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Abstract: We propose a second-order accurate method to estimate the
eigenvectors of extremely large matrices thereby addressing a problem of
relevance to statisticians working in the analysis of very large datasets.
More specifically, we show that averaging eigenvectors of randomly subsam-
pled matrices efficiently approximates the true eigenvectors of the original
matrix under certain conditions on the incoherence of the spectral decom-
position. This incoherence assumption is typically milder than those made
in matrix completion and allows eigenvectors to be sparse. We discuss ap-
plications to spectral methods in dimensionality reduction and information
retrieval.
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1. Introduction

Spectral methods have a long list of applications in statistics and machine
learning. Beyond dimensionality reduction techniques such as PCA or CCA
[And03, MKB79], they have been used in clustering [NJW02], ranking & in-
formation retrieval [PBMW98, HTF+01, LM05] or classification for example.
Computationally, one of the most attractive features of these methods is their
low numerical cost, in particular on problems where the data matrix is sparse
(e.g. graph clustering or information retrieval). Computing a few leading eigen-
values and eigenvectors of a matrix, using the power or Lanczos methods for
example, requires performing a sequence of matrix vector products and can be
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processed very efficiently. This means that when the matrix is dense and has
dimension n, the cost of each iteration is O(n2) in both storage and flops.

However, for extremely large scale problems arising in statistics or infor-
mation retrieval for example, this cost quickly becomes prohibitively high and
makes spectral methods impractical. In this paper, we propose a randomized,
distributed algorithm to estimate eigenvectors (and eigenvalues) which makes
spectral methods tractable on very large scale matrices. We show that our
method is second order accurate and illustrate its performance on a few re-
alistic datasets.

Going back to the numerical cost of spectral methods, we see that decom-
posing each matrix vector product in many smaller block operations partially
alleviates the complexity problem, but makes the overall process very band-
width intensive. Decomposition techniques thus improve the granularity of it-
erative eigenvalue methods (i.e. require many cheaper operations instead of a
single very expensive one), but at the expense of significantly higher bandwidth
requirements. Here, we focus on methods that improve the granularity of large-
scale eigenvalue computations while having very low bandwidth requirements,
meaning that they can be fully distributed over many loosely connected ma-
chines.

The idea of using subsampling to lower the complexity of spectral meth-
ods can be traced back at least to [GMKG91, PRTV00] who described algo-
rithms based on subsampling and random projections respectively. Explicit er-
ror estimates followed in [FKV04, DKM06, AM07] which bounded the approx-
imation error of either elementwise or columnwise matrix subsampling proce-
dures. On the application side, a lot of work has been focused on the Pager-
ank vector, and [NZJ01] in particular study its stability under perturbations
of the network matrix. Similar techniques are applied to spectral clustering
in [HYJT08] and both works have close connections to ours. Following the
Netflix competition on collaborative filtering, a more recent stream of works
[RFP07, CR08, CT09, KMO09] has also been focused on exactly reconstructing
a low rank matrix from a small, single incoherent set of observations. Finally,
more recent “volume sampling” results provide relative error bounds [KV09],
but so far, the sampling probabilities required to obtain these improved error
bounds remain combinatorially hard to compute.

Our work here is focused on the impact of subsampling on eigenvector ap-
proximations. First we seek to understand how far we can reduce the granularity
of eigenvalue methods using subsampling, before reconstructing eigenvectors be-
comes impossible. This question was partially answered in [CT09, KMO09] for
matrices with low rank, incoherent spectrum, using a single subset of matrix
coefficients, after solving a convex program with high complexity. Here we make
much milder assumptions on matrix incoherence. In particular, we allow some
eigenvectors to be sparse (while remaining incoherent on their support) and we
approximate eigenvectors using many simple operations on subsampled matri-
ces. Under certain conditions on the sampling rate which guarantee that we
remain in a perturbative setting, we show that simply averaging many approxi-
mate eigenvectors obtained by subsampling reduces approximation error by an
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order of magnitude. We also show on real data that this technique results in
practice in significant improvement in the quality of the approximations.

At a technical level, our approach is to represent the subsampled matri-
ces as additive perturbations of the original matrix. We present in Theorem
2 deterministic and non-asymptotic bounds that allow us to approximate the
perturbed eigenvectors to any order by fairly explicit functions of the origi-
nal matrix as well as the perturbation matrix. Precise use of these bounds then
yields second order accurate approximation results in expectation, which is what
we seek, given the averaging procedure we propose. The higher-order analysis
we perform is necessary to show that even though the first-order error terms (in
probability) have mean 0, we can take expectation and not have to worry about
higher-order terms (in probability) exploding in expectation. These bounds also
give us a very precise understanding of the perturbed eigenvectors, which is of
independent interest.

Non-elementary random matrix theory plays a key role in allowing us to
bound the norm of various random matrices appearing in our computations.
Some non-trivial bounds on the norm of various random matrices appear in
Appendix A, improving for instance (and in certain situations) on the results
of [AM07]. Concentration of measure arguments also play an important role,
allowing us to essentially shift the questions of bounding the norm a certain
random matrix to controlling the mean (or median) of this norm. We make
repeated use of Talagrand’s inequality [Tal95] and of its consequences detailed
for instance in [Led01], Chap. 4.

A simple take-away message from our analysis is that when the incoherence
conditions we propose are met and when all eigenvectors have support of size n,
one can sample the corresponding large matrix at rate p = (logn)/n (or larger)
and still be able to approximate the eigenvectors of the corresponding matrix
well. We also show that our approximations run into trouble if p = (logn)1−δ/n,
for some δ > 0, so our results seem sharp in terms of sampling rates.

Notation. In what follows, we write Sn the set of symmetric matrices of
dimension n. For a matrix X ∈ Rm×n, we write ‖X‖F its Frobenius norm,
‖X‖2 its spectral norm, σi(X) its i-th largest singular value and let ‖X‖∞ =
maxij |Xij |, while Card(X) is the number of nonzero coefficients in X . We
denote by X(i, j) or Xij its (i, j)-th element and by Mi the i-th column of
M . Here, ◦ denotes the Hadamard (i.e entrywise) product of matrices. When
x ∈ Rn is a vector, we write its Euclidean norm ‖x‖2 and ‖x‖∞ its ℓ∞ norm.
We write 1 ∈ Rn the vector having all entries equal to 1. Finally, κ denotes a
generic constant, whose value may change from display to display.

2. Subsampling

We first recall the subsampling procedure in [AM07] which approximates a sym-
metric matrix M ∈ Sn using a subset of its coefficients. The entries of M are
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Fig 1. Our objective here is to approximate the spectral decomposition problem of size O(n2)
by solving many independent problems of much smaller size.

independently sampled as

Sij =

{
Mij/p with probability p

0 otherwise,
(1)

where p ∈ [0, 1] is the sampling probability. Theorem 1.4 in [AM07] shows that
when n is large enough

‖M − S‖2 ≤ 4‖M‖∞
√
n/p, (2)

holds with high probability (if p is large enough). In what follows, we will prove
a similar bound on ‖M − S‖2 using incoherence conditions on the spectral
decomposition of M .

2.1. Computational benefits

Computing k leading eigenvectors and eigenvalues of a symmetric matrix of di-
mension n using iterative algorithms such as the power or Lanczos methods (see
[GVL90, Chap. 8-9] for example) only requires matrix vector products, hence
can be performed in O(kn2) flops when the matrix is dense. However, this cost
is reduced to O(kCard(M)) flops for sparse matrices M . Because the matrix S
defined in (1) has only pn2 nonzero coefficients on average, the cost of comput-
ing k leading eigenvalues/eigenvectors of S will typically be 1/p times smaller
than that of performing the same task on the full matrix M . Of course, sam-
pling the matrix S still requires O(n2) flops, but can be done in a single pass
over the data and be fully distributed. In what follows, we will show that, under
incoherence conditions, averaging the eigenvectors of many independently sub-
sampled matrices produces second order accurate approximations of the original
spectral decomposition. While the global computational cost of this averaging
procedure may not be globally lower, it is decomposed into many much smaller
computations, and is thus particularly well adapted to large clusters of simple,
loosely connected machines (Amazon EC2, Hadoop, etc.).
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2.2. Sparse matrix approximations

Let us write the spectral decomposition of M ∈ Sn as

M =

n∑

i=1

λiuiu
T
i

where ui ∈ Rn for i = 1, . . . , n and λ ∈ Rn are the eigenvalues of M with
λ1 > · · · > λn (we assume they are all distinct). Let α ∈ [0, 1]n, we measure the
incoherence of the matrix M as

µ(M,α) =

n∑

i=1

|λi|nαi‖ui‖2∞ (3)

Note that this definition is slightly different from that used in [CT09] because
we do not seek to reconstruct the matrix M exactly, so the tail of the spectrum
can be partially neglected in our case. In a uniformly bounded model where
n‖ui‖2∞ = O(1), the results of [CT09, §1.5.1] guarantee exact reconstruction of
the matrix M given only a fraction of its entries by solving a semidefinite pro-
gram. As we will see below, the fact that we only seek approximate eigenvectors
here, instead of exact reconstructions, allows us to relax these requirements and
handle sparse eigenvectors.

Let us define a matrix Q ∈ Sn with i.i.d. Bernoulli coefficients

Qij =

{
1/p with probability p
0 otherwise.

We can write

Q = 11T +

√
1− p

p
C

where C is has i.i.d. entries with mean zero and variance one, defined as

Cij =

{ √
(1− p)/p with probability p

−
√
p/(1− p) otherwise.

We can now write the sampled matrix S in (1) as

S = M ◦Q = M +

√
1− p

p

(
n∑

i=1

λi(uiu
T
i ) ◦ C

)
≡ M + E (4)

and we now seek to bound the spectral norm of the residual matrix E as n
goes to infinity. Naturally, if ‖E‖2 is small, S is a good approximation of M
in spectral terms, because of Weyl’s inequality and the Davis-Kahan sin(θ)-
theorem (see [Bha97]). So our aim now is to control ‖E‖2 so we can guarantee
the quality of spectral approximations of M made using the sparse matrix S
which is computationally easier to work with than the dense matrix M . We now
make the following key assumptions on the incoherence of the matrix M .
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Assumption 1. There is a sequence of vectors α(n) ∈ [0, 1]n for which

µ(M,α(n)) ≤ µ and Card(ui) ≤ nα
(n)
i , i = 1, . . . , n

as n goes to infinity, where µ is an absolute constant.

In what follows, we will drop the dependence of α on n to make the notation
less cumbersome, so instead of writing α(n) we will just write α. We have the
following theorem.

Theorem 1. Suppose that Assumption 1 holds. Let us call αmin = min1≤i≤n αi.

