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Abstract: In general the empirical likelihood method can improve the
performance of estimators by including additional information about the
underlying data distribution. Application of the method to kernel density
estimation based on independent and identically distributed data always
improves the estimation in second order. In this paper we consider esti-
mation of the error density in nonparametric regression by residual-based
kernel estimation. We investigate whether the estimator is improved when
additional information is included by the empirical likelihood method. We
show that the convergence rate is not effected, but in comparison to the
residual-based kernel estimator we observe a change in the asymptotic bias
of the empirical likelihood estimator in first order and in the asymptotic
variance in second order. Those changes do not result in a general uniform
improvement of the estimation, but in typical examples we demonstrate
the good performance of the residual-based empirical likelihood estimator
in asymptotic theory as well as in simulations.
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1. Introduction

Let ε1, . . . , εn denote a sample of independent random variables with cumulative
distribution function F and density f . In nonparametric inference the distribu-
tion function F is typically estimated by the empirical distribution function
Fn, and the density f by a kernel estimator fn [see Rosenblatt [17], among
many others]. Now assume that additional information about the distribution
of interest is available in form of the equality

E[g(ε1)] =

∫

g(y)f(y) dy = 0, (1)
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for some known function g, e. g. g(y) = (y, y2 − σ2)⊤ for centeredness and a
known variance σ2. This information can be incorporated into the estimation
by the empirical likelihood method introduced by Owen [15] [see also Hall and
LaScala [8], DiCiccio et al. [5], Kitamura [10], Einmahl and McKeague [7], and
Hjort et al. [9], among many others]. It is shown by Qin and Lawless [16] that
the empirical likelihood estimator for F , say F̃n, in comparison to Fn always
has a smaller asymptotic mean squared error. Whereas for the estimation of
the distribution function the improvement by the empirical likelihood method
is observable in the first order of the asymptotic expansion, Chen [2] showed
that the application of the empirical likelihood density estimator, say f̃n, in
comparison to the simple kernel estimator fn only changes the asymptotic mean
squared error in second order. However, in second order the variance of f̃n is
always smaller than the variance of fn and the bias of the same asymptotic
order is unchanged.

Now assume an independent and identically distributed sample (X1, Y1), . . . ,
(Xn, Yn) of bivariate random variables has been observed, which is modelled by
a homoscedastic nonparametric regression model

Yi = m(Xi) + εi, i = 1, . . . , n, (2)

where we are interested in the distribution F or density f of the centered i.i.d.
errors ε1, . . . , εn. After estimating the conditional mean m in such a regression
model one might be interested in the distribution of the observations around
that mean, which is characterised by the distribution of the errors. Moreover
an estimation of the error distribution function or density is the first step in
analyzing features of that unknown distribution and is needed for hypotheses
testing of certain qualities, such as symmetry, or testing the fit of a parametric
class for the error distribution. For example, known symmetry or normality of
the error distribution can lead to better efficiency of several statistical proce-
dures in nonparametric regression [see Dette et al. [4] and Neumeyer et al. [14]
for further references]. Furthermore estimated quantiles of the error distribu-
tion are needed to obtain prediction intervals for new observations [see Akritas
and Van Keilegom [1]]. Because the errors are unobserved, they have to be es-
timated by residuals ε̂i = Yi − m̂(Xi), i = 1, . . . , n. Let, to this end, m̂ denote
some nonparametric regression function estimator. Denote by F̂n the empirical
distribution function for F and by f̂n the kernel density estimator for f , both
based on the residuals ε̂1, . . . , ε̂n. See for instance Akritas and Van Keilegom [1],
Cheng [3], Efromovich [6], or Müller et al. [12] for further motivation of error

distribution estimation as well as asymptotic results on F̂n and f̂n. Note that for
F̂n in comparison to Fn the asymptotic expansion changes due to the estimation
of the regression function. The distribution estimator becomes biased and also
the asymptotic variance changes in first order. The asymptotic variance of F̂n

can even be smaller than the asymptotic variance of Fn (however, Fn (and fn)
are not feasible in the model considered here).

