Dm

n

}

.

where C′
1 is a positive constant that depends on κ̄, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.

We omit the proof since it exactly follows the proof of Theorem 12 in [Lac07].
The smoothness conditions arise from the control of ‖s−sm•‖∞ and ‖f−fm•

1
‖∞,

for which we use the results of [Aka10] (Lemma 2). It should be noticed that
m• may differ from m⋆. In particular, it may be chosen less fine than m⋆ so as
to have better estimates of ‖s‖∞ and ι(f).

Let us now comment on Inequality (3.4), which is similar to (3.2), up to
the factors C1, that does not depend on n, and maxm∈M L2

m. We have already
explained that we need irregular partitions to estimate inhomogeneous func-
tions. However, irregular partitions often form a too rich collection. If Lm only
depends on Dm, Condition (3.3) means that LD have to be large enough to
balance the number of models of same dimension D. If the number of model for
each dimension is high, the Lm’s have to be high too. For instance, [BM97] use
weights (Lm)m∈M of order log(n) to ensure condition (3.3), which spoils the
rates of convergence. We describe in the next section an interesting collection
of partitions for which the factor maxm∈M L2

m can be bounded by a constant,
although the collection is rich enough to have good approximation qualities with
respect to functions of inhomogeneous smoothness.

Let us mention that we can define an estimator s̃∗ for which we can control
the risk associated to the norm ‖.‖ instead of ‖.‖n.
Corollary 3.2. Define s̃∗ = s̃1‖s̃‖≤n. Then, under assumptions of Theorem 3.1,

Es

[

‖s− s̃∗‖2
]

≤ C′′
1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2 + Dm

n

}

.

where C′′
1 is a positive real that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.

The proof exactly follows the proof of Theorem 4 in [Lac07] and then is
omitted. (The idea is the following: when ‖s̃‖ ≤ n then the result is already
proved; and P (‖s̃‖ > n) ≤ n−2

E‖s̃‖2 ≤ 2n−2(‖s‖2+E‖s− s̃‖2) is low enough to
become a remainder term.) Then all the following results (Theorems 2–5) can
be stated for the L2-norm ‖.‖ replacing s̃ by s̃∗ = s̃1‖s̃‖≤n.
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3.2. The penalized estimator based on dyadic partitions

Let us describe the particular collection of partitions that we use here. We call
dyadic rectangle of [0, 1]d any set of the form I1×. . .×Id where, for all 1 ≤ l ≤ d,

Il = [0, 2−jl ] or Il = (kl2
−jl , (kl + 1)2−jl ]

with jl ∈ N and kl ∈ {1, . . . , 2jl−1}. Otherwise said, a dyadic rectangle of [0, 1]d

is defined as a product of d dyadic intervals of [0, 1] that may have different
lengths. We consider the collection of partitions of [0, 1]d into dyadic rectangles
with sidelength ≥ 2−J⋆ , where J⋆ is a nonnegative integer chosen according
to Proposition 3.1 below. We denote by Mrect such a collection of partitions.
Let us underline that a partition of Mrect may be composed of rectangles with
different Lebesgue measures, as illustrated by Figure 1.

For such a collection, we obtain as a straightforward consequence of The-
orem 3.1 that the estimator s̃ is almost as good as the best estimator in the
collection {ŝm}m∈Mrect .

Proposition 3.1. The notation is that of Theorem 3.1 and Assumption (B) is
supposed to be fulfilled. Let

J⋆ = max
{

k ∈ N s.t. 2kd ≤
√
n
}

and let pen be given on Mrect by

pen(m) = κ

(

‖s‖∞ +
(2r + 1)d

ι(f)

)

Dm

n

where κ is some positive absolute constant. If κ is large enough, then

Es

[

‖s− s̃‖2n
]

≤ C2 min
m∈Mrect

{

‖s− sm‖2f +
Dm

n

}

(3.6)

where C2 is a positive real that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.
Proof. Let D a positive integer. Building a partition of [0, 1]d into D dyadic
rectangles amounts to choosing a vector (l1, . . . , lD−1) ∈ {1, . . . , d}D−1 of cut-
ting directions and growing a binary tree with root corresponding to [0, 1]d and

Fig 1. A partition of [0, 1]2 into dyadic rectangles.
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[0, 1]× [0, 1]

[0, 1]×
[

0, 1

2

]

(2)

[

0, 1

2

]

×
[

0, 1

2

]

(1)

(

1

2
, 1

]

×
[

0, 1

2

]

(

1

2
, 1

]

×
[

0, 1

4

]

(2)

(

1

2
, 1

]

×
(

1

4
, 1

2

]

[0, 1]×
(

1

2
, 1
]

[0, 1]×
(

1

2
, 3

4

]

(2)

[0, 1]×
(

3

4
, 1
]

Fig 2. Binary tree labeled with the sequence of cutting directions (2, 1, 2, 2) corresponding with
the dyadic partition represented in Figure 1.

with D leaves. For instance, the partition of [0, 1]2 represented in Figure 1 can
be described by the binary tree structure represented in Figure 2 together with
the sequence of cutting directions (2, 1, 2, 2), where 1 stands for a vertical cut,
and 2 stands for a horizontal cut. Since the number of binary trees with D leaves
is given by the Catalan number

1

D

(

2(D − 1)

D − 1

)

≤ 4D

D

(see for instance [Sta99]), the number of such partitions is at most (4d)D. There-
fore, Condition (3.3) is fulfilled for weights Lm all equal to the same constant,
and a possible choice is

Lm = log(8d), for all m ∈ Mrect.

Inequality (3.6) is then a straightforward consequence of Theorem 3.1.

We are now able to compute estimation rates for the penalized estimator
based on the collection Mrect over the anisotropic Besov balls defined by (3.5),
by combining Proposition 3.1 with the approximation results of [Aka10] (Propo-
sition 2 and Theorem 2). Let

q(σ, d, p) =
σ

H(σ)

d+ 2H(σ)

2H(σ)

(

H(σ)

d
−
(

1

p
− 1

2

)

+

)

,

where (x)+ stands for the positive part of a real x. Contrary to [Kle09], we have
chosen a parameter J⋆ that does not depend on the unknown smoothness of s,
hence the factor σ/H(σ) in the above definition. That factor, which is inferior
or equal to 1 with equality only in the isotropic case, may be interpreted as an
index measuring the lack of isotropy. We assume that q(σ, d, p) > 1, which is
equivalent to

H(σ)

d
>











1
λ − 1

2 if p ≥ 2

1
2

(

1
p − 1 + 1

λ +

√

(

1
p − 1 + 1

λ

)2

+ 2
(

1
p − 1

2

)

)

if 0 < p < 2,
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where λ = σ/H(σ). Thus, if q(σ, d, p) > 1, then H(σ)/d > 1/p, so B(σ, p, R)
only contains continuous functions which are uniformly bounded by C(σ, r, d, p)R.

Theorem 3.2. The notation is that of Theorem 3.1 and Proposition 3.1, and
the assumptions those of Proposition 3.1. Let p > 0 and σ ∈ (0, r + 1)d such
that q(σ, d, p) > 1. If n−1 ≤ R2 ≤ nq(σ,d,p)−1, then there exists some positive
real C(σ, r, d, p) that only depends on σ, r, d, p such that

sup
s∈B(σ,p,R)

Es

[

‖s− s̃‖2n
]

≤ C2C(σ, r, d, p)‖f‖∞
(

Rn−H(σ)/d
)2d/(d+2H(σ))

.

