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Abstract: This work was motivated by Cox and O’Sullivan (1990) who
derived the optimal convergence rates for smoothing spline estimates when
the loss function is sufficiently smooth. However, the study of statistical
estimates resulting from nonsmooth criteria functions has become popular
in recent years. In this paper, we will study the asymptotic properties of
the smoothing spline estimates when the criteria functions are insufficiently
smooth. Here, the smoothing spline estimate is defined as an approximate
solution to an M-estimating equation. We prove that if the derivative of
loss function is Lipschitz, then the convergence rate and Bahadur type
representation of the estimate can be derived simultaneously. For a specific
class of loss functions with discontinuous derivatives, the Bahadur type
representation is also presented provided that we know the convergence
rate. Examples are given when Huber’s robust loss and median loss are
employed.
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1. Introduction

Consider the bivariate data (X1, Y1), . . . , (Xn, Yn), which form an independent
and identical sample from population (X,Y ). We assume that the data are
linked by the following nonparametric regression model

Yi = θ0(Xi) + ei, i = 1, . . . , n, (1.1)

where Xi’s take values in I = [0, 1], ei’s are iid noises independent of Xi’s.
It is of particular interest to estimate the unknown functional parameter θ0,
a sufficiently smooth element in some Soblev space. Usually, the estimation
problem under model (1.1) is ill-posed since we allow the space of parameters to
be infinite-dimensional. However, we can overcome this ill-posedness by using
a penalty functional, i.e., we estimate θ0 by optimizing a penalized criteria
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function. This estimation procedure is called the method of penalization (see
Wahba (1990) for a detailed review and related references).

When the criteria function is sufficiently smooth, the convergence rate of
the penalized estimates has been studied by many authors under various set-
tings. The most important literature includes Chen (1991); Cox (1983, 1988);
Cox and O’Sullivan (1990); Gu and Qiu (1993); Gu and Ma (2005); O’Sullivan
(1993, 1995); Silverman (1982), and the references therein. For non-penalized
optimization, Wong and Severini (1991) obtained optimal convergence rates for
ǫ-MLE.

However, in practice, the estimates resulted from a nonsmooth loss func-
tion l are also important. Examples include (1) l(s) = s21(|s| ≤ c)/2 + (c|s| −
c2/2)1(|s| > c) for some c > 0; (2) l(s) = |s|. The function ϕ(s) = d

ds l(s) is
called a moment function. The corresponding estimates will have unique fea-
tures (such as robustness), and hence, their theoretical properties need to be
explored. Shen (1998) used a penetrating method to obtain the optimal con-
vergence rates of spline quantile estimate. As far as we know, there seems to
be little theory treating the infinite-dimensional smoothing spline estimates re-
sulted from general nonsmooth ϕ. Related references include Shen and Wong
(1994) who studied asymptotic properties of a sieve MLE, and Chen and Pouzo
(2008) who obtained optimal convergence rates for sieve estimates identified
by a class of moment estimating equations with general nonsmooth moment
functions.

In this paper, we will study the asymptotic behavior of penalized estimates in
two general situations. In the first, by assuming that ϕ is Lipschitz, we simulta-
neously obtain the optimal convergence rates and Bahadur type representation
for the estimates, provided that we know that the estimate is consistent. In the
second, we allow ϕ to be discontinuous, and obtain a Bahadur type represen-
tation for the estimates provided that we know the convergence rate. On the
one hand, our results are not only about the convergence rate but also about
the Bahadur type representation, which is different from the previous contribu-
tions mainly addressing the problem of convergence rate. On the other hand,
the penalized estimate considered in this paper is obtained directly over the
infinite-dimensional parameter space, which is different from a sieve estimate
obtained over a sequence of finite-dimensional sub-spaces approaching the en-
tire parameter space.

Since Bahadur type representation is part of our work, it seems necessary to
review some relevant literature about this issue. Most of the existing results have
been built under finite-dimensional situations, i.e., θ0 is a finite-dimensional pa-
rameter. Relevant references include He and Shao (1996), Wu (2005, 2007), and
the reference therein. But, when the parameter space is infinite-dimensional,
e.g., a Sobolev space, little result has been gained. Portnoy (1997) derived a Ba-
hadur type representation for quantile smoothing spline estimates which point-
wise holds on some selected knots in I (Portnoy, 1997, Theorem 2.2). While it
still remains open whether the Bahadur type representation holds when gen-
eral insufficiently smooth loss functions and usual Sobolev norms have been
employed, which is also a motivation of this work.
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The rest of this paper is organized as follows. In Section 2, notation and
assumptions which are needed for the statement of the main results are intro-
duced. Section 3 contains the main results of this paper. In Section 4, examples
illustrating the applications of the main results are presented. Section 5 contains
some additional theoretical framework which facilitates the technical arguments.
Section 6 contains some concluding remarks and future work. Proofs of the main
results can be found in Appendix A, and the preliminary results are proved in
Appendix B.

2. Notation and assumptions

Let X be a random variable taking values in I := [0, 1] and have distribution
with (Lebesgue) density f supported on I. Let Θ1 = Hm(I) be a Sobolev space
of order m, i.e.,

Hm(I)= {θ : I 7→R|θ(j) are absolutely continuous, j=0, . . . ,m− 1, θ(m) ∈L2(I)},

where θ(m) denotes the m-order derivative of θ. Let V (θ, θ̃) = EX{θ(X)θ̃(X)} =
∫ 1

0 θ(x)θ̃(x)f(x)dx and J(θ, θ̃) = 1
2 〈θ(m), θ̃(m)〉L2 , where 〈·, ·〉L2 denotes the

usual L2(I)-inner product. Note that V defines a norm on L2(I) by ‖ · ‖0 =
√

V (·, ·).
Define the inner product 〈·, ·〉1 on Θ1 to be 〈θ, θ̃〉1 = V (θ, θ̃) + J(θ, θ̃), and

denote the corresponding norm to be ‖ · ‖1. By a standard calculation, for
any θ ∈ Θ1, the Fréchet derivative of J(θ) := J(θ, θ) at θ, which is denoted
by DJ(θ), satisfies DJ(θ)∆θ = 2J(θ,∆θ) for any ∆θ ∈ Θ1. So, by Riesz’s
representation theorem, we could view DJ(θ) as an element in Θ1 satisfying
〈∆θ,DJ(θ)〉1 = 2J(θ,∆θ). Consequently, W : θ 7→ 1

2DJ(θ) is a well defined
bounded linear operator from Θ1 to Θ1 satisfying < ∆θ,Wθ >1= J(θ,∆θ) for
any θ,∆θ ∈ Θ1.

With W well defined, we can define the estimate of θ0. Let X1, . . . , Xn be iid
samples drawn from density f . The responses Yi’s and covariates Xi’s are linked
by the nonparametric model (1.1). We estimate θ0 by finding the solution θ̂n,λn

to the following approximate penalized M-estimating equation

‖Sn,λn(θ)‖1 = o(δn), (2.1)

where Sn,λn(θ) =
∑n

i=1 ϕ(Yi − θ(Xi))KXi + λnWθ, ϕ is an either smooth or
nonsmooth moment function, δn is a positive sequence, K is a bivariate kernel
function defined on I × I satisfying certain properties and Kx(·) = K(x, ·).
Hereafter, unless otherwise explicitly stated, we drop the subscript from λn.
Suppose θ̂n,λ satisfies equation (2.1), then θ̂n,λ is an estimate of θ0, and is
called an M-estimate. The main results in this paper are about the asymptotic
properties of θ̂n,λ. Before proceeding further, we introduce several technical
assumptions which will be used to prove the main results. Firstly, we assume
that the bilinear functionals V and J satisfy the following assumption.

Assumption A.1. V is completely continuous w.r.t. V + J .
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Assumptions A.1 was originally introduced by Gu and Qiu (1993) to simul-
taneously diagonalize V and J . This assumption means that for any ǫ > 0,
there are linear functionals l1, . . . , lk such that if lj(θ) = 0, j = 1, . . . , k, then
V (θ, θ) ≤ ǫ(V + J)(θ, θ) for any θ ∈ Θ1. Assumption A.1 is not a restric-
tive assumption and holds under general settings (see, e.g., (Weinberger, 1974,
Theorem 2.9)). A direct consequence from Assumption A.1 is that the bilinear
functionals V and J can be simultaneously diagonalized, which is the following
result.

Proposition 2.1. (Weinberger, 1974, Theorem 3.1) There is a sequence of
eigenvalues γµ and corresponding eigenvectors hµ such that

V (hµ, hν) = δµν , J(hµ, hν) = γµδµν , µ, ν ∈ Z, (2.2)

where δµν is the Kronecker’s notation. Any θ ∈ Θ1 admits the Fourier expansion
θ =

∑

µ V (θ, hµ)hµ with the convergence held under ‖ · ‖1.
We let {hµ} be the sequence satisfying (2.2). By Proposition 2.1, we may

rewrite 〈·, ·〉1 as 〈θ, θ̃〉1 =
∑

µ(1 + γµ)V (θ, hµ)V (θ̃, hµ), θ, θ̃ ∈ Θ1. Therefore,

any two elements θ =
∑

µ θµhµ and θ̃ =
∑

µ θ̃µhµ in Θ1 admit the following
expansion

〈θ, θ̃〉1 =
∑

µ∈Z

θµθ̃µ(1 + γµ). (2.3)

By Proposition 2.2, the sequence {hµ} forms a basis in Θ1. To facilitate
the proofs of our main results, we assume, throughout this work, the following
assumption for {hµ}.
Assumption A.2. {hµ} forms an orthonormal basis in (L2(I), ‖ · ‖0) which
satisfies supµ ‖hµ‖sup <∞, where ‖hµ‖sup := supx∈I

|hµ(x)| denotes the supre-
mum norm of hµ. Furthermore, the sequence {γµ}µ∈Z satisfies γµ ≈ µ2m,
where αn ≈ βn means that there exist positive constants d1 and d2 such that
d1 < αn/βn < d2 when n goes to ∞.

Remark 2.1. When Xi’s are uniformly generated from I, i.e., the density func-
tion of Xi’s is f(x) = 1(x ∈ I), the system {hµ} := {exp(2π

√
−1µx)}µ∈Z

will satisfy property (2.2) and Assumption A.2. The resulting sequence γµ =
2(2πµ)2m for µ ∈ Z. So, as |µ| tends to infinity, γµ ≈ µ2m.

To define a Sobolev space with a different order, for b ≥ 0, we let ‖θ‖2b =
∑

µ∈Z
(1 + γbµ)|V (θ, hµ)|2. Let Θb be the completion of {θ ∈ Θ1| ‖θ‖b < ∞}

under ‖ · ‖b. According to Theorem 3.2 in Cox (1988), Θb is a Sobolev space
with order mb under the inner product 〈θ, θ̃〉b =

∑

µ∈Z
(1+γbµ)V (θ, hµ)V (θ̃, hµ).