Now assume again that we have additional information as given in (1), which
should be incorporated into the estimation by the empirical likelihood method.
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For example, g(y) = y yields the centeredness assumption, which is automati-
cally valid due to the definition of the regression model, but so far is not incor-
porated explicitly into the estimation. Also a variance σ2 might be known from
previous experiments which leads to g(y) = (y, y2 − σ2)⊤. Analysis of empirical
likelihood estimation in this regression context should be seen as starting point
for further empirical likelihood procedures such as testing for the hypothesis
E[g(ε1)] = 0. Albeit here we assume independence of the error ε1 from the
covariate X1 it is a topic of current research to consider empirical likelihood
estimation of the conditional error distribution, given the covariate, in more
complicated models. Then it makes sense to consider additional information in
terms of E[g(ε1|X1) |X1] = 0, where g(ε1|X1) depends on the covariate. This
will enable, for instance, to test for parametric structure of the conditional vari-
ance function by setting g(ε|x) = ε2 − σ2

ϑ(x), ϑ ∈ Θ, but is clearly beyond the
scope of the paper at hand.

Let Fn denote the empirical likelihood estimator for F based on the residuals
ε̂1, . . . , ε̂n under additional information (1). For this estimator Kiwitt et al. [11]
showed that both asymptotic bias and variance of Fn are different in first order
in comparison to the residual-based empirical distribution F̂n. The incorporation
of the additional information can lead to an improved estimator; however, in
contrast to the i.i.d.-case considered by Qin and Lawless [16], it does not in all
cases.

In the paper at hand we consider the empirical likelihood density estimator
fn based on the residuals and investigate whether in comparison to the residual-

based kernel estimator f̂n the asymptotic bias and variance change and whether
an improvement of the estimation can be achieved. We show that in contrast
to Chen [2] the asymptotic mean squared error already changes in first order,
due to a change in the bias, whereas the asymptotic variance only changes
in second order. Although the empirical likelihood method does not uniformly
lead to smaller asymptotic bias and variance, we show that in typical examples
the method results in a smaller asymptotic mean integrated squared error. In
simulations we demonstrate the good performance of the estimator.

The paper is organized as follows. In section 2 we define the kernel density
estimators as well as the empirical likelihood kernel density estimators for i.i.d.
data and residuals, respectively. In section 3 we derive the asymptotic expansions
for bias and variance of all four density estimators and compare the results.
Section 4 discusses examples in theory as well as by means of a small simulation
study. Technical assumptions are stated in an appendix.

2. Definition of the estimators

In the following we give a short motivation of kernel density estimation in or-
der to have a starting point for motivation of the empirical likelihood density
estimation below. Let ε1, . . . , εn denote an absolutely continuous i.i.d. sample
from density f , which is to be estimated. A first crude estimate of a density
gives equal weight 1/n to each of n observations εi, i = 1, . . . , n. To obtain a
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smooth estimator the kernel approach distributes the weight 1/n in the inter-
val [εi − h, εi + h] for some bandwidth h, such that each y obtains the weight
K((εi− y)/h)/h for some chosen density K with support [−1, 1]. Those weights
are then added for i = 1, . . . , n to obtain the estimator

fn(y) =
1

nh

n
∑

i=1

K

(

εi − y

h

)

.

Assumptions on the kernel K and bandwidth h = hn are postponed to the
appendix for reason of better readability. Note that throughout we assume that
the density f is twice continuously differentiable and that a kernel K of order 2
is used. Under more restrictive smoothness assumptions the use of higher order
kernels results in a bias reduction for the estimator fn. However, we refrain
from this because, on the one hand, it leads to negative values of the density
estimator. On the other hand, analogue changes of the bias by the empirical
likelihood method applied to the residual-based estimators as shown here appear
in that case as well. Note also that we apply a bandwidth with optimal rate
h = hn ∼ n−1/5 for kernel estimation of a twice continuously differentiable
density.

We now assume that additional information about the underlying distribu-
tion is available. This auxiliary information is given in terms of equation (1),
where g = (g1, . . . , gk)

⊤ : R → R
k is a known function. Now instead of giving

equal weight to all observations, the empirical likelihood method [see Owen [15]]
gives weight pi ∈ [0, 1] to εi (i = 1, . . . , n). In order to include the information
(1) into the estimation, the likelihood