1. Assume that p and n are such that, p < 1/2, and for a given δ > 0,
αmin > (log n)(δ−3)/4 and

(αmin logn)
4

pnαmin
→ 0 , as n → ∞,

then we have
lim sup
n→∞

‖E‖2 ≤ 2µ (pnαmin)
−1/2

a.s . (5)

2. Further, if pnαmin/(lognαmin) is bounded below by γ > 0, αmin is such that
nαmin → ∞ and p < 1/2, we have, for some finite K(γ),

lim sup
n→∞

‖E‖2 ≤ K(γ)µ (pnαmin)−1/2 a.s . (6)

Moreover, K(γ) is of the form (1+2/
√
γ)K+8/

√
γαmin for some universal

K. Naturally, if

lim inf pnαmin/(lognαmin) = ∞ and γαmin → ∞,

then K(γ) can be replaced by K.

Proof. Using [HJ91, Th. 5.5.19] or the fact that uuT ◦ C = DuCDu, where Du

is a diagonal matrix with the vector u on the diagonal (remember that ‖·‖2 is a
matrix norm and hence sub-multiplicative), we get

‖E‖2 =
√

1− p

p

∥∥∥∥∥

n∑

i=1

λiC ◦ (uiu
T
i )

∥∥∥∥∥
2

≤
√

1− p

p

n∑

i=1

|λi|nαi/2‖ui‖2∞
∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

.

(7)
Since we assume that the vector ui is sparse with Card(ui) ≤ nαi , Cαi is a
principal submatrix of C with dimension nαi . Now, we show in Theorem B.1
(this is the key element of the proof – see p.1375) that

lim sup
n→∞

max
i∈{1,...,n}

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ 2 a.s ,

whenever p = o
( (αmin logn)4

nαmin

)
, and αmin > (log n)(δ−3)/4 for some δ > 0. (Our

proof of Theorem B.1 relies on a result of Vu [Vu07] and Talagrand’s inequality.).
This yields Equation (5) and concludes that part of the proof.
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The second part of the proof relies on non trivial results that allow us to
control ‖Cαi‖2 even when p ≥ γ(lognαi)/nαi . These results are given in full
details in Appendix A. They allow us to conclude in Theorem B.1 that in the
second setting,

lim sup
n→∞

max
i∈{1,...,n}

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ K(γ) a.s. .

This yields the desired results.

The proof of the theorem makes clear that the error term coming from the
sparsest eigenvector will usually dominate all the others in the residual matrixE.

In these approximation methods, we naturally want to use a small p, so that S
is very sparse and the computation of its spectral decomposition is numerically
cheap. The result of Theorem B.2 guarantees that the subsampling approxima-
tion works whenever p ≫ (αmin logn)

4/nαmin (asymptotically, but we have in
mind a very high-dimensional setting, so n will be large in practice) and in that
setting, we get a bound of 2 for the norm of the relevant error matrix. When
p ≥ γ(lognαmin)/nαmin, where γ stays bounded away from 0, we just know that
the norm of the relevant error matrix is bounded, but do not have an explicit
value for the constant.

A natural question is therefore whether we could use p much smaller than
this. Separate computations (see Subsection A.3) indicate that ‖C/n1/2‖2 goes
to infinity if p ≤ (log n)1−δ/n, which suggests that this subsampling approach
to approximating eigenproperties of M might run into trouble if the sampling
rate p gets much smaller than logn/n. (Note also that our results are therefore
sharp in terms of rates.) As a matter of fact, we could not control the quantities∥∥Cαi/n

αi/2
∥∥
2
at this sampling rate, which is naturally problematic given the

way we established the bound on ‖E‖2. Furthermore, if the sparsest eigenvector
had support disjoint from the supports of all other eigenvectors, E would be
the sum of two block diagonal matrices. Hence, its operator norm would be the
maximum of the operator norms of the two blocks, at least one of which having
potentially very large operator norm.

2.3. Tightness

Note that, in the limit case α = 1 where the eigenvectors are fully dense and
incoherent, our bound is similar to the original bound in [AM07, Theorem 1.4]
or that of [KMO09, Th 1.1] (our model for M is completely different however).
In fact, the bounds in (2) and (5) can be directly compared. In the fully dense
case where α = 1, we have

√
n‖M‖∞ =

√
n

∥∥∥∥∥

n∑

i=1

λiuiu
T
i

∥∥∥∥∥
∞

≤ n−1/2
n∑

i=1

|λi|n‖ui‖2∞ ≤ n−1/2µ,

so in this limit case, the original bound in (2) is always tighter than our bound
in (5). However, in the sparse incoherent case where α 6= 1, the ratio of the
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bound (2) in [AM07] over our bound (5) becomes

2
∥∥∥
∑n

i=1 λin
(αmin+1)

2 uiu
T
i

∥∥∥
∞∑n

i=1 |λi|nαi‖ui‖2∞
,

which can be large when αmin < 1. The results in [KMO09], which are focused
on exact recovery of low rank incoherent matrices, do not apply when the eigen-
vectors are sparse (i.e. α 6= 1).

2.4. Approximating eigenvectors

We now study the impact of subsampling on the eigenvectors and in particular
on the one associated with the largest eigenvalue. We have the following theorem.

Theorem 2. Assume that the eigenvalues of M are simple. When S = M +E,
let us call vk ∈ Rn and λk(S) the k-th eigenpair of S, and uk ∈ Rn, λk the
k-th eigenpair of M . We write Rk the reduced resolvent of M associated with
uk, defined as

Rk =
∑

j 6=k

1

λj − λk
uju

T
j ,

and let ∆k = Rk(E − (λk(S)− λk)Id). We also call dk the separation distance
of λk, i.e the distance from λk to the nearest eigenvalue of M . If ‖E‖2 satisfies
‖E‖2 < dk/2, then

∥∥∥∥∥vk − uk +

[
j∑

m=0

(−1)m∆m
k

]
RkEuk

∥∥∥∥∥
2

≤ 1

2

(
2 ‖E‖2

d

)j+2
1

1− 2‖E‖2

d

(8)

having normalized vk so vTk uk = 1.

As will be seen shortly, to prove this theorem we find an explicit and exact
representation of vk − uk, and show that when we subtract from this quantity
a (j + 1)-term approximation, which is also explicit, we are left with an error
term of order j+2. The use of reduced resolvents in this setting is natural in the
analytic perturbation theory of linear operators, which underlies our approach.

One virtue of this approximation is that in the settings corresponding to our
original problem, the term of highest magnitude, let us call it A0, has mean 0.
Hence, at least conceptually, when trying to bound ‖E [v − u]‖2 we can simply
use ‖E [v − u]2‖ = ‖E [v − u−A0]2‖ and finally

‖E [v − u]‖2 = ‖E [v − u−A0]‖2 ≤ E [‖v − u−A0‖2] .

We will see in Theorem 3 that further technical problems arise (which force us
to go an order higher in approximations), but that is essentially the idea and a
main motivation for getting the present result.

We also note that the theorem gives us a very precise understanding of v−u,
essentially to any order.
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Proof. From now on we focus on uk and drop the dependence on k in uk, vk, Rk,
∆k etc. . . when this does not create confusion. We also use the notation λS and
λ instead of λk(S) and λk. If v is normalized so that vTu = 1 (so (v−u)Tu = 0),
we have the explicit formula [Kat95, Eq. 3.29]

v − u = −(Id +R(E − γId))−1REu ,

where γ = λS−λ. The formula is valid as soon as (Id+R(E−γId)) is invertible.
Let us now call ∆ = R(E − γId) and assume that ∆ has no eigenvalues equal
to -1, i.e Id + ∆ is invertible. Then we have

v − u+

[
j∑

m=0

(−1)m∆m

]
REu = (−1)j∆j+1(Id + ∆)−1REu . (9)

We also have by construction Ru = 0, so REu = ∆u. Hence, we can write

v − u+

[
j∑

m=0

(−1)m∆m

]
REu = (−1)j∆j+2(Id + ∆)−1u .

Now let us call d the separation distance of λ. Then ‖R‖2 = 1/d. Our assump-
tions guarantee that ‖E‖2 is such that 2 ‖E‖2 /d < 1. We note that using Weyl’s
inequality, |λS−λ| ≤ ‖S −M‖2 = ‖E‖2, hence ‖∆‖ ≤ 2 ‖R‖2 ‖E‖2 = 2 ‖E‖2 /d
and ∥∥(Id + ∆)−1

∥∥
2
≤ 1

1− 2‖E‖2

d

.

Putting all the elements together and recalling that ‖u‖2 = 1, we get (8) from
Equation (9).

Spectral methods tend to focus on eigenvectors associated with extremal
eigenvalues, so let us elaborate on the meaning of Theorem 2 for the eigenvector
associated with the largest eigenvalue. If we suppose that the spectral norm of
the residual matrix E is smaller than half the separation distance of the largest
eigenvalue, i.e

‖E‖2 < (λ1 − λ2)/2 , (10)

the previous result (and results such as [Kat95, Theorem II.3.9]) shows that we
can use perturbation expansions to approximate the leading eigenvector of the
subsampled matrix. Based on the bound in Equation (5), the condition stated
in Equation (10) will be satisfied (asymptotically with high-probability) if, for
some ε > 0,

µ√
pnαmin

< (λ1 − λ2)/(4 + ε).

We note that assumption (10) is likely reasonable if one eigenvalue is very large
compared to the others, which is a natural setting for methods such as PCA.
(Note however that our result is not limited to the largest eigenvalue but actually
applies to any eigenvalue of the original matrix M , λ, for which ‖E‖2 is smaller
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than half the distance from λ to any other eigenvalue of M . In particular, the
result would apply to several separated eigenvalues.) We also note that the
approximation

v = u−
[

j∑

m=0

(−1)m∆m

]
REu

is accurate to order j + 2.
Let us now try to make our approximation slightly more explicit. If we write

R the reduced resolvent of M (associated with u1), and assume that λ1 − λ2

stays bounded away from 0, we have in this setting, using Equation (8) with
j = 1,

v = u−REu+R(E − (λ1(S)− λ1) Id)REu+OP (‖E‖32) ,

and therefore

v = u−REu+R(E − uTEu Id)REu+OP (‖E‖32) , (11)

after we account for the fact that uTEu is an order-‖E‖22 accurate approximation
of λ1(S)− λ1 [Kat95, Eq. 2.36 and 3.18]. This approximation makes clear that
a key component in the accuracy of our approximations will be the size of the
vector Eu. For simplicity here, we have normalized v so that vTu = 1; a similar
result holds if we set vT v = 1 instead, if for instance ‖E‖2 → 0 asymptotically.

2.5. Second order accuracy result for eigenvectors by averaging

In light of Equation (11), it is clear that v is a first order accurate approximation
of u, because of the presence of the (first-order) term REu in the expansion.
We now show that we can get a second order accurate approximation of the
eigenvector u. Our results are based on an averaging procedure and hence are
easy to implement in a distributed fashion. We have the following second-order
accuracy result.