The rate (Rn−H(σ)/d)2d/(d+2H(σ)) is the minimax one given the lower bounds
proved in [Lac07] for transition density estimation of a Markov chain. We are
able to reach that rate not only for functions with homogeneous smoothness, i.e.
for p ≥ 2, as [Lac07], but also for functions with inhomogeneous smoothness,
i.e. for 0 < p < 2, which is impossible with the collection of regular models
considered in [Lac07]. Besides, let us underline that, among the references cited
in the introduction, only [Kle09] can deal simultaneously with anisotropy and
inhomogeneous smoothness. Theorem 3.2 improves on [Kle09] by allowing to
approximately reach the minimax risk up to a factor that does not depend on
n and considering smoothness parameters possibly larger than 1.

4. Dependent data

We now show that the previous results can be extended to dependent variables.
The case of a Markov chain is of particular interest: if (Xi)i∈Z is a homogeneous
Markov chain of order 1, and Yi = Xi+1 for all i ∈ Z, then s is the transition
density of the chain (Xi)i∈Z.

4.1. Definitions and notation

Let us introduce the notions of dependence used in the sequel. For two sub-σ-
fields A and B of F , the β-mixing (or absolute regularity) coefficient is defined
by

β(A,B) = E

[

sup
B∈B

|P(B|A)− P(B)|
]

,

and the ρ-mixing (or maximal correlation) coefficient by

ρ(A,B) = sup
X,Y

|Cov(X,Y )|
√

Var(X)Var(Y )

where the supremum is taken over all real-valued random variablesX and Y that
are respectivelyA and B-measurable and square integrable. We recall that β and
ρ-mixing are among the weakest forms of mixing conditions, in the sense that
both β and ρ-mixing are implied by φ-mixing (uniform mixing) and imply α-
mixing (see for instance [Dou94]). Besides, in general, ρ-mixing does not imply
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β-mixing, and β-mixing does not imply ρ-mixing. In the sequel, the letter θ
stands for β or ρ. For all positive integer j, let

θZj = θ (σ(Zi, i ≤ 0), σ(Zi, i ≥ j)) .

The process (Zi)i∈Z is said to be θ-mixing when limj→+∞ θZj = 0. In particular,
(Zi)i∈Z is geometrically θ-mixing with rate b, b > 0, if there exists a positive
constant a such that, for all positive integer j, θZj ≤ a exp(−bj). We shall also
use the 2-mixing coefficients θ(σ(Z0), σ(Zj)), that satisfy, for all j ≥ 1,

θ(σ(Z0), σ(Zj)) ≤ θZj (4.1)

and, if (Zi)i∈Z is a Markov chain, θ(σ(Z0), σ(Zj)) = θZj .

4.2. Dependence assumptions

We consider the following dependence assumptions. Except for the last one,
they are related to some rate of mixing. In each case, we also define a real ϑ,
that may vary according to the dependence assumption, and will appear in the
penalty proposed in the following section.

Assumption (Dβ) The process (Zi)i∈Z is geometrically β-mixing, with a ≥ 0
and b > 0 such that, for all positive integer j, βZ

j ≤ a exp(−bj). Then we denote
ϑ = 1 and δ = 1.

Assumption (Dβρ) Assumptions (Dβ) is satisfied and, in addition, the series
Sρ :=

∑

j∈N
ρZ2j converges. Then we denote ϑ = 250

∏∞
j=0(1 + ρZ

⌊2j/3⌋+1
) and

δ = 0.

Assumption (Dβ2-ρ) Assumptions (Dβ) is satisfied and, in addition, the
series S2-ρ :=

∑

j≥1 ρ(σ(Z0), σ(Zj)) converges. Then we denote ϑ = (1+ 2S2-ρ)
and δ = 0.

Assumption (Dβcond) Assumptions (Dβ) is satisfied and, in addition, for all
j ≥ 2, Zj is independent of Z1 conditionally to Xj. Then we denote ϑ = 1 and
δ = 0.

Note that (Dβρ) is in some sense a weaker assumption than (Dβ2-ρ), since
a logarithmic ρ-mixing is sufficient. In particular, if (Zi)i∈Z is a Markov chain,
(Dβ2-ρ) implies (Dβρ) (according to (4.1) and since (Zi)i∈Z is geometrically
ρ-mixing if and only if it is ρ-mixing (cf. [Bra05], Theorem 3.3)). On the other
hand, Assumption (Dβcond) does not imply ρ-mixing. For instance, if (Xi)i∈Z

is a Markov chain and Yi = Xi+1 for all i ∈ Z, then Assumption (Dβcond)
is satisfied, but (Xi)i∈Z, and therefore (Zi)i∈Z, can be chosen non mixing (cf.
[DP05] for instance).

Let us give sufficient conditions for (Zi)i∈Z to be θ-mixing. First, if (Xi)i∈Z is
a strictly stationary θ-mixing process, and Yi = Xi+1 for all i ∈ Z, then (Zi)i∈Z

also is θ-mixing since, for all j ≥ 2,

θZj = θXj−1.
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Next, if (Zi)i∈Z is a strictly stationary Harris ergodic Markov chain (aperiodic,
irreducible, positive Harris recurrent), then (Zi)i∈Z is geometrically β-mixing,
i.e. Assumption (Dβ) is verified, if and only if it is geometrically ergodic (cf.
[Bra05], Theorem 3.7). In the sequel, we will mainly be concerned with mixing
assumptions possibly involving ρ-mixing and β-mixing at the same time. Under
adequate hypotheses, Markov chains (always assumed to be homogeneous of
order 1) provide examples of such processes:

• if (Zi)i∈Z is a strictly stationary Harris ergodic Markov chain that is also
reversible and geometrically ergodic, then (Zi)i∈Z is both geometrically
ρ-mixing and geometrically β-mixing (cf. [Jon04], Theorem 2);

• if (Zi)i∈Z is a strictly stationary, ergodic and aperiodic Markov chain satis-
fying the Doeblin condition, then (Zi)i∈Z is uniformly ergodic, hence both
geometrically ρ-mixing and geometrically β-mixing (cf. [Bra05], 119–121,
or [MT93], Section 16.2).

We refer to [DG83, Mok90, DT93, Dou94, AN98] for examples of stationary
processes that are geometrically β-mixing or both geometrically β and ρ-mixing
among commonly used time series such as nonlinear ARMA or nonlinear ARCH
models.

4.3. Main result

All the results of Section 3 can be extended to the case of dependent data, under
slightly more restrictive conditions on the thinest partition.

Assumption (P2) All the partitions in the collection M are built on a regular
partition m⋆ of [0, 1]d into cubes such that

|m⋆|2 ≤ n

log2(n)

By comparison with Theorem 3.1, a logarithmic factor then appears in the
penalty (and then in the rate of estimation) under the sole condition of β-mixing
but this term disappears under Assumption (Dβρ), (Dβ2-ρ) or (Dβcond),
hence the factor logδ(n) with δ ∈ {0, 1}. Let us first present the oracle type
inequality.

Theorem 4.1. Let M be a collection of partitions satisfying Assumption (P2)
and {Lm}m∈M be a family of reals, greater than or equal to 1, such that

∑

m∈M

exp(−Lm|m|) ≤ 1.

Assume that (Zi)i∈Z satisfies Assumption (Dβ) and s, f satisfy Assumption
(B). If the penalty satisfies, for all m ∈ M,

pen(m) = κ

(

ϑ(b−1 log(n))δ‖s‖∞ +
(2r + 1)d

b2ι(f)

)

L2
mDm

n
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for some large enough positive absolute constant κ (where b, δ and ϑ are defined
in the assumptions of dependence), then

Es

[

‖s− s̃‖2n
]

≤ C3

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2f + logδ(n)
Dm

n

}

.

where C3 is a positive constant that depends on κ, ϑ, δ, a, b, r, d1, d2, ‖s‖∞,
ι(f), ‖f‖∞.