∏n
i=1 pi (the probability that the given

sample is observed) is maximized under the constraints
∑n

i=1 pi = 1 (to obtain
a probability distribution) and

∑n
i=1 pig(εi) = 0, which is the empirical version

of (1). Now distributing such weights pi in [εi − h, εi + h] by a kernel approach
as before gives the empirical likelihood kernel density estimator

f̃n(y) =
1

h

n
∑

i=1

piK

(

εi − y

h

)

as considered by Chen [2].
Note that in our case the estimators fn and f̃n are not available because

ε1, . . . , εn are not observable. We consider a nonparametric homoscedastic
regression model (2) with independent observations, where the covariates X1,
. . . , Xn are i.i.d. with density fX , and independent of the i.i.d. errors ε1, . . . , εn
with density f . For clarity reasons further technical model assumptions are
listed in the appendix. In order to estimate the density f of the unobserved
errors we build nonparametric residuals ε̂i = Yi − m̂(Xi), i = 1, . . . , n, where
m̂ denotes the Nadaraya-Watson estimator [see Nadaraya [13], Watson [19]]

for m, that is m̂(x) = (nb)−1
∑n

i=1 k((Xi − x)/b)Yi/f̂X(x) where f̂X(x) =
(nb)−1

∑n
i=1 k((Xi − x)/b) is a kernel estimator for the covariate density. As-

sumptions on the kernel k and bandwidth b are listed in the appendix. Note
that we assume a bandwidth b = bn ∼ n−1/5 of optimal rate for estimation
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of a twice continuously differentiable regression function. To estimate the error
density we consider

f̂n(y) =
1

nh

n
∑

i=1

K

(

ε̂i − y

h

)

based on the residuals, instead of the non-feasible kernel estimator fn.
Finally we define the empirical likelihood estimator

fn(y) =
1

h

n
∑

i=1

p̂iK

(

ε̂i − y

h

)

with the same motivation as for f̃n, but based on residuals. From Qin and Law-
less [16] and Kiwitt et al. [11] it follows that the empirical likelihood weights p̂i =
1/(n+nη̂⊤n g(ε̂i)) where η̂n is defined as solution of the equation

∑n
i=1 g(ε̂i)/(1+

η̂⊤n g(ε̂i)) = 0 such that 1 + η̂⊤n g(ε̂i) > n−1 for all i = 1, . . . , n.
To compare the asymptotic performance of the estimators in the next section

we give results for the asymptotic bias and variance of the four estimators fn,
f̃n, f̂n, and fn.

3. Asymptotic results

3.1. The kernel density estimator based on i.i.d. data

From standard results in the kernel estimation literature [see Wand and Jones
[18], for instance] we have

E[fn(y)] =
1

h

∫

K

(

z − y

h

)

f(z) dz =

∫

K(u)f(y + hu) du

= f(y) + h2 f
′′(y)

2

∫

u2K(u) du+ o(h2)

by Taylor’s expansion where we assume that
∫

uK(u) du = 0 (see the appendix).
For the variance one obtains similarly with

∫

uK2(u) du = 0

Var(fn(y)) =
1

nh2
Var

(

K

(

ε1 − y

h

))

=
1

nh2

∫

K2

(

z − y

h

)

f(z) dz − 1

nh2

(
∫

K

(

z − y

h

)

f(z) dz

)2

=
1

nh

(

f(y)

∫

K2(u) du+O(h2)

)

− 1

n

(

f(y) +O(h2)
)2

=
1

nh
f(y)

∫

K2(u) du− 1

n
f2(y) + o

(

1

n

)

.

Thus the first order bias is of rate h2, the first and second order variance terms
are of rates (nh)−1 ∼ h4 and n−1, respectively.
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3.2. The empirical likelihood kernel density estimator based on i.i.d.

data

Chen [2] has shown that

E[f̃n(y)] = E[fn(y)] + o

(

1

n

)

Var(f̃n(y)) = Var(fn(y))−
1

n
f2(y)g(y)⊤Σ−1g(y) + o

(

1

n

)

.

From the incorporation of the additional information by the empirical likelihood
method there is no change of the bias, and no change of the variance in first
order. However, the variance term of second order n−1 yields a reduction in
comparison to fn because by assumption Σ = E[g(ε1)g(ε1)

⊤] is positive definite
(see appendix), and hence g(y)⊤Σ−1g(y) > 0 (for all y).