Theorem 3. Let us call u1 the eigenvector associated with the largest eigenvalue
of M , and ν1 = v1/ ‖v1‖ the eigenvector associated with the largest eigenvalue
of S = M + E and normalized so that ‖ν1‖ = 1 and νT1 u1 ≥ 0. Let us call
ξ = µ/(pnαmin)1/2. Suppose that the assumptions of Theorem 1 are satisfied
(hence ξ → 0). Suppose also that d = (λ1 − λ2) satisfies

d

ξ
→ ∞ . (12)

Then we have

E [‖ν1 − u1‖2] = O

(
1

(λ1 − λ2)2
µ2

pnαmin

)
= O

(
ξ2

d2

)
.
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Practically, this means that if we average eigenvectors over many subsampled
matrices (after removing indeterminacy by always making the first component
positive), the residual error will be of order ‖E‖22/d2 with

lim sup
n→∞

‖E‖22 ≤ (K(γ))2
µ2

pnαmin
a.s ,

where we recall that K(γ) can be replaced by 2 in most cases (i.e as soon as
(lognαmin)4/(pnαmin) → 0) and minimal conditions on αmin mentioned above
are satisfied. In other words, by averaging subsampled eigenvectors, we gain
an order of accuracy (over the method that would just take one subsampled
eigenvector) by canceling the effect of the first order residual term REu.

Technically, the previous theorem relies partly (and somewhat indirectly) on
repeated use of a concentration inequality due to Talagrand, whose consequences
are well explained in [Led01], Chapter 4. This inequality allows us to control the
probability that ‖E‖2 exceeds a certain threshold, and hence tells us that with
overwhelming probability, Theorem 2 is applicable in the setting we consider.
However, this is not enough to be able to bound the expectations we care about.
So we also make use of it to guarantee that the higher moments of ‖E‖2 can
be controlled, which gives us explicit control on E [‖u− ṽε‖2], where ṽε is a
regularization of the perturbed eigenvector v which we need to use for technical
reasons (we cannot directly take expectations in the bounds of Theorem 2).

Proof. To keep notations simple, we drop the index 1 in ν and u in the proof
(so ν1 = ν and u1 = u). In what follows, κ is a generic constant that may
change from display to display. Before we start the proof per se, let us make a
few remarks. (We recall that ∆ = R(E − (λ1(S)− λ1(M))Id).)

First, there is a technical difficulty when trying to work directly with v,
namely the fact that it appears difficult to control E

[∥∥(Id + ∆)−1
∥∥
2

]
and hence

to get a bound on E[‖v − u‖] (with the normalization vTu = 1, ‖v‖ could be
very large; our bounds show that this can happen with only low probability
but obviously E[‖v‖] could still be large). To go around this difficulty, we need
two steps: first, we work with unit eigenvectors (so we go from v to ν), and
second we need a “regularization” step and will replace v by a vector ṽε which
is equal to v with high-probability and for which we can control E[‖ṽε − u‖].
More precisely, for ε > 0, we call ṽε the vector such that

ṽε =

{
v if

∥∥(Id + ∆)−1
∥∥
2
≤ 1

ε

u−REu+∆REu otherwise.

Its properties are studied in Theorem B.3. We call it below the ε-regularized
version of v.

We note that under the assumptions of the current theorem we have ξ
d → 0,

so the results of Theorem B.3 apply. In particular, as shown in the proof of that
Theorem, we have ‖M‖2∞ /p2 = o

(
ξ2
)
. Also, Assumption 1 (which is made in

Theorem 1), means µ is fixed so ξ → 0, as pnαmin → ∞.
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If v is the eigenvector of S associated with its largest eigenvalue, using the
fact that (v − u)Tu = 0 by construction, we have

‖v‖22 = ‖v − u‖22 + ‖u‖22 = 1 + ‖v − u‖22
hence

ν =
v√

1 + ‖v − u‖22
.

Turning our attention to ṽε, we see that, since Ru = 0 by construction and R
is symmetric, uT∆ = 0, so (ṽε − u)Tu = 0, and hence

‖ṽε‖22 = 1 + ‖ṽε − u‖22 .

Now let us call

β =
ṽε√

1 + ‖ṽε − u‖22
,

we see that β = ν as long as
∥∥(Id + ∆)−1

∥∥
2
≤ 1/ε, since when this happens,

v = ṽε. Now we have

E[‖u− ν‖2] = E[‖u− ν‖2 1ν=β] +E[‖u− ν‖2 1ν 6=β]

≤ E[‖u− β‖2 1ν=β] +E[‖u− ν‖2 1ν 6=β]

≤ E[‖u− β‖2] + 2P (ν 6= β) ,

since ‖u− ν‖2 ≤ ‖u‖2 + ‖ν‖2 = 2 (note the importance of the change of nor-
malization here, as this bound would not hold with v instead of ν). Let us now
work on controlling both these quantities. For reasons that will be clear later,
we now take ε = K(γ)ξ/d.

Control of E[‖u− β‖2]. Given that u − β = (u − ṽε)/
√
1 + ‖u− ṽε‖22 +

u(1− 1/
√
1 + ‖u− ṽε‖22), we have

‖u− β‖2 ≤ ‖u− ṽε‖2√
1 + ‖u− ṽε‖22

+ ‖u‖2



1− 1√
1 + ‖u− ṽε‖22





≤ ‖u− ṽε‖2 + (

√
1 + ‖u− ṽε‖22 − 1)

≤ 2 ‖u− ṽε‖2 ,

since
√
1 + x2 ≤ 1+x for x ≥ 0. Let us call µ/(pnαmin)1/2 = ξ and d = λ1−λ2.

We show in Theorem B.3 that, for some κ > 0, asymptotically

E [‖u− ṽε‖2] ≤ κ(
ξ2

d2
+

ξ3

d3ε
)

so when ε > ξ/d, we have E [‖u− ṽε‖2] ≤ κ ξ2

d2 and therefore

E [‖u− β‖2] ≤ κ
ξ2

d2
.
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Control of P (ν 6= β). We have (essentially) seen in the proof of Theorem 2
above that if 2 ‖E‖2 /d < 1 − ε, then

∥∥(Id + ∆)−1
∥∥
2
≤ 1/ε (see also the proof

of Theorem B.3). Hence

P
(∥∥(Id + ∆)−1

∥∥
2
> 1/ε

)
≤ P

(
‖E‖2 >

(1− ε)d

2

)
.

Recall that we have now chosen ε = K(γ)ξ/d. In that case, we have

(1− ε)d

2
=

d

2
− K(γ)

2
ξ .

Now we show the following deviation inequality in Theorem B.2: if mE is a
median of ‖E‖2,

P (|‖E‖2 −mE | > t) ≤ 4 exp

(
− p2

8 ‖M‖2∞
t2

)
.

Recall also that for n large enough 0 ≤ mE ≤ (K(γ) + 1)ξ when the conditions
of Theorem 1 apply (see Theorems 1 or arguments at the end of the proof of
Theorem B.1). Suppose now that n is such that indeed mE ≤ (K(γ)+1)ξ. Then
if d

2 − (32K(γ) + 1)ξ > 0, we have

P

(
‖E‖2 >

(1− ε)d

2

)
≤ P

(
|‖E‖2 −mE | >

(1 − ε)d

2
−mE

)

≤ P

(
|‖E‖2 −mE | >

d

2
− (

3

2
K(γ) + 1)ξ

)
.

Now when ξ/d → 0, and because K(γ) stays bounded, d
2 − (32K(γ) + 1)ξ ≥ d

3
asymptotically. Note that by assumption, ξ/d → 0. Therefore,

P

(
‖E‖2 >

(1− ε)d

2

)
≤ 4 exp

(
− p2

72 ‖M‖2∞
d2

)
.

All we have to do now is to verify that the asymptotics we consider, the quan-
tity on the right-hand side of the previous equation remains less than ξ2/d2

asymptotically. Elementary algebra shows that this is equivalent to saying that

1 ≥ 1

d2
72

‖M‖2∞
p2

(ln(d2/ξ2) + ln 4) . (13)

We have ‖M‖2∞ /p2 = o
(
ξ2
)
, so the right-hand side is going to zero because it is

o
(
(ξ/d)2 log(d/ξ)

)
and ξ/d → 0. So we have shown that under our assumptions,

P (ν 6= β) ≤ ξ2

d2
.

We can finally conclude that

E[‖ν − u‖2] ≤ κ
ξ2

d2
,

as announced in the theorem.
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This result applies to all eigenvectors corresponding to eigenvalues whose
isolation distance (i.e distance to the nearest eigenvalue) satisfies the separation
condition (12), which is a strong version of the separation condition (10). We
note that we need the strong separation condition (Equation (12)) to be able to
take expectations rigorously.

Finally, we note that theoretical as well as practical considerations seem
to indicate that condition (10) (and hence (12)) is quite conservative. On the
theoretical side, we see with Equation (9) that what really matters for the quality
of the approximation is the norm of the vector

lj = ∆j+2(Id + ∆)−1u ,

or its expectation. We used in our approximations the coarse bound ‖∆‖2 ≤
2 ‖R‖2 ‖E‖2, which is convenient because it does not require us to have informa-
tion about the eigenvectors of ∆. However, we see that the norm of lj could be
small even when ‖R‖2 ‖E‖2 is not very small, for instance if u belonged to a sub-
space spanned by eigenvectors of ∆ associated with eigenvalues of this matrix
that are small in absolute value. So it is quite possible that our method could
work in a somewhat larger range of situations than the one for which we have
theoretical guarantees. This is what our simulations below seem to indicate.

2.6. Variance

The expansion in Equation (11) also allows us to approximate the variance of
the first-order residual REu after subsampling. This is useful in practice because
it gives us an idea of how many independent computations we need to make to
essentially void the effect of the first order term in the expansion of v. In terms
of distributed computing, it therefore tells us how many machines we should
involve in the computation. We have the following theorem.

Theorem 4. Let u1 be the eigenvector associated with λ1, the largest eigenvalue
of M . Let us call w1 = u1 ◦ u1, and M = M ◦M . Then

E[‖REu1‖22]

≤ 1

(λ2 − λ1)2
1− p

p

(
n∑

k=1

u1(k)
2‖Mk‖22 −

[
2wT

1 Mw1 −
n∑

k=1

w2
1(k)Mkk

])
.