Under Assumptions (Dβρ), (Dβ2-ρ), the price to pay for avoiding the log-
arithmic factor despite the dependence of the data is the presence of the term ϑ
in the penalty. For practical purposes, it is necessary to include this term in the
constant κ to calibrate. Notice that under Assumption (Dβcond), for instance
when we estimate the transition density of a Markov chain, the logarithmic fac-
tor still disappears and ϑ = 1 so that the penalty is almost as simple as in the
independent case. Actually it is possible to consider an arithmetical β-mixing
instead of a geometrical one. In this case, it is necessary to slightly strengthen as-
sumption (P2), assuming rather |m∗|2 ≤ n1−ζ , with ζ a number in (0, 1). Then,
if βq ≤ aq−b with b > 5/ζ−2, Theorem 4.1 is still valid in the cases where δ = 0
(ρ-mixing and conditional independence). The penality is identical, except the
term b2 which is removed. The proof is the same as the original statement, see
Subsection 6.3, but with qn = ⌊nξ⌋ where ξ ∈ ((5− ζ)/(2 + 2b), ζ/2).

Then, for our penalized estimator based on partitions into dyadic rectangles
described in Section 3.2, we can state the following theorem.

Theorem 4.2. The notation is that of Theorems 4.1, Assumption (B) is sup-
posed to be fulfilled. Let

J⋆ = max
{

k ∈ N s.t. 2kd ≤
√
n/ log(n)

}

.

Let p > 0 and σ ∈ (0, r + 1)d such that q(σ, d, p) > 1. If logδ(n)/n ≤ R2 ≤
nq(σ,d,p)−1 log(n)δ−2q(σ,d,p), then there exists some positive real C(σ, r, d, p) that
only depends on σ, r, d, p such that

sup
s∈B(σ,p,R)

Es

[

‖s− s̃‖2n
]

≤ C4C(σ, r, d, p)‖f‖∞
(

R

(

n

logδ(n)

)−H(σ)/d
)2d/(d+2H(σ))

.

Thus we recover the same rate of estimation as with independent data (cf.
Theorem 3.2) up to a logarithmic factor that disappears under Assumptions
(Dβρ), (Dβ2-ρ) or (Dβcond).

4.4. Remarks on the dependence assumptions

We can wonder if weaker assumptions of dependence could be used. Another
assumption of dependence is used for instance by [Bos98] (Theorem 2.1) to prove
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that, asymptotically, the quadratic risk of kernel density estimators reaches
the minimax rate (see also [CM02]). But we can prove (see [Aka09]) that this
assumption is much stronger than Assumption (Dβ2-ρ), which is enough for
obtaining the optimal estimation rate from the minimax point of view.

It is difficult to bound the risk for s̃ under weaker dependence assumptions
but it is possible to weaken the assumptions to bound the risk E

[

‖s− ŝm‖2n
]

for one model. In [Aka09], a version of Proposition 2.1 is proved under assump-
tions of geometrical α-mixing. Actually a sufficient condition to ensure that
Es

[

‖ŝm − sm‖2n
]

is of the same order as in the independent case is that for
some constant C and all t ∈ Sm,

Var

(

n
∑

i=1

t(Zi)

)

≤ CnVar (t(Z1)) . (4.2)

Assumptions (Dβρ) and (Dβ2-ρ) are optimal for obtaining such an inequal-
ity in the following sense. Let us assume that (Zi)i∈N is a strictly stationary
Harris ergodic and reversible Markov chain satisfying (4.2) for all real-valued
function t defined on [0, 1]d. Then the chain is variance bounding in the sense
of [RR08], which implies that there is a spectral gap in L2(sf) := {t : [0, 1]d →
R s.t. 〈t, sf〉 = 0 and ‖t‖sf < ∞} (Theorem 14 in [RR08]). This leads to the
geometrical ergodicity of the chain (Theorem 2.1 in [RR97]), which, given the
reversibility assumption, implies that the chain is ρ-mixing. As a conclusion,
a strictly stationary Harris ergodic and reversible Markov chain (Zi)i∈Z sat-
isfies (4.2) for all real-valued function t defined on [0, 1]d if and only if it is
ρ-mixing.

5. Implementation and simulations

In order to provide useful characterizations for ŝm and m̂ in practice, we need
to introduce some adequate basis of each Sm, for m ∈ M. Let (Qj)j∈N be the
orthogonal family of the Legendre polynomials in L2([−1, 1]). For all j ∈ N, we
recall that Qj satisfies

‖Qj‖∞ = 1 and ‖Qj‖2 =
2

(2j + 1)
. (5.1)

ForK1 =
∏d1

i=1[ui, vi] rectangle of [0, 1]
d1, k1 = (k1(1), . . . , k1(d1)) ∈ {0, . . . , r}d1

and x = (x1, . . . , xd1
) ∈ [0, 1]d1, we set

φK1,k1
(x) =

1
√

µd1
(K1)

d1
∏

i=1

√

2k1(i) + 1Qk1(i)

(

2xi − ui − vi
vi − ui

) 1K1
(x),

where µd1
denotes the Lebesgue measure in R

d1 . Therefore, for K1 rectangle
in [0, 1]d1, (φK1,k1

)k1∈{0,...,r}d1 is a basis of the space of piecewise polynomials
functions with support K1 and coordinate degree ≤ r, which is orthonormal for
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the norm ‖.‖. For K2 rectangle in [0, 1]d2 and k2 ∈ {0, . . . , r}d2 , we define in
the same way ψK2,k2

on [0, 1]d2. For K rectangle in [0, 1]d, we shall denote by
K1 and K2 the rectangles in [0, 1]d1 and [0, 1]d2 such that K = K1 × K2. For
k ∈ {0, . . . , r}d, we shall denote by k1 and k2 the multi-indices in {0, . . . , r}d1

and {0, . . . , r}d2 such that k = (k1, k2). For any rectangle K ∈ [0, 1]d and any
multi-index k ∈ {0, . . . , r}d, we define ΦK,k by

ΦK,k(x, y) = φK1,k1
(x)ψK2,k2

(y)

for z = (x, y) ∈ [0, 1]d1×[0, 1]d2. Thus, for a partitionm of [0, 1]d into rectangles,
the family (ΦK,k)K∈m,k∈{0,...,r}d is a basis of Sm, orthonormal for the norm ‖.‖.

We denote by

ŝm =
∑

K∈m

∑

k∈{0,...,r}d

âK,kΦK,k

the decomposition of ŝm in the basis (ΦK,k)K∈m,k∈{0,...,r}d . For all K ∈ m, we
define the matrices

AK =
(

âK,(k1,k2)

)

(k1,k2)∈{0,...,r}d1×{0,...,r}d2
,

ΥK =

(

1

n

n
∑

i=1

φK1,k1
(Xi)ψK2,k2

(Yi)

)

(k1,k2)∈{0,...,r}d1×{0,...,r}d2

,

and

GK1
=

(

1

n

n
∑

i=1

φK1,k1
(Xi)φK1,l1(Xi)

)

(k1,l1)∈{0,...,r}d1×{0,...,r}d1

.

Since φK1,k1
and φL1,l1 (resp. ψK2,k2

and ψL2,l2) have disjoint supports when
K1 6= L1 (resp. K2 6= L2) and (ψK2,k2

)k2∈{0,...,r}d2 is orthonormal, we obtain
after some computation that, for all K ∈ m, AK is given by

GK1
AK = ΥK . (5.2)

Let us mention that when r = 0, we can write, for all rectangle K (we do not
mention any index k),

ŝm1K =
1

µd2
(K2)

∑n
i=1 1K1

(Xi)

n
∑

i=1

1K(Zi) if some Xi ∈ K1,

and ŝm1K = 0 otherwise, where µd2
denotes the Lebesgue measure in R

d2 .
Thanks to Formula (5.2), one can check that, for all m ∈ Mrect,

γ(ŝm) = −
∑

K∈m

∑

k∈{0,...,r}d

(AK)(k1,k2)(ΥK)(k1,k2).