3.3. The residual-based kernel density estimator

In this subsection we will sketch the proof for a stochastic expansion of f̂n. In
the following by Rn,ℓ, ℓ = 1, . . . , 4, we denote remainder terms, each defined by
the corresponding equality. Explanations for the expansions and for negligibility
of the remainder terms are given below. We obtain for the residual-based kernel
density estimator that

f̂n(y) =
1

nh

n
∑

i=1

K

(

εi − y

h

)

− 1

nh2

n
∑

i=1

K ′

(

εi − y

h

)

(εi − ε̂i) +Rn,1 (3.1)

= fn(y)−
1

nh2

n
∑

i=1

K ′

(

εi − y

h

)

1

nb

n
∑

j=1

k

(

Xi −Xj

b

)

Yj −m(Xi)

fX(Xi)

+Rn,2 (3.2)

= fn(y)−
1

n

n
∑

j=1

εj

∫

1

h2
K ′

(

z − y

h

)

f(z) dz

∫

1

b
k

(

u−Xj

b

)

du

+Bn +Rn,3 (3.3)

= fn(y) + f ′(y)
1

n

n
∑

j=1

εj +Bn +Rn,4 (3.4)

with the deterministic term

Bn =

∫

1

h2
K ′

(

z − y

h

)

f(z) dz

∫ ∫

1

b
k

(

u− v

b

)

(m(v) −m(u))fX(v) dv du

= b2f ′(y)B + o(b2),

where B = 1
2

∫

(mfX)′′(x)− (mf ′′
X)(x) dx

∫

u2k(u) du. To obtain the expansion
for Bn we have used calculations typical for kernel estimation theory and also
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that
∫

h−2K ′((z−y)/h)f(z) dz = −
∫

h−1K((z−y)/h)f ′(z) dz = −f ′(y)+O(h2)
by integration by parts and Taylor’s expansion. One can show that under the
assumptions stated in the appendix the variance of the remainder term Rn,4 in
(3.4) is of order o(1/n) and the covariance of Rn,4 with the other terms in the

expansion (3.4) of f̂n(y) is (by an application of the Cauchy-Schwarz inequality)
also of order o(1/n). To this end note that Rn,4 = Rn,1+(Rn,2−Rn,1)+(Rn,3−
Rn,2)+ (Rn,4−Rn,3). Here with a Taylor expansion of the kernel K up to order
five we obtain negligibility of Rn,1, whereas the term Rn,2−Rn,1 is discussed by
inserting the definition of m̂ in εi − ε̂i = m̂(Xi)−m(Xi) in (3.1) (see section 2)

and by replacing the random denominator f̂X by the true density fX . Simple but
cumbersome calculations of variances yield negligibility of Rn,3−Rn,2 [inserting
the model definition Yj = εj −m(Xj) in (3.2)] and Rn,4 − Rn,3 [by evaluation
of the integrals in (3.3)]. Technical details are omitted for the sake of brevity.
From (3.4) and the results in section 3.1 we have

E[f̂n(y)] = f(y) + h2 f
′′(y)

2

∫

u2K(u) du+ b2f ′(y)B + o(h2)

+ o(b2) (3.5)

Var(f̂n(y)) = Var

(

fn(y) + f ′(y)
1

n

n
∑

j=1

εj

)

+ o

(

1

n

)

= Var(fn(y)) +
1

n
Var(ε1)(f

′(y))2

+
2

n
f ′(y)

∫

1

h
K

(

z − y

h

)

zf(z) dz + o

(

1

n

)

=
1

nh
f(y)

∫

K2(u) du

+
1

n

(

Var(ε1)(f
′(y))2 + 2yf(y)f ′(y)− f2(y)

)

+ o

(

1

n

)

.

In comparison to the asymptotic expectation and variance of fn(y) as stated in
section 3.1 we see that the estimation of the regression function m results in a
change of the bias of (first) order b2 and the variance of (second) order n−1.