Let C(I) be the Banach space of continuous functions defined on I endowed
with supremum norm ‖ · ‖sup. Define S(θ) = E {ϕ(Y − θ(X))KX}, where the
expectation is taken with respect to (Y,X), and define Sλ(θ) = nS(θ)+λW (θ).
Let E{ϕ(e − u)} = ζ(u), for u ∈ R, where e denotes the error in model (1.1).
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Assumption A.3. There is a γ ∈ (0, 1], a positive number α and a constant
Cϕ > 0 such that

sup
s1,s2∈R,0<|s1−s2|≤α

|ϕ(s1)− ϕ(s2)|
|s1 − s2|γ

≤ Cϕ.

Assumption A.3′. ‖ϕ‖sup <∞. There is a neighborhood A of θ0 in C(I) and
constants CA and δ0 such that for any 0 < δ ≤ δ0,

sup
θ̃∈A

E

{

sup
‖θ−θ̃‖sup≤δ

|ϕ(Y − θ(X))− ϕ(Y − θ̃(X))|2
}

≤ CAδ.

Assumption A.4. For some d > 1, θ0 ∈ Θd; there exists a θ0-neighborhood
N0 ⊂ C(I) such that θ0 is the unique root of S(θ) in N0.

Assumption A.5. Model errors ei’s are independent of Xi’s.

Assumption A.3′ is the so-called stochastic equi-continuity condition (see
Pollard (1982)), and has been adopted by a number of authors (see Chen et al.
(2003); Chen and Pouzo (2008); He and Shao (1996)). Assumption A.3′ is sat-
isfied by quantile loss. Assumption A.3 is satisfied by several commonly used
robust loss functions such as the Huber’s loss function. Assumption A.4 es-
sentially requires two things. First, θ0 is smoother than the elements in Θ1.
As demonstrated later, the estimate θ̂n,λ will be obtained in space Θ1, so we
need this assumption to guarantee that the true parameter θ0 is smoother than
θ̂n,λ. Second, θ0 is identifiable since it is assumed to be the unique root of
S(θ) = 0. Assumption A.5 requires that the random design values Xi’s are inde-
pendent of the model errors ei’s. This is only a technical assumption which facil-
itates the proofs. We may use Assumption A.5 to rewrite the functional S(θ) as
S(θ) = EX{Ee{ϕ(e−(θ−θ0)(X))|X}KX} = EX{ζ((θ−θ0)(X))KX}, ∀θ ∈ Θ0.

Assumption A.6. ζ is twice continuously differentiable and both ζ′ and ζ′′

are upper bounded. Furthermore, there is a neighborhood I of zero such that
infu∈I ζ

′(u) > 0, and supu∈I E{|ϕ(e− u)|2} <∞.

Assumption A.6 is satisfied by some commonly adopted function ϕ (see ex-
amples in Section 5). Under Assumption A.6, we have the following result which
demonstrates that the zero of Sλ is sufficiently close to θ0.

Proposition 2.2. Suppose that Assumptions A.1, A.2, A.4–A.6 are satisfied.
Let ϕ satisfy either Assumption A.3 or A.3′. Let m > 1/2, 0 ≤ b ≤ 1 and
d > 2b + 1/(2m). If λ/n → 0, then there exists a unique θbλ ∈ Θb such that
Sλ(θ

b
λ) = 0 and

‖θbλ − θ0‖b = O
(

(λ/n)(d−b)/2
)

. (2.4)

Furthermore, if 0 ≤ b′ < b ≤ 1, then θb
′

λ = θbλ under ‖ · ‖b′-norm. This is the
local uniqueness of the solution to Sλ.
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The proof of Proposition 2.2 is given in Appendix B. Proposition 2.2 is sim-
ilar to Theorem 3.1 of Cox and O’Sullivan (1990). However, unlike the latter,
Proposition 2.2 guarantees the uniqueness of θλ, i.e., θλ is locally fixed when b
changes. If we consider θλ as the “target” of θ̂n,λ, then changing the parameter
space Θb for 0 ≤ b ≤ 1 will not move this target, this means that θλ is somewhat
“identifiable”.

When d > 2 + 1/(2m), it follows by fixing b = 1 in Proposition 2.2 that
there exists θλ := θ1λ ∈ Θ1 such that Sλ(θλ) = 0 and ‖θλ − θ0‖1 = o(1).
Consequently, we may assume that any element θ∗ ∈ K ≡ {θλ} ∪ {θ0} satisfies
‖θ∗−θ0‖sup ∈ I, with I indicated by Assumption A.6. Recall here that λ = λn is
a sequence of penalty parameters indexed by n. On the other hand, if 0 ≤ b < 1,
then ‖θλ − θ0‖b = O

(

(λ/n)(d−b)/2
)

.

Assumption A.7. θ̂n,λ ∈ Θ1 and there exists some positive sequence δn such

that ‖Sn,λ(θ̂n,λ)‖1 = op(δn) and ‖θ̂n,λ − θλ‖1 = op(1).

Assumption A.7′. θ̂n,λ ∈ Θ1 and there exists some positive sequences δn
and sn, such that ‖Sn,λ(θ̂n,λ)‖1 = op(δn), ‖θ̂n,λ − θ0‖1 = op(1) and ‖θ̂n,λ −
θ0‖sup = Op(sn).

Both Assumptions A.7 and A.7′ do not require that θ̂n,λ is a root of Sn,λ.

However, we need the assumption that θ̂n,λ is as smooth as θλ. In some special

cases, θ̂n,λ can be taken as an approximate MLE, e.g., ǫ-MLE introduced by

Wong and Severini (1991), and the consistency of θ̂n,λ can be proved under the
assumption of the uniform continuity of the likelihood and the relative com-
pactness of the parameter space (see (Wong and Severini, 1991, Theorem 1)).

‖θ̂n,λ− θλ‖1 = op(1) thus follows from the consistency of θ̂n,λ and the fact that
‖θλ − θ0‖1 = o(1).

3. Main results

Our main results consist of two parts. Section 3.1 focuses on the convergence
rates of θ̂n,λ, while Section 3.2 includes the Bahadur type representations for θ̂n,λ.

3.1. Convergence rate

The following result demonstrates when θ̂n,λ attains the optimal convergence
rate.

Theorem 3.1. Let Assumptions A.1–A.7 be satisfied and δn be given in As-
sumption A.7. Assume that γ = 1 in Assumption A.3, d > 2 + 1/(2m) and
1/(2m) < b < 1 − 1/(2m). If the penalty parameter λ is selected such that the
following (i)-(iii) hold,

(i) λ = o(n).
(ii) δn = O(n1/2(λ/n)(1−1/(2m))/2).
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(iii) max{(λ/n)−(1+b)/2, (λ/n)−(2b+1/(2m))} = o(na−1
n ), where an = (n log logn)κ

and κ = m
2m−1 .

Then

‖θ̂n,λ − θ0‖b = Op

(

n−1/2(λ/n)−(b+1/(2m))/2 + (λ/n)(d−b)/2
)

.

The proof of Theorem 3.1 is given in Appendix A.

Remark 3.1. The quantities m, b, d have a clear statistical interpretation. m
and d respectively represent the degree of smoothness of the estimate θ̂n,λ and

the true parameter θ0, and b indicates the norm under which the bias of θ̂n,λ is
measured. In practice, it is possible to regularize the values of d,m, b and λ so
that condition (iii) in Theorem 3.1 is satisfied. One way is to let d be relatively
large, for instance, d,m, b and λ satisfy

max

{

κ+
m(1 + b)

2md+ 1
, κ+

4mb+ 1

2md+ 1

}

< 1 and λ/n = n−2m/(2md+1). (3.1)

Under (3.1), it can be verified according to Theorem 3.1 that the convergence

rate of ‖θ̂n,λ − θ0‖b is n−m(d−b)/(2md+1).
We claim that this convergence rate is optimal. This is based on the following

considerations. Since θ0 is md-times differentiable, and θ̂
(mb)
n,λ is clearly an esti-

mate of θ
(mb)
0 , where θ(mb) denotes the mb-order derivative of θ, then by Stone

(1982), the optimal convergence rate for ‖θ̂(mb)n,λ −θ(mb)0 ‖L2(I) is n
−m(d−b)/(2md+1).

On the other hand, we notice that ‖θ̂n,λ − θ0‖b ≥ ‖θ̂(mb)n,λ − θ
(mb)
0 ‖L2(I), which

means that ‖θ̂n,λ − θ0‖b cannot converge faster than ‖θ̂(mb)n,λ − θ
(mb)
0 ‖L2(I). So

n−m(d−b)/(2md+1) is the optimal convergence rate for ‖θ̂n,λ− θ0‖b, and this rate
is achieved when λ/n = n−2m/(2md+1).

The technical arguments in the proofs are valid only for a suitably large d.
When d is small, which implies that θ0 is not smooth enough, our approach
cannot result in an optimal convergence rate. In such situations, we leave the
achievability of the optimal convergence rate as an open problem.

Remark 3.2. Wong and Severini (1991) obtained an optimal convergence rate
for the infinite-dimensional nonpenalized MLE under the assumption that the
loss function is twice uniformly and continuously differentiable. Here, we briefly
introduce their way of proof. They first established an important result which
they call “Basic Lemma”. This result states that the bias of the estimate is
controlled by two terms. Then they obtained the optimal convergence rates by
balancing these two terms. However, the second order derivative of the likelihood
is needed for the proof of their “Basic Lemma”.

In the proof of Theorem 3.1, we cannot establish such “Basic Lemma” as
we do not assume that the second order derivative of the likelihood exists. In-
stead, we first establish Lemma A.1 which states that the variation of Sn,λ(θ) is
stochastically controlled by the variation of θ. Using Lemma A.1, one can obtain
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the desired results without finding the Fréchet derivative of Sn,λ. He and Shao
(1996) used the same idea to establish the Bahadur representation for finite-
dimensional estimates. Here, we have actually generalized their result to the
infinite-dimensional setting using the techniques introduced by Kosorok (2008).

We then use Lemma A.1 to establish a quadratic inequality for the term ‖θ̂n,λ−
θ0‖b, and use this inequality to obtain the convergence rate for θ̂n,λ.

Remark 3.3. Cox and O’Sullivan (1990) obtained the convergence rate for the
penalized estimates under the assumption that the likelihood is three times
Fréchet differentiable. They controlled the bias of the estimate by two terms
which they called the systematic error and stochastic error. The optimal con-
vergence rates were obtained by balancing these two error terms. Their proof
also relies on the sufficient smoothness of penalized likelihood.

One of the commonly used parameter spaces is H2(I) which corresponds to
the casem = 2. For instance, Gu and Qiu (1993) have considered this parameter
space for purpose of estimating spline densities, which is different from our
problem. For this specific situation, it can be shown by Theorem 3.1 that the
following result holds.

Corollary 3.2. Let Assumptions A.1–A.7 be satisfied and δn be given in As-
sumption A.7. Assume that γ = 1 in Assumption A.3. Suppose we choose b and
d such that 1/4 < b < 3/4 and d > max{9/4, (12b+1)/2, (6b+5)/4}. Let λ/n ≈
n−4/(4d+1) and δn = O(n(2d−1)/(4d+1)). Then ‖θ̂n,λ−θ0‖b = Op(n

−2(d−b)/(4d+1)).

