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Abstract: This paper studies the estimation of a large covariance matrix.
We introduce a novel procedure called ChoSelect based on the Cholesky
factor of the inverse covariance. This method uses a dimension reduction
strategy by selecting the pattern of zero of the Cholesky factor. Alterna-
tively, ChoSelect can be interpreted as a graph estimation procedure for
directed Gaussian graphical models. Our approach is particularly relevant
when the variables under study have a natural ordering (e.g. time series) or
more generally when the Cholesky factor is approximately sparse. ChoSelect
achieves non-asymptotic oracle inequalities with respect to the Kullback-
Leibler entropy. Moreover, it satisfies various adaptive properties from a
minimax point of view. We also introduce and study a two-stage procedure
that combines ChoSelect with the Lasso. This last method enables the
practitioner to choose his own trade-off between statistical efficiency and
computational complexity. Moreover, it is consistent under weaker assump-
tions than the Lasso. The practical performances of the different procedures
are assessed on numerical examples.
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1. Introduction

The problem of estimating large covariance matrices has recently attracted a
lot of attention. On the one hand, there is an inflation of high-dimensional data
in many scientific areas: gene arrays, functional magnetic resonance imaging
(fMRI), image classification, and climate studies. On the other hand, many
data analysis tools require an estimation of the covariance matrix Σ. This is for
instance the case for principal component analysis (PCA), for linear discriminant
analysis (LDA), or for establishing independences or conditional independences
between the variables. It is known for a long time that the simplest estimator,
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the sample covariance matrix performs poorly when the size of the vector p is
larger than the number of observations n (see for instance Johnstone [16]).

Depending on the objectives of the analysis and on the applications, differ-
ent approaches are used for estimating high-dimensional covariance matrices.
Indeed, if one wants to perform PCA or to establish independences between the
covariates, then it is advised to estimate directly the covariance matrix Σ. In
contrast, performing LDA further relies on the inverse of the covariance matrix.
In the sequel, we call this matrix the precision matrix and note it Ω. Sparse
precision matrices are also of interest because of their connection with graphical
models and conditional independence. The pattern of zero in Ω indeed corre-
sponds to the graph structure of the distribution (see for instance Lauritzen [20]
Sect.5.1.3).

Most of the methods based on direct covariance matrix estimation amount to
regularize the empirical covariance matrix. Let us mention the work of Ledoit
and Wolf [21] who propose to replace the sample covariance with its linear
combination with the identity matrix. However, these shrinkage methods are
known to provide an inconsistent estimation of the eigenvectors [17]. Applying
recent results on random matrix theory, El Karoui [11] and Bickel and Levina [5]
have studied thresholding estimators of Σ. The resulting estimator is sparse and
is proved (for instance [5]) to be consistent with respect to the operator norm
under mild conditions as long as log(p)/n goes to 0. These results are particularly
of interest for performing PCA since they imply a consistent estimation of the
eigenvalues and the eigenvectors. Observe that all these methods are invariant
under permutation of the variables. Yet, in many applications (for instance
times series, spectroscopy, climate data), there exists a natural ordering in the
data. In such a case, one should use other procedures to obtain faster rates of
convergence. Among other, Furrer and Bentgsson [14] and Bickel and Levina [6]
use banded or tapering estimators. Again, the consistency of such estimators
is proved. Moreover, all these methods share an attractive computational cost.
We refer to the introduction of [5] for a more complete review.

The estimation procedures of the precision matrix Ω fall into three categories
depending whether there exists an ordering on the variables and to what extent
this ordering is important. If there is not such an ordering, d’Aspremont et al. [3]
and Yuan and Lin [33] have adopted a penalized likelihood approach by applying
a l1 penalty to the entries of the precision matrix. It has also been discussed by
Rothman et al. [27] and Friedman et al. [13] and extended by Lam and Fan et
al. [19] or Fan et al. [12] to other penalization methods. These estimators are
known to converge with respect to the Frobenius norm (for instance [27]) when
the underlying precision matrix is sparse enough.

