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1. Introduction

Gaussian graphical models are statistical models for multivariate Gaussian data
where dependencies and conditional independencies are represented by means
of a graph G. The components of the Gaussian variable X = (X1, . . . , Xp) are
represented by the set of nodes, V = {1, . . . , p}, of the graph and the absence
of an edge between nodes i and j in V indicates the conditional independence
of Xi and Xj given the remaining variables. In a Bayesian framework, in order
to perform model selection or covariance estimation, one often uses the popular
Diaconis-Ylvisaker conjugate prior ([4]) for the precision matrix K = Σ−1 of
the Gaussian distribution. This prior distribution is called the G-Wishart and
was first given for arbitrary undirected graphs G by Roverato ([14]). Its density
is given by

f(K|δ,D) ∝ |K|(δ−2)/2 exp

{

−
1

2
tr(KtD)

}

, (1)

where δ > 0 and D is symmetric positive definite matrix. The support set of this
distribution is the set of all positive definite symmetric matricesK that have zero
entries Kij whenever (i, j) is a missing edge in the graph G. This set is denoted
with M+(G). Without loss of generality, we can assume that X ∼ Np(0,Σ).
Since the WG(δ,D) distribution is a conjugate prior, for a sample of size n, the
posterior distribution of K given the data matrix x is the WG(δ + n,D + xtx).
When G is decomposable, the normalizing constant of the WG(δ,D),

IG(δ,D) =

∫

M+(G)

|K|(δ−2)/2 exp

{

−
1

2
< K,D >

}

dK,

can be computed explicitly (see [13]). However, this is not true for non-decom-
posable graphs. In that case the normalizing constant cannot be obtained ana-
lytically.

The ability to sample from the G-Wishart (or the Hyper Inverse Wishart)
distribution is important and has many applications, including the estimation of
the normalizing constant. Another application is the estimation of the covariance
matrix Σ and functions of it. Indeed in a Bayesian context, one is often interested
in the posterior mean of Σ, E(Σ|x,G), given a set of data x of size n and a
selected model G. Since the posterior distribution of K is given by the WG(δ+
n,D + xTx), we can estimate E(Σ|x,G) by the quantity Ĵ , where

Ĵ =
1

N

N
∑

i=1

(Ki)
−1, (2)

whereKi are random samples from theWG(δ+n,D+xTx). In a similar manner,
one can estimate any function of K.

A method to sample from the G-Wishart distribution when G is non-decom-
posable was proposed in [3]. Unfortunately, this method is wrong. The purpose
of this paper is to offer a new method. In Section 2 we review the existing
methods for the simulation of the G-Wishart. In Section 3, we present our new
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method, which is based on the Metropolis-Hastings algorithm. In Section 4, we
investigate its performance through a number of experiments and use it together
with the DIC criterion for model selection.

2. Existing sampling methods

2.1. The decomposable case

Sampling from the Hyper Inverse Wishart distribution for decomposable graphs
has been previously discussed in [3]. If C1, C2, . . . , Ck is a perfect ordering of
the cliques of G and S2, . . . , Sk are the corresponding separators, we use the
notation Ri = Ci \ Si, i = 2, . . . , k,

ΣCi
=

(

ΣSi
ΣSi,Ri

ΣRi,Si
ΣRi

)

, (3)

DCi
=

(

DSi
DSi,Ri

DRi,Si
DRi

)

, (4)

ΣRi|Si
= ΣRi

− ΣRi,Si
Σ−1

Si
ΣSi,Ri

and DRi|Si
= DRi

−DRi,Si
D−1

Si
DSi,Ri

. Then
the sampling scheme is as follows:

1. Sample ΣC1
∼ IW (δ,DC1

), which yields ΣS2
.

2. For i = 2, . . . , k,

(a) sample ΣRi|Si
∼ IW (δ + |Si|, DRi|Si

), Ui ∼ N(DRi,Si
D−1

Si
,ΣRi|Si

⊗

D−1
Si

), with ⊗ denoting the Kronecker product,

(b) compute ΣRi,Si
= UiΣSi

and ΣRi
= ΣRi|Si

+ ΣRi,Si
Σ−1

Si
ΣSi,Ri

, and
subsequently obtain ΣCi

from Equation (4).

3. The precision matrixK is obtained through the formulaK =
∑k

i=1[Σ
−1
Ci

]0−
∑k

i=2[Σ
−1
Si

]0 ([8]), where for a |I| × |J | matrix A with |I|, |J | < p we de-

note with [A]0 the matrix obtained from A by filling up with zeros entries
in order to obtain full dimension, i.e. ([A]0)κλ = Aκλ if (κ, λ) ∈ I × J ,
otherwise ([A]0)κλ = 0.