We shall consider a penalty pen of the form

pen(m) = c‖ŝm•‖∞
Dm

n
, (5.3)
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where c is some positive constant, as in Theorem 4.1. With such a penalty, m̂
is given by

m̂ = argmin
m∈Mrect

∑

K∈m

L(K)

where, for all rectangle K,

L(K) =
∑

k∈{0,...,r}d

(

−(AK)(k1,k2)(ΥK)(k1,k2) + c
‖ŝm•‖∞

n

)

.

That characterization allows to determine m̂ without having to compute all the
estimators of the collection {ŝm}m∈Mrect . Indeed, we can for instance adapt to
our estimation framework the algorithm proposed by [Don97], which requires
a computational complexity of order 2dJ⋆ . Thus, choosing 2dJ⋆ at most of or-
der n, which allows for a larger choice of J⋆ than prescribed by our theoretical
results (cf. Proposition 3.1 and Theorem 4.2), the computational complexity
is at most linear in the number of observations. Let us also mention that the
algorithm proposed by [BSRM07] allows for instance the slightly larger choice
J⋆ = ⌊log(n)⌋, that does not depend on d, while keeping an almost linear com-
putational complexity, that is of order nd logd+1(n).

We propose a simulation study based on the 4 following examples.

Example 1.
Yi = 0.5Xi + 1 + ǫi, i = 1, . . . , n,

where (Xi)1≤i≤n are i.i.d. Gaussian variables with mean 6 and variance 4/3,
(ǫi)1≤i≤n are i.i.d. reduced and centered Gaussian variables, independent of the
Xi’s.

Example 2.
Yi = sin(Xi) + (cos(Xi) + 3)ǫi, i = 1, . . . , n,

where (Xi)1≤i≤n are i.i.d. uniformly distributed over [−6, 6], (ǫi)1≤i≤n are i.i.d.
reduced and centered Gaussian variables, independent of the Xi’s.

Example 3. Let β(., a, b) be the density of the β distribution with parameters
a and b,

Yi =
1

3
(Xi +1)+

(

1

9
− 1

23

(

1

2
β(5Xi/3, 4, 4) +

1

20
β((5Xi − 2)/3, 400, 400)

))

ǫi

where (Xi)1≤i≤n are i.i.d. uniformy distributed in [0, 1], (ǫi)1≤i≤n are i.i.d. re-
duced and centered Gaussian variables, independent of the Xi’s.

Example 4.

Yi =
1

4
(g(Xi) + 1) +

1

8
ǫi, i = 1, . . . , n

where (Xi)1≤i≤n are i.i.d. uniformy distributed in [0, 1], (ǫi)1≤i≤n are i.i.d. Gaus-
sian reduced and centered, independent of the Xi’s, and g is the density of

3

4
N1 +

1

4
N2
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where N1 is Gaussian with mean 1/2 and standard error 1/6, N2 is Gaussian
with mean 3/4 and standard error 1/18, N1 and N2 are independent.

Each model is of the form

Yi = µ(Xi) + σ(Xi)ǫi,

where ǫi is a reduced and centered Gaussian variable, so the conditional density
of Yi given Xi is given by

s(x, y) = φ((y − µ(x))/σ(x))/σ(x),

where φ is the density of ǫ1. Besides, this allows us to consider Markovian
counterparts of Examples 1 to 4, that we will call Example 1 (Markov),. . .,
Example 4 (Markov). More precisely, we also estimate the transition density of
the Markov chain (Xi)i≥1 that satisfies

Xi+1 = µ(Xi) + σ(Xi)ǫi,

with X1 that follows the stationary distribution of the chain. Thus, for Ex-
ample 1 (Markov), X1 has the same distribution as in Example 1, but in the
other examples, the distribution of X1 differs between the independent and the
Markovian cases. In practice, we simulate the chain long enough so that it finally
reaches the stationary regime. We estimate s respectively on [4, 8]2 for Example
1, [−6, 6]2 for Example 2, and [0, 1]2 for Examples 3 and 4, both for indepen-
dent and Markovian data. The four conditional densities are represented on
these rectangles in Figure 3. We may say that the first two examples are rather
homogeneous functions, whereas the last two are rather inhomogeneous.

We implement s̃ for r = 0 and choose the following parameters. The supre-
mum norm of s is estimated by ‖ŝm•‖, where m• is the regular partition of
[0, 1]2 into cubes with sidelength 2J• . We select a best partition among those
into dyadic rectangles with sidelength ≥ 2−J⋆ , with 2J⋆ as close as possible
to

√
n. For n = 250, we set J• = 2 and J⋆ = 4, and for n = 1000, we set

J• = 3 and J⋆ = 5. Let us denote by s̃(c) the penalized estimator obtained
with the penalty (5.3) for the penalty constant c. For the sample sizes n = 250
and n = 1000, we give respectively in Tables 1 and 2 the estimated values
of ‖ŝm•‖∞, Es [‖s− s̃(3)‖2n] and minc Es

[

‖s− s̃(c)‖2n
]

where the minimum is
obtained by varying c from 0 to 4 by step 0.1. All these quantities have been
estimated over 100 simulations. Besides, for Example 3, we represent in Figure 4
the selected partition for one simulation with 1000 independent data and the
penalty constant c = 3. That partitition is both anisotropic and inhomogeneous
and well adapted to the function, which illustrates the interest of allowing non-
regular and non-isotropic partitions in our selection procedure. Just below, we
represent two sections of that conditional density (dark line) together with the
corresponding sections of s̃(3).

The closeness between the minimal risk minc Es

[

‖s− s̃(c)‖2n
]

and Es[‖s −
s̃(3)‖2n] indicates that a penalty constant equal to 3 seems to be a good choice.
We observe that, for each example, the risks obtained for the independent and
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Fig 3. Level lines of the conditional densities to estimate.

Table 1

Results for n = 250 data and 100 simulations

n = 250 ‖s‖∞ ‖ŝ
m

•‖∞ Es [‖s− s̃(3)‖2
n
] minc Es

[

‖s− s̃(c)‖2
n

]

Example 1 0,4 0,75 0,04 0,04
Example 1 (Markov) 0,4 0,54 0,02 0,02

Example 2 0,22 0,15 0,01 0,02
Example 2 (Markov) 0,22 0,16 0,01 0,02

Example 3 6,5 3,25 0,62 0,61
Example 3 (Markov) 6,5 3,73 0,40 0,40

Example 4 3,2 2,49 0,7 0,7
Example 4 (Markov) 3,2 2,77 0,78 0,72

Table 2

Results for n = 1000 data and 100 simulations

n = 1000 ‖s‖∞ ‖ŝ
m

•‖∞ Es [‖s− s̃(3)‖2
n
] minc Es

[

‖s− s̃(c)‖2
n

]

Example 1 0,4 0,62 0,02 0,02
Example 1 (Markov) 0,4 0,54 0,02 0,02

Example 2 0,22 0,20 0,01 0,01
Example 2 (Markov) 0,22 0,21 0,01 0,01

Example 3 6,5 5,18 0,38 0,38
Example 3 (Markov) 6,5 6,61 0,26 0,25

Example 4 3,2 3,36 0,39 0,39
Example 4 (Markov) 3,2 3,85 0,41 0,41
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Fig 4. Top left: Level lines of the the conditional density s for Example 4. Top right: selected
partition for c = 3 and n = 1000. Bottom: two sections of s (light line) together with the
corresponding sections of s̃(3) (dark line).

the Markovian cases are also close, which tends to confirm Theorem 4.1, other-
wise said that the penalty under assumption (Dβcond) is not so much affected
by the dependency between the data. For Examples 1 and 2, we can compare
ourselves with the results of Lacour [Lac07] in the Markovian case, obtained via
regular model selection. We obtain either similar results for Example 2 or even
better results for Example 1. Last, let us mention that the performance of s̃, in
practice, might still be improved by a data-driven choice of the penalty constant
based on the slope heuristics, as described in [BMM11] for instance, but this is
beyond the scope of the paper.