3.4. The residual-based empirical likelihood kernel density estimator

Finally, we consider the residual-based empirical likelihood density estimator,
for which by the definition of the weights p̂i = n−1(1− η̂⊤n g(ε̂i)+(η̂⊤n g(ε̂i))

2/(1+
η̂⊤n g(ε̂i))) we have

fn(y) = f̂n(y)− η̂⊤n
1

nh

n
∑

i=1

g(ε̂i)K

(

ε̂i − y

h

)

+Rn,5 (3.6)

for a remainder term

Rn,5 =
1

nh

n
∑

i=1

(η̂⊤n g(ε̂i))
2

1 + η̂⊤n g(ε̂i)
K

(

ε̂i − y

h

)
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such that

|Rn,5| ≤ ||η̂n||2 max
i=1,...,n

∣

∣

∣

∣

1

1 + η̂⊤n g(ε̂i)

∣

∣

∣

∣

1

nh

n
∑

i=1

||g(ε̂i)||2K
(

ε̂i − y

h

)

= Op

(

1

n

)

Op(1)Op(1) = Op

(

1

nh

)

,

where the rates of the first two factors on the right hand side in the first line are
given in Lemma B.4 in Kiwitt et al. [11] and the rate of the last factor can be
proved by applying Taylor’s expansion similarly to the derivation in section 3.3.
From Proposition 3.2 and Lemma B.2(ii) in Kiwitt et al. [11] we have

η̂n = Σ−1

(

1

n

n
∑

i=1

(g(εi)− εiE[g′(ε1)])− b2E[g′(ε1)]B

)

+ o(b2) + op

(

1√
n

)

(3.7)

where Σ = E[g(ε1)g(ε1)
⊤] and B is defined in section 3.3. (see also the remark

below the list of assumptions in the appendix). Using Taylor’s expansion in a
similar way as in section 3.3 one can show that

1

nh

n
∑

i=1

g(ε̂i)K

(

ε̂i − y

h

)

=
1

nh

n
∑

i=1

g(εi)K

(

εi − y

h

)

+Rn,6 (3.8)

with some negligible remainder term Rn,6. Further,

1

nh

n
∑

i=1

g(εi)K

(

εi − y

h

)

=

∫

g(y)K

(

z − y

h

)

f(z) dz +Op

(

1√
nh

)

= g(y)f(y) +O(h2) +Op

(

1√
nh

)

, (3.9)

and from (3.6) together with (3.7) and (3.8), (3.9) we obtain an expansion

fn(y) = f̂n(y)− f(y)
1

n

n
∑

i=1

(g(εi)
⊤ − εiE[g′(ε1)

⊤])Σ−1g(y)

+ b2f(y)BE[g′(ε1)
⊤]Σ−1g(y) + o(b2) +Rn,7 (3.10)

for some remainder term Rn,7. One can show with lengthy but simple calcu-
lations that the variance of the remainder term is of order o(1/n) and the co-
variance of Rn,7 with all other terms in the expansion is (by an application of
Cauchy-Schwarz’ inequality) also of order o(1/n). Hence, we obtain from (3.10)
and (3.5) that

E[fn(y)] = E[f̂n(y)] + b2f(y)BE[g′(ε1)
⊤]Σ−1g(y) + o(b2)

= f(y) + h2 f
′′(y)

2

∫

u2K(u) du+ b2B
(

f ′(y)

+ f(y)E[g′(ε1)
⊤]Σ−1g(y)

)

+ o(h2) + o(b2) (3.11)
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and from (3.10) and (3.4) that

Var(fn(y)) = Var(f̂n(y))

+
1

n
f2(y)E

[(

g(ε2)
⊤ − E[g′(ε1)

⊤]ε2

)

Σ−1g(y)
(

g(ε2)
⊤

− E[g′(ε1)
⊤]ε2

)]

Σ−1g(y)

− 2

n
f2(y)

(

g(y)⊤ − E[g′(ε1)
⊤]y
)

Σ−1g(y)

− 2

n
f(y)f ′(y)E

[(

g(ε2)
⊤ − E[g′(ε1)

⊤]ε2

)

ε2

]

Σ−1g(y)

+ o

(

1

n

)

. (3.12)

In comparison to expectation and variance of f̂n(y) as given in section 3.3 we
see that in contrast to Chen’s [2] results the empirical likelihood method for the
residual-based estimators leads to a change in the bias in first order. This change
however only arises in the bias of order b2, that is due to the estimation of the
residuals, whereas the h2-bias remains as before. In the variance we observe
a change only in second order. We will investigate in section 4 if this change
means that the estimation can be improved by the application of the empirical
likelihood method.