2.2. The general case

The method in 2.1 cannot be used when the graph is not decomposable, since in
that case the marginals for the submatrices of Σ corresponding to prime com-
ponents do not follow an inverse Wishart distribution [14]. Recently a Gibbs
Sampling based method has been proposed for the generation of random sam-
ples for the G-Wishart distribution that can be applied to non-decomposable
graphs [1]. This method is based on the theoretical results of [12] describing
sufficient conditions in regular exponential families for the construction of a
block Gibbs sampler for sampling from their natural conjugate densities. When
applied to Gaussian graphical models, the block Gibbs sampler becomes the
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Bayesian Iterative Proportional Scaling (BIPS) ([6]). For this cyclical method,
the number of iterations to obtain one sample point is equal to the number of
cliques of the graph. If C1, C2, . . . , Ck is the set of cliques of G, the algorithm
is as follows:

• Set K0 = Ip
• For iteration r = 0, 1, . . . do

1. Set Kr,0 = Kr

2. For each j = 1, . . . , k:

(a) Sample A from Wishart distribution W (δ,DCj
)

(b) Set Kr,j so that Kr,j
Cj,Cj

= A +Kr,j−1

Cj,C̄j

[

Kr,j−1

C̄j,C̄j

]−1
Kr,j−1

C̄j,Cj
, while

Kr,j
κ,λ = Kr,j−1

κ,λ , for (κ, λ) /∈ Cj × Cj

3. Set Kr+1 = Kr,k

After some burn-in time r0, the sequence (Kr)r>r0 is a set of random samples
from the WG(δ,D).

The method has been implemented successfully, for example in [9]. However,
sampling using BIPS presents various limitations. The algorithm needs the set of
cliques ofG to be enumerated. This problem is known to be NP-hard ([10]). Also,
significant computational time is needed since for the generation of one sample a
series of matrix inversions is needed (see step 2b above). In the following section
we propose a new sampling method that does not suffer from those limitations.
This method is based on the Metropolis Hastings (MH) algorithm.

A very recent addition to the litterature of sampling methods from the Hyper
Wishart distribution for non-decomposable graphs is presented in [17], where
a rejection sampling method is used for the first prime component in a perfect
ordering of the prime components and the same method together with condi-
tioning on the separators is also used for the subsequent prime components.

3. A new sampling method for the WG(δ,D) distribution

3.1. The proposed MH-based sampling method

In our proposed method, we make use of the fact that, given a positive definite
matrix D, there is bijection between M+(G) and M⊳

∗ (G), the space of all the
upper triangle matrices incomplete with respect to the graph G. The mapping
is described in detail in [2]. In summary, each K in M+(G) is mapped to ψV ,
the projection of the upper triangle matrix ψ on to the space of V-incomplete
matrices, where ψ = φT−1, and ψ, T upper triangle matrices such that K =
φTφ,D−1 = T TT . Conversely, the completion ψ of ψV can be done with the use
of the following equations (see [2], Lemma 2):

ψ1s =

s−1
∑

j=1

(−ψ1jhjs), (5)
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while for (r, s) ∈ V̄, r > 1,

ψrs =

s−1
∑

j=r

(−ψrjhjs)−

r−1
∑

i=1

(

ψir +
∑r−1

j=i ψijhjr

ψrr

)



ψis +

s−1
∑

j=i

ψijhjs



 , (6)

where hij = tij/tjj , tij being the (i, j) entry of matrix T . Once ψ is completed,
K is given by (ψT )TψT .

The density of ψV is such that

p(ψV |G, δ,D) ∝ exp

{

−
1

2

∑

(i,j)∈V̄

ψ2
ij

}

×

p
∏

i=1

χδ+νi ×N|E|(0|E|, I|E|), (7)

where νi is the number of nodes j connected with node i such that j > i, χδ+νi

denotes the distribution of ψii when ψ
2
ii follows the chi-square distribution with

δ + νi degrees of freedom, and N|E|(0|E|, I|E|) denotes the multivariate normal
distribution with zero mean and covariance matrix equal to the identity matrix,
of dimension equal to the number of edges |E|. The proposed MH algorithm
described here can be used to sample from the distribution of ψV . Then, samples
from the G-Wishart can be obtained using the mapping described above. The
proposed algorithm is an independence chain ([16]), with proposal density

h(ψV) =

p
∏

i=1

χδ+νi ×N|E|(0|E|, I|E|) (8)

The acceptance probability is equal to

min

{

w(ψV
prop)

w(ψV
cur)

, 1

}

,

where

w(ψV) = exp

{

−
1

2

∑

(i,j)∈V̄

ψ2
ij

}

.

Since w(ψV ) is uniformly bounded (by 1) the chain is uniformly ergodic (the
strongest convergence rate condition in use, [11]).