When there is a natural ordering on the covariates, the regularization is
introduced via the Cholesky decomposition:

Ω = T ∗S−1T ,

where T is a lower triangular matrix with a unit diagonal and S is a diagonal
matrix with positive entries. The elements of the i-th row can be interpreted
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as regression coefficient of i-th component given its predecessors. This will be
further explained in Section 2.1. For time series or spectroscopy data, it is more
likely that the relevant covariates for this regression of the i-th component are
its closest predecessors. In other word, it is expected that the matrix T is ap-
proximately banded. With this in mind, Wu and Pourahmadi [31] introduce a
k-banded estimator of the matrix T by smoothing along the first k subdiagonals
and setting the rest to 0. The choice of k is made by applying AIC (Akaike [1]).
They prove element-wise consistency of their estimator but did not provide
any high-dimensional result with respect to a loss function such as Kullback or
Frobenius. Bickel and Levina [6] also consider k-banded estimator of T and are
able to prove rates of convergence in the matrix operator norm. Moreover, they
introduce a cross-validation approach for choosing a suitable k, but they do not
prove that the selection method achieves adaptiveness. More recently, Levina
et al. [22] propose a new banding procedure based on a nested Lasso penalty.
Unlike the previous methods, they allow the number k = ki used for banding
to depend on the line i of T . They do not state any theoretical result, but they
exhibit numerical evidence of its efficiency. In the sequel, we call the issue of
estimating Ω by banding the matrix T the banding problem.

Between the first approach based on precision matrix regularization and the
second one which relies on banding the Cholesky factor, there exists a third
one which is not permutation invariant, but does not assume that the matrix
T is approximately banded. It consists in approximating T by a sparse lower
triangular matrix (i.e. most of the entries are set to 0).

When is it interesting to adopt this approach? If we consider a directed
graphical model whose graph is sparse and compatible with the ordering of the
variables, then the Cholesky factor T is sparse. Indeed, its pattern of zero is
related to the directed acyclic graph (DAG) of the directed graphical model
associated to this ordering (see Section 2.1 for a definition). More generally, it
may be worth using this strategy even if one does not know a “good” ordering on
the variables. On the one hand, most of the procedures based on the estimation
of T are computationally faster than their counterpart based on the estimation
of Ω. This is due to the decomposition of the likelihood into p independent
terms explained in Section 3. On the other hand, there exist examples of sparse
Cholesky factor T such that the precision matrix Ω is not sparse at all. Consider
for instance a matrix T which is zero except on the diagonal and on the last
line. Admittedly, it is not completely satisfying to apply a method that depends
on the ordering of the variables when we do not know a good ordering. There
are indeed examples of sparse precision matrices Ω such that for a bad ordering,
the Cholesky factor is not sparse at all (see [27] Sect.4). Nevertheless, if sparse
precision matrices and sparse Cholesky factors have different approximation
capacities, it remains still unclear which one should be favored.

In the sequel, we call the issue of estimating T in the class of sparse lower
triangular matrices the complete graph selection problem by analogy to the com-
plete variable estimation problem in regression problems. In this setting, Huang
et al. [15] propose to add an l1 penalty on the elements of T . More recently,
Lam and Fan [19] have extended the method to other types of penalty and have
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proved its consistency in the Frobenius norm if the matrix T is exactly sparse.
To finish, let us mention that Wagaman and Levina [30] have developed a data-
driven method based on the isomap algorithm for picking a “good” ordering on
the variables.

In this paper, we consider both the banding problem and the complete graph
selection problem. We introduce a general l0 penalization method based on
maximum likelihood for estimating the matrices T and S. We exhibit a non-
asymptotic oracle inequality with respect to the Kullback loss without any as-
sumption on the target Ω.

For the adaptive banding issue, our method is shown to achieve the optimal
rate of convergence and is adaptive to the rate of decay of the entries of T
when one moves away from the diagonal. Corresponding minimax lower bounds
are also provided. We also compute asymptotic rates of convergence in the
Frobenius norm. Contrary to the l1 penalization methods, we explicitly provide
the constant for tuning the penalty. Finally, the method is computationally
efficient.

For complete graph selection, we prove that our estimator non-asymptotically
achieves the optimal rates of convergence when T is sparse. We also provide the
corresponding minimax lower bounds. To our knowledge, this minimax lower
bounds with respect to the Kullback discrepansy are also new. Moreover, our
method is flexible and allows to integrate some prior knowledge on the graph.
However, this procedure is computationally intensive which makes it infeasible
for p larger than 30. This is why we introduce in Section 7 a computationally
faster version of the estimator by applying a two-stage procedure. This method
inherits some of the good properties of the previous method and applies for
arbitrarily large p. Moreover, it is shown to select consistently the pattern of
zeros under weaker assumptions than the Lasso. These theoretical results are
corroborated by a simulation study.