3.5. The mean squared errors

To compare the asymptotic mean squared errors in second order we need more
assumptions to obtain the second order bias. For simplicity in addition to the
assumptions stated in the appendix we assume f , m and fX to be thrice contin-
uously differentiable. Because the kernels K and k are symmetric with compact
supports the third moments of the kernels vanish, and hence the bias remain-
der terms o(h2) and o(b2) are of order o(h3) and o(b3), respectively. Then,
we obtain for the mean squared errors (note that h5 ∼ n−1, b5 ∼ n−1 and
(nh)−1 ∼ h4 ∼ n−4/5, (nb)−1 ∼ b4 ∼ n−4/5) that

mse(fn(y)) =
1

nh
f(y)

∫

K2(u) du+ h4

(

f ′′(y)

2

∫

u2K(u) du

)2

− 1

n
f2(y)

+ o

(

1

n

)

mse(f̃n(y)) = mse(fn(y))−
1

n
f2(y)g(y)⊤Σ−1g(y) + o

(

1

n

)

mse(f̂n(y)) = mse(fn(y)) + b2h2f ′′(y)f ′(y)B

∫

u2K(u) du

+
1

n

(

Var(ε1)(f
′(y))2 + 2yf(y)f ′(y)

)

+ b4(f ′(y))2B2 + o

(

1

n

)
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mse(fn(y)) = mse(f̂n(y)) +
(

b2f(y)BE[g′(ε1)
⊤]Σ−1g(y)

)2

+ b2f(y)BE[g′(ε1)
⊤]Σ−1g(y)

(

h2f ′′(y)

∫

u2K(u) du

+ 2b2Bf ′(y)

)

+
1

n
f2(y)E

[(

g(ε2)
⊤ − E[g′(ε1)

⊤]ε2

)

Σ−1g(y)
(

g(ε2)
⊤

− E[g′(ε1)
⊤]ε2

)]

Σ−1g(y)

− 2

n
f2(y)

(

g(y)⊤ − E[g′(ε1)
⊤]y
)

Σ−1g(y)

− 2

n
f(y)f ′(y)E

[(

g(ε2)
⊤ − E[g′(ε1)

⊤]ε2

)

ε2

]

Σ−1g(y) + o

(

1

n

)

.

4. Examples and simulations

It was shown before that the residual-based kernel density estimator and the
residual-based empirical likelihood kernel density estimator differ in the asymp-
totic bias in first and in the asymptotic variance in second order. However, the
application of the empirical likelihood weights does not uniformly lead to an im-
provement for all possible densities f and functions g. Therefore, the theoretical
asymptotic results are considered for two typical examples of having additional
information. It is shown that the empirical likelihood method leads to a smaller
asymptotic mean integrated squared error.

Afterwards the behaviour of both estimators for smaller sample sizes is ob-
served in a small simulation study, which demonstrates the superiority of the
empirical likelihood estimator.

4.1. Additional information: Centered errors

The model assumption of centered errors is to be explicitly included in the esti-
mation. Note that although the Nadaraya-Watson estimator m̂ by construction
already uses the centredness of the errors, the explicit usage of this informa-
tion by the empirical likelihood method can still improve the estimate of the
error density (this was also observed by Kiwitt et al. [11] for the estimation
of the error distribution). By choosing g(ε) = ε the variance formula (3.12)
reduces with E[g′(ε)] = 1, due to g(y) − E[g′(ε1)

⊤]y = y − 1 · y = 0, to

Var(fn(y)) = Var(f̂n(y)) + o(n−1). Hence, there is no second order improve-
ment in the variance possible, but for the asymptotic bias follows by taking
Σ = E[ε2] = σ2 into account [see (3.11) under the assumptions of section 3.5]

E[fn(y)] = f(y) + h2 f
′′(y)

2

∫

u2K(u) du+ b2B

(

f ′(y) + f(y)
1

σ2
y

)

+ o(h3)

+ o(b3).
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0.015
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0.035
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0
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Fig 1. The figure shows the asymptotic bias (panel 1), the asymptotic variance (panel 2) and
the asymptotic mean squared error (panel 3) of the residual-based kernel density estimator
(solid line) and the residual-based empirical likelihood kernel density estimator (dashed line)
in case of standard normally distributed errors and g(ε) = ε with n = 25.