Assuming w.l.o.g. that λ1 = ‖M‖2, this bound yields in particular

E[‖REu1‖22] ≤
1

(1− λ2/λ1)2
‖u1‖2∞

NumRank(M)

p
(14)

where NumRank(M) = ‖M‖2F/‖M‖22 is the numerical rank of the matrix
M and is a stable relaxation of the rank, satisfying 1 ≤ NumRank(M) ≤
Rank(M) ≤ n (see [RV07] for a discussion).
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Proof. By construction, E[E] = 0 and

E[‖REu1‖22] = E[uT
1 ER2Eu1] =

n∑

j=2

E

[
(uT

1 Euj)
2

(λj − λ1)2

]
,

by definition of R. Now

n∑

j=1

(uT
1 Euj)

2 = ‖Eu1‖22 = uT
1 E

2u1 ,

because E is symmetric, the ui’s form an orthonormal basis and uT
1 Euj is the

j-th coefficient of Eu1 in this basis, so the sum of the squared coefficients is the
squared norm of the vector. Hence

E[‖REu1‖22] ≤
1

(λ2 − λ1)2
(
E[uT

1 E
2u1]− var(uT

1 Eu1)
)
.

The variance of uT
1 Eu1 is easy to compute if we rewrite this quantity as a sum

of independent random variables. Also, separate computations (see Appendix,
Subsection B.3) show that E[E2] is a diagonal matrix, whose i-th diagonal entry
is (1−p)‖Mi‖22/p, where Mi is the i-th column of M . Hence, in that case, having
defined w1 = u1 ◦ u1 and M = M ◦M , we get

E[‖REu1‖22]

≤ 1

(λ2 − λ1)2
1− p

p

(
n∑

k=1

u1(k)
2‖Mk‖22 −

[
2wT

1 Mw1 −
n∑

k=1

w2
1(k)Mkk

])
.

Assuming w.l.o.g. that λ1 = ‖M‖2, we get (14).

2.7. Nonsymmetric matrices

The results described above are easily extended to nonsymmetric matrices. Here
M ∈ Rm×n, with m ≥ n and we write its singular value decomposition

M =

n∑

i=1

σiuiv
T
i ,

where ui ∈ Rn, vi ∈ Rm and σi > 0. We can adapt the definition of incoherence
to

µ(M,α, β) =

n∑

i=1

σin
αi/2‖ui‖∞mβi/2‖vi‖∞

and reformulate our main assumption on M as follows.

Assumption 2. There are vectors α ∈ [0, 1]n and β ∈ [0, 1]n for which

µ(M,α, β) ≤ µ and Card(ui) ≤ nαi , Card(vi) ≤ mβi , i = 1, . . . , n

as m,n go to infinity with m = ρn for a given ρ > 1, where µ is an absolute
constant.
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In this setting, using again [HJ91, Th. 5.5.19], we get

∥∥∥∥∥

n∑

i=1

σiC ◦ (uiv
T
i )

∥∥∥∥∥
2

≤
n∑

i=1

σin
αi/2‖ui‖∞mβi/2‖vi‖∞

∥∥∥∥
Cαi,βi

nαi/2mβi/2

∥∥∥∥
2

(15)

where we have assumed that ui, vi are sparse and Cαi,βi is a n
αi×mβi submatrix

of C. As in (5), we can then bound the spectral norm of the residual and we
have

lim sup
n→∞

‖E‖2 ≤ K(γ)µ√
p(nαmin ∧mβmin)

. (16)

in probability, as soon as the sampling probability p is such that if si = nαi∨mβi ,
p ≥ γ(log si)/si, for all i. Perturbation results similar to (11) for left and right
eigenvectors are detailed in [Ste98] for example.

We also note that our arguments go through if M is for instance a diago-
nalizable square matrix, after we replace all the potentially complex numbers
appearing in the definition of incoherence by their modulus: if M =

∑
i λiuiv

T
i ,

where λi ∈ C and ui, vi ∈ Cn, µ(M,α, β) =
∑n

i=1 |λi|nαi/2‖ui‖∞nβi/2‖vi‖∞,
where for a vector ν ∈ Cn, ‖ν‖∞ = maxk |ν(k)|.

3. Numerical experiments

In this section, we study the numerical performance of the subsampling/averaging
results detailed above on both artificial and realistic data matrices

Dense matrices: PCA, SVD, etc. We first illustrate our results by ap-
proximating the leading eigenvector of a matrix M as the average of leading
eigenvectors of subsampled matrices, for various values of the sampling proba-
bility p. To start with a naturally structured dense matrix, we form M as the
covariance matrix of the 500 most active genes in the colon cancer data set in
[ABN+99]. We let p vary from 10−4 to 1 and for each p, we compute the leading
eigenvector of 1000 subsampled matrices, average these vectors and normalize
the result. We call u the true leading eigenvector of M and v the approximate
one. We now normalize v so that ‖v‖2 = 1 (which is standard, but different
from the normalization we used in our theoretical investigations where we had
uT v = 1).

In Figure 2, we plot uTv as a function of p together with the median of uT v
sampled over all individual subsampled matrices, with dotted lines at plus and
minus one standard deviation. We also record the proportion of samples where
‖E‖ satisfies the perturbation condition (10).

We repeat this experiment on a (nonsymmetric) term-document matrix formed
using press release data from PRnewswire, to test the impact of subsampling
on Latent Semantic Indexing results. Once again, we let p vary from 10−2 to 1
and for each p, we compute the leading eigenvector of 1000 subsampled matri-
ces, average these vectors and normalize the result. We call u the true leading
eigenvector of M and v the approximate one. In Figure 3 on the left, we plot
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Fig 2. Left: Alignment uT v between the true and the normalized average of 1000 subsam-
pled eigenvectors (blue circles), median value of uT v over all sampled matrices (solid black
line), with dotted lines at plus and minus one standard deviation and proportion of samples
satisfying the perturbation condition (10) (dashed red line), for various values of the sam-
pling probability p on a gene expression covariance matrix. Right: Zoom on the the interval
p ∈ [10−2, 1].
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Fig 3. Left: Alignment uT v between the true and the normalized average of 1000 subsampled
left eigenvectors (blue circles), median value (solid black line), dotted lines at plus and minus
one standard deviation and proportion of samples satisfying condition (10) (dashed red line),
for various values of the sampling probability p on a term document matrix with dimensions
6779× 11171. Right: Speedup in computing leading eigenvectors on gene expression data, for
various values of the sampling probability p.

uT v as a function of p together with the median of uT v sampled over all indi-
vidual subsampled matrices, with dotted lines at plus and minus one standard
deviation. The matrix M is 6779× 11171 with spectral gap σ2/σ1 = 0.66.

In Figure 3 on the right, we plot the ratio of CPU time for subsampling a gene
expression matrix of dimension 2000 and computing the leading eigenvector of
the subsampled matrix (on a single machine), over CPU time for computing
the leading eigenvector of the original matrix. Two regimes appear, one where
the eigenvalue computation dominates with computation cost scaling with p,
another where the sampling cost dominates and the speedup is simply the ratio
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Fig 4. Magnitude of eigenvector coefficients |ui| in decreasing order for both the leading
eigenvector of the gene expression covariance matrix (left) and leading left eigenvector of the
6779 × 11171 term document matrix (right).
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Fig 5. Left: Alignment uT v between the true leading eigenvector u and the normalized average
leading eigenvector versus number of samples, on the gene expression covariance matrix with
subsampling probability p = 10−2. Right: Alignment uT v for various values of the spectral
gap λ2/λ1 ∈ {0.75, 0.95, 0.99}.

between sampling time and the CPU cost of a full eigenvector computation.
Of course, the principal computational benefit of subsampling is the fact that
memory usage is directly proportional to p.

A key difference between the experiments of Figure 2 and those of 3 is that
the leading eigenvector of the gene expression data set is much more incoherent
than the leading left eigenvector of the term-document matrix, which explains
part of the difference in performance. We compare both eigenvectors in Figure 4.

We then study the impact of the number of samples on precision. We use
again the colon cancer data set in [ABN+99]. In Figure 5 on the left, we fix
the sampling rate at p = 10−2 and plot uT v as a function of the number of
samples used in averaging. We also measure the impact of the eigenvalue gap
λ2/λ1 on precision. We scale the spectrum of the gene expression covariance
matrix so that its first eigenvalue is λ1 = 1 and plot the alignment uT v be-
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tween the true and the normalized average of 100 subsampled eigenvectors over
subsampling probabilities p ∈ [10−2, 1] for various values of the spectral gap
λ2/λ1 ∈ {0.75, 0.95, 0.99}.

Graph matrices: ranking. Here, we test the performance of the methods
described above on graph matrices used in ranking algorithms such as pager-
ank [PBMW98] (because of its susceptibility to manipulations however, this is
only one of many features used by search engines). Suppose we are given the
adjacency matrix of a web graph, with

{
Aij = 1, if there is a link from i to j
Aij = 0, otherwise,

where A ∈ Rn×n (one such matrix is displayed in Figure 6). Whenever a node
has no out-links, we link it with every other node in the graph, so that B =
A+ δ1T /n, with δi = 1 if and only if degi = 0, where degi is the degree of node
i. We then normalize B into a stochastic matrix P g

ij = Bij/degi. The matrix P g

is the transition matrix of a Markov chain on the graph modeling the behavior
of a web surfer randomly clicking on links at every page. For most web graphs,
this Markov chain is usually not irreducible but if we set

P = cP g + (1− c)11T /n

for some c ∈ (0, 1], the Markov chain with transition matrix P will be irreducible.
An additional benefit of this modification is that the spectral gap of P is at
least c [HK03]. The leading (Perron-Frobenius) eigenvector u of this matrix is
called the Pagerank vector [PBMW98], its coefficients ui measure the stationary
probability of page i being visited by a random surfer driven by the transition
matrix P , hence reflect the importance of page i according to this model.

The coefficients of pagerank vectors typically follow a power law for classic
values of the damping factor [PRU06, BC06] which means that the bounds in
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Fig 6. Left: The wb-cs.stanford graph. Right: Loglog plot of the Pagerank vector coefficients
for the cnr-2000 graph.
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Fig 7. Ranking correlation (Spearman’s ρ) between true and averaged pagerank vector (blue
circles), median value of the correlation over all subsampled matrices (solid black line), dotted
lines at plus and minus one standard deviation and proportion of samples satisfying the
perturbation condition (10) (dashed red line), for various values of the sampling probability
p. Left: On the CNR-2000 graph. Right: On the UK-2002 graph.

assumption 1 do not hold. Empirically however, while the distance between true
and averaged eigenvectors quickly gets large, the ranking correlation (measured
using Spearman’s ρ [Mel07]) is surprisingly robust to subsampling.

We use two graphs from the Webgraph database [BV04], cnr-2000 which has
3× 105 nodes and 3 × 106 edges, and UK-2002 with 2 × 107 nodes and 3× 108

edges. For each graph, we form the transition matrix P as in [GZB04] with
uniform teleportation probability and set the teleportation coefficient c = 0.85.
In Figure 6 we plot the wb-cs.stanford graph and the Pagerank vector for
cnr-2000 in loglog scale. In Figure 7 we plot the ranking correlation (Spear-
man’s ρ) between true and averaged Pagerank vector (over 1000 samples), the
median value of the correlation over all subsampled matrices and the proportion
of samples satisfying the perturbation condition (10), for various values of the
sampling probability p. We notice that averaging very significantly improves
ranking correlation, far outside the perturbation regime.