Since data analysis methods like LDA are based on likelihood we find more
relevant to obtain rates of convergence with respect to the Kullback-Leibler
loss than Frobenius rates of convergence. Moreover, considering Kullback loss
allows us to obtain rates of convergence which are free of hidden dependency
on parameter such as the largest eigenvalue of Σ. In this sense, we argue that
this loss function is more natural for the statistical problem under consideration.

The paper is organized as follows. Section 2 gathers some preliminaries about
the Cholesky decomposition and introduces the main notations. In Section 3,
we describe the procedure and provide an algorithm for computing the estima-
tor Ω̃. In Section 4, we state the main result of the paper, namely a general
non-asymptotic oracle type inequality for the risk of Ω̃. In Section 5, we specify
our result to the problem of adaptive banding. Moreover, we prove that our
so-defined estimator is minimax adaptive to the decay of the off-diagonal coef-
ficients of the matrix T . Asymptotic rates of convergence with respect to the
Frobenius norm are also provided. In Section 6, we investigate the complete
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graph selection issue. We first derive a non-asymptotic oracle inequality and
then derive that our procedure is minimax adaptive to the unknown sparsity of
the Cholesky factor T . As previously, we provide asymptotic rates of convergence
with respect to the Frobenius loss function. Moreover, we introduce a computa-
tionally feasible estimation procedure in Section 7 and we derive an oracle-type
inequality and sufficient condition for consistent selection of the graph. In Sec-
tion 8, the performances of the procedure are assessed on numerical examples
for both the banding and the complete graph selection problem. We make a few
concluding remarks in Section 9. Sketch of the proof are in Section 10, while the
details are postponed to the technical Appendix [28].

2. Preliminaries

2.1. Link with conditional regression and graphical models

In this subsection, we review basic properties about Cholesky factors and ex-
plain their connection with directed graphical models.

We consider the estimation of the vector X = (Xi)1≤i≤p of size p which
follows a centered normal distribution with covariance matrix Σ. We always
assume that Σ is non-singular. We recall that the precision matrix Ω uniquely
decomposes as Ω = T ∗ST where T is a lower triangular matrix with unit diag-
onal and S is a diagonal matrix. Let us first emphasize the connection between
the modified Cholesky factor T and conditional regressions. For any i between
2 and p we note ti the vector of size i− 1 made of the i− 1-th first elements of
the ith-line of T . By convention t1 is the vector of null size. Besides, we note si
the i-th diagonal element of the matrix S. Let us define the vector ǫ = (ǫi)1≤i≤p

of size p as ǫ := TX . By standard Gaussian properties, the covariance matrix
of ǫ is S. Since the diagonal of T is one, it follows that for any 1 ≤ i ≤ p

X [i] =

i−1∑

j=1

−ti[j]X [j] + ǫi , (1)

where Var(ǫi) = si and the (ǫi)1≤i≤p are independent.

Let
−→
G be a directed acyclic graph who vertex set is {1, . . . , p}. We assume that

the direction of the edges is compatible with the natural ordering of {1, . . . , p}.
In other words, we assume that any edge j → i in

−→
G satisfies j < i. Given a

vertex i, the set of its parents is defined by:

pa−→
G
(i) := {j < i , j → i} .

Then, the vector X is said to be a directed Gaussian graphical model with

respect to
−→
G if for any 1 ≤ j < i ≤ p such that j /∈ pa−→

G
(i), Xi is indepen-

dent of Xj conditionally to (Xk)k∈pa−→
G
(i). This means that only the variables
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(Xk)k∈pa−→
G
(i) are relevant for predicting Xi among the variables (Xk)k<i. There

are several definitions of directed Gaussian graphical model (see Lauritzen [20]),
which are all equivalent when Σ is non-singular.

There exists a correspondence between the graph
−→
G and the Cholesky factor

T of the precision matrix Ω. If X is a directed graphical model with respect to−→
G , then T [i, j] = 0 for any j < i such that j 9 i. Conversely, X is a directed

graphical model with respect to the graph
−→
G defined by j → i if and only

T [i, j] 6= 0. Hence, it is equivalent to estimate the pattern of zero of T and the

minimal graph
−→
G compatible with the ordering.