Thus a first order improvement in the asymptotic bias is possible. In case of nor-
mally distributed errors follows with f ′(y) = −yf(y)/σ2 that the b2-bias due to
the estimation of the regression function cancels completely. Figure 1 illustrates
an improvement for most y, but nevertheless, for some points the residual-based
kernel density estimator has the smaller bias. Here only the dominating terms
of first and second order are depicted and we take h = c1n

−1/5, b = c2n
−1/5,

where, for simplicity, c21
∫

u2K(u) du = 1 and c22B = 1. But integrating the dif-
ferences in the bias about all y gives an overall improvement in the asymptotic
bias, and hence in the asymptotic mean integrated squared error (amise). To
see this note that from the formulae in section 3.5 we obtain by symmetry of f
and because f ′(y) = −yf(y)/σ2 that

amise(fn) = amise(f̂n) +
b2h2B

σ2

∫

yf(y)f ′′(y) dy

∫

u2K(u) du

+
2b4B2

σ2

∫

yf(y)f ′(y) dy +
b4B2

σ4

∫

y2f2(y) dy

= amise(f̂n) +
b4B

σ2

∫

yf(y)f ′(y) dy = amise(f̂n)−
b4B2

4
√
πσ3

.

The greatest improvement is obtained in cases of a large bias b2|B| due to
regression estimation combined with small variances σ2.

4.2. Additional information: Centered errors and Var(ε) = σ
2

In some applications the variance of the errors σ2 is known. This informa-
tion and the centeredness of the errors can be included in the estimation by
defining g(ε)⊤ = (ε, ε2 − σ2). For convenience we assume that the third mo-
ments of the error distribution are zero. With E[g′(ε)] = (1, 0)⊤ and Σ =
diag(σ2, E[(ε2 − σ2)2]) follows the same asymptotic change in the bias as in
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−2 0 2

0

−2 0 2

0

−2 0 2

0

Fig 2. The figure shows the asymptotic bias (panel 1), the asymptotic variance (panel 2) and
the asymptotic mean squared error (panel 3) of the residual-based kernel density estimator
(solid line) and the residual-based empirical likelihood kernel density estimator (dashed line)
in case of standard normally distributed errors and g(ε)⊤ = (ε, ε2 − σ2) with n = 25.

section 3.1, whereas (3.12) yields

Var(fn(y)) = Var(f̂n(y))−
1

n
f2(y)

1

E[(ε2 − σ2)2]
(y2 − σ2)2 + o

(

n−1
)

.

Because of the obviously negative additional term, there is always a second order
improvement for all y in the asymptotic variance of the residual-based empirical
likelihood kernel density estimator. In Figure 2 you see the improvements in
case of standard normally distributed errors. In that case for the asymptotic
mean integrated squared error one obtains

amise(fn) = amise(f̂n)−
b4B2

4
√
πσ3

− 3

16
√
πσn

.

4.3. Simulation study

In the simulation study the mean squared error of both estimators is ana-
lyzed for sample sizes n = 50, 100, 250. To this end the mean squared error
of the residual-based empirical likelihood density estimator is approximated

by m̂se(fn(y)) = 1
N

∑N
i=1

(

fn,i(y)− f(y)
)2
, where N = 10000 is the num-

ber of repetitions for data generation and fn,i(y) is the estimator applied to

the i-th sample; m̂se(f̂n(y)) is defined analogously. The regression function
m(x) = 5x2 is used and estimated by the Nadaraya-Watson estimator with

bandwidth b = n− 1

5 . For the kernel density estimator we choose the bandwidth
h = n− 1

5 , and for both estimators the Epanechnikov kernel. Figure 3 shows the
simulations for standard normally distributed errors and the two-dimensional
additional information g(ε)⊤ = (ε, ε2 − σ2). For all sample sizes mentioned
above the residual-based kernel density estimator is improved for almost all
y by the empirical likelihood weights. The greatest improvements are in the
interval [−0.2, 1], which is supported by the theoretical results [see panel (3)
in Figure 2]. In Figure 4 are some other examples presented, where the main
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Fig 3. The upper row shows the approximated mean squared error of f
n
(y) (dashed line) and

f̂n(y) (solid line) for g(ε)⊤ = (ε, ε2 − σ2) with n = 50, 100, 250 and standard normally

distributed errors. The lower row shows the difference m̂se(f̂n(y)) − m̂se(f
n
(y)) of the two