4. Conclusion

We have proposed a method to compute the eigenvectors of very large matrices
in a distributed fashion:

1. To each node in a computer cluster of size N , we send a subsampled
version Si of the matrix of interest, M .

2. Node i computes the relevant eigenvectors of Si.
3. The N eigenvectors are averaged together and normalized to produce our

final estimator.

The key to the algorithm is that Step 2 is numerically cheap (because Si is very
sparse), and hence can be executed fast even on small machines. Therefore a
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cluster or cloud of small machines could be used to approximate the eigenvectors
of M , a difficult problem in general when M is extremely large.

We have shown that under carefully stated conditions, the algorithm de-
scribed above will yield a second-order accurate approximation of the eigenvec-
tors ofM . This gain in accuracy comes from the averaging step of our algorithm.
We note that arguments similar to the ones we used in this paper could be made
to compute second-order accurate approximations of the eigenvalues of M . (We
restricted ourselves to eigenvectors here because in methods such as PCA, the
eigenvectors are in some sense more important than the eigenvalues.) Our re-
sults depend on a measure of incoherence for M that we propose in this paper.
This notion of incoherence makes the algorithm very suitable for matrices whose
eigenvectors are not very sparse (though somewhat sparse eigenvectors can also
be handled). We hence expect that the method we propose could be useful in
working with, for instance, kernel matrices. Our work also shows that subsam-
pling will work if the sampling probability is small, but is likely to fail if that
probability is too small.

At a more general level, we note that a similar averaging step could be used
for other randomized algorithms in numerical linear algebra, provided that these
methods yield unbiased estimates of the entries of M . Then, similar techniques
to the ones we employ could be used to investigate second-order accuracy of
the corresponding algorithms (after the averaging step), provided the original
algorithm also results, with high-probability, in a bounded and reasonably small
perturbation of the matrix M . (Much of our random matrix analysis is devoted
to showing just this for the particular subsampling algorithm we are concerned
with.)

Finally, our simulations show that we gain significantly in accuracy by av-
eraging subsampled eigenvectors (which suggests that our theoretical passage
from first-order to second-order accuracy is also relevant in practice) and that
the performance of our method seems to degrade for very incoherent matrices,
a result that is also in line with our theoretical predictions.

Appendix A: On the median of ‖C‖2

A key quantity in the problems we are considering is the random variable
∥∥∥∥
C√
n

∥∥∥∥
2

,

where C is a n× n random matrix (possibly symmetric) whose entries are i.i.d
with

Ci,j =






√
1−p
p with probabilityp

−
√

p
1−p with probability1-p

.

While if p ≥ γ(logn)4/n, for γ bounded away from 0, a result of Vu [Vu07]
allows us to bound E

[∥∥ C√
n

∥∥
2

]
, we are not aware of existing results in the case

p ≪ (logn)4/n.
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We show in this Appendix that there is a phase transition for p of order
(logn)/n: if p = γ(logn)/n, where γ is bounded below, E

[∥∥ C√
n

∥∥
2

]
and

∥∥ C√
n

∥∥
2

stay bounded (with high-probability in the latter case). When p = (logn)1−δ/n,
for some δ > 0, then

∥∥ C√
n

∥∥
2
→ ∞ in probability.

So in this Appendix, unless otherwise noted, we suppose that p = γ(logn)1+ε/n,
where ε ≥ 0 and p ≤ 1/2. We assume throughout this appendix that γ(1− p) is
bounded below. This is without loss of generality, for otherwise we would change
the rate at which p is going to 0 with n.

A.1. The case of non-symmetric C

We have the following theorem.

Theorem A.1. Suppose that the entries of C are i.i.d with the distribution
mentioned above, so C is not symmetric. C is n × n and p = γ(logn)1+ε/n,
γ > 0. Then there exists a K (independent of n or p and finite) such that

∥∥∥∥
C√
n

∥∥∥∥
2

≤ K

(
1 +

2(logn)−ε/2

√
γ(1− p)

)

with very high-probability as n gets large.

We also have the same result when C is symmetric but this requires a separate
argument, given below. Note that using Vu’s result, we getK = 2 when ε ≥ 3+δ.

We also note that the previous result implies (through elementary linear
algebraic considerations) that the same bound holds if C is n×m with m ≤ n.

Proof. The proof is in several steps. We use a result of Seginer [Seg00] in con-
nection with Talagrand’s inequality and some careful manipulations. Note that
the entries of C are supported on an interval [u, v] with v−u = 1/

√
p(1− p). So

Talagrand’s inequality gives us that if F is a convex 1-Lipschitz function (with
respect to Euclidian norm) of the Ci,j , we have

P (|F −mF | ≥ t) ≤ 4 exp(−p(1− p)t2/4) ,

according to [Led01], Corollary 4.10, where mF is a median of the random
variable F ({Ci,j}).

Standard results also give us control of the deviation from the mean, through,
according to Proposition 1.9 in [Led01],

|µF −mF | ≤ 4

√
π

p(1− p)
. (A.1)

Now, it is well known that ‖C‖2 is a convex 1-Lipschitz function of the entries
of C, so

P (| ‖C‖2 −mC | ≥ t) ≤ 4 exp(−p(1− p)t2/4) . (A.2)
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Therefore, when p = γ(logn)1+ε/n, we have

P

( | ‖C‖2 −mC |√
n

≥ t

)
≤ 4 exp(−γ(logn)1+ε(1− p)t2/4) .

So if we can establish that mC/
√
n ≤ K1, at least asymptotically, then we will

have, for any given l > 0,

‖C‖2 /
√
n ≤ K1 +

(logn)−
1+ε

2(l+1)

√
γ(1− p)

,

with very high-probability (by just picking t = [γ(1− p)(logn)
1+ε
1+l ]−1/2).

Furthermore, the estimate above (Equation (A.1)) gives us, in connection
with Proposition 1.9 in [Led01], that

∣∣∣∣
E [‖C‖2]√

n
− mC√

n

∣∣∣∣ ≤ 4

√
π√

γ(1− p)(log n)1+ε
.

So control of E [‖C‖2] is all we need.
Now Seginer’s result states that if A is a n×m matrix with i.i.d entries and

mean 0, we have, for K a universal constant (i.e independent of A, n, m),

E [‖A‖2] ≤ K

(
E

[
max
1≤i≤n

‖A(i, ·)‖2
]
+E

[
max

1≤j≤m
‖A(·, j)‖2

])
.

Here ‖A(i, ·)‖2 is the Euclidian norm of the i-th row of A, and ‖A(·, j)‖2 is the
Euclidian norm of the j-th column of A.

Let us focus on E [‖A(i, ·)‖2]. Let us call mi the median of ‖A(i, ·)‖2. Clearly,

max
1≤i≤n

‖A(i, ·)‖2 ≤ max
1≤i≤n

|‖A(i, ·)‖2 −mi|+ max
1≤i≤n

mi .

Since the A(i, ·) are identically distributed, mi = mj for all i, j.
In particular,

E

[
max
1≤i≤n

‖A(i, ·)‖2
]
≤ E

[
max
1≤i≤n

|‖A(i, ·)‖2 −mi|
]
+m1 .

Two tasks remain: boundingm1 and controllingE [max1≤i≤n |‖A(i, ·)‖2 −mi|],
when A is replaced by C. We start by the latter.

Controlling E
[max1≤i≤n |‖C(i,·)‖

2
−mi|√

n

]

Note that ‖C(i, ·)‖2 =
√∑n

j=1 C
2
i,j . This is clearly a convex 1-Lipschitz function

of the Ci,j . So Talagrand’s inequality guarantees that

P (| ‖C(i, ·)‖2 −mi| ≥ t) ≤ 4 exp(−p(1− p)t2/4) .
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Using a union bound, we have

P ( max
1≤i≤n

| ‖C(i, ·)‖2 −mi| ≥ t) ≤ (4n exp(−p(1− p)t2/4)) ∧ 1 .

Also, replacing p by its value, we have

P

(
max1≤i≤n | ‖C(i, ·)‖2 −mi|√

n
≥ t

)
≤ (4n exp(−γ(logn)1+ε(1− p)t2/4)) ∧ 1 .

We now recall that for a non-negative random variable Y , we have

E [Y ] =

∫ ∞

0

P (Y ≥ t)dt .

Hence, for any x > 0,

E

[
max1≤i≤n | ‖C(i, ·)‖2 −mi|√

n

]

≤
∫ ∞

0

P

(
max1≤i≤n | ‖C(i, ·)‖2 −mi|√

n
≥ t

)
dt

≤
∫ x

0

1dt+

∫ ∞

x

4n exp(−γ(logn)1+ε(1 − p)t2/4)dt

≤ x+
8n

γ(logn)1+ε(1 − p)x
exp(−γ(logn)1+ε(1− p)x2/4) ,

since ∫ ∞

x

exp(−σt2)dt ≤ 1

2σx
exp(−σx2) .

If we pick x = 2(logn)−ε/2/
√
γ(1− p), we have

γ(logn)1+ε(1− p)x2/4 = (log n) ,

so

E

[
max1≤i≤n | ‖C(i, ·)‖2 −mi|√

n

]
≤ 4√

γ(1− p)(logn)1+ε/2
+

2(logn)−ε/2

√
1− p

√
γ

.

Controlling mi√
n

Using the fact that ‖C(i, ·)‖2 is a convex 1-Lipschitz function of the Ci,j , we
have ∣∣∣∣

E [‖C(i, ·)‖2]√
n

− mi√
n

∣∣∣∣ ≤ 4

√
π√

γ(1− p)(logn)1+ε
.

Now, by concavity of x → √
x,

E [‖C(i, ·)‖2] = E




√√√√
n∑

i=1

C2
i,j


 ≤

√√√√E

[
n∑

i=1

C2
i,j

]
=

√
n .
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Hence, for all i,
mi√
n
≤ 1 + 4

√
π√

γ(1− p)(log n)1+ε
.

Putting everything together

Using our bounds we conclude that, for K2 a universal constant (e.g K2 = 2K,
where K is the constant appearing in Seginer’s result), and for ε ≥ 0,

E

[‖C‖2√
n

]
≤ K2

[
1 +

2√
γ(1− p)(log n)ε/2

(
2

√
π

(logn)1/2
+

2

(logn)
+ 1

)]
.

(A.3)

A.2. The case of symmetric C

Our aim is now to show that

Theorem A.2. Suppose that p = γ(logn)1+ε/n, where ε ≥ 0. Suppose that C
is n× n and symmetric and its entries above and on the diagonal are i.i.d with
the distribution mentioned at the beginning. Then there exists a K (independent
of n or p and finite) such that

∥∥∥∥
C√
n

∥∥∥∥
2

≤ K(1 +
2(logn)−ε/2

√
γ(1− p)

) .

with very high-probability as n gets large.