These definitions and properties depend on a particular ordering of the vari-
ables. It is beyond the scope of this paper to discuss the graph estimation
when the ordering is not fixed. We refer the interested reader to Kalisch and
Bühlmann [18].

2.2. Notations

For any set A, |A| stands for its cardinality. We are given n independent obser-
vations of the random vector X . We always assume that X follows a centered
Gaussian distribution N (0p,Σ). In the sequel, we note X the n×p matrix of the
observations. Moreover, for any 1 ≤ i ≤ p and any subset A of {1, . . . , p − 1},
Xi and XA respectively refer to the vector of the n observations of Xi and to
the n× |A| matrix of the observations of (Xi)i∈A.

In the sequel, K(Ω;Ω′) stands for the Kullback divergence between the cen-
tered normal distribution with covariance Ω−1 and the centered normal distri-
bution with covariance Ω′−1. We shall also sometimes assess the performance of
the procedures using the Frobenius norm and the l2 operator norm. This is why
we respectively define ‖A‖2F :=

∑
i,j A[i, j]

2 and ‖A‖ as the Frobenius norm and
the l2 operator norm of the matrix A. For any matrix Ω, ϕmax(Ω) stands for the
largest eigenvalue of Ω. Finally, L, L1, L2,. . . denote universal constants that
can vary from line to line. The notation L. specifies the dependency on some
quantities.

3. Description of the procedure

In this section, we introduce our procedure for estimating Ω given a n-sample of
the vector X . For any i between 1 and p, mi stands for a subset of {1, . . . , i−1}.
By convention, m1 = ∅. In terms of directed graphs, mi stands for the set of
parents of i. Besides, we call any set m of the form m = m1 × m2 × · · · × mp

a model. This model m is one to one with a directed graph whose ordering is
compatible with the natural ordering of {1, . . . , p}. We shall sometimes call m
a graph in order to emphasize the connection with graphical models.

Given a modelm, we define Tm as the affine space of lower triangular matrices
T with unit diagonal such for any i between 1 and p, the support (i.e. the non-
zero coefficients) of ti is included in mi. We note Diag(p) the set of all diagonal
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matrices with positive entries on the diagonal. The matrices T̂m and Ŝm are
then defined as the maximum likelihood estimators of T and S

(
T̂m, Ŝm

)
= arg min

T ′∈Tm, S′∈Diag(p)
Ln(T, S) :=

1

2
tr
[
T ∗S−1TX∗X

]
+

1

2
log |S|

(2)
Here, Ln(T, S) stands for the negative log-likelihood. Hence, the estimated pre-

cision matrix is Ω̂m = T̂ ∗
mŜ−1

m T̂m. This matrix Ω̂m is the maximum likelihood
estimator of Ω among the precision matrices which correspond to directed graph-
ical models with respect to the graph m.

For any i between 1 and p, Mi refers to a collection of subsets of {1, . . . , i−1}
and we call M := M1×· · ·×Mp a collection of models (or graphs). The choice
of the collection M depends on the estimation problem under consideration.
For instance, we shall use a collection corresponding to banded matrices when
we will consider the banding problems. The collections M are specified for the
banding problem and the complete graph selection problem in Sections 5 and 6.

Our objective is to select a model m̂ ∈ M such that the Kullback-Leibler
risk E[K(Ω; Ω̂m)] is as small as possible. We achieve it through penalization. For
any 1 ≤ i ≤ p, peni : Mi → R

+ is a positive function that we shall explicitly
define later. The penalty function pen : M → R

+ is defined as pen(m) =∑p
i=1 peni(mi). Then, we select a model m̂ that minimizes the following criterion

m̂ := arg min
m∈M

2Ln(T̂m, Ŝm) + pen(m)

= arg min
m∈M

tr
[
Ω̂mX∗X

]
− log |Ω̂m|+ pen(m)

For short, we write Ω̃ := Ω̂m̂, S̃ := Ŝm̂, and T̃ = T̂m̂.