3.2. Bahadur type representation

The purpose of establishing a Bahadur representation is to approximate an
estimate by a sum of independent random variables. Generally speaking, the
remainder in a Bahadur representation should be of higher orders than usual
statistical bias. This might be the reason why this sort of result attracts so many
authors. In this section, we attempt to establish a Bahadur type representation
for θ̂n,λ. In the following result, we consider the case that ϕ is Lipschitz, i.e.,
satisfying Assumption A.3.

Theorem 3.3. Let the assumptions in Theorem 3.1 be satisfied. Assume fur-
ther that δn = O(ann

−m(d−b)/(2md+1)). If d,m, b and λ satisfy (3.1), then the
following representation holds,

‖θ̂n,λ − θ0 +DSλ(θ0)
−1Sn,λ(θ0)‖b = Op

(

ann
− 3md−2mb−m+1

2md+1

)

. (3.2)

The proof of Theorem 3.3 is based on arguments similar to the proof of
Theorem 3.1 and can also be found in Appendix A. However, we should mention
that the convergence rate in (3.2) might be suboptimal. By Theorem 3.3, if we fix

b, then the convergence rate of the remainder term θ̂n,λ−θ0+DSλ(θ0)−1Sn,λ(θ0)
under ‖ · ‖b-norm could be arbitrarily close to n−1(log logn)1/2 when m and
d are large enough, which could be even faster than the optimal convergence
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rate of θ̂n,λ discussed in Remark 3.1. By Theorems 3.1 and 3.3, when ϕ is
Lipschitz, it is possible to derive the optimal convergence rate and (suboptimal)

Bahadur type representation simultaneously from the assumption that θ̂n,λ is
consistent. Unfortunately, when ϕ is not Lipschitz, or even not continuous, the
derivation of optimal convergence rate becomes complicated. However, if the
convergence rate of θ̂n,λ is known a priori, we may derive a suboptimal Bahadur
type representation.

Theorem 3.4. Let Assumptions A.1, A.2, A.4–A.6 and A.7′ be satisfied.

(i) If Assumption A.3 is satisfied, then θ̂n,λ satisfies

‖θ̂n,λ − θ0 +DSλ(θ0)
−1Sn,λ(θ0)‖b = Op(Rn), (3.3)

where

Rn = (λ/n)−(b+1/(2m))/2s2n + n−1(λ/n)−(1+b)/2

{

(log logn)1/2(n1/2sγ−1/(2m)
n + 1) + δn

}

. (3.4)

In particular, if γ = 1 and

sn ≈ (n/ logn)−md/(2md+1), λ/n ≈ n−2m/(2md+1), (3.5)

δn = O
(

(log logn)1/2(n1/2s1−1/(2m)
n + 1)

)

,

then

Rn = n− 4md−2mb−1
2(2md+1) +n− (4m−1)(d−1)+2m(1−b)

2(2md+1) (logn)(2m−1)d/(2(2md+1))(log logn)1/2.
(3.6)

(ii) If Assumption A.3′ is satisfied and sn(log log n)
m = o(1), then (3.3) holds

with

Rn = (λ/n)−(b+1/(2m))/2s2n + n−1(λ/n)−(1+b)/2

{

n1/2s1/2−1/(2m)
n + s−1/m

n + δn

}

. (3.7)

In particular, if (3.5) holds and δn = O(n1/2s
1/2−1/(2m)
n + s

−1/m
n ), then

Rn = n− 4md−2mb−1
2(2md+1) (log n)

2md
2md+1

+n− (3m−1)(d−1)+m(1−2b)
2(2md+1) (logn)(m−1)d/(2(2md+1)).

The proof of Theorem 3.4 is given in Appendix A which relies on Lemma A.3.

Remark 3.4. When Sn,λ is Fréchet differentiable, we might still be able to
obtain a result similar to Theorem 3.4 without using Lemma A.3. However,
when Sn,λ is not Fréchet differentiable, Lemma A.3 plays an important role
in the proof of Theorem 3.4. Actually, Lemma A.3 somewhat overcomes the
difficulty caused by the nonsmoothness of Sn,λ(θ).
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Stone (1982) proved that the optimal convergence rate for a nonparametric
estimate under the supremum norm is (n/ logn)−md/(2md+1). As demonstrated
by Stone (1982), this optimal convergence rate is achievable under certain con-
ditions.

Portnoy (1997) obtained a Bahadur type representation for quantile smooth-
ing spline estimates (see (Portnoy, 1997, Theorem 2.2)). This representation
holds at the breakpoints (a discrete set of points) in I. While, the representa-
tion (3.3) or (3.7) holds under Sobolev norms. On the other hand, the proof of
the result by Portnoy (1997) strongly relies on the property of quantile loss. Ac-
tually, the quantile smoothing spline estimate has to be piecewise linear. While,
the result in Theorem 3.4 is valid for a general class of ϕ.

4. Examples

This section contains several illustrative examples. In these examples, we let
hµ(x) = exp

(

2π
√
−1µx

)

, µ ∈ Z, be the sequence of orthonormal basis in L2(I)
under L2(I)-norm. Suppose Xi’s are independent and uniformly distributed
on I. Then Assumptions A.1 and A.2 follow straightforwardly. Assume that
the true parameter θ0 ∈ Θd with d > 2 + 1/(2m). In the following examples,
we assume that the density function fe of the noise e satisfies the following
assumption.

Assumption A.8. fe is symmetric, strictly positive around zero, and having a
bounded derivative.

It can be verified that in these examples, Assumption A.6 follows from As-
sumption A.8.

Example 4.1. Consider the Huber’s loss which corresponds to the following ϕ1

ϕ1(s) =

{

−s, |s| ≤ c
−c · sgn(s), |s| > c,

where c > 0 is a constant. It is easy to verify that Assumption A.3 holds for
Cϕ1 = γ = 1.

Let N0 be a subset of C(I) such that any θ ∈ N0 satisfies ‖θ − θ0‖sup ∈ I,
where I is indicated in Assumption A.6. Suppose θ ∈ N0 satisfies S(θ) = 0. By
Fubini’s theorem, for any µ ∈ Z,

〈S(θ), hµ〉1 = EX{〈ζ((θ − θ0)(X))KX , hµ〉1}
= EX{ζ((θ − θ0)(X))hµ(X)} = 0, (4.1)

which implies ζ((θ−θ0)(x)) = 0 for any x ∈ I. Therefore, θ = θ0 by monotonicity
of ζ over I. This verifies the identifiability of θ0, i.e, Assumption A.4.

By Corollary 3.2, when m = 2, for some suitable b, d and λ which satisfy the
assumptions in Corollary 3.2, θ̂n,λ achieves the optimal convergence rate under
‖ · ‖b, and the following Bahadur type representation holds

‖θ̂n,λ − θ0 +DSλ(θ0)
−1Sn,λ(θ0)‖b = Op

(

n− 10d−12b−5
3(4d+1) (log logn)2/3

)

.
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Example 4.2. We consider the negative sign function ϕ2(e) := −sgn(e), then
θ̂n,λ corresponds to the median loss. By an argument similar to the proof of The-
orem 3.2 in He and Shao (1996), Assumption A.3′ holds. Similar to Example 4.1,
it can be shown that both Assumptions A.4 and A.6 hold. Consequently, when
the convergence rate of θ̂n,λ is available, a representation of type (3.3) holds
with the convergence rate of Rn indicated by (3.7).

5. Theoretical framework

In the previous sections, we have introduced the main results in this paper and
several sufficient conditions which are used to derive these results. In this section,
we will give some additional framework which is useful for us to continue the
theoretical derivation. The proofs of all the propositions in this section can be
found in Appendix B.

5.1. About the kernel function K and operator W

To prove our main results, the function K, which is used to define the equation
(2.1), has to satisfy certain desired properties. The following result guarantees
the existence of K which satisfies all such desired properties.

Proposition 5.1. For any β ∈ (1/(2m), 1], there is a bivariate kernel function
K(·, ·) defined on I× I satisfying the properties:

(i) ∀x ∈ I, Kx := K(x, ·) ∈ Θ2−β;
(ii) ∀θ ∈ Θβ, 〈Kx, θ〉1 = θ(x);
(iii) There is a constant CK > 0 such that supx∈I

‖Kx‖2−β ≤ CK .

Throughout this paper, we assume that for some fixed β ∈ (1/(2m), 1], K :
I × I → R satisfies the properties (i)–(iii) in Proposition 5.1. This requirement
for β is related to the dimension of I, which is 1 in the present situation.

The original domain of W is Θ1. To facilitate the technical proofs, it is useful
to extend this domain to be a larger space, say Θb for 0 ≤ b ≤ 1. There are
two equivalent ways to achieve this extension. One way is based on the fact
Whµ =

γµ
1+γµ

hµ, ∀µ ∈ Z. To see this, for any µ, since Whµ ∈ Θ1, we have

Whµ =
∑

ν θνhν for some sequence θν . Then γνδµν = 〈Whµ, hν〉1 = θν(1+ γν).
And hence, θµ =

γµ
1+γµ

and θν = 0 for ν 6= µ, which leads to Whµ =
γµ

1+γµ
hµ.

Using this fact, one can defineW
∑

µ θµhµ =
∑

µ
γµ

1+γµ
θµhµ, which is a bounded

linear operator from Θb to Θb for any 0 ≤ b ≤ 1. The other way is through
Lemma 2.1 in Cox and O’Sullivan (1990). By such extension,W is a well defined
bounded linear operator from Θb to Θb for any 0 ≤ b ≤ 1.

To conclude this subsection, we assert that, by the above properties of K and
W , Sn,λ(θ) (defined in Section 2) is exactly the Fréchet derivative of

ln(θ) =

n
∑

i=1

ρ(Yi − θ(Xi)) + λJ(θ),
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where J(θ) is defined in the beginning of Section 2 and ρ is the loss function
satisfying ρ′ = ϕ. We leave the details of the verification to the interested
readers. So, finding the exact solution to Sn,λ(θ) is equivalent to minimizing
ln(θ). This demonstrates the credibility of estimating θ0 through finding the
approximate solution to Sn,λ(θ).

5.2. Fréchet derivatives and their applications

Our technical proofs rely on the exact calculations of the Fréchet derivatives.
The following results summarize these calculations.

Proposition 5.2. Suppose Assumptions A.5 and A.6 are satisfied. Let ϕ satisfy
either Assumption A.3 or Assumption A.3′. If 0 ≤ b ≤ 1, then we have

(i) For any θ ∈ Θb, S(θ) ∈ Θ2−β;
(ii) The Fréchet derivative of S at θ ∈ Θb is given by

DS(θ)ξ = EX{ζ′((θ − θ0)(X))ξ(X)KX}, ∀ξ ∈ Θb. (5.1)

Therefore DS(θ) ∈ B(Θb,Θ2−β), where B(H1,H2) is the collection of
bounded linear operators from H1 to H2.

(iii) The second order Fréchet derivative of S at θ ∈ Θb is given by

D2S(θ)ξη = EX{ζ′′((θ − θ0)(X))ξ(X)η(X)KX}, ∀ξ, η ∈ Θb. (5.2)

Therefore D2S(θ) ∈ B(Θb,B(Θb,Θ2−β)).