The proof now relies on a series of lemmas that will allow us to use Theo-
rem A.1

Lemma A.1. Suppose A and B are two matrices whose entries are independent
and for all (i, j) and k integer,

0 ≤ E
[
Ak

i,j

]
≤ E

[
Bk

i,j

]
.

Then, for all k integer,

E
[
trace

(
(ATA)k

)]
≤ E

[
trace

(
(BTB)k

)]
.

In particular, for all k integer, if A and B have n non-zero singular values,

(
E
[
‖A‖2k2

])1/2k
≤ n1/2k

(
E
[
‖B‖2k2

])1/2k
.
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Proof. Let us consider trace
(
(ATA)k

)
. If we expand it in terms of Ai,j , this is the

sum of many products of Ai,j ’s. By independence of the Ai,j ’s, the expectation
of each of these products is the product of the ri,j -th moments of Ai,j , where
ri,j is the number of times Ai,j appear in the product.

Now for each such term, the corresponding term involving B is greater be-
cause it is greater term by term, as our conditions on the moments clearly show
(here it is important that all the moments of Ai,j be non-negative and less than
all the moments of Bi,j).

So we have

E
[
trace

(
(ATA)k

)]
≤ E

[
trace

(
(BTB)k

)]
.

Now, trace
(
(ATA)k

)
=
∑n

j=1(σj(A))
2k, where σj are the decreasingly ordered

singular values of A, from which we simply deduce the second result. As a matter
of fact, ‖A‖2 = σ1(A), so ‖A‖2k2 ≤ trace

(
(ATA)k

)
, and trace

(
(BTB)k

)
≤

nσ1(B)2k.

Lemma A.2. Suppose C is symmetric, n× n with entries i.i.d with the distri-
bution given at the beginning. Then, for some universal K3,

1√
n
E [‖C‖2] ≤ K3(1 +

2(logn)−ε/2

√
γ(1− p)

) .

The same result applies if E [‖C‖2] is replaced by a median of ‖C‖2.
Proof. The first thing to note is that for all k, E

[
Ck

i,j

]
≥ 0, when p ≤ 1/2. Note

that the maximal entry ofC on the diagonal is at most of order
√

n/(logn)1+ε ≪√
n, so we can replace the entries of C on the diagonal by zeroes without affecting

the final result. Call C̃ the corresponding matrix.
Now, we can write C̃ = C0+CT

0 , where C0 has i.i.d entries above the diagonal
and 0 on and underneath it. Note that the entries of C0 are independent. Clearly,

∥∥∥C̃
∥∥∥
2
≤ 2 ‖C0‖2 .

Call D a n× n matrix whose entries are i.i.d with the distribution given at the
beginning. Note that for all i, j, and k integer, 0 ≤ E

[
Ck

0 (i, j)
]
≤ E

[
Dk(i, j)

]
.

Therefore, the previous lemma gives us

E
[
trace

(
(CT

0 C0)
2k
)]

≤ E
[
trace

(
(DTD)2k

)]
.

Hence,

E [‖C0‖2] ≤
[
E
[
trace

(
(CT

0 C0)
2k
)]]1/2k ≤ n1/2k

[
E
[
‖D‖2k2

]]1/2k
.

By convexity, we have, if a and b are non-negative, (a+ b)2k ≤ 22k−1(a2k + b2k).
We also have trivially that (a+ b)1/2k ≤ a1/2k + b1/2k.
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Hence, if MD is a median of
∥∥DTD

∥∥
2
, we have

[
E
[
‖D‖2k2

]]1/2k
≤ 21−1/2k

([
E
[
|‖D‖2 −MD|2k

]]1/2k
+MD

)
.

When the random variable X is such that P (|X − m| > t) ≤ C exp(−ct2),
arguments similar to those of Proposition 1.10 in [Led01] show that, for any
q ≥ 1,

E [|X −m|q] ≤ C
q

2
Γ(q/2)c−q/2 .

Therefore,

[E [|X −m|q]]1/q ≤ C1/q
(q
2

)1/q
(Γ(q/2))1/q c−1/2 .

Applying this result in our context with k = ⌈logn⌉, and using the fact
that Γ(x) ∼ ((x − 1)/e)(x−1)

√
2πx as x → ∞, we have, after realizing that

(Γ(k))1/2k ∼
√
k/e, for a certain constant K,

[
E
[
|‖D‖2 −MD|2k

]]1/2k
≤ K2

√
n

γ(1− p)(logn)1+ε

√
k/e .

Note that K can be taken arbitrarily close to 1, if k is large enough. In any case,
we see that, for a certain constant K, picking k = ⌈logn⌉,

1√
n

[
E
[
|‖D‖2 −MD|2k

]]1/2k
≤ K

(logn)−ε/2

√
γ(1− p)

.

Also, for this choice of k, n1/2k ≤ e1/2, so we have, for yet another constant K,

1√
n
E [‖C0‖2] ≤

MD√
n

+K
(log n)−ε/2

√
γ(1− p)

.

Our work in the previous subsection guarantees that MD√
n

remains bounded by

something of the order K(1 + 2 (logn)−ε/2√
γ(1−p)

), so we have established that, for yet

another K,
1√
n
E [‖C0‖2] ≤ K

(
1 + 2

(logn)−ε/2

√
γ(1− p)

)
.

And the result concerning E [‖C0‖2] is shown.
The result concerning the median comes out of the fact that ‖C‖2 is a convex√
2-Lipschitz function of its entries on or above the diagonal. Hence Talagrand’s

inequality applies and shows that median and mean are arbitrarily close in the
setting we are considering. (See the proof of Theorem A.2 for more details.)

Proof of Theorem A.2. For C symmetric, ‖C‖2 is a convex
√
2-Lipschitz func-

tion of its elements on or above the diagonal. Hence, by Talagrand’s inequality,

P (|‖C‖2 −mC | > t) ≤ 4 exp(−γ(logn)1+ε(1− p)t2/2) .

Because we have established control of E [‖C‖2] above, we also control mC and
conclude as in the proof of Theorem A.1.
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A.3. On ‖C‖2 when 1/n ≤ p ≪ (logn)/n

A.3.1. Case of symmetric C

At the end of Subsection 2.2, we mentioned a corollary (see below) of the fol-
lowing theorem:

Theorem A.3. Suppose that p = (logn)1−δun/n, for a fixed δ in (0, 1) and for
a fixed κ, 0 < un ≤ κ. Suppose also that np ≥ 1. Suppose further that we can
find vn > 0 such that vn → ∞, while vn = o(log n, [u−1

n (log n)δ]1/4). Then

‖C/
√
n‖2 → ∞ in probability.

Recall that practically, this theorem suggests that if we don’t sample enough
the matrix M (i.e p is too small), a subsampling approximation to its eigen-
properties is not likely to work. Let us now prove it.

Proof. We first remark that the diagonal entries of C do not matter for the
result we are trying to show. Let us call DC the diagonal of C. There are two
situations. If np → ∞, then maxi |Ci,i/

√
n| ≤ (np)−1/2 → 0. Similarly, if np is

bounded away from 0 (recall that np ≥ 1 for us), maxi |Ci,i/
√
n| ≤ (np)−1/2, so

‖DC/
√
n‖2 remains bounded. Since by the triangle inequality,

‖C −DC‖2 − ‖DC‖2 ≤ ‖C‖2 ≤ ‖C −DC‖2 + ‖DC‖2 ,

we conclude that it is sufficient to show that ‖(C −DC)/
√
n‖2 → ∞ in prob-

ability to get the result we seek. Let us call C̃ = C −DC . We note that C̃ is
just C where we have replaced the diagonal by zeroes. (As an aside we note
that if np → 0, then P (∃i : Ci,i =

√
(1− p)/p) = 1 − (1 − p)n → 0, so

‖DC‖2 =
√
p/(1− p) with probability one.)

Our strategy is to show that the largest diagonal entry of C̃T C̃/n goes to
infinity. To do so, we will rely on results in random graph theory. Let us examine
more closely this diagonal. Using the definition of C, we see that, if T = C̃T C̃,
and di is the number of times

√
(1− p)/p appears in the i-th column of C̃,

T (i, i) =
(n− 1)p

1− p
+ di

(
1− p

p
− p

1− p

)
.

Now {di} is the degree sequence of an Erdös-Renyi random graph. According
to [Bol01], Theorem 3.1, if k is such that n

(
n−1
k

)
pk(1 − p)n−1−k → ∞, then, if

Xk is the number of vertices with degree greater than k,

lim
n→∞

P (Xk ≥ t) = 1 ,

for any t. So if we can exhibit such a k, then max di ≥ k with probability going
to 1. We now note that for small p,

(
1− p

p
− p

1− p

)
≥ 1

2p
.
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Hence, if our k is also such that k/pn → ∞, we will indeed have

max
i

T (i, i)

n
→ ∞

and the theorem will be proved.
We propose to take k = np(1+vn), where we choose vn such that k is integer

(which can be done without problems, as the arguments below rely only on the
order of magnitude of vn). According to [Bol01], Theorem 1.5, if h = k − np,
np ≥ 1, and q = 1− p,

(
n

k

)
pk(1− p)n−k ≥ 1√

2πpqn
exp

(
− h2

2pqn
− h3

2q2n2
− h4

3p3n3
− h

pn
− β

)
,

(A.4)
where β = 1/(12k)+ 1/(12(n− k)). In our case, h = npvn. Let us show that all
the terms in the exponential are negligible compared to log n as n → ∞:

• β → 0 because k → ∞ and npvn = o
(
(logn)2−δ

)
, given that vn =

o (logn). Hence n− k → ∞.
• h/(pn) = vn = o (logn) by assumption.
• h4/(pn)3 = npv4n = o

(
un(logn)

1−δ(log n)δ/un

)
= o (logn), since vn =

o
(
(u−1

n (logn)δ)1/4
)
.

• h3/n2 = npv3np
2 = o

(
npv4np

2
)
= o

(
p2 logn

)
, since v3n = o

(
v4n
)
(vn → ∞

by assumption).
• h2/np = npv2n = o

(
npv4n

)
= o (logn).

In light of these estimates, we have as n → ∞,

√
n exp

(
− h2

2pqn
− h3

2q2n2
− h4

3p3n3
− h

pn
− β

)
→ ∞ .

Therefore, with this choice of k,

n

(
n− 1

k

)
pk(1 − p)n−1−k → ∞ .

We can finally conclude that

max
i

T (i, i)/n ≥ k

2np
with probability going to 1 .

But because vn → ∞, we have k/(2np) → ∞ and the theorem is proved.

We have the following corollary to which we appealed in Subsection 2.2.

Corollary A.4. When p ∼ (logn)1−δ/n for some fixed δ ∈ (0, 1),

‖C/
√
n‖2 → ∞ in probability.