upper curves.
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5e−06

1e−05

−2 0 2

0e+00

2e−06

4e−06

−2 0 2

0e+00
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2e−06

−5 0 5

0e+00

5e−06

1e−05
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0e+00

5e−06

−5 0 5

0e+00

2e−06
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0e+00

5e−06

−2 0 2

0e+00
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0e+00

5e−06

1e−05

Fig 4. All rows show the difference m̂se(f̂n(y))− m̂se(f
n
(y)) for n = 50, 100, 250. The first

one illustrates the case of standard normally distributed errors with g(ε) = ε. The other two
consider the case of Student’s t-distributed errors with 3 degrees of freedom and respectively
g(ε) = ε, g(ε)⊤ = (ε, ε2 − σ2).
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consequence is that the residual-based empirical likelihood kernel density esti-
mator has in all cases, for at least the most y, the smaller mean squared error.
Although there are small areas where the mean squared error is larger, the
amount of improvement in the other areas is greater by far.

Appendix: Assumptions

1. The univariate covariates X1, . . . , Xn are independent and identically dis-
tributed with distribution function FX on compact support, say [0, 1]. FX

has an in (0, 1) twice continuously differentiable density fX , such that
infx∈[0,1] fX(x) > 0. The regression function m is twice continuously dif-
ferentiable in (0, 1) with bounded derivatives.

2. The errors ε1, . . . , εn are independent and identically distributed with
distribution function F . They are centered, E[ε1] = 0, with variance
σ2 = Var(ε1) ∈ (0,∞), existing third moment, and are independent from
the covariates. F is three times continuously differentiable with bounded,
everywhere positive density f .

3. Let k denote a twice continuously differentiable symmetric density with
compact support and

∫

uk(u) du = 0. Let b = bn be a sequence of band-
widths such that b ∼ n−1/5.

4. We assume that gj is continuously differentiable with E[g2j (ε1)] < ∞
and E[|g′j(ε1)|] < ∞, and there exist constants γ, C and β > 0 such

that |
∫

(gj(y + z) − gj(y) − zg′j(y))f(y) dy| ≤ C|z|1+β for all z ∈ R

with |z| ≤ γ, j = 1, . . . , k. We assume that min1≤i≤n gj(ε̂i) < 0 <
max1≤i≤n gj(ε̂i) for all j = 1, . . . , k, and that Σ = E[g(ε1)g(ε1)

⊤] and
∑n

i=1 g(ε̂i)g(ε̂i)
⊤ are positive definite. We assume the existence of con-

stants δ, C such that for some positive κ < 4 and all j = 1, . . . , k,
(E[ sup

z,z̃∈R:|z|≤δ,

|z̃|≤δ,|z−z̃|≤ξ

(gj(ε1 + z)− gj(ε1 + z̃))
2
])1/2 ≤ Cξ1/κ.

5. We assume that supx∈R
|(gjf)(x)| < ∞, supx∈R

|(gjf)′(x)| < ∞,
supx∈R

|(g2j f)(x)| < ∞ and supx∈R
|(g2j f)′(x)| < ∞ for all j = 1, . . . , k.

6. Let K denote a five times continuously differentiable symmetric density
with support [−1, 1], K(−1) = K(1) = 0,

∫

uK(u) du =
∫

uK2(u) du = 0
and

∫

u2K(u) du 6= 0. Let h = hn be a sequence of bandwidths such that
h ∼ n−1/5.

See Kiwitt et al. [11] for interpretations of assumptions 1–4 concerning the
regression model, estimation of the regression function and the empirical like-
lihood procedure. Note that the assumption nb4 = O(1) by Kiwitt et al. [11]
is not valid under our assumptions, but an inspection of the proof of Proposi-
tion 3.2 and Lemma B.2(ii) in that reference shows that (3.7) can also be ob-
tained under nb5 = O(1). Moreover, Kiwitt et al.’s [11] bandwidth assumptions
nb3+2α(log(h−1))−1 → ∞ (for some α > 0) and nβb1+β(log(h−1))−1−β → ∞
with β as in assumption 4 are valid for our choice of bandwidth rate (for every
α ∈ (0, 1)).
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The additional technical assumption 5 is needed to bound some remainder
terms.

Assumption 6 is due to the kernel density estimation. The high rate of
smoothness needed for the kernel is due to bounding of remainder terms in
a Taylor expansion with the aim of obtaining second order rates.
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