Taking θ = θ0 in (5.1), we shall get that 〈DS(θ0)ξ, ξ〉1 = ζ′(0)V (ξ, ξ) for any
ξ ∈ Θ1. Thus, DS(θ0) and V define “equivalent” norms. The following result
says that when θ is “close” to θ0, DS(θ) and V are still “equivalent”.

Proposition 5.3. Suppose Assumptions A.5 and A.6 are satisfied. Let ϕ satisfy
either Assumption A.3 or Assumption A.3′. Suppose θ ∈ C(I) with ‖θ−θ0‖sup ∈
I, where I is indicated by Assumption A.6, then we have

inf
ξ∈Θ1/{0}

〈DS(θ)ξ, ξ〉1
V (ξ, ξ)

≥ inf
u∈I

ζ′(u), and sup
ξ∈Θ1/{0}

〈DS(θ)ξ, ξ〉1
V (ξ, ξ)

≤ ‖ζ′‖sup,

where ‖ · ‖sup indicates the supremum norm.

An important application of Proposition 5.3 can actually guarantee the in-
vertibility of DSλ(θ0). To see this, we note that by Proposition 5.3, if θ is close
to θ0 in supremmum norm, then DS(θ) is “equivalent” to V . Thus, DSλ(θ0) is
bounded linear strictly coercive from Θ1 to Θ1, i.e., 〈DSλ(θ0)ξ, ξ〉1 ≥ cV (ξ, ξ)
for some positive constant c. By Lax-Milgram theorem (see Adams (1975)),
DSλ(θ0) has to be bounded invertible from Θ1 to Θ1. We denote DSλ(θ0)

−1 to
be the inverse operator of DSλ(θ0).

By Proposition 5.2, DSλ(θ0) ∈ B(Θb,Θb) for any 0 ≤ b ≤ 1. Originally,
DSλ(θ0)

−1 was defined on Θ1. However, the following result asserts that
the domain of DSλ(θ0)

−1 can actually be extended from Θ1 to Θb for any
0 ≤ b < 1.
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Proposition 5.4. For any 0 ≤ b < 1, DSλ(θ0)
−1 can be extended as an element

in B(Θb,Θb), and this extension is exactly the inverse of DSλ(θ0) ∈ B(Θb,Θb).
By Proposition 5.3, when θ is sufficiently close to θ0, there is certain similarity

between the norms defined by V and 〈DS(θ)·, ·〉1. However, the basis {hµ}might
no longer be orthogonal under the latter norm. Therefore, it is desired to seek
a new basis which is orthonormal under the latter norm. For this purpose,
we define V∗(θ, θ̃) = 〈DS(θ∗)θ, θ̃〉1 for any θ∗ ∈ K and θ, θ̃ ∈ Θ1. Thanks to
Proposition 5.3 and Assumption A.1, if θ∗ ∈ K, then V∗ is completely continuous
with respect to V∗+J . So there are eigenvalues {γ∗µ} and eigenvectors {h∗µ} ⊆
Θ1 satisfying

V∗(h∗µ, h∗ν) = δµν , and J(h∗µ, h∗ν) = γ∗µδµν , µ, ν ∈ Z. (5.3)

Furthermore, an application of Courant-Weyl’s principle (Weinberger, 1974,
Theorem 5.2) shows that there are positives c1 and c2 (independent of θ∗ ∈ K)
such that

c2γµ ≤ γ∗µ ≤ c1γµ, µ ∈ Z. (5.4)

For 0 ≤ b ≤ 1, define

〈θ, θ̃〉∗b =
∑

µ

(1 + γb∗µ)V∗(θ, h∗µ)V∗(θ̃, h∗µ), (5.5)

and let ‖θ‖∗b =
√

〈θ, θ〉∗b. Let Θ∗b be the completion of {θ ∈ Θ1| ‖θ‖∗b < ∞}
under ‖·‖∗b. By Proposition 5.3, it can be verified that Θ∗0 = Θ0 and Θ∗1 = Θ1.
Applying the interpolation approach introduced in Cox (1988), Θ∗b = Hmb(I),
where the equality means set equality and norm equivalence. It can be further
shown that this equivalence is uniform for θ∗ ∈ K, i.e., the following result
holds.

Proposition 5.5. For any 0 ≤ b ≤ 1, there are positive constants d1 and d2
(independent of θ∗ ∈ K) such that

d1‖θ‖b ≤ ‖θ‖∗b ≤ d2‖θ‖b, θ ∈ Θb. (5.6)

6. Conclusion and future work

Theoretical properties of smoothing spline estimates have been studied in this
paper. Precisely, we have demonstrated both optimal convergence rates and
Bahadur type representations for a smoothing spline estimate which is an ap-
proximate root of an M-estimating equation. In particular, we assume that the
moment function ϕ, which plays a role in characterizing the M-estimating equa-
tion, may be either Lipschitz or discontinuous.

We have considered only unidimensional splines. Both the associated editor
and one anonymous reviewer have suggested to consider the multidimensional
situation. This is a valuable but complicated problem. We conjecture that the
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techniques used in unidimensional case can also be applied to multidimensional
situations, i.e., the penalty functional becomes

J(θ) =
∑

α1,...,αp∈N∗

α1+···+αp=m

m!

α1! · · ·αp!

∫

[0,1]p

∣

∣

∣

∣

∂k

∂xα1
1 · · · ∂xαp

p
θ(x1, . . . , xp)

∣

∣

∣

∣

2

dx1 · · · dxp,

where N
∗ is the set of nonnegative integers and θ ∈ H2([0, 1]p). However, the

generalizations to multidimensional situations might involve more complicated
notation and mathematical derivations. We intend to leave this problem as
future work.

As suggested by an anonymous reviewer, another issue we intend to explore
in future is to generalize the model framework. In this paper, the model where
samples were drawn is the classical nonparametric model y = θ(x) + e. This
framework restricts the applications and needs to be extended. One extension
is to assume that samples (Xi, Yi) are iid drawn from an unknown distribution
P (X,Y ). This new setting does not require a regression model to link X and Y ,
and thus, allows more flexibility. One particular example is the support vector
machines in which Y takes values 1 or -1 indicating positive and negative classes
respectively. A classifier θ, which belongs to a Sobolev space, could be found
by minimizing

∑n
i=1 (1− Yiθ(Xi))+ + λJ(θ), with (a)+ = a if a < 0 and 0

otherwise, and with J being the penalty functional. The results in this paper
cannot be directly applied to this situation, and we intend to explore their
extensions in future work.

Appendix A: Proofs of the results in Section 3

In this section, proofs of the results in Section 3 will be given. Entropy theory
will be used in the proofs. Let Bb denote the unit ball in Θb, i.e., Bb = {θ ∈
Θb| ‖θ‖b ≤ 1}. Define D(ǫ, ‖ · ‖sup) to be the packing number of B1 under
supremum norm, i.e., the maximal number of the elements that can be fit in
B1 while maintaining a distance greater than ǫ between all elements. Then
from Cucker and Smale (2002), there is a positive constant c > 0 such that
log2D(ǫ, ‖ · ‖sup) ≤ cǫ−1/m. We refer to Zhou (2002) for entropy theory in
general reproducing kernel Hilbert spaces. To facilitate the technical proofs, we
assume without loss of generality that ζ′(0) = 1. All the arguments can be
applied without much revision to the case that ζ′(0) 6= 1.

Before proving Theorem 3.1, we need several technical lemmas. Let Wi(θ) =
ϕ(Yi − θ(Xi))KXi − S(θ), for i = 1, 2, . . . , n. Let Tλ,i(θ) =Wi(θ+ θλ)−Wi(θλ)
and T 0

λ,i(θ) = Wi(θ + θ0) −Wi(θ0). Define Zn(θ) =
∑n

i=1 Tλ,i(θ) and Z0
n(θ) =

∑n
i=1 T

0
λ,i(θ).

Lemma A.1. Under Assumption A.3, let κ = mγ
2mγ−1 , then

(i) sup
‖θ‖1≤1

‖Zn(θ)‖1+‖Z0
n(θ)‖1

n1/2‖θ‖
γ−1/(2m)
sup +1

= Op((log logn)
1/2).
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(ii) sup
‖θ‖1≤1

‖Zn(θ)‖1+‖Z0
n(θ)‖1

(n log log n)κ‖θ‖γ
sup+1

= Op(1).

Proof of Lemma A.1. Proofs of parts (i) and (ii) are similar, so we focus on part
(i) primarily and briefly discuss the proof of part (ii).

Proof of (i). We only prove

sup
‖θ‖1≤1

‖Zn(θ)‖1
n1/2‖θ‖γ−1/(2m)

sup + 1
= Op((log logn)

1/2). (A.1)

Indeed, by a similar argument, one can verify that (A.1) is true if Zn is replaced
by Z0

n, then part (i) holds.
Since Wi(θ), i = 1, . . . , n, are iid random variables with zero mean, the se-

quence of sums
∑j
i=1 Tλ,i(θ), j = 1, . . . , n, is a martingale (with respect to

natural filtration) with zero mean. By Assumption A.3, esssup‖Tλ,i(θ)‖1 ≤
C̃ϕ‖θ‖γsup, where C̃ϕ is a universal constant and “esssup” is the essential supre-
mum bound of a random variable. By Theorem 3.5 of Pinelis (1994), for any
θ, ξ ∈ B1 and t ≥ 0

P (‖Zn(θ)− Zn(ξ)‖1 > t) ≤ 2 exp

(

− t2

2C̃2
ϕn‖θ‖2γsup

)

.

By Lemma 8.1 in Kosorok (2008), we have ‖‖Zn(θ)− Zn(ξ)‖1‖ψ ≤ C̃ϕ
√
2n‖θ−

ξ‖γsup, where ψ(s) = exp(s2)−1 and ‖·‖ψ is the Orlicz norm defined by ‖X‖ψ ≡
inf{c > 0|Eψ(|X |/c) ≤ 1}.