As mentioned earlier, the idea underlying the use of the matrices T and S lies
in the regression models (1). Indeed, these regressions naturally appear when
deriving the negative log-likelihood (2):

2Ln(T
′, S′) =

p∑

i=1

s′−1
i ‖Xi +X<i(t

′
i)

∗‖2n + log(s′i) ,

where ‖.‖n stands for the Euclidean norm in R
n divided by

√
n. By definition

of T̂m and Ŝm, we easily derive that the i-th row vector t̂i,mi
of T̂m and the i-th

diagonal element ŝi,mi
of Ŝm respectively equal

t̂i,mi
= arg min

supp(t′
i
)⊂mi

‖Xi +X<i(t
′
i)

∗‖2n and ŝ2i,mi
= ‖Xi +X<i t̂

∗
i,mi

‖2n ,

(3)
for any 1 ≤ i ≤ p. Here, supp(t′i) stands for the support of t′i. Hence, the
row vector t̂i,mi

is the least-squares estimator of ti in the regression model (1)
and ŝi,mi

is the empirical conditional variance of Xi given Xmi
. There are two

main consequences: first, Expression (3) emphasizes the connection between
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covariance estimation and linear regression in a Gaussian design. Second, it
highly simplifies the computational cost of our procedure. Indeed, the negative
log-likelihood Ln(T̂m, Ŝm) now writes

Ln

(
T̂m, Ŝm

)
=

1

2

p∑

i=1

[log (ŝi,mi
) + 1] .

and it follows that m̂i = argminmi∈Mi
log (ŝi,mi

) + peni(mi). This is why we

suggest to compute m̂ and Ω̂ as follows. Assume we are given a collection of
graphs M = (M1, . . . ,Mp) and penalty functions (pen1(.), . . . , penp(.)).

Algorithm 3.1. Computation of m̂ and Ω̃.

1. For i going from 1 to p,

• Compute ŝi,mi
for each model mi ∈ Mi.

• Take m̂i = argminmi∈Mi
log (ŝi,mi

) + peni(mi).

2. Set m̂ = (m̂1, . . . , m̂p) and built (T̃ , S̃) by gathering the estimators
(t̂i,m̂i

, ŝi,m̂i
).

3. Take Ω̃ = T̃ S̃−1T̃ .

In what follows, we refer to this method as ChoSelect. In order to select m̂,
one needs to compute all ŝi,mi

for any i ∈ {1, . . . , p} and any model mi ∈ Mi.
Hence, the complexity of the procedure is proportional to

∑p
i=1 |Mi|. We further

discuss computational issues and we provide a faster procedure in Section 7.

4. Risk analysis

In this section, we first provide a bias-variance decomposition for the Kull-
back risk of the parametric estimator Ω̂m. Afterwards, we state a general non-
asymptotic risk bound for Ω̃.

4.1. Parametric estimation

Let m be model in M. Let us define the matrix Ωm as the best approximation
of Ω that corresponds to the model m. The matrices Tm and Sm are defined as
the minimizers in Tm and Diag(p) of the Kullback loss with Ω

(Tm, Sm) := arg min
T ′∈Tm, S′∈Diag(p)

K
(
Ω;T ′∗S′−1T ′)

We note Ωm = T ∗
mS−1

m Tm.
We define the conditional Kullback-Leibler divergence of the distribution of

Xi given X<i by

K (ti, si; t
′
i, s

′
i) := E

{
K
[
Pti,si(Xi|X<i);Pt′

i
,s′

i
(Xi|X<i)

]}
, (4)



N. Verzelen/Covariance estimation 1121

where Pti,si(Xi|X<i) stands for the conditional distribution of Xi given X<i

with parameters (ti, si). Applying the chain rule, we obtain that K(Ω;Ω′) =∑p
i=1 K (ti, si; t

′
i, s

′
i). Consequently, we analyze the Kullback risk E[K(Ω; Ω̂m)]

by controlling each conditional risk E
[
K(ti, si; t̂i,mi

, ŝi,mi
)
]
. Let us define ti,mi

and si,mi
as the projections of (ti, si) on the space associated to the model mi

with respect to the Kullback divergence K(ti, si; ., .). In other words, ti,mi
and

si,mi
satisfy

ti,mi
= arg min

supp(t′
i
)⊂mi

E

[
(Xi +X<i(t

′
i)

∗)
2
]

and si,mi
= Var (Xi|X<i) .

Applying the chain rule, we check that ti,mi
corresponds to (i − 1)-th first

elements of the i-th line of Tm and si,mi
is the i-th diagonal element of Sm.

Thanks to the previous property, we derive a bias-variance decomposition for
the Kullback risk E [K(ti, si; ŝi,mi

, ŝi,mi
)].