6. Proofs

6.1. Notation and preliminary lemmas

In all the proofs, the letter C denotes a real that may change from line to line.
The notation C(θ) means that the real C may depend on θ.
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For all t ∈ L2([0, 1]
d1 × [0, 1]d2) and all z = (x, y) ∈ [0, 1]d1 × [0, 1]d2, let

Γt(z) = t(x, y)−
∫

[0,1]d2
t(x, u)s(x, u)du, (6.1)

and let ν be the empirical process defined on L2([0, 1]
d1 × [0, 1]d2) by

ν(t) =
1

n

n
∑

i=1

Γt(Zi). (6.2)

For all i, Es[Γt(Zi)|Xi] = Es[t(Xi, Yi)|Xi] −
∫

[0,1]d2
t(Xi, u)s(Xi, u)du = 0, so

that ν(t) is centered.

We will use several times the following lemma to bound some variance terms.

Lemma 6.1. Let q be a positive integer. For all t ∈ L2([0, 1]
d1 × [0, 1]d2),

Vars

(

q
∑

i=1

Γt(Zi)

)

≤ ϑq1+δVars (Γt(Z1)) (6.3)

where δ and ϑ are defined in Section 4.2 for the dependent case, or δ = 0 and
ϑ = 1 when the variables Zi are independent. Besides,

Vars (Γt(Z1)) ≤ Es

[

t2(Z1)
]

≤ min{‖s‖∞‖t‖2f , ‖sf‖∞‖t‖2}.

Proof. First we use a convexity inequality to write, without further assumption,

Vars

(

q
∑

i=1

Γt(Zi)

)

≤ Es

(

q

q
∑

i=1

Γ2
t (Zi)

)

≤ q2Vars (Γt(Z1))

whereas in the independent case, Vars (
∑q

i=1 Γt(zi)) =
∑q

i=1 Vars (Γt(Z1)) .
Now, under Assumption (Dβρ), Lemma 8.15 in [Bra07] provides

Vars

(

q
∑

i=1

Γt(Zi)

)

≤ C1qVars (Γt(Z1))

with C1 = 250
∏⌊log

2
q⌋

j=0 (1 + ρZ
⌊2j/3⌋+1

). Next, by stationarity,

Vars

(

q
∑

i=1

Γt(zi)

)

= qVars (Γt(Z1)) + 2

q−1
∑

j=1

(q − j)Covs (Γt(Z1),Γt(Zj+1)) .

Under Assumption (Dβ2-ρ), we immediately deduce from the definition of the
ρ-mixing coefficients and the stationarity of (Zi)i∈Z that, for all 1 ≤ j ≤ q − 1,

∣

∣Covs
(

Γt(Z1),Γt(Zj+1)
)∣

∣ ≤ ρ(σ(Z1), σ(Zj+1))Vars (Γt(Z1)) .
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Thus,

1

q
Vars

(

q
∑

i=1

Γt(Zi)

)

= Vars
(

Γt(Z1)
)

+ 2

q−1
∑

j=1

(

1− j

q

)

Covs
(

Γt(Z1),Γt(Zj+1)
)

≤



1 + 2

q−1
∑

j=1

ρ(σ(Z1), σ(Zj+1))



Vars (Γt(Z1)) .

Under Assumption (Dβcond)

Covs (Γt(Z1),Γt(Zj+1)) = Es [Γt(Z1)Es [Γt(Zj+1)|Z1, Xj+1]] = 0,

hence Inequality (6.3) in the last case.
Besides,

Vars [Γt(Z1)] = Vars [t(Z1)] + Es

[

Es

[

(

Es[t(Z1)]− Es[t(Z1)|X1]
)2|X1

]]

≤ Es[t
2(Z1)] =

∫

[0,1]d1

∫

[0,1]d2
t2(x, y)s(x, y)f(x)dxdy.

We recall here Bernstein’s Inequality for independent random variables (see
[Mas07] (Section 2.2.3) for a proof).

Lemma 6.2 (Bernstein inequality). Let (Wi)1≤i≤n be an independent and iden-
tically distributed sequence, defined on the probability space (Ω,F ,P), with values
in W. Let n ≥ 1 and g be a real-valued and bounded function defined on W. Let
σ2
g = Var(g(W1)). Then, for all x > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

(g(Wi)− E[g(Wi)])

∣

∣

∣

∣

∣

≥
√

2nσ2
gx+ ‖g‖∞x/3

)

≤ 2 exp (−x) .

6.2. Proof of Proposition 2.1

Since ŝm = argmin
t∈Sm

γ(t), we have γ(ŝm) ≤ γ(sm). The contrast γ satisfies, for

all t, u ∈ L2([0, 1]
d1 × [0, 1]d2),

γ(t)− γ(u) = ‖t− s‖2n − ‖u− s‖2n − 2ν(t− u),

where ν is defined by (6.2), hence

‖s− ŝm‖2n ≤ ‖s− sm‖2n + 2ν(ŝm − sm).

Let
χf (m) = sup

t∈Sm

‖t‖f=1

ν(t),
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and let θ be some positive constant, to be chosen later, then

2ν(ŝm − sm) ≤ 2‖ŝm − sm‖fχf (m)

≤ 1

θ
‖ŝm − sm‖2f + θχ2

f (m).

Let us fix η > 1, to be determined later, and define

Ωη(m) =
{

For all t ∈ Sm\{0}, ‖t‖2f ≤ η‖t‖2n
}

. (6.4)

We deduce from the triangle inequality that, on Ωη(m),

2ν(ŝm − sm) ≤ η

θ
‖ŝm − sm‖2n + θχ2

f (m)

≤ 2η

θ
‖s− ŝm‖2n +

2η

θ
‖s− sm‖2n + θχ2

f (m) (6.5)

Consequently, provided θ > 2η,
(

1− 2η

θ

)

‖s− ŝm‖2n1Ωη(m) ≤
(

1 +
2η

θ

)

‖s− sm‖2n + θχ2
f (m),

so that, choosing η = 7/6 and θ = 7,

2

3
Es

[

‖s− ŝm‖2n1Ωη(m)

]

≤ 4

3
‖s− sm‖2f + 7Es

[

χ2
f (m)

]

.

Let (Φf
λ)λ∈Λ(m) be a basis of Sm orthonormal for ‖.‖f . Since ν is linear, we

deduce from Schwarz Inequality and its equality case that

χ2
f (m) =

∑

λ∈Λ(m)

ν2
(

Φf
λ

)

,

so

nEs

[

χ2
f (m)

]

=
1

n

∑

λ∈Λ(m)

Var

(

n
∑

i=1

ΓΦf
λ
(Zi)

)

.

Since Z1, . . . , Zn are independent, we deduce from Lemma 6.1 that

nEs

[

χ2
f (m)

]

≤ ‖s‖∞Dm, (6.6)

hence

Es

[

‖s− ŝm‖2n1Ωη(m)

]

≤ 2‖s− sm‖2f + 11
‖s‖∞Dm

n
.