By continuity of ϕ and separability of B1 under supremum norm, the process
Zn is separable, i.e., there is a countable set T ⊂ B1 such that supθ∈B1

infξ∈T ×
‖Zn(θ)−Zn(ξ)‖1 = 0 almost surely. The packing number of B1 under supremum
norm has a bound log2D(δ, ‖ · ‖sup) ≤ c0δ

−1/m for some universal c0. By the
proof of Theorem 8.4 in Kosorok (2008), we can show that there exists some
universal constant K such that for any positive δ,

∥

∥

∥

∥

∥

sup
θ∈B1,‖θ‖sup≤δ

‖Z(θ)‖1

∥

∥

∥

∥

∥

ψ

≤ K
√
nδγ−1/(2m). (A.2)

By (A.2) and Lemma 8.1 in Kosorok (2008), we have the following exponential
inequality

P

(

sup
θ∈B1,‖θ‖sup≤δ

‖Zn(θ)‖1 > v

)

≤ 2 exp

(

− v2

K2nδ2γ−1/m

)

, ∀v, δ ≥ 0. (A.3)

Let ǫ = n−1/2, Qǫ = [− log2 ǫ − 1], α = γ − 1/(2m) and t = C(log logn)1/2. By
Sobolev’s inequality (Adams (1975)), there exists a constant c1 such that for any

θ∈Θ1, ‖θ‖sup≤ c1‖θ‖1. So supθ∈B1,‖θ‖sup≤c1
‖Zn(θ)‖1

1+n1/2‖θ‖α
sup

≥ supθ∈B1

‖Zn(θ)‖1

1+n1/2‖θ‖α
sup

.
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It follows from (A.3) that

P

(

sup
θ∈B1,‖θ‖sup≤c1

‖Zn(θ)‖1
1 + n1/2‖θ‖αsup

≥ t

)

≤ P

(

sup
θ∈B1,‖θ‖sup≤c1ǫ1/α

‖Zn(θ)‖1 ≥ t

)

+

Qǫ
∑

l=0

P

(

sup
θ∈B1,c1(2lǫ)1/α≤‖θ‖sup≤c1(2l+1ǫ)1/α

‖Zn(θ)‖1
1 + n1/2‖θ‖αsup

≥ t

)

≤ P

(

sup
θ∈B1,‖θ‖sup≤c1ǫ1/α

‖Zn(θ)‖1 ≥ t

)

+

Qǫ
∑

l=0

P

(

sup
θ∈B1,‖θ‖sup≤c1(2l+1ǫ)1/α

‖Zn(θ)‖1 ≥ t{1 + cα1n
1/22lǫ}

)

≤ 2 exp

(

− t2

K2c2α1

)

+ 2

Qǫ
∑

l=0

exp

(

− t2(1 + cα1n
1/22lǫ)2

K2n[c1(2l+1ǫ)1/α]2γ−1/m

)

(A.4)

≤ 2 exp

(

− t2

K2c2α1

)

+ 2(Qǫ + 1) exp

(

− t2

4K2

)

→ 0,

where the limit is taken by fixing a large C and by letting n→ ∞. This completes
the proof of part (i).

Proof of (ii). Let an = (n log logn)κ, ǫ = a−1
n and Qǫ = [− log2 ǫ − 1]. By an

argument similar to (A.4), one can show that

P

(

sup
θ∈B1,‖θ‖sup≤c1

‖Zn(θ)‖1
1 + an‖θ‖γsup

≥ t

)

≤ 2 exp

(

− t2

K2c2α1
log logn

)

+ 2

Qǫ
∑

l=0

exp

(

− t2(1 + cγ1an2
lǫ)2

K2c2α1 n(2l+1ǫ)2−1/(mγ)

)

.

By Young’s inequality, i.e., ab ≤ ap/p+ bq/q holds for any a, b ≥ 0 and positive
p, q with 1/p+1/q = 1 (Hardy, Littlewood and Pólya, 1952, page 113), we have
1 + u2 ≥ const · u2−1/(γm) for any u > 0. Thus, the above sum is bounded by

2 exp

(

− t2

K2c2α1
log logn

)

+ 2(Qǫ + 1) exp

(

−const · t2
K222α/γ

log logn

)

.

If we preselect t such that const · t2 > K222α/γ , then the above sum converges
to zero as n→ ∞. This completes the proof of part (ii).

Lemma A.2. Under the assumptions in Proposition 2.2, if 0 ≤ b ≤ 1, then
there exists a neighborhood N0 of zero in Θ1 and λ0 such that ∀λ ≥ λ0,

inf
η∈Θb

inf
ξ∈N0

{〈DS(θλ)ξ, ξ〉1 − |〈D2S(θλ + η)ξξ, ξ〉1|} ≥ 0.
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Proof of Lemma A.2. By Proposition 2.2, ‖θλ − θ0‖1 → 0, which implies that
‖θλ − θ0‖sup → 0. So there exists λ0 such that ∀λ ≥ λ0 and x ∈ [0, 1], (θλ −
θ0)(x) ∈ I, where I is the interval indicated in Assumption A.6. Thus, there
exists a constant C0 > 0 such that ∀λ ≥ λ0 and x ∈ [0, 1], ζ′((θλ−θ0)(x)) > C0.
Let Cζ′ = infu∈I ζ

′(u). Therefore, if ‖ξ‖1 is sufficiently small such that ‖ξ‖sup ≤
C0/(Cζ′‖ζ′′‖sup), then

〈DS(θλ)ξ, ξ〉1 ± 〈D2S(θλ + η)ξξ, ξ〉1
= E{ζ′((θλ − θ0)(x))|ξ(x)|2 ± ζ′′((θλ + η − θ0)(x))|ξ(x)|3}
= E{|ξ(x)|2(ζ′((θλ − θ0)(x)) ± ζ′′((θλ + η − θ0)(x))|ξ(x)|)}
≥ 0,

where CK is given in Proposition 5.1. This completes the proof of Lemma A.2.

The following lemma is used to prove Theorem 3.4 part (ii).

Lemma A.3. Let assumptions A.3′, A.5, A.6, and A.7′ be satisfied, and θ̂n,λ
and sn be given in A.7′. Further assume that sn(log logn)

m = o(1). Then for
any A > 0, the empirical process Zn(θ) has the following stochastic bound

sup
‖θ‖1≤1,‖θ‖sup≤Asn

‖Z0
n(θ)‖1 = Op

(

n1/2s1/2−1/(2m)
n + s−1/m

n

)

. (A.5)

Proof of Lemma A.3. Without out loss of generality, we assume A = 1. For
A 6= 1, similar arguments can be performed by factoring out A. We use a
chaining argument (see Alexander (1984)) to prove this result. ‖ · ‖sup entropy
on B1 will be used. Let ǫ = n−z with z > max{2m/(2 + m),m}, and k =
[log2 snǫ

−1]. Then it can be checked that nǫ1/2 ≪ n1/2ǫ1/2−1/(2m) + ǫ−1/m.
Define un = n1/2(sn)

1/2−1/(2m) + (sn)
−1/m. For j = 0, . . . , k, let Tj be a subset

in B1 with cardinality Nj := D(2k−jǫ, ‖ · ‖sup) such that the distance between
any two elements in Tk is greater than 2k−jǫ, where D(ǫ, ‖ · ‖sup) denotes the
packing number. By the discussions in the beginning of Section 6, log2Nj ≤
c(2k−jǫ)−1/m for some constant c > 0. Then the (2k−jǫ)-balls with centers in
Tj will cover B1. Consequently, any ξ ∈ B1 corresponds a chain {ξj}kj=0 which

satisfies ξj ∈ Tj , ‖ξ − ξk‖sup ≤ ǫ and ‖ξj − ξj+1‖sup ≤ 2k−jǫ. It follows that if
‖ξ‖sup ≤ sn, then ‖ξ0‖sup ≤ 2k+1ǫ+ sn = sn(1 + o(1)). Therefore,

sup
ξ∈B1,‖ξ‖sup≤sn

‖Z0
n(ξ)‖1 ≤ max

ξk∈Tk

sup
‖ξ−ξk‖sup≤ǫ

‖Z0
n(ξ)− Z0

n(ξk)‖1

+
k−1
∑

j=0

max
ξj∈Tj ,ξj+1∈Tj+1

‖ξj−ξj+1‖sup≤2k−j ǫ

‖Z0
n(ξj)− Z0

n(ξj+1)‖1

+ max
ξ0∈T0

‖ξ0‖sup≤2k+1ǫ+sn

‖Z0
n(ξ0)‖1.
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To simplify the notation, we define

t0 = Cun,

tj+1 = C
{

(2k−jǫ)1/2−1/(2m)n1/2 + (2k−jǫ)−1/m
}

, j = 0, . . . , k.

It is easy to see that
∑k+1
j=0 tj = C(n1/2(2kǫ)1/2−1/(2m) + (2kǫ)−1/m) = t0(1 +

o(1)). And hence,

P

(

sup
ξ∈B1,‖ξ‖sup≤sn

‖Z0
n(ξ)‖1 > 2t0

)

≤ P

(

max
ξk∈Tk

sup
‖ξ−ξk‖sup≤ǫ

‖Z0
n(ξ)− Z0

n(ξk)‖1 > 2tk+1

)

+
k−1
∑

j=0

P



 max
ξj∈Tj ,ξj+1∈Tj+1

‖ξj−ξj+1‖sup≤2k−jǫ

‖Z0
n(ξj)− Z0

n(ξj+1)‖1 > tj+1





+P



 max
ξ0∈T0

‖ξ0‖sup≤2k+1ǫ+sn

‖Z0
n(ξ0)‖1 > t0





≤
∑

ξk∈Tk

P

(

sup
‖ξ−ξk‖sup≤ǫ

‖Z0
n(ξ)− Z0

n(ξk)‖1 > 2tk+1

)

+
k−1
∑

j=0

∑

ξj∈Tj ,ξj+1∈Tj+1

‖ξj−ξj+1‖sup≤2k−j ǫ

P
(

‖Z0
n(ξj)− Z0

n(ξj+1)‖1 > tj+1

)

+
∑

ξ0∈T0
‖ξ0‖sup≤2k+1ǫ+sn

P
(

‖Z0
n(ξ0)‖1 > t0

)

≡
∑

ξk∈Tk

Pξk +

k−1
∑

j=0

∑

ξj∈Tj ,ξj+1∈Tj+1

‖ξj−ξj+1‖sup≤2k−j ǫ

Pξj ,ξj+1 +
∑

ξ0∈T0
‖ξ0‖sup≤2k+1ǫ+sn

Pξ0 .

We first complete the approximations of Pξk . Denote Vξk,i = sup‖ξ−ξk‖sup≤ǫ×
‖T 0

λ,i(ξ) − T 0
λ,i(ξk)‖1, where T 0

λ,i(θ) is defined in the beginning of Section 6.
Since ϕ is bounded, M := maxξk max1≤i≤n Vξk,i < ∞. By the selection of ǫ
and Assumption A.3′, maxξk

∑n
i=1E{Vξk,i} = O(nǫ1/2) = o(tk+1). Therefore,

by Freedman’s inequality (Freedman (1975)),

Pξk ≤ P

(

n
∑

i=1

[Vξk,i − E{Vξk,i}] ≥ tk+1

)

≤ 2 exp

(

−C
2(ǫ1/2−1/(2m))2n

4CAnǫ

)

+ 2 exp

(

−C
2ǫ−1/m

8M

)

= 2 exp

(

−C
2ǫ−1/m

4CA

)

+ 2 exp

(

−C
2ǫ−1/m

8M

)

,
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where CA is constant defined in Assumption A.3′. Thus, by choosing a large C
and letting n→ ∞,

∑

ξk∈Tk
Pξk → 0.

Before proceeding further, we introduce the following variant of Bernstein
type inequality, which is proved by Yurinskĭı (1976).

Lemma A.4. Let H be a Hilbert space with norm ‖ · ‖H. If ξ1, . . . , ξn ∈ H are
i.i.d. random elements satisfying Eξi = 0 and ‖ξ‖H ≤ M a.s., then for any
x > 0,

P

(

‖
n
∑

i=1

ξi‖H ≥ x

)

≤ 2 exp

(

− x2

2[nE{‖ξ1‖2H}+Mx]

)

≤ 2 exp

(

− x2

4nE{‖ξ1‖2H}

)

+ 2 exp
(

− x

4M

)

.