Proposition 4.1. Assume that |mi| is smaller than n − 2. The Kullback risk
of (t̂i,mi

, ŝi,mi
) decomposes as follows

E
[
K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= K (ti, si; ti,mi

, si,mi
) +Rn,|mi| , (5)

where Rn,d is defined by

Rn,d :=
d+ 1

n− d− 2
+

d(d+ 1)

2(n− d− 1)(n− d− 2)
+

1

2

[
Ψ(n− d) + log

(
1− d

n

)]
,

and Ψ(n−d) := E
[
log
(
χ2(n− d)/(n− d)

)]
. Besides, Rn,d is bounded as follows

d+ 1

2(n− d− 2)
≤ Rn,d ≤ d+ 1

n− d− 2
+

1

2

[
d+ 1

n− d− 2

]2

and Rn,d =
d+ 1

2(n− d− 2)
+O

(
d+ 1

n

)2

.

An explicit expression of Rn,d is provided in the proof. Applying the chain
rule, we then derive a bias-variance decomposition for the maximum likelihood
estimator Ω̂m.

Corollary 4.2. Let m = (m1, . . . ,mp) be a model such that the size |mi| of
each submodel is smaller than n − 2. Then, the Kullback risk of the maximum
likelihood estimator Ω̂m decomposes into

E

[
K
(
Ω; Ω̂m

)]
= K (Ω;Ωm) +

p∑

i=1

Rn,|mi| .

If the size |mi| of each submodels is small with respect to n, the variance
term is of the order

∑p
i=1(|mi| + 1)/[2(n− |mi| − 2)]. For other loss functions

such as the Frobenius norm or the l2 operator norm between Ω and Ω̂m, there is
no such bias-variance decomposition with a variance term that does not depend
on the target.



N. Verzelen/Covariance estimation 1122

4.2. Main result

In this subsection, we state a general non-asymptotic oracle inequality for the
Kullback-Leibler risk of the estimator Ω̃. We shall consider two types of penalty
function pen(.): the first one only takes into account the complexity of the
model collection while the second is based on a prior probability on the model
collection.

Definition 4.3. For any integer i between 2 and p, the complexity function
Hi(.) is defined by

Hi(d) :=
1

d
log |{m ∈ Mi, |mi| = d}| ,

where d is any integer larger or equal to 1. Besides, Hi(0) is set to 0 for any i
between 1 and p.

These functions are analogous to the complexity measures introduced in [9]
Sect.1.3 or in [29] Sect.3.2. We shall obtain an oracle inequality for complexity-
based penalties under the following assumption.

Assumption (HK,η): Given K > 1 and η > 0, the collection M and the number
η satisfy

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi ,
|mi|

n− |mi|
[
1 +

√
2Hi(|mi|)

]2
≤ η < η(K) , (6)

where η(K) is defined as η(K) := [1− 2(3/(K+2))1/6]2
∨
[1− (3/K+2)1/6]2/4.

The function η(.) is positive and increases to one withK. This condition requires
that the size of the collection is not too large. Assumption (HK,η) is similar to
the assumption made in [29] Sect 3.1 for obtaining an oracle inequality in the
linear regression with Gaussian design framework. We further discuss (HK,η)
in Sections 5 and 6 when considering the particular problems of ordered and
complete variable selection.

Theorem 4.4. Let K > 1 and let η < η(K). Assume that n is larger than
some quantity n0(K) only depending on K and that the collection M satisfies
(HK,η). If the penalty pen(.) is lower bounded as follows

peni(mi) ≥ K
|mi|

n− |mi|
(
1 +

√
2Hi(|mi|)

)2
for any 1 ≤ i ≤ p and mi ∈ Mi ,

(7)

then the risk of Ω̃ is upper bounded by

E

[
K
(
Ω; Ω̃

)]
≤ LK,η inf

m∈M

[
K (Ω;Ωm) + pen(m) +

p

n

]
+ τn , (8)

where τn is defined by

τn = τ (Ω,K, η, n, p) := LK,ηn
5/2 [p+K(Ω; Ip)] exp [−nL2(K, η)] ,

and L2(K, η) is positive. Here, Ip stands for the identity matrix of size p.
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Remark 4.1. This theorem tells us that Ω̃ performs almost as well as the best
trade-off between the bias term K(Ω;Ωm) and the penalty term pen(m). The
term p/n is unavoidable since it is of the same order as the variance term for
the null model by Corollary 4.2. The error term τn is considered as negligible
since converges exponentially fast to 0 with n.