In order to bound the risk of ŝm on Ωc
η(m), we use the following two lemmas,

proved just below.

Lemma 6.3. Assume that d1 is positive and that s is bounded. Let m be a
partition of [0, 1]d1 × [0, 1]d2 into rectangles built on a regular partition m⋆

1×m⋆
2,

where m⋆
1 and m⋆

2 are regular partitions of [0, 1]d1 and [0, 1]d2 into cubes. Then

‖s− ŝm‖2n ≤ 2‖s‖2∞ + 2(r + 1)d2(2r + 1)d2 |m⋆
2|.
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Lemma 6.4. Let m⋆ = m⋆
1 ×m⋆

2, where m
⋆
1 and m⋆

2 are regular partitions of
[0, 1]d1 and [0, 1]d2 into cubes. Let η > 1 and Ωη(m

⋆) be defined by (6.4). Then
there exists an absolute constant C such that

Ps(Ω
c
η(m

⋆)) ≤ C(r + 1)2d1 |m⋆
1| exp

(

− ι2(f)(1 − 1/η)2n

3‖f‖∞C(r, d1)|m⋆
1|

)

.

Since m is built on m⋆ = m⋆
1 ×m⋆

2, Ωη(m
⋆) ⊂ Ωη(m). Given the conditions on

m⋆
1 and m⋆

2, we then obtain

Es

[

‖s− ŝm‖2n1Ωc
η(m)

]

≤ 2
(

‖s‖2∞ + (r + 1)d2(2r + 1)d2 |m⋆
2|
)

Ps(Ω
c
η(m

⋆))

≤ C(r, d1, s, f)/n,

where C(r, d1, s, f) is a nonnegative real that only depends on r, d1, ‖s‖∞, ι(f)
and ‖f‖∞.

Let us end with the proofs of Lemmas 6.3 and 6.4.

Proof of Lemma 6.3. We shall use the notation

• ‖.‖Rn defined for v = {vi}1≤i≤n ∈ R
n by ‖v‖Rn =

∑n
i=1 v

2
i /n;

• for t ∈ L2([0, 1]
d1×[0, 1]d2) and y ∈ [0, 1]d2, tX(y) = {t(Xi, y)}1≤i≤n ∈ R

n;
• VX

m(y) = {tX(y), t ∈ Sm} and PVX
m(y) the orthogonal projection of Rn on

VX

m(y).

For all y ∈ [0, 1]d2, let us also define the R
n-vector

v̂m(y) =







∑

J∈m2

∑

j∈{0,...,r}d2

ψJ,j(Yi)ψJ,j(y)







1≤i≤n

.

As [Lac07] (Proposition 2.1), we can prove that ŝXm(y) = PVX
m(y) (v̂m(y)) . Using

the triangle inequality and the shrinking property of PVX
m(y), we get

‖s− ŝm‖2n =

∫

[0,1]d2
‖sX(y)− ŝXm(y)‖2

Rndy

≤ 2

∫

[0,1]d2
‖sX(y)‖2Rndy + 2

∫

[0,1]d2
‖v̂m(y)‖2Rndy.

From the orthonormality of {ψJ,j}J∈m2,j∈{0,...,r}d2 , we deduce that

∫

[0,1]d2
‖v̂m(y)‖2

Rndy =
1

n

n
∑

i=1

∑

J∈m2

∑

j∈{0,...,r}d2

ψ2
J,j(Yi).

Now, using (5.1),

‖ψJ,j‖2∞ =

∏d2

i=1(2k2(i) + 1)

µd2
(J)

≤ (2r + 1)d2

µd2
(J)

.
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Then, by grouping the ψJ,j having the same support, we get

∥

∥

∥

∥

∥

∥

∑

J∈m2

∑

j∈{0,...,r}d2

ψ2
J,j

∥

∥

∥

∥

∥

∥

∞

≤ max
J∈m2

∥

∥

∥

∥

∥

∥

∑

j∈{0,...,r}d2

ψ2
J,j

∥

∥

∥

∥

∥

∥

∞

≤ (2r + 1)d2(r + 1)d2/ min
J∈m2

µd2
(J),

hence Lemma 6.3.

Proof of Lemma 6.4. The proof follows almost the same lines as the proof of
Proposition 8 in [Lac07]. Let ν′ be the centered empirical process defined for
u ∈ L2([0, 1]

d1 × [0, 1]d2) by

ν′(u) =
1

n

n
∑

i=1

(

∫

[0,1]d2
u(Xi, y)dy −

∫

[0,1]d1×[0,1]d2
u(x, y)f(x)dxdy

)

.

Since ‖t‖2n = ν′(t2)+ ‖t‖2f for all t ∈ L2([0, 1]
d1 × [0, 1]d2), ν′ is linear and η > 1,

we get

Ωc
η(m

⋆) ⊂
{

sup
t∈Sm⋆/‖t‖f=1

|ν′(t2)| > 1− 1/η

}

.

By construction of (ΦK,k)K∈m⋆,k∈{0,...,r}d , for allK,L ∈ m⋆ and k, l ∈ {0, . . . , r}d,
and all i ∈ {1, . . . , n},
∫

[0,1]d2
ΦK,k(Xi, y)ΦL,l(Xi, y)dy = φK1,k1

(Xi)φL1,l1(Xi)〈ψK2,k2
, ψL2,l2〉

= 1K1=L1
1(K2,k2)=(L2,l2)φK1,k1

φL1,l1(Xi).
(6.7)

Let t ∈ Sm⋆\{0}, and for K1 ∈ m⋆
1 and k1 ∈ {0, . . . , r}d1 , let

aK1,k1
=

√

∑

K2∈m⋆
2

∑

k2∈{0,...,r}d2

〈t,ΦK1×K2,(k1,k2)〉2/‖t‖.

It follows from (6.7) and Schwarz inequality that

|ν′(t2)| ≤ ‖t‖2
∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

aK1,k1
aK1,l1 |ν′′(φK1,k1

φK1,l1)|

where ν′′ is the centered empirical process defined on L2([0, 1]
d1) by

ν′′(u) =
1

n

n
∑

i=1

(

u(Xi)−
∫

[0,1]d1
u(x)f(x)dx

)

.
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Consequently

sup
t∈Sm/‖t‖f=1

|ν′(t2)|

≤ ι−1(f)max
a∈A

∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

aK1,k1
aK1,l1 |ν′′(φK1,k1

φK1,l1)|,

whereA = {a = (aK1,k1
)K1∈m1,k1∈{0,...,r}d1 s.t.

∑

K1∈m1

∑

k1∈{0,...,r}d1 a
2
K1,k1

=

1}. Let us introduce B = (BK1,k1,l1)K1∈m1,k1,l1∈{0,...,r}d1 and V =
(VK1,k1,l1)K1∈m1,k1,l1∈{0,...,r}d1 defined respectively by

BK1,k1,l1 = ‖φK1,k1
φK1,l1‖∞ and VK1,k1,l1 = ‖φK1,k1

φK1,l1‖.

Let us set

ρ̄(B) = sup
a∈A

∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

|aK1,k1
||aK1,l1 |BK1,k1,l1 ,

define ρ̄(V ) in the same way, and set L(φ) = max{ρ̄2(V ), ρ̄(B)}. Then, Schwarz
Inequality and the properties of the family (φK1,k1

)K1∈m1,k1∈{0,...,r}d1 recalled
in Section 6.1 provide

L(φ) ≤ C(r, d1)|m⋆
1|.