Next, we complete the approximations of Pξj ,ξj+1 and Pξ0 . Let M
′ be the

bound for max0≤j≤k−1 max1≤i≤n ‖Tλ,i(ξj)− Tλ,i(ξj+1)‖1. By Lemma A.4,

Pξj ,ξj+1 ≤ 2 exp

(

−
t2j+1

4CAn(2k−jǫ)

)

+ 2 exp

(

− tj+1

4M ′

)

≤ 2 exp

(

−C
2(2k−jǫ)−1/m

4CA

)

+ 2 exp

(

−C(2
k−jǫ)−1/m

4M ′

)

.

Therefore, by choosing C > max{[4(c+ 1)CA]
1/2, 4M ′(c+ 1)}, we get that

k−1
∑

j=0

∑

ξj∈Tj ,ξj+1∈Tj+1

‖ξj−ξj+1‖sup≤2k−j ǫ

Pξj ,ξj+1

≤
k−1
∑

j=0

Nj

{

2 exp

(

−C
2(2k−jǫ)−1/m

4CA

)

+ 2 exp

(

−C(2
k−jǫ)−1/m

4M ′

)}

≤
k−1
∑

j=0

exp
(

−(2k−jǫ)−1/m
)

≤ 2k exp
(

−s−1/m
n

)

→ 0, (A.6)

where the last limit holds when n → ∞. By an argument similar to (A.6), we
can show that as n→ ∞

∑

ξ0∈T0
‖ξ0‖sup≤2k+1ǫ+sn

Pξ0 ≤ 2 exp
(

−s−1/m
n

)

→ 0.

This completes the proof of Lemma A.3.
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Proof of Theorem 3.1. For simplicity, denote θ = θ̂n,λ − θλ. It follows by As-
sumption A.7 that ‖θ‖1 ≤ 1 with a large probability as n is large. By Lemma
A.1 (ii), for large n,

‖Sn,λ(θ + θλ)− Sn,λ(θλ)− Sλ(θ + θλ) + Sλ(θλ)‖1 ≤M(an‖θ‖sup + 1). (A.7)

It follows by Lemma A.2 that,

〈DS(θλ)θ, θ〉1 +
∫ 1

0

∫ 1

0

s〈D2S(θλ + s′sθ)θθ, θ〉1ds′ds ≥
1

2
〈DS(θλ)θ, θ〉1. (A.8)

Before proceeding further, we list several approximation results (Claims I–IV
in what follows) and their brief verification.

Claim I: ‖Sn,λ(θλ)‖1 = Op(n
1/2).

To prove Claim I, it is sufficient to show ‖Sn,λ(θλ) − Sλ(θλ)‖1 = Op(n
1/2).

For any µ ∈ Z, by Cauchy’s inequality,

|V (Sn,λ(θλ)− Sλ(θλ), hµ)|2 = |EZ{Sn,λ(θλ)(Z)hµ(Z)− Sλ(θλ)hµ(Z)}|2

≤ EZ{|Sn,λ(θλ)(Z)hµ(Z)− Sλ(θλ)hµ(Z)|2}.

Let E{·} and V ar{·} denote the expectation and variance w.r.t. (Xi, Yi)’s, then
it follows by Fubini’s theorem and Assumption A.5 that

E{|V (Sn,λ(θλ)− Sλ(θλ), hµ)|2}
≤ E{EZ{|Sn,λ(θλ)(Z)hµ(Z)− Sλ(θλ)(Z)hµ(Z)|2}}
= EZ{E{|Sn,λ(θλ)(Z)hµ(Z)− Sλ(θλ)(Z)hµ(Z)|2}}
= nEZ{V ar{ϕ(Y − θλ(X))KX(Z)hµ(Z)}} ≤ C0n,

with some constant C0 independent of µ. Therefore, by Fubini’s theorem

E{‖Sn,λ(θλ)− Sλ(θλ)‖21}

= E

{

∑

µ

‖V (Sn,λ(θλ)− Sλ(θλ), hµ)|2(1 + γµ)

}

=
∑

µ

E{|V (Sn,λ(θλ)− Sλ(θλ), hµ)|2}(1 + γµ) = O(n),

which proves Claim I.
Using a similar argument in the proof of Proposition 5.4 (see Appendix B),

we can show that for any θ∗ = θλ ∈ K, DSλ(θ∗)
−1 is a well defined element in

B(Θb,Θb) for and 1/(2m) < b < 1− 1/(2m).

Claim II: For any ξ ∈ Θ1, ‖DSλ(θλ)ξ‖1 ≥ C3n(λ/n)
(1+b)/2‖ξ‖b.

Denote θ∗ = θλ. Let ξ, η ∈ Θ1 have the expansions ξ =
∑

µ ξµh∗µ and
η =

∑

µ ηµh∗µ. It follows from (5.3) that 〈Dλ(θ∗)h∗µ, h∗ν〉 = (n + λγ∗)δµν . By
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the restriction
∑

µ η
2
µ(1 + µ) = 1 and Cauchy’s inequality, it can be shown that

‖DSλ(θ∗)ξ‖1 = sup
‖η‖1=1

|〈DSλ(θ∗)ξ, η〉1|

=

√

√

√

√

∑

µ

(n+ λγ∗µ)2

1 + γµ
ξ2µ

≥

√

√

√

√

∑

µ

(n+ λγµ)2

(1 + γµ)(1 + γbµ)
ξ2µ(1 + γbµ)

≥ n(λ/n)(1+b)/2‖ξ‖b,

where the supremum is attained when ηµ = ξµ(n + λγ∗µ)/(t
√

1 + γµ) and t =
√

∑

µ ξ
2
µ(n+ λγ∗µ)2/(1 + γµ). This completes the proof of Claim II.

Since DSλ(θ∗)
−1 is self-adjoint, we have the following expansion by Cox

(1988),

DSλ(θ∗)
−1ξ =

∑

µ

〈DSλ(θ∗)−1ξ,DS(θ∗)h∗µ〉1h∗µ

=
∑

µ

〈ξ,DSλ(θ∗)−1DS(θ∗)h∗µ〉1h∗µ

=
∑

µ

(n+ λγ∗µ)
−1〈ξ, h∗µ〉1h∗µ. (A.9)

Claim III: ‖DSλ(θλ)−1D2Sλ(θλ + s′sθ)θθ‖b ≤ C6‖θ‖2sup(λ/n)−(b+1/(2m))/2.
Claim III can be proved by replacing θ0 by θ∗ = θλ and {hµ} by {h∗µ} in the

equations (B.5) and (B.6) in Appendix B, and by an application of (A.9).

Claim IV: ‖DSλ(θλ)−1Sn,λ(θλ)‖b = Op(n
−1/2(λ/n)−(b+1/(2m))/2).

By the expansion in (A.9), we get that

‖DSλ(θλ)−1Sn,λ(θλ)‖2b =
∑

µ

|〈Sn,λ(θλ), h∗µ〉1|2(n+ λγ∗µ)
−2(1 + γb∗µ). (A.10)

By independence between Xi and ei, Assumption A.3 and that ‖θλ − θ0‖sup is
bounded uniformly for λ, we have the following approximation

E{|〈Sn,λ(θλ), h∗µ〉1|2}
= E{|

∑

µ

[ϕ(Yi − θλ(Xi))h∗µ(Xi)− Eϕ(Y − θλ(X))h∗µ(X)]|2}

≤ nE{|ϕ(Y − θλ(X))h∗µ(X)|2}
≤ 2nE{|ϕ(Y − θλ(X))− ϕ(e)|2|h∗µ(X)|2}+ 2nE{|ϕ(e)|2|h∗µ(X)|2}
≤ 2nC2

ϕE{|θλ(X)− θ0(X)|2|h∗µ(X)|2}+ 2nE{|ϕ(e)|2}{|h∗µ(X)|2} = O(n).

Therefore, Claim IV holds.
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Next, we will use Claims I–IV and several relevant assumptions to establish
an inequality for ‖θ‖b, and find the optimal convergence rate.

By Claim I, the assumptions that ‖θ‖1 = op(1) and ‖Sn,λ(θ+θλ)‖1 = op(δn),
and that both n1/2 and δn are controlled by an, we can verify that with a large
probability

‖Sλ(θ + θλ)− Sλ(θλ)‖1 ≤ 2M(an‖θ‖sup + δn + n1/2 + 1)

≤ 2M(an + δn + n1/2) ≤ 6Man. (A.11)

By (A.8), the expansion θ =
∑

µ θµhµ in Θ1, and Assumption A.5, we have

〈Sλ(θ + θλ)− Sλ(θλ), θ〉1
= n〈S(θ + θλ)− S(θλ), θ〉1 + λ〈Wθ, θ〉1

= n{〈DS(θλ)θ, θ〉1 +
∫ 1

0

∫ 1

0

s〈D2S(θλ + s′sθ)θθ, θ〉1ds′ds}+ λ〈Wθ, θ〉1

≥ n

2
〈DS(θλ)θ, θ〉1 + λ〈Wθ, θ〉1

≈ n

2

∑

µ

θ2µ + λ
∑

µ

θ2µγµ

=
∑

µ

θ2µ(n/2 + λγµ)

≈
∑

µ

θ2µ(1 + γbµ)

(

n/2 + λγµ
1 + γbµ

)

≥ C1n(λ/n)
b‖θ‖2b, (A.12)

where the last inequality follows from Young’s inequality. From (A.11) and
(A.12), with a large probability,

‖θ‖b ≤ C2a
1/2
n n−1/2(λ/n)−b/2. (A.13)

According to Claim II, Taylor’s expansion of Sλ(θ + θλ) at θλ, and the ex-
changeability between DSλ(θλ)

−1 and the integral, we have

‖Sn,λ(θλ) + Sλ(θ + θλ)− Sλ(θλ)‖1
= ‖DSλ(θλ)[DSλ(θλ)−1Sn,λ(θλ) + θ

+

∫ 1

0

∫ 1

0

sDSλ(θλ)
−1D2Sλ(θλ + s′sθ)θθds′ds]‖1

≥ C4n(λ/n)
(1+b)/2‖DSλ(θλ)−1Sn,λ(θλ) + θ

+

∫ 1

0

∫ 1

0

sDSλ(θλ)
−1D2Sλ(θλ + s′sθ)θθds′ds‖b. (A.14)
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By (A.7) and (A.14), there is some constant C5 such that with a large proba-
bility,

‖DSλ(θλ)−1Sn,λ(θλ) + θ +

∫ 1

0

∫ 1

0

sDSλ(θλ)
−1D2Sλ(θλ + s′sθ)θθds′ds‖b

≤ C5n
−1(λ/n)−(1+b)/2(an‖θ‖sup + δn). (A.15)

By (A.15) and Claims III and IV, with a large probability,

‖θ‖b ≤ C7{ann−1(λ/n)−(1+b)/2‖θ‖sup + n−1(λ/n)−(1+b)/2δn

+‖θ‖2b(λ/n)−(b+1/(2m))/2 + n−1/2(λ/n)−(b+1/(2m))/2}. (A.16)

By assumption (ii) in Theorem 3.1, equation (A.16) and b > 1/(2m) (which
implies that ‖θ‖sup ≤ const · ‖θ‖b), when n is sufficiently large,

‖θ‖b/2 ≤ C7(n
−1/2(λ/n)−(b+1/(2m))/2 + ‖θ‖2b(λ/n)−(b+1/(2m))/2). (A.17)

Solving inequality (A.17), we get either

‖θ‖b ≥ (1/(4C7))(λ/n)
(b+1/(2m))/2, or (A.18)

‖θ‖b ≤ (1/(4C7))(λ/n)
(b+1/(2m))/2 −

√

1/(16C2
7)(λ/n)

b+1/(2m) − n−1/2

≤ 4C7n
−1/2(λ/n)−(b+1/(2m))/2. (A.19)

However, (A.18) is rejected by (A.13) and assumption (iii) in Theorem 3.1.
Thus, the upper bound for ‖θ‖b is given by (A.19). Combining (A.19) and
‖θλ − θ0‖b = O((λ/n)(d−b)/2) (Proposition 2.2), we get that

‖θ̂n,λ − θ0‖b = Op

(

(λ/n)(d−b)/2 + n−1/2(λ/n)−(b+1/(2m))/2
)

.