Remark 4.2. The result is non-asymptotic and holds for arbitrary large p as
longs n is larger than the quantity n0(K) (independent of p). There is no hid-
den dependency on p except in the complexity functions Hi(.) and Assumption
(HK,η) that we shall discuss for particular cases in Sections 5.1 and 6.1. Be-
sides, we are not performing any assumption on the true precision matrix Ω
except that it is invertible. In particular, we do not assume that it is sparse and
we give a rate of convergence that only depends on a bias variance trade-off.
Besides, there is no hidden constant that depends on Ω (except for τn).

Remark 4.3. Finally, the penalty introduced in this theorem only depends on
the collection M and on a number K > 1. One chooses the parameter K de-
pending on how conservative one wants the procedure to be. We further discuss
the practical choice of K in Sections 5 and 6. In any case, the main point is
that we do not need any additional method to calibrate the penalty.

4.3. Penalties based on a prior distribution

The penalty defined in Theorem 4.4 only depends on the models through their
cardinality. However, the methodology developed in the proof easily extend to
the case where the user has some prior knowledge of the relevant models.

Suppose we are give a prior probability measure πM = πM1
× · · · × πMp

on

the collection M. For any non-empty model mi ∈ Mi, we define l
(i)
mi by

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi , l(i)mi
:= − log (πMi

(mi))

|mi|
. (9)

By convention, we set l
(i)
∅ to 1. We define in the next proposition penalty func-

tions based on the quantity l
(i)
m that allow to get non-asymptotic oracle inequal-

ities.

Assumption (Hbay
K,η): Given K > 1 and η > 0, the collection M, the numbers

l
(i)
m and the number η satisfy

∀ 2 ≤ i ≤ p , ∀mi ∈ Mi ,
|mi|

n− |mi|

[
1 +

√
2l

(i)
mi

]2
≤ η < η(K) , (10)

where η(K) is defined as in (HK,η).

Proposition 4.5. Let K > 1 and let η < η(K). Assume that n ≥ n0(K) and

that Assumption (Hbay
K,η) is fulfilled. If the penalty pen(.) is lower bounded as
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follows

peni(mi) ≥ K
|mi|

n− |mi|

(
1 +

√
2l

(i)
mi

)2

for any 1 ≤ i ≤ p and any mi ∈ Mi ,

(11)

then the risk of Ω̃ is upper bounded by

E

[
K
(
Ω; Ω̃

)]
≤ LK,η inf

m∈M

[
K (Ω;Ωm) + pen(m) +

p

n

]
+ τn , (12)

where LK,η and τn are the same as in Theorem 4.4.

The proof is postponed to the technical Appendix [28].

Remark 4.4. In this proposition, the penalty (11) as well as the risk bound
(12) depend on the prior distribution πM. In fact, the bound (12) means that

Ω̃ achieves the trade-off between the bias and some prior weight, which is of
the order − log[πM(m)]/n . This emphasizes that Ω̃ favours models with a high
prior probability. Similar risk bounds are obtained in the fixed design regression
framework in Birgé and Massart [8].

Remark 4.5. Roughly speaking, Assumption (Hbay
K,η) requires that the prior

probabilities πMi
(mi) are not exponentially small with respect to n.

5. Adaptive banding

In this section, we apply our method ChoSelect to the adaptive banding problem
and we investigate its theoretical properties.

5.1. Oracle inequalities

Let d be some fixed positive integer which stands for the largest dimension of
the models mi. For any 2 ≤ i ≤ p, we consider the ordered collections

Md
i,ord := {∅, {1}, {1, 2}, . . . , {1 ∧ (i − d), . . . , i− 1}} ,

and Md
1,ord := {∅}. A model m = (∅, . . . , {1, . . . , ki}, . . . , {1, . . . , kp}) in the col-

lection Md
ord corresponds to the set of matrices T such that on each line i of T ,

only the ki closest entries to the diagonal are possibly non-zero. This collection
of models is suitable when the matrix T is approximately banded.