Let

x =
ι2(f)(1 − 1/η)2

3‖f‖∞L(φ)
and

∆ =
⋂

K1∈m⋆
1
,k1,l1∈{0,...,r}d1

{

|ν′′(φK1,k1
φK1,l1)| <

√

2‖f‖∞xVK1,k1,l1

+
1

3
BK1,k1,l1x

}

.

One can easily check that, on ∆, supt∈Sm⋆/‖t‖f=1 |ν′(t2)| ≤ 1 − 1/η, so that
Ωc

η(m) ⊂ ∆c. Lemma 6.4 then follows from Lemma 6.2.

6.3. Proof of Theorem 4.1

Let us fix m ∈ M. We also fix η ≥ 1 and θ1 > 0, to be determined at the end
of the proof. By definition of m̂ and ŝm,

γ(s̃) + pen(m̂) ≤ γ(ŝm) + pen(m)

≤ γ(sm) + pen(m). (6.8)

Using the same arguments as in the proof of Proposition 2.1, we deduce from (6.8)
that

‖s− s̃‖2n ≤ ‖s− sm‖2n + pen(m) + 2ν(s̃− sm)− pen(m̂).
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As s̃ − sm ∈ Sm + Sm̂ ⊂ Sm⋆ , we obtain in the same way as Inequality (6.5)
that, on the set Ωη(m

⋆) defined as in (6.4),

2ν(s̃− sm) ≤ 2η

θ1
‖s− s̃‖2n +

2η

θ1
‖s− sm‖2n + θ1χ

2
f (m, m̂)

with
χf (m,m

′) = sup
t∈Sm+Sm′

‖t‖f=1

|ν(t)|.

Consequently, provided θ1 > 2η,
(

1− 2η

θ1

)

‖s− s̃‖2n1Ωη(m⋆) ≤
(

1 +
2η

θ1

)

‖s− sm‖2n1Ωη(m⋆) + pen(m)

+θ1χ
2
f (m, m̂)− pen(m̂). (6.9)

To pursue the proof, we have to control the term χ2
f (m, m̂). Since the data

are β-mixing, we can introduce blockwise independent data. More precisely, let
qn = ⌈3b−1 log(n)⌉ (where b is defined in Assumption (Dβ)) and let (dn, rn)
be the unique couple of nonnegative integers such that n = dnqn + rn and
0 ≤ rn < qn. For the sake of simplicity, we assume in the sequel that rn = 0
and dn = 2pn > 0, but the other cases can be treated in a similar way. For
l = 0, . . . , pn − 1, let us set

Al = {Zi}2lqn+1≤i≤(2l+1)qn and Bl = {Zi}(2l+1)qn+1≤i≤(2l+2)qn .

As recalled for instance in [Vie97] (proof of Proposition 5.1), we can build, for
l = 0, . . . , pn − 1,

A•
l = {Z•

i }2lqn+1≤i≤(2l+1)qn and B•
l = {Z•

i }(2l+1)qn+1≤i≤(2l+2)qn

such that, for all l = 0, . . . , pn − 1,

• Al, A
•
l , Bl and B

•
l have the same distribution;

• Ps(Al 6= A•
l ) ≤ βZ

qn and Ps(Bl 6= B•
l ) ≤ βZ

qn ;
• (A•

l )0≤l≤pn−1 are independent random variables, and so are (B•
l )0≤l≤pn−1.

We set

Ω• =

n
⋂

i=1

{Z•
i = Zi}.

The proof of Theorem 4.1 heavily relies on the following concentration inequality
satisfied by the random variables χ2

f (m,m
′), for m,m′ partition built on m⋆.

The proof of that proposition is deferred to Section 6.4.

Proposition 6.1. Under the assumptions of Theorem 4.1, there exists a positive
constant C such that

∑

m′∈M

Es

[

[χ2
f (m,m

′)− pen(m)− pen(m′)]+1Ω•

]

≤ C
logδ(n)

n
,

where [x]+ denotes the positive part of a real x and C depends on ϑ, ‖s‖∞, r,
d, ι(f), b.
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We shall first bound the quadratic risk of s̃ on Ωη(m
⋆)∩Ω•. Combining (6.9)

and Proposition 6.1
(

1− 2η

θ1

)

‖s− s̃‖2n1Ωη(m⋆)∩Ω•
≤
(

1 +
2η

θ1

)

‖s− sm‖2n1Ωη(m⋆) + 2pen(m)

+θ1[χ
2
f (m, m̂)− pen(m)− pen(m̂)]+1Ω•

hence
(

1− 2η

θ1

)

Es‖s− s̃‖2n1Ωη(m⋆)∩Ω•
≤
(

1 +
2η

θ1

)

Es‖s− sm‖2n + 2pen(m)

+ θ1C
logδ(n)

n
. (6.10)

Let us now bound the quadratic risk of s̃ on Ωc
η(m

⋆)∪Ωc
•. A straightforward

upper-bound for the Ps-measure of Ωc
η(m

⋆) ∪ Ωc
• is

Ps(Ω
c
η(m

⋆) ∪ Ωc
•) ≤ Ps(Ω

c
•) + Ps(Ω

c
η(m

⋆) ∩ Ω•).

One easily deduces from one of the properties of the A•
l ’s and B

•
l ’s that

Ps(Ω
c
•) ≤ 2pnβ

Z
qn =

n

qn
βZ
qn . (6.11)

In order to bound Ps(Ω
c
η(m

⋆) ∩ Ω•), we follow the proof of Lemma 6.4. Thus
there exists some constant C(r, d1) that only depends on d1 and r such that

Ps(Ω
c
η(m

⋆) ∩Ω•) ≤ 4(r + 1)2d1 |m⋆
1| exp

(

−C(r, d1)
ι2(f)(1− 1/η)2

‖f‖∞
n

qn|m⋆
1|

)

.

(6.12)
where m⋆

1 and m⋆
2 are the partition of [0, 1]d1 and [0, 1]d2 such that m⋆ = m⋆

1 ×
m⋆

2. Combining Inequalities (6.11) and (6.12) with Lemma 6.3 then provides for

Es

[

‖s− s̃‖2n1Ωc
η(m

⋆)∪Ωc
•
∪Ωc

T

]

the upper-bound

C(r, d1, d2)|m⋆
2|
(

n

qn
βZ
qn + |m⋆

1| exp
(

−C(η, r, d1, ι(f), ‖f‖∞)
n

qn|m⋆
1|

))

.

(6.13)

Last, let us choose
η = 7/6, θ1 = 7.

Under Assumption (P2) on m⋆
1 and m⋆

2, we deduce from (6.10) and (6.13) that

Es

[

‖s− s̃‖2n
]

≤3
{

‖s− sm‖2f + pen(m)
}

+ C(ϑ, ‖s‖∞, r, d1, d2, ι(f), ‖f‖∞, b, a)
logδ(n)

n
.

Theorem 4.1 then follows by taking the minimum over m ∈ M.
Notice that when the data are independent, we can take ϑ = 1, qn = 1,

βqn = 0 and δ = 0. Then Proposition 6.1 and the rest of the proof are valid
under Assumption (P1).
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6.4. Proof of Proposition 6.1

We recall that Γ is given by (6.1) and we define on L2([0, 1]
d1 × [0, 1]d2), for all

m,m′ ∈ M and j = 1, 2,

ν•(j)(t) =
1

n

pn−1
∑

l=0

(2l+j)qn
∑

i=(2l+j−1)qn+1

Γt(Z
•
i ) and χ•

f,(j)(m,m
′) = sup

t∈Sm+Sm′

‖t‖f=1

ν•(j)(t).

We set

V =
√

ϑqδn‖s‖∞/2 and B = 2qn

√

(2r + 1)dDm⋆

ι(f)
.