This completes the proof of Theorem 3.1.

Proof of Theorem 3.3. By a reexamination of the proofs, Lemma A.2 still holds
if we replace θλ by θ0. Therefore, by Lemma A.1 (ii), (A.7) holds when θλ is

replaced by θ0 and θ is replaced by θ̂n,λ− θ0. By the assumption that ‖Sn,λ(θ+
θ0)‖1 = op(δn), we get that with a large probability,

‖Sn,λ(θ0) + Sλ(θ + θ0)− Sλ(θ0)‖1 ≤M(an‖θ‖sup + δn). (A.20)

It follows by taking θ∗ = θ0 in Claim II and an argument similar to (A.14) that
for some large constant C′,

‖Sn,λ(θ0) + Sλ(θ + θ0)− Sλ(θ0)‖1
≥ C′n(λ/n)(1+b)/2‖DSλ(θ0)−1Sn,λ(θ0) + θ

+

∫ 1

0

∫ 1

0

sDSλ(θ0)
−1D2Sλ(θ0 + s′sθ)θθds′ds‖b.
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An examination of the proofs reveals that Claim III holds if we replace θλ
by θ0, that is, for some large constant C′′, if n is sufficiently large, then for any
0 ≤ s, s′ ≤ 1,

‖DSλ(θ0)−1D2Sλ(θ0 + s′sθ)θθ‖b ≤ C′′‖θ‖2b(λ/n)−(b+1/(2m))/2. (A.21)

Following (A.20) and (A.21), and ‖θ̂n,λ − θ0‖b = Op((λ/n)
(d−b)/2) (Theorem

3.1), there exists some constant C > 0 such that with a large probability,

‖θ +DSλ(θ0)
−1Sn,λ(θ0)‖b

≤ C(n−1(λ/n)−(1+b)/2an‖θ‖b + n−1(λ/n)−(1+b)/2δn

+(λ/n)−(b+1/(2m))/2‖θ‖2b)
≤ Cn−1an(λ/n)

−(1+2b−d)/2
(

1 + a−1
n (λ/n)−(d−b)/2δn

+na−1
n (λ/n)(1+d−b−1/(2m))/2

)

.

Sincem > 1 and d > 2b+1/(2m), it can be verified that 1−κ−m(1+d−b−1/(2m))
2md+1 <

0. Therefore, by λ/n ≈ n−2m/(2md+1), we have na−1
n (λ/n)(1+d−b−1/(2m))/2 =

o(1). Since δn = O(ann
−m(d−b)/(2md+1)), we get that

a−1
n (λ/n)−(d−b)/2δn ≈ δna

−1
n nm(d−b)/(2md+1) = O(1).

Consequently, for large n and with a large probability

‖θ+DSλ(θ0)−1Sn,λ(θ0)‖b ≤ 2Cn−1(λ/n)−(1+2b−d)/2an = 2Cann
− 3md−2mb−m+1

2md+1 .

This completes the proof of Theorem 3.3.

Proof of Theorem 3.4. We only briefly prove part (i) since (ii) can be shown

similarly by using Lemma A.3. Let θ = θ̂n,λ−θ0. By Assumption A.7′, ‖Sn,λ(θ+
θ0)‖1 = op(δn), and with a large probability, ‖θ‖1 ≤ 1. By Lemma A.1 (i), and
arguments similar to (A.20) and (A.21), it can be shown that (3.3) holds with
Rn given by (3.4). Thus, (3.6) follows from a direct calculation.

Appendix B: Proofs of Propositions in Section 5

In this section, we list all the proofs of propositions in Section 5. Hereafter, let
Bb denote the unit ball in Θb, i.e., Bb = {θ ∈ Θb| ‖θ‖b ≤ 1}.
Proof of Proposition 5.1. The assumption β > 1/(2m) implies that Θβ is a
reproducing kernel Hilbert space (Berlinet and Thomas-Agnan, 2004, Theorem
132). Let K̃(·, ·) be a reproducing kernel on Θβ, i.e., for any x ∈ I, K̃x is an

element in Θβ and for any θ ∈ Θβ, 〈K̃x, θ〉β = θ(x). Let K̃x =
∑

µ∈Z
K̃x,µhµ,

and define Kx,µ = K̃x,µ · 1+γβ
µ

1+γµ
, ∀x ∈ I, µ ∈ Z. Then Kx =

∑

µ∈Z
Kx,µhµ is a



Z. Shang/General smoothing spline M-estimates 1435

well defined element in Θ2−β and for any θ ∈ Θβ with θ =
∑

µ∈Z
θµhµ, by (2.3)

〈Kx, θ〉1 =
∑

µ∈Z

K̃x,µ ·
1 + γβµ
1 + γµ

θµ(1 + γµ)

=
∑

µ∈Z

K̃x,µθµ(1 + γβµ ) =< K̃x, θ >β= θ(x).

To see iii), note that for any x ∈ I,

‖Kx‖2−β ≤ const · ‖K̃x‖β = const · sup
‖θ‖β=1

|〈K̃x, θ〉β |

= const · sup
‖θ‖β=1

|θ(x)| ≤ CK ,

for some CK > 0, where the last inequality follows from Sobolev’s inequality
that ‖θ‖sup ≤ const · ‖θ‖β when β > 1/(2m) (Adams (1975)).

Proof of Proposition 5.2. We only prove the results under Assumption A.3. For
Assumption A.3′, the proof is similar.

(i) Suppose θ ∈ Θb, and define ζx := ζ((θ− θ0)(x)) for x ∈ I. By Assumption
A.3, EX{|ζX |} ≤ CϕE{|θ(X) − θ0(X)|} + E{|ϕ(e)|} < ∞, which means ζX
is absolutely integrable. By the boundedness of KX and hµ, and by Fubini’s
theorem, for any µ ∈ Z

V (S(θ), hµ) = EZ{EX{ζXKX(Z)}hµ(Z)}
= EX{ζXEZ{KX(Z)hµ(Z)}}
= EX{ζXV (KX , hµ)}.

Then S(θ) ∈ Θ2−β follows by Cauchy’s inequality and (iii) of Proposition 5.1,
i.e.,

‖S(θ)‖22−β =
∑

µ

|V (S(θ), hµ)|2(1 + γ2−βµ ) ≤ EX{ζ2X}EX{‖KX‖22−β} <∞.

(ii) For θ, ξ ∈ Θb, by mean value theorem, we have

S(θ + ξ)− S(θ)− EX{ζ′((θ − θ0)(X))ξ(X)KX}
= EX{[ζ′((θ − θ0)(X) + t(X)ξ(X))− ζ′((θ − θ0)(X))]ξ(X)KX},

where 0 ≤ t(x) ≤ 1 for any x ∈ I. Denote L(ξ, x) = ζ′((θ − θ0)(x) + t(x)ξ(x))−
ζ′((θ − θ0)(x)) and Kx =

∑

µKx,µhµ. Since ζ
′′ is upper bounded, |L(ξ, x)| ≤

const · |ξ(x)|. By Cauchy’s inequality,

‖EX{L(ξ,X)ξ(X)KX}‖22−β
=

∑

µ

|EX{L(ξ,X)ξ(X)KX,µ}|2(1 + γ2−βµ )

≤ EX{|L(ξ,X)|2}EX{|ξ(X)KX,µ|2}(1 + γ2−βµ )

= EX{|L(ξ,X)|2}EX{|ξ(X)|2‖KX‖22−β}
≤ const · ‖ξ‖40,
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where the last inequality follows from EX{|L(ξ,X)|2} ≤ const · ‖ξ‖20, and
supx∈I

‖Kx‖2−β <∞. When ‖ξ‖b → 0,

‖S(θ+ξ)−S(θ)−EX{ζ′((θ−θ0)(X))ξ(X)KX}‖22−β/‖ξ‖2b ≤ const·‖ξ‖40/‖ξ‖2b → 0,

which proves (5.1). By (5.1) and Cauchy’s inequality, it can be shown that if
ξ ∈ Θb, then

‖DS(θ)ξ‖22−β ≤ EX{|ζ′((θ − θ0)(X))ξ(X)|2}EX{‖KX‖22−β} ≤ C‖ξ‖2b ,

where C does not depend on ξ. This finishes the proof of part (ii).
(iii) Proof can be finished similarly to that in (ii).

Proof of Proposition 5.3. We only show the lower bound. The proof for the up-
per bound is similar. Suppose ξ ∈ Θ1. For any µ ∈ Z, by Fubini’s theorem,

V (EX{ζ′((θ − θ0)(X))ξ(X)KX}, hµ)
= EZ{EX{ζ′((θ − θ0)(X))ξ(X)KX(Z)}hµ(Z)}
= EX{ζ′((θ − θ0)(X))ξ(X)EZ{KX(Z)hµ(Z)}}
= EX{ζ′((θ − θ0)(X))ξ(X)V (KX , hµ)}.

Therefore,

〈EX{ζ′((θ − θ0)(X))ξ(X)KX}, ξ〉1
=

∑

µ

V (EX{ζ′((θ − θ0)(X))ξ(X)KX}, hµ)V (ξ, hµ)(1 + γµ)

=
∑

µ

EX{ζ′((θ − θ0)(X))ξ(X)V (KX , hµ)}V (ξ, hµ)(1 + γµ). (B.1)

On the other hand, by Cauchy’s inequality and Proposition 5.1(iii), we have

EX{|ζ′((θ − θ0)(X))ξ(X)|
∑

µ

|V (ξ, hµ)||V (KX , hµ)|(1 + γµ)}

≤ const ·EX{‖ξ‖1‖KX‖1} <∞.

Therefore, by dominated convergence theorem, the summation and expectation
in (B.1) could be changed. Thus, by Proposition 5.1 (ii)

〈DS(θ)ξ, ξ〉1
= 〈EX{ζ′((θ − θ0)(X))ξ(X)KX}, ξ〉1
= EX{ζ′((θ − θ0)(X))ξ(X)

∑

µ

V (KX , hµ)V (ξ, hµ)(1 + γµ)}

= EX{ζ′((θ − θ0)(X))ξ(X)〈Kx, ξ〉1}
= E{ζ′((θ − θ0)(X))ξ(X)2}
≥ inf

u∈I
ζ′(u)V (ξ, ξ).