The previous corollary follows immediately from Theorem A.3, by noticing
that un is lower bounded under our assumptions and by taking vn = (logn)δ/5.
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A.3.2. Case of non-symmetric C

In this situation, we can use the same approach as before, namely showing
divergence of ‖C/

√
n‖2 by showing that the diagonal of CTC/n explodes with

high-probability. We have the following theorem.

Theorem A.5. Suppose we are now in the setting where C is a n × n non-
symmetric matrix, with i.i.d entries defined at the beginning of this Appendix.
Suppose that p = (logn)1−δun/n, for a fixed δ in (0, 1) and for a fixed κ, 0 <
un ≤ κ. Suppose also that np ≥ 1. Suppose further that we can find vn > 0 such
that vn → ∞, while vn = o(logn, [u−1

n (logn)δ]1/4). Then

‖C/
√
n‖2 → ∞ in probability.

Elementary linear algebra shows that the same result holds true if C is n×m,
with m ≥ n.

Proof. We have the same representation as above for the diagonal entries of
T = CTC,

T (i, i) =
np

1− p
+ di

(
1− p

p
− p

1− p

)
,

where now di are i.i.d Binomial(n, p). Now, for tn ∈ R,

P

(
max

i

di
np

≤ tn

)
=

n∏

i=1

P

(
di
np

≤ tn

)
=

[
1− P

(
di
np

> tn

)]n
.

So if we can find un such P
(
di

np > tn
)
≥ un, where nun → ∞, we will have

P
(
maxi

di

np ≤ tn
)
→ 0 and therefore

P

(
max

i

di
np

> tn

)
→ 1 .

Therefore maxi Ti,i/n > tn in this situation asymptotically in probability, and
if tn can be chosen to go to ∞ we are done.

Note that P ( di

np > tn) ≥ P (di = ⌈tnnp+ 1⌉), assuming tnnp+ 1 ≤ n (which

will not be a problem below).
If we take tn such that k = tnnp+1, where k = np(vn +1) ∈ N as above, we

have P (di = tnnp+ 1) =
(
n
k

)
pkqn−k = b(k;n, p). Note also that tn ∼ vn → ∞.

We have seen in the previous proof that under our conditions, nb(k;n, p) → ∞.
So we conclude that

P (max
i

Ti,i/n > tn) → 1 ,

and hence ∥∥C/
√
n
∥∥
2
→ ∞ in probability. .
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Appendix B: Other results

B.1. On ‖C‖2 for moderate p

Let us consider the symmetric random matrix C with entries distributed as, for
i ≥ j,

Ci,j =





√
1−p
p with probability p

−
√

p
1−p with probability 1− p

. (B.1)

We assume that C is n × n. Our aim is to show that we can control ‖C‖2 and
in particular its deviation around its median. We do so by using Talagrand’s
inequality.

We have the following theorem.

Theorem B.1. Suppose that we observe n matrices Cαi , for 1 ≤ i ≤ n with en-
tries distributed as those of the matrix C just described. Suppose these matrices
are of size nαi , where αi are positive numbers. Call αmin = min1≤i≤n αi.

1. Assume that, for some fixed δ > 0, αmin > (logn)(δ−3)/4. Suppose further
that p is such that limn→∞(αmin log n)

4/(nαminp) = 0. Then

lim sup
n→∞

max
i∈{1,...,n}

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ 2 a.s . (B.2)

2. If pnαmin/(lognαmin) is bounded below by γ > 0, αmin is such that nαmin →
∞ and p < 1/2, we have, for some finite K(γ),

lim sup
n→∞

max
i∈{1,...,n}

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ K(γ) a.s . (B.3)

Moreover, K(γ) is of the form (1+2/
√
γ)K+8/

√
γαmin for some universal

K. Naturally, if

lim inf pnαmin/(lognαmin) = ∞ and γαmin → ∞ ,

then K(γ) can be replaced by K.

Proof. The proof is in two steps. We first show that we can control the deviation
of the random quantity ‖Cαi‖2 around its median, uniformly in i. Then we show
that we can control the corresponding medians.

• Control of the deviation of ‖Cαi
‖2 around its median.

We note that the application C → ‖C‖2 is a convex,
√
2-Lipschitz (with

respect to Euclidian/Frobenius norm) function of the entries of C that are on
or above the main diagonal. As a matter of fact, since ‖·‖ is a norm, it is convex.
Furthermore, if A and B are two symmetric matrices,

‖A−B‖2 ≤ ‖A−B‖F =

√∑

i,j

(ai,j − bi,j)2 ≤
√
2

√∑

i≤j

(ai,j − bi,j)2
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Now recall the consequence of Talagrand’s inequality [Tal95] spelled out in
[Led01], Corollary 4.10 and Equation (4.10): if F is a convex, 1-Lipschitz func-
tion (with respect to Euclidian norm) on Rn, of n independent random variables
(X1, . . . , Xn) that take value in [u, v], and if mF is a median of F (X1, . . . , Xn),
then

P (|F −mF | > t) ≤ 4 exp(−t2/[4(u− v)2]) . (B.4)

The random variables that are above the main diagonal of C are bounded, and

take value in [−
√

p
1−p ,

√
1−p
p ]. We note that

(√
1− p

p
+

√
p

1− p

)2

=
1

p(1− p)
.

Therefore, calling mn the median of
∥∥n−1/2C

∥∥
2
, we have, in light of Equa-

tion (B.4),

P

(∣∣∣∣
∥∥∥∥

C

n1/2

∥∥∥∥
2

−mn

∣∣∣∣ > t

)
≤ 4 exp

(
− nt2

8/(p(1− p))

)
= 4 exp

(
− t2

8
p(1− p)n

)
.

(B.5)
Suppose now that we have a collection Cαi of matrices of size nαi with entries

distributed as in Equation (B.1). (Note that the matrices could be dependent.)
Let us call mnαi the median of

∥∥Cαi/n
αi/2

∥∥
2
. Then we have, by a simple union

bound argument, for any k,

P

(
max
1≤i≤k

∣∣∣∣
∥∥∥∥

Cαi

nαi/2

∥∥∥∥
2

−mnαi

∣∣∣∣ > t

)
≤ 4

k∑

i=1

exp

(
− t2

8
p(1− p)nαi

)

≤ 4k exp

(
− t2

8
p(1− p)nαmin

)
,

where αmin = min1≤i≤k αi.

Suppose now that k = n, p ≤ 1/2, pnαmin ≥ γαζ
min(log n)

ζ , for some ζ ≥ 1.
We assume that γ is bounded below. (Also, implicitly, γ is indexed by n and is
allowed to potentially go to ∞.) For any η > 0, let

tn = 4

√
2 + η√
γαζ

min

(logn)(1−ζ)/2 .

Since pnαmin(1− p) ≥ γαζ
min(logn)

ζ/2, we have

log n− t2n
8
pnαmin(1 − p) ≤ (log n)(1− (2 + η)) .

Hence,

n exp

(
− t2n

8
pnαmin(1− p)

)
≤ 1

n1+η
,
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and since this is the general term of a converging series, we have, when p ≤ 1/2

and pnαmin ≥ γαζ
min(log n)

ζ

max
1≤i≤n

∣∣∣∣
∥∥∥∥

Cαi

nαi/2

∥∥∥∥
2

−mnαi

∣∣∣∣ < tn a.s ,

by a simple application of the Borel-Cantelli lemma. Hence, we have, for any
η > 0,

max
1≤i≤n

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ max
1≤i≤n

mnαi + 4

√
2 + η√
γαζ

min

(logn)(1−ζ)/2 a.s . (B.6)

We note that when p → 0, which is the setting that is of interest to us, the
quantity 4

√
2 + η can be replaced by 23/2

√
2 + η.

∗ Setting of Part 1:
In the setting of Part 1 of the theorem, we have γ = γn → ∞, ζ = 4 and
(logn)1−ζ/αζ

min ≤ (logn)−δ. Hence, tn → 0 and so that

max
1≤i≤n

∣∣∣∣

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

−mnαi

∣∣∣∣→ 0 a.s ,

and somewhat heuristically,

max
1≤i≤n

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≃ max
1≤i≤n

mnαi a.s .

∗ Setting of Part 2:
In that setting, we have ζ = 1, so we conclude that

max
1≤i≤n

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ max
1≤i≤n

mnαi + 4

√
2 + η√
γαmin

a.s .

• Controlling the medians
∗ Setting of Part 1:
Recall Vu’s Theorem 1.4 in [Vu07], applied to our situation where we are dealing
with bounded random variables with mean 0 and variance 1: if the matrix C
has entries as above and is n× n, then almost surely,

∥∥∥∥
C

n1/2

∥∥∥∥
2

≤ 2 + κ0

(
1− p

p

)1/4

n−1/4 log(n) ,

for some constant κ0. So as soon as (logn)4/(pn) remains bounded, so does mn,
the median of

∥∥ C
n1/2

∥∥
2
. In particular, if (log n)4/(pn) → 0, we have

lim sup
n→∞

mn ≤ 2 .

Using elementary properties of the function f such that f(t) = (log t)4/t, we
can therefore conclude that if αmin is such that

(αmin logn)
4

nαminp
→ 0 ,
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we have
lim sup
n→∞

max
1≤i≤n

mnαi ≤ 2 .

(Note that this is true because we are taking the maximum of elements of a fixed
deterministic sequence that is asymptotically less than or equal to 2+ε, for any
ε and the smallest argument is going to infinity. All the work using Talagrand’s
inequality was done to allow us to switch from having to control the maximum
of a random sequence to that of a deterministic sequence.)

Now when (αmin logn)
4/(pnαmin) → 0, we have a fortiori pnαmin > (logn)1+δ

when αmin > (log n)(δ−3)/4. So we conclude that when (αmin logn)
4/(pnαmin) →

0 and αmin > (log n)(δ−3)/4,

lim sup
n→∞

max
1≤i≤n

∥∥∥∥
Cαi

nαi/2

∥∥∥∥
2

≤ 2 a.s .

This shows Part 1 of the theorem.
∗ Setting of Part 2:
We have established in Lemma A.2 that as n → ∞, if p ≥ γ(logn)/n, we have,
for a universal constant K,

mn ≤ (1 + 2γ−1/2)K .

Hence, when nαmin → ∞ and p ≥ γ(lognαmin)/nαmin , we also have

lim sup
n→∞

max
1≤i≤n

mnαi ≤ (1 + 2γ−1/2)K .

And we conclude as before to show Part 2.

Let us now consider the related issue of understanding the matrix E = rpM ◦
C, where rp =

√
(1 − p)/p, M is a deterministic matrix and C is a random

matrix as above.