We now present the pseudo code of the method:

• Initialize the chain by sampling ψV
0 from h, as in Equation (8); set ψV

cur =ψV
0

• For i =1, 2, . . . N do:

1. Sample ψV
prop from h

2. Set

logα =
1

2

∑

(i,j)∈V̄

{

(ψcur)
2
ij − (ψprop)

2
ij

}
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3. If logα > 0 then do:

– ψV
cur = ψV

prop

– accept = 1

4. Else do:

– Sample b from Bernoulli(α)

– If b = 1 then do:

∗ ψV
cur = ψV

prop

∗ accept = 1

– Else accept = 0

For each ψV
cur there is a unique corresponding matrix Kcur that can be con-

structed following the reverse procedure of what is described at the beginning
of this section. The sequence of Kcur gives a sample from the G-Wishart distri-
bution.

The proposed sampling method has been implemented in R and the code is
available from the authors.

4. Experiments

4.1. Experiment 1: Sampling from the prior

In order to investigate the performance of the MH sampling method under dif-
ferent scenarios we conducted a number of numerical experiments. For the first
experiment, we sampled from the prior distribution of K, using a seven-nodes
non-decomposable graph, as shown on Figure 1). We use as matrix D the iden-
tity matrix and δ = 3. We ran the chain for 10,000 iterations, discarding the first
2,000 as burn-in samples. For the assessment of the samples we compare with
exact distributions that are available, since in this example graph G contains
complete prime components. From [14] we know that, if K ∼WG(δ,D) and C is

n1

n2

n3

n4

n5n6

n7

Fig 1. Non-decomposable graph used in Experiment 1.
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Fig 2. Results from Experiment 1, sampling from the prior distribution of K.

a complete prime component of G, the submatrix ΣC , where Σ = K−1, follows
the inverse Wishart distribution, with parameters δ and DC , with DC being the
corresponding submatrix of D. If {K(i)}i is the sample generated by the MH
method, we compute the determinants

d(i) = det([Σ
(i)
C ]−1), (9)

where Σ(i) = [K(i)]−1. The empirical distribution of the sample {d(i)}i is then
compared with the empirical distribution of det(X), where X ∼ W (δ,DC).
Q-Q plots can be used for the comparison. We also calculate the acceptance
rates, autocorrelation and generate the trace plots. From the results shown in
Figure 2 we see that under the simple case of D = I and despite the fact that
G is non-decomposable, the sampling distribution is very similar to the true
distribution. Also the acceptance rate is quite high, suggesting that the samples
are approximately independent. The trace plot indicates that the chain seems
to be mixing well.

4.2. Experiment 2: Sampling from the posterior

We also perform a similar experiment using the same graph, but this time
sampling from the posterior distribution of K. For that we use a simulated
dataset of 50 observations generated from a multivariate normal distribution
with zero mean and covariance matrix Σ such that Σ−1 ∈ M+(G). Because of
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Fig 3. Results from Experiment 2, sampling from the posterior distribution of K.

the way the simulated data are generated, the graphG is a plausible model forX .
It is important therefore to ensure that the algorithm is sampling well from the
posterior distribution. As in Experiment 1, we used D = I and δ = 3. Again, we
ran the chain for 10,000 iterations, discarding the first 2,000 as burn-in samples.
For the assessment of the samples we use similar methods as in Experiment 1.
The results presented in Figure 3 show good mixing of the chain, high acceptance
rate, low autocorrelation and high proximity to the true distribution, indicating
that the sampler performs very well.

4.3. Experiment 3: Comparison with the Block Gibbs Sampler

In a third experiment, we compare the MH method with the only other available
method, the Block Gibbs Sampler. We use an 11-nodes graph, taken from [7].
The graph was selected by the method of graphical lasso to represent the con-
ditional independencies of a dataset, containing flow cytometry of 11 proteins
measured on 7466 cells. The graph is shown in Figure 4. It is decomposable,
but we prefer testing the sampler with a non-decomposable graph. We therefore
modify the graph, by removing the edge (PIP2, P38). The resulting graph is
non-decomposable, since it contains a chordless cycle of length 4, {PIcg, PIP2,
Akt, P38} [8]. We sample from the posterior distribution using as prior hyper-
parameters, D = I11 and δ = 3. Figure 5 shows the autocorrelation plots of the
log det of the precision matrix for the two method. The MH method required
38.1 seconds of elapsed CPU time per 1000 effective samples, while the Block
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Fig 4. Graphical model estimated from a flow cytometry dataset, with p = 11 proteins mea-
sured on N = 7466 cells. Taken from [7].

Fig 5. Autocorrelation plots for log det(K) using Metropolis-Hastings and Block Gibbs Sam-
pling methods.