This completes the proof of Proposition 5.3.
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Proof Proposition 5.4. For any µ ∈ Z, DSλ(θ0)hµ ∈ Θ1. So by Proposition 2.1,
DSλ(θ0)hµ =

∑

ν ξνhν holds in Θ1 for some sequence ξν . By Proposition 5.2
(ii), 〈DS(θ0)hµ, hν〉1 = δµ,ν . By the fact that 〈Whµ, hν〉1 = γµδµ,ν , we have
〈DSλ(θ0)hµ, hν〉1 = 〈nDS(θ0)hµ + λWhµ, hν〉1 = (n + λγµ)δµ,ν . On the other
hand, 〈∑ν ξνhν , hν〉1 = ξν〈hν , hν〉1 = ξν(1+γν). Therefore ξν = ((n+λγµ)/(1+
γν))δµ,ν . In other words, DSλ(θ0)hµ = ((n+ λγµ)/(1 + γµ))hµ. So

DSλ(θ0)
−1hµ =

1 + γµ
n+ λγµ

hµ. (B.2)

Define an operator T by Tξ =
∑

µ ξµ
1+γµ
n+λγµ

hµ for any ξ =
∑

µ ξµhµ. It follows

that ξ ∈ Θb implies Tξ ∈ Θb and ‖Tξ‖b ≤ const ·‖ξ‖b. Therefore, T ∈ B(Θb,Θb)
is an extension of DSλ(θ0)

−1. To show that T is the inverse of DSλ(θ0), it is
sufficient to show that for any ξ ∈ Θb, T (DSλ(θ0)ξ) = ξ, which follows from the

linearity of T and DSλ(θ0), and the fact that DSλ(θ0)hµ =
n+λγµ
1+γµ

hµ for any

µ ∈ Z.

Proof of Proposition 2.2. Following Taylor’s expansion in Θb, we have for any
φ ∈ Θb,

Sλ(θ0 + φ)− Sλ(θ0) = DSλ(θ0)φ+

∫ 1

0

∫ 1

0

sD2Sλ(θ0 + s′sφ)φφds′ds. (B.3)

Operating DSλ(θ0)
−1 on both sides of (B.3), and exchanging with integral, we

have

DSλ(θ0)
−1(Sλ(θ0+φ)−Sλ(θ0)) = φ+

∫ 1

0

∫ 1

0

sDSλ(θ0)
−1D2Sλ(θ0+s

′sφ)φφds′ds.

(B.4)
Let Tλ(φ) = φ − DSλ(θ0)

−1Sλ(θ0 + φ) define a mapping from Θb to Θb. It is
easy to see from (B.4) that

‖Tλ(φ)‖b = ‖φ−DSλ(θ0)
−1Sλ(θ0 + φ)‖b

≤ ‖
∫ 1

0

∫ 1

0

sDSλ(θ0)
−1D2Sλ(θ0 + s′sφ)φφds′ds‖b

+‖DSλ(θ0)−1Sλ(θ0)‖b

By a direct calculation, for any µ ∈ Z

|〈D2Sλ(θ0 + s′sφ)φφ, hµ〉1| = n|〈D2S(θλ + s′sφ)φφ, hµ〉1|
≤ n‖ζ′′‖sup · |E{|φ(X)|2〈KX , hµ〉1}|
≤ n‖ζ′′‖sup · ‖φ‖2sup‖hµ‖0
≤ const · n‖φ‖2b. (B.5)

Both DS(θ0) and DSλ(θ0)
−1 are self-adjoint operators. It follows by (B.2) that

for any µ ∈ Z, DSλ(θ0)
−1DS(θ0)hµ = 1

n+λγµ
hµ. Then it follows by (B.5) that
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for some constant C1,

‖DSλ(θ0)−1D2Sλ(θ0 + s′sφ)φφ‖2b
=

∑

µ

|〈DSλ(θ0)−1D2Sλ(θ0 + s′sφ)φφ,DS(θ0)hµ〉1|2(1 + γbµ)

=
∑

µ

|〈D2Sλ(θ0 + s′sφ)φφ,DSλ(θ0)
−1DS(θ0)hµ〉1|2(1 + γbµ)

=
∑

µ

|〈D2Sλ(θ0 + s′sφ)φφ, hµ〉1|2(n+ λγµ)
−2(1 + γbµ)

≤ C2
1n

2‖φ‖4b
∑

µ

(n+ λγµ)
−2(1 + γbµ)

≈ C2
1‖φ‖4b(λ/n)−(b+1/(2m)), (B.6)

where the last step follows from Lemma 2.2 (iii) in Cox and O’Sullivan (1990).
On the other hand, let θ0 =

∑

µ θ
0
µhµ, it can be shown that there exists some

constant C2 such that

‖DSλ(θ0)−1Sλ(θ0)‖2b
=

∑

µ

|V (DSλ(θ0)
−1Sλ(θ0), hµ)|2(1 + γbµ)

=
∑

µ

|〈Sλ(θ0), hµ〉1|2(n+ λγµ)
−2(1 + γbµ)

= λ2
∑

µ

γ2µ(n+ λγµ)
−2(1 + γbµ)|θ0µ|2

= λ2
∑

µ

γ2µ(n+ λγµ)
−2(1 + γbµ)

1 + γdµ
|θ0µ|2(1 + γdµ)

≤ C2(λ/n)
2
∑

µ

(λ/n)d−2−b|θ0µ|2(1 + γdµ)

= C2(λ/n)
d−b‖θ0‖2d. (B.7)

By restricting φ such that ‖φ‖b ≤ C · (λ/n)(d−b)/2 for some sufficiently large
constant C, by the assumption that λ/n → 0, and by (B.5)–(B.7), we have
‖Tλ(φ)‖b ≤ C(λ/n)(d−b)/2. This implies that the operator Tλ maps C·(λ/n)(d−b)/2·
Bb into C · (λ/n)(d−b)/2 ·Bb.

Next, we show that the operator Tλ is a contraction mapping on C·(λ/n)(d−b)/2·
Bb. For any φ1, φ2 ∈ C · (λ/n)(d−b)/2 · Bb, by Taylor’s expansion

Sλ(θ0 + φ1)− Sλ(θ0 + φ2)

=

∫ 1

0

DSλ(θ0 + φ1 + s(φ2 − φ1))(φ2 − φ1)ds

= DSλ(θ0)(φ2 − φ1)

+

∫ 1

0

∫ 1

0

D2Sλ(θ0 + s′(φ1 + s(φ2 − φ1)))(φ2 − φ1)(φ1 + s(φ2 − φ1))ds
′ds.
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By an argument similar to (B.6), and by d > 2b + 1/(2m) and λ/n = o(1), it
can be verified that for sufficiently large n and some large constant C3,

‖Tλ(φ1)− Tλ(φ2)‖b (B.8)

≤
∫ 1

0

∫ 1

0

‖DSλ(θ0)−1D2Sλ(θ0

+s′(φ1 + s(φ2 − φ1)))(φ2 − φ1)(φ1 + s(φ2 − φ1))‖bds′ds
≤ C3(λ/n)

−(b+1/(2m))/2(‖φ1‖b + ‖φ2‖b)‖φ1 − φ2‖b
≤ 2CC3(λ/n)

(d−2b−1/(2m))/2‖φ1 − φ2‖b
≤ (1/2)‖φ1 − φ2‖b, (B.9)

which shows that Tλ is a contraction mapping on C ·(λ/n)(d−b)/2 ·Bb. Therefore,
by contraction mapping theorem (Rudin (1991)), there exists a unique fixed
point φλ with ‖φλ‖b ≤ C · (λ/n)(d−b)/2, i.e., Tλ(φλ) = φλ. Consequently, θ

b
λ :=

θ0 + φλ is a unique root of Sλ in C · (λ/n)(d−b)/2 ·Bb.
For 0≤ b′<b≤ 1, let θb

′

λ satisfy Sλ(θ
b′

λ )= 0 and ‖θb′λ−θ0‖b′ = O((λ/n)(d−b
′)/2).

We will show that ‖θbλ−θb
′

λ ‖b′ = 0. Let φ1 = θbλ−θ0 and φ2 = θb
′

λ −θ0. Following
the argument in (B.8), one can show that there is some constant C′ such that

‖φ1 − φ2‖b′
= ‖Tλ(φ1)− Tλ(φ2)‖b′

≤ C3(λ/n)
−(b′+1/(2m))/2(‖φ1‖b′ + ‖φ2‖b′)‖φ1 − φ2‖b′

≤ C3(λ/n)
−(b′+1/(2m))/2(‖φ1‖b + ‖φ2‖b′)‖φ1 − φ2‖b′

≤ C3C
′(λ/n)−(b′+1/(2m))/2+(d−b)/2‖φ1 − φ2‖b′

≤ (1/2)‖φ1 − φ2‖b′ ,

where the last step follows from λ/n → 0 and d > b + b′ + 1/(2m). Therefore,
‖φ1 − φ2‖b′ = 0, which completes the proof.

Proof of Proposition 5.5. Note that (5.6) holds for b = 0, 1. We use K-method
of interpolation to build a relationship between these two norms which was also
used by Cox (1988) to identify Θb and Θ∗b. Let the K-functional be defined as

K(u, θ) = inf
θ=θ0+θ1∈Θ∗0+Θ∗1

(

‖θ0‖2∗0 + u2‖θ1‖2∗1
)1/2

,

and the norm induced by K be defined to be

‖θ‖∗b,2 =
(∫ ∞

0

[u−bK(u, θ)]2du/u

)1/2

.

The interpolation space is then (Θ∗0,Θ∗1)b = {θ ∈ Θ∗0| ‖θ‖∗b,2 < ∞}. If θ =
θ0 + θ1 ∈ Θ∗0 + Θ∗1, and if we denote θ0µ = V∗(θ

0, h∗µ) and θ1µ = V∗(θ
1, h∗µ),
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then θµ = V∗(θ, hµ) = θ0µ + θ1µ. Therefore, for any u ∈ (0,∞)

‖θ0‖2∗0 + u2‖θ1‖2∗1 =
∑

µ

(

|θ0µ|2 + u2(1 + γ∗µ)|θµ − θ0µ|2
)

≥
∑

µ

u2(1 + γ∗µ)

1 + u2(1 + γ∗µ)
θ2µ,

where the lower bound in the above inequality is achieved by θ0µ = u2(1 +
γ∗µ)θµ/(1 + u2(1 + γ∗µ)) for any µ ∈ Z. It thus follows that

K(u, θ)2 =
∑

µ

u2(1 + γ∗µ)

1 + u2(1 + γ∗µ)
θ2µ.

Then

‖θ‖∗b,2 =

(

∫ ∞

0

u−2b−1
∑

µ

u2(1 + γ∗µ)

1 + u2(1 + γ∗µ)
θ2µdu

)1/2

≈ Cb‖θ‖∗b,

where Cb =
(∫∞

0
u1−2b/(1 + u2)du

)1/2
only depends on b. The above arguments

are also valid for the interpolation couple Θ0 and Θ1. Then (5.6) follows from
the result that ‖ · ‖∗b/‖ · ‖b is uniformly lower and upper bounded for θ∗ ∈ K
when b = 0, 1.
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