Theorem B.2. Suppose E = rpM ◦C, where C is a symmetric random matrix

distributed as above, M is a deterministic matrix and rp =
√
(1− p)/p. Let us

call mE a median of ‖E‖2. Then we have

P (| ‖E‖2 −mE | > t) ≤ 4 exp

(
− p2

8 ‖M‖2∞
t2

)
.

Hence, in particular,

E
[
‖E‖22

]
≤ m2

E + 32
‖M‖2∞
p2

+ 8mE

√
2π ‖M‖2∞

p2
. (B.7)

and

E[‖E‖32] ≤ 4m3
E + 12

√
π

(
8 ‖M‖2∞

p2

)3/2

. (B.8)



N. El Karoui, A. d’Aspremont/Accurate randomized eigenvector computation 1379

We note in connection with this theorem that if M is symmetric (and n×n)
and can be written in spectral form as M =

∑
λiuiu

T
i , we clearly have ‖M‖∞ ≤∑n

i=1 |λi| ‖ui‖2∞, and hence, if µ is the incoherence of the matrix M , we also
have

‖M‖∞ ≤
n∑

i=1

|λi| ‖ui‖2∞ ≤ µn−αmin . (B.9)

Proof of Theorem B.2. The crux of the proof is quite similar to that of Theorem
B.1: we will rely on Talagrand’s concentration inequality for convex 1-Lipschitz
functions of bounded random variables. To do so let us consider the map: C →
f(C) = ‖M ◦ C‖2. This map f is convex as the composition of a norm with an

affine mapping. Let us now show that it is (
√
2 ‖M‖∞)-Lipschitz with respect

to Euclidian norm: if we denote by c
(k)
i,j the (i, j)-th entry of the matrix Ck, we

have

|f(C1)− f(C2)| = |‖M ◦ C1‖2 − ‖M ◦ C2‖2| ≤ ‖M ◦ (C1 − C2)‖2

≤ ‖M ◦ (C1 − C2)‖F =

√∑

i,j

M2
i,j(c

(1)
i,j − c

(2)
i,j )

2

≤ max
i,j

|Mi,j |
√∑

i,j

(c
(1)
i,j − c

(2)
i,j )

2 ≤ ‖M‖∞
√
2

√∑

i≤j

(c
(1)
i,j − c

(2)
i,j )

2

Hence, f is indeed a (
√
2 ‖M‖∞)-Lipschitz function of the entries of C that are

above or on the diagonal. Now the function of C we care about is g(·) = rpf(·),
which is convex and

√
2 ‖M‖∞ rp- Lipschitz. Given that the entries of C are

bounded, we have, as in the proof of Theorem B.1,

P (| ‖E‖2 −mE | > t) ≤ 4 exp

(
− p(1− p)

8r2p ‖M‖2∞
t2

)
= 4 exp

(
− p2

8 ‖M‖2∞
t2

)
.

Now using the proof of Proposition 1.9 in [Led01] (see p.12 of this book), we
conclude that

E [| ‖E‖2 −mE |] ≤ 4

√
2π ‖M‖2∞

p2
, and

E
[
| ‖E‖2 −mE |2

]
≤ 32

‖M‖2∞
p2

.

Therefore,

E
[
‖E‖22

]
≤ m2

E + 32
‖M‖2∞
p2

+ 8mE

√
2π ‖M‖2∞

p2
,

since for a and b positive, a2 ≤ b2 + (a− b)2 + 2b|a− b|.
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More generally, we see, using essentially Proposition 1.10 in [Led01] and el-
ementary properties of the Gamma function, that if the random variable F is
such that for a deterministic number aF , P (|F − aF | > t) ≤ C exp(−cr2), then

E[|F − aF |k] ≤ CΓ

(
k

2
+ 1

)
c−k/2 .

Applying this result with k = 3, we get

E
[
| ‖E‖2 −mE |3

]
≤ 3

√
π

(
8 ‖M‖2∞

p2

)3/2

.

In our context, using the fact that, for positive a and b, (a + b)3 ≤ 4(a3 + b3)
by convexity, we also have

E[‖E‖32] ≤ 4


m3

E + 3
√
π

(
8 ‖M‖2∞

p2

)3/2

 .

B.2. Regularized eigenvector considerations

We now have the following (regularized) second order accuracy result, which is
a critical component of the proof of Theorem 3, one of the main results of the
paper.

The results above allowed us to control E
[
‖E‖22

]
, E
[
‖E‖32

]
and these moment

bounds, together with E[E] = 0 of course and the bound on ‖M‖∞ in (B.9), are
all we need to show that averaging produces second order accurate eigenvector
approximations.

Theorem B.3. Suppose that the assumptions of Theorem 1 are satisfied. We
consider the approximation of u the eigenvector associated with the largest eigen-
value of M . Recall that v is the eigenvector corresponding to the leading eigen-
value of the subsampled matrix S. For ε > 0, we call ṽε the vector such that

ṽε =

{
v if

∥∥(Id +∆)−1
∥∥
2
≤ 1

ε

u−REu+∆REu otherwise
.

Then, we have

‖E [ṽε − u]‖2 ≤ E

[
4 ‖R‖32 ‖E‖32

ε
+ 2 ‖R‖22 ‖E‖22

]
.

Also, for any η > 0, we have asymptotically,

‖E[u− ṽε]‖2 ≤ 2(K(γ))2 + η

(λ1 − λ2)2
µ2

pnαmin
+

16(K(γ))3 + η

ε(λ1 − λ2)3

(
µ2

pnαmin

)3/2

.
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Suppose further that we are in an asymptotic setting where 1
λ1−λ2

µ
(pnαmin )1/2

→
0. Then, v − ṽε = 0 with high-probability.

Proof. Let us first explain that our regularization does not change the vector we
are dealing with with high-probability. ṽε = v as long as

∥∥(Id + ∆)−1
∥∥
2
≤ 1/ε,

which is guaranteed if 2 ‖E‖2 /d ≤ 1 − ε, where d = λ1 − λ2. When we assume
that 1

λ1−λ2

µ
(pnαmin )1/2

→ 0, since we have according to Theorem B.2 ‖E‖2 ≤
K(γ) µ

(pnαmin )1/2
with high-probability, we conclude that with high-probability,

ṽε = v (provided K(γ), whose form is made explicit there, stays bounded).
Using Equation (9) with j = 1, we see that, since ‖∆‖2 ≤ 2 ‖R‖2 ‖E‖2,

‖ṽε − (u−REu+∆REu)‖2 ≤ 1

ε
‖∆‖22 ‖RE‖2 ≤ 4 ‖R‖32 ‖E‖32

ε
.

Recall that by construction E[E] = 0. Hence, since R is a fixed deterministic
matrix and u is a deterministic vector,

E [ṽε − u] = E [ṽε − u+REu] .

So, if we now use the fact that ‖u‖ = 1, we have

‖E [ṽε − u]‖2 = ‖E [ṽε − u+REu]‖2
≤ ‖E [ṽε − u+REu−∆REu]‖2 + ‖E [∆REu]‖2
≤ E [‖ṽε − u+REu−∆REu‖2] +E [‖∆REu‖2]

≤ E

[
4 ‖R‖32 ‖E‖32

ε
+ 2 ‖R‖22 ‖E‖22

]
.

This proves the first result of the theorem. Let us now show that we can
control the right-hand side of the previous equation.

We prove in Theorem B.2 that

E
[
‖E‖22

]
≤ m2

E + 32
‖M‖2∞
p2

+ 8mE

√
2π ‖M‖2∞

p2
,

where mE is a median of the random variable ‖E‖2. Our asymptotic control of
‖E‖2 in (5) and (6) allows us to control mE , namely,

lim sup
n→∞

m2
E ≤ (K(γ))2

µ2

pnαmin
.

In other respects, following (B.9), we clearly have ‖M‖∞ ≤ ∑n
i=1 |λi| ‖ui‖2∞,

and hence
‖M‖∞ ≤ n−αminµ .

Hence,
‖M‖2∞
p2

≤ µ2

(pnαmin)
2 = o

(
µ2

pnαmin

)
,
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since we are in a setting where pnαmin → ∞. Similarly,mE

√
‖M‖2

∞

p2 = o
(

µ2

pnαmin

)
,

so we have for η > 0,

2 ‖R‖22 E
[
‖E‖22

]
≤ 2(K(γ))2 + η

(λ1 − λ2)2
µ2

pnαmin

asymptotically.
Furthermore, we prove in Theorem B.2 that

E[‖E‖32] ≤ 4m3
E + 12

√
π

(
8 ‖M‖2∞

p2

)3/2

≤ 4m3
E + o

((
µ2

pnαmin

)3/2
)

.

Hence, for η > 0,

4 ‖R‖32 E[‖E‖32] ≤
16(K(γ))3 + η

(λ1 − λ2)3

(
µ2

pnαmin

)3/2

.

B.3. Variance computations

We provide some details here to complement the explanations we gave in the
proof of Theorem 4 in Subsection 2.6.

On E[E2] Let us explain why this matrix is diagonal and compute the co-
efficients on the diagonal. Recall that E =

√
(1− p)/pM ◦ C, where C is a

random matrix whose above-diagonal elements are independent, have mean 0
and variance 1. E is naturally symmetric and we call Ei its i-th column. Nat-
urally, E2(i, j) = ET

i Ej . Suppose first that i 6= j. The elements of Ei and Ej

are independent, except for Eij and Eji, which are equal. In particular, Eki and
Ekj are independent for all 1 ≤ k ≤ n. Recall also that E[C] = 0, so E[E] = 0.
Combining all these elements, we conclude that, if i 6= j,

E[ET
i Ej ] =

n∑

k=1

E[EkiEkj ] =

n∑

k=1

E[Eki]E[Ekj ] = 0 .

Therefore E[E2] is diagonal. Let us now turn our attention to computing the
elements of the diagonal. This is simple since

E[ET
i Ei] =

1− p

p

n∑

k=1

M2
ki E[E2

ki] =
1− p

p

n∑

k=1

M2
ki =

1− p

p
‖Mi‖22 .

This is the result we announced in the proof of Theorem 4 in Subsection 2.6.
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On var(uTEu) Rewriting this quantity as a sum of independent quantities
greatly simplifies the computation. If we pursue this route, we have

uTEu =
∑

i,j

u(i)u(j)Eij = 2
∑

i>j

u(i)u(j)Eij +
∑

i

u(i)2Eii .

Because the previous expression is a sum of independent random variables, we
immediately conclude that

p

1− p
var(uTEu) = 4

∑

i>j

u(i)2u(j)2M2
ij +

∑

i

u(i)4M2
ii

= 2

(
2
∑

i>j

u(i)2u(j)2M2
ij +

∑

i

u(i)4M2
ii

)
−
∑

i

u(i)4M2
ii .

Calling w = u ◦ u and M = M ◦ M , we immediately recognize in the last
expression the quantity

2(wTMw)−
∑

k

w(k)2Mkk ,

as announced in the proof of Theorem 4.
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