For any 1 ≤ i ≤ p and any model mi in Md
i,ord we fix the penalty

peni(mi) = K
|mi|

n− |mi|
. (13)

We write Ω̃d
ord for the estimator Ω̃ defined with the collection Md

ord and the
penalty (13).
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Corollary 5.1. Let K > 1, η smaller than η(K). Assume that d ≤ n η
1+η . If n

is larger than some quantity n0(K), then

E

[
K
(
Ω; Ω̃d

ord

)]
≤ LK,η inf

m∈Md
ord

E

[
K
(
Ω; Ω̂m

)]
+ τn (Ω,K, η, n, p) . (14)

This bound is a direct application of Theorem 4.4.

Remark 5.1. The term τn is defined in Theorem 4.4 and is considered as
negligible since it converges to 0 exponentially fast towards 0. Hence, the penal-
ized estimator Ω̃ achieves an oracle inequality without any assumption on the
target Ω.

Remark 5.2. This oracle inequality is non-asymptotic and holds for any p and
any n larger than n0(K). Moreover, by choosing a constant K large enough,
one can consider a maximal dimension of model d up to the order of n, because
η(K) converges to one when K increases.

Choice of the parameters K and d. Setting K to 2 gives a criterion close to
AICc (see for instance [24]). Besides, Verzelen [29] (Prop.3.2) has justified in a
close framework this choice of K is asymptotically optimal. A choice of K = 3
is advised if one wants a more conservative procedure. We have stated Corollary
5.1 for models mi of size smaller than d = η

1+ηn. In practice, taking the size n/2
yields rather good results even if it is not completely ensured by the theory.

Computational cost. The procedure is fast in this setting. Indeed, its complexity
is the same as p times the complexity of an ordered variable selection in a clas-
sical regression framework. From numerical comparisons, it seems to be slightly
faster than the methods of Bickel and Levina [6] and Levina et al. [22] which
require cross-validation type strategies.

5.2. Adaptiveness with respect to ellipsoids

We now state that the estimator Ω̃d
ord is simultaneously minimax over a large

class of sets that we call ellipsoids.

Definition 5.2. Let (ai)1≤i≤p−1 be a non-increasing sequence of positive num-
bers such that a1 = 1 and let R be a positive number. Then, the set E(a,R, p)
is made of all the non-singular matrices Ω = T ∗S−1T where S is in Diag(p)
and T is a lower triangular matrix with unit diagonal that satisfies the following
property

i−1∑

j=1

T [i, i− j]2

a2j
≤ R2 , ∀ 2 ≤ i ≤ p . (15)

By convention, we set ap = 0. The sequence (ai) measures the rate of decay of
each line of T when one moves away the diagonal. Observe that in this definition,
every line of T decreases the same rate. To the price of more technicity, we can
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also allow different rates of decay for each line of T . We shall restrict ourselves
to covariance matrices with eigenvalues that lie in a compact when considering
the ellipsoid E(a,R, p)

Bop(γ) :=

{
ϕmin (Ω) ≥

1

γ
and ϕmax (Ω) ≤ γ

}
. (16)

Proposition 5.3. For any ellipsoid E(a,R, p), the minimax rates of estimation
is lower bounded by

inf
Ω̂

sup
Ω∈E(a,R,p)

E

[
K
(
Ω; Ω̂

)]
≥ Lp sup

k=1,...,⌊√n⌋

(
R2a2k ∧

k + 1

n

)
. (17)

Let us consider the estimator Ω̃d
ord defined in Section 5.1 with d = ⌊n η

1+η ⌋ and

the penalty (13). We also fix γ > 2. If the sequence (ai)1≤i≤p and R also satisfy
R2 ≥ 1

n and a2⌊√n⌋∧p
≤ 1

R2
√
n
, then

sup
Ω∈E(a,R,p)∩Bop(γ)

E

[
K
(
Ω; Ω̃d

Co

)]
≤ LK,η,β,γ inf

Ω̂
sup

Ω∈E(a,R,p)∩Bop(γ)

E

[
K
(
Ω; Ω̂

)]
,

(18)
if n is larger than n0(K)

Remark 5.3. The minimax rates of convergence over E(a,R, p) in the lower
bound (17) is similar to the one obtained for classical ellipsoids in the Gaussian
fixed design regression setting (see for instance [23] Th. 4.9). We conclude from

the second result that our estimator Ω̃d
ord is minimax adaptive to the ellipsoids

that are not degenerate (i.e. R2 ≥ 1/n) and whose rates (ai) does not converge
too slowly towards zero (i.e. a2⌊√n⌋∧p

≤ (R2
√
n)−1). Note that all the sequences

(ai) such that a2i ≤ R2/