Gibbs Sampler only 4.4. Using samples from equal computational times (40sec)
we also compare the empirical densities of the det of the precision matrix. The
result in Figure 6 shows that the posterior density estimates of det(K) from the
two methods are very similar. However, the estimate from MH shows signs of
multiples modes. This could be because the estimate is based on an effective
sample size 9.3 times smaller than the one from the Block Gibbs sampler.

Following the results of those experiments we can conclude that the MH
algorithm seems to provide with a reliable method for sampling from the G-
Wishart distribution, with relatively small computational expense.
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Fig 6. Density estimation for det(K) using Metropolis-Hastings and Block Gibbs Sampling
methods.

4.4. Application to model selection using the DIC

In this section we present an application of the proposed MH-based sampling
method to model selection. The selection is performed with the use of the De-
viance Information Criterion (DIC) ([15]), a criterion similar in spirit to the
AIC and BIC. It provides with a measure of how well a particular model fits
some existing data, while taking into account how easily the model fits the data
(how many parameters it effectively has). It can therefore be used for Bayesian
model selection. Given a dataset x and an unknown parameter θ, the deviance
is defined as D(θ) = −2 log(p(x|θ)) +C, where p(x|θ) is the likelihood function
and C a constant that depends only on the data. Under a specific model and
posterior distribution of θ given x one can define the expectations θ̄ = Eθ|x[θ]
and D̄ = Eθ|x[D(θ)]. The Deviance Information Criterion can be calculated as

DIC = pD + D̄, (10)

where pD = D̄ − D(θ̄), is the effective number of parameters of the model, a
Bayesian measure of model complexity ([15]). The larger pD is, the textiteasier
for the model to fit the data. On the other hand the quantity D̄ measures
how well the model fits the data, with larger D̄ indicating a worse fit. Overall,
models with smaller DIC are preferred to those with larger DIC values. One of
the charasteristics of DIC that makes it attractive over other model selection
criteria is the fact that it can be calculated when an MCMC or other sampling
method for the posterior distribution of θ is available. In that case θ̄ and D̄ can
be estimated by

1

N

N
∑

i=1

θi
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and

1

N

N
∑

i=1

D(θi)

respectively, where θi, i = 1, . . . , N are samples from the posterior distribution
of θ given x. The standard error of D̄ can be estimated by

√

∑N
i=1(D(θi)− D̄)2

N(N − 1)
.

In Gaussian graphical Models, the precision matrix K plays the role of the
parameter θ, with known posterior distribution WG(δ + n,D + xTx). The DIC
of a graph G can be defined as in Equation (10), and K̄ and D̄ can be estimated
after sampling efficiently from the WG(δ + n,D + xTx) with the use of the
proposed MH-method.

We now present a numerical example of the calculation of DIC for various
graphical models. We used the well known 4-dimensional Iris flower data set
([5]), containing the measurements of the length and width of sepals and petals
from 150 samples of Iris flowers. The samples are taken equally from three
species of the flower, Iris setosa, Iris virginica and Iris versicolor. For our ex-
periment only the 50 samples of Iris virginica were used. Since p = 4, there
are 2p(p−1)/2 = 26 = 64 possible four-node graphical models. We excluded the
no-edge model and we estimated the DIC for the 63 remaining models. For the
hyperparameters of the prior we use the values D = I4, δ = 3. Under each model
we generated 10,000 samples from the posterior distribution ofK, using the MH-
based sampling method. The initial 2,000 iterations are discarded as “burn-in”.
Using those samples we estimate K̄ and D̄, and subsequently calculate the DIC
values. We examine the consistency of the DIC values with the values of the log
of the ratio of normalizing constants (equal to the marginal likelihood p(x|G) up
to a constant multiplying factor), denoted with λ. Figure 7 shows a scatterplot
of the values of -DIC against λ. The values of the two measures seem to be well
correlated, which gives the indication that model selection based on DIC value
is similar to the one based on the marginal likelihood and that our sampler
from the G-Wishart distribution worked well. Similar indication is offered by
the observation that 9 out of the 10 best models based on DIC belong to the
set of the 10 best models according to λ values.

5. Conclusions

The main contribution of this paper is the proposal of a new sampling method
from the G-Wishart distribution, based on the Metropolis-Hastings algorithm.
A first series of experiments showed satisfactory results and improved efficiency
over existing sampling methods, such as the Block Gibbs Sampler. In addi-
tion, efficient sampling using this method can be used for the estimation of the
Deviance Information Criterion (DIC), which, as our experiments suggest, can
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Fig 7. Scatterplot between the log ratio of the normalizing constants, λ, and the value of -DIC.

provide with a computationally inexpensive method for model selection. Fur-
ther investigation is needed for fine tuning of the method in order to improve
its performance.
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