Since A•
0, . . . , A

•
pn−1 are independent and identically distributed on Ω•, we de-

duce from Lemma 6.1 that

sup
t∈Sm+Sm′

‖t‖f=1

pn−1
∑

l=0

Vars





1

n

(2l+1)qn
∑

i=2lqn+1

Γt(Z
•
i )1Ω•



 ≤ V 2

n

and also, by using the same arguments as for (6.6), that

E
2
s

[

χ•
f,(1)(m,m

′)1Ω•

]

≤ V 2(Dm +Dm′)

n
.

If t ∈ Sm + Sm′ and ‖t‖f = 1, then by developing t in the basis
(ΦK,k)K∈m⋆,k∈{0,...,r}d and using Schwarz Inequality, we get

‖t‖2∞ ≤ max
K∈m⋆





∑

k∈{0,...,r}d

|〈t,ΦK,k〉|‖ΦK,k‖∞





2

≤ max
K∈m⋆





∑

k∈{0,...,r}d

〈t,ΦK,k〉2








∑

k∈{0,...,r}d

‖ΦK,k‖2∞





≤ ‖t‖2(r + 1)d(2r + 1)d|m⋆|

≤
‖t‖2f
ι(f)

(r + 1)d(2r + 1)d|m⋆| = (2r + 1)dDm⋆

ι(f)
,

hence

1

n

∣

∣

∣

∣

∣

∣

(2l+1)qn
∑

i=2lqn+1

Γt(Z
•
i )1Ω•

∣

∣

∣

∣

∣

∣

≤ B

n
.

As ν = ν• = ν•(1) + ν•(2) on Ω•, we have

χf (m,m
′)1Ω•

≤ χ•
f,(1)(m,m

′)1Ω•
+ χ•

f,(2)(m,m
′)1Ω•

,
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and, from the hypotheses on (A•
l )0≤l≤pn−1 and (B•

l )0≤l≤pn−1, χ
•
f,(1)(m,m

′)1Ω•

and χ•
f,(2)(m,m

′)1Ω•
are identically distributed. Thus, denoting by ε some posi-

tive constant, applying Talagrand’s inequality (as stated for instance in [Mas07],
Inequality (5.50)) to each χ•

f,(j)(m,m
′)1Ω•

, we deduce that, for all x > 0, there

exists an event Ωm,m′(x) such that Ps(Ω
c
m,m′(x)) ≤ 2 exp(−x) and over which

√
nχf (m,m

′)1Ω•
≤ 2

(

5

2
V
√

Dm +Dm′ + V
√
2x+B

x√
n

)

.

Let u > 0, then on Ωc
m,m′(|m′|Lm′ + u),

√
nχf (m,m

′)1Ω•
≤ 2

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′ +B
|m′|Lm′√

n

)

+ 2

(

V
√
2u+B

u√
n

)

Since qn = ⌈3b−1 log(n)⌉ ≤ 6b−1 log(n) and |m⋆| ≤
√
n/ log(n),

B|m′| ≤ B
√

|m⋆|
√

|m′| ≤ 12

√

n(2r + 1)dDm′

b2ι(f)
.

Therefore, still on Ωc
m,m′(|m′|Lm′ + u),

√
nχf (m,m

′)1Ω•
≤ 2

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′

+ 12

√

(2r + 1)dDm′

b2ι(f)
Lm′

)

+ 4max

{

V
√
2u,B

u√
n

}

so that

nχ2
f (m,m

′)1Ω•
≤ 8

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′

+ 12

√

(2r + 1)dDm′

b2ι(f)
Lm′

)2

+ 32max

{

2V 2u,B2u
2

n

}

.

As Lm′ ≥ 1 for all m′ ∈ M, choosing pen such that for all m′ ∈ M

pen(m′)1Ω•
≥ 32

Dm′L2
m′

n

(

((5/2 +
√
2)2/2)ϑqδn‖s‖∞ + 1442

(2r + 1)d

b2ι(f)

)

,

we obtain

Ps

(

(χ2
f (m,m

′)− pen(m)− pen(m′))1Ω•
≥ 32max

{

2V 2 u

n
,B2 u

2

n2

})

≤ 2e−|m′|Lm′−u.
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Last, we recall that Fubini’s Theorem yields, for any random variable Z,

E ([Z]+) =

∫ ∞

0

P([Z]+ ≥ z)dz =

∫ ∞

0

P(Z ≥ z)dz.

Therefore, we obtain by integrating the previous inequality

Es

[

[χ2
f (m,m

′)− pen(m)− pen(m′)]+1Ω•

]

≤ 32

n
e−|m′|Lm′

(

2V 2 + 4B2n−1
)

and since
∑

m′∈M e−|m′|Lm′ ≤ 1, we conclude that

∑

m′∈M

Es

[

[χ2
f (m,m

′)− pen(m)− pen(m′)]+1Ω•

]

≤ C(ϑ, ‖s‖∞, r, d, ι(f), b) logδ(n)
n

.

6.5. Proof of Theorems 3.2 and 4.2

It is sufficient to use the following theorem, proved in [Aka10] (Proposition 2
and Theorem 2).

Theorem 6.1. Let J ∈ N, R > 0, σ ∈ (0, r + 1)d and p > 0 such that

H(σ)/d > max{1/p− 1/2, 0}.

Assume that s ∈ B(σ, p, R). Then, for all k ∈ N, there exists some partition mk

of [0, 1]d that only contains dyadic rectangles with edge-length at least 2−Jσ/σl

in the l-th direction, l = 1, . . . , d, such that

|mk| ≤ C(d, p,σ)2kd

and

‖s− smk
‖2 ≤ C(d, p, r,σ)R2

(

2−2Jd(H(σ)/d+1/2−1/p)σ/H(σ) + 2−2kH(σ)
)

.

Under the assumptions of Theorem 3.2, we set δ = µ = 0, whereas under
the assumptions of Theorem 4.2, δ is given in Section 4.2 and µ = 1. Let
us fix R, σ, p > 0 satisfying the assumptions of Theorems 3.2 or 4.2, and
s ∈ B(σ, p, R). Since, σ ≤ σl for all l = 1, . . . , d, Theorem 6.1 applied with
J = J⋆ provides partitions (mk)k∈N that all belong to Mrect. Thus, with τ =
H(σ)/d− (1/p− 1/2)+, we obtain

min
m∈Mrect

{

‖s− sm‖2 + logδ(n)
|m|
n

}

≤ inf
k∈N

{

‖s− smk
‖2 + logδ(n)

|mk|
n

}

≤ C(d, p, r,σ)

(

R22−2J⋆dτσ/H(σ) + inf
k∈N

{

R22−2kH(σ) + logδ(n)
2kd

n

})

.
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With k⋆ = max{k ∈ N s.t. 2kd logδ(n)/n ≤ R22−2kH(σ)}, which is well-defined
for R2 ≥ logδ(n)/n, we obtain

min
m∈Mrect

{

‖s− sm‖2 + logδ(n)
|m|
n

}

≤ C(d, p, r,σ)

(

R22−2J⋆dτσ/H(σ) +
(

R(n log−δ(n))−H(σ)/d
)2d/(d+2H(σ))

)

.

Last, since 2dJ⋆ ≤ √
n/ logµ(n), it is enough to choose R2 ≤ nq(σ,d,p)−1 ×

(log(n))δ−2µq(σ,d,p) so that the first term in the upper-bound is smaller than
the second. �
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734–763, 2007. MR2521231
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[Clé00b] S. J. M. Clémençon. Adaptive estimation of the transition density
of a regular Markov chain. Math. Methods Statist., 9(4):323–357,
2000. MR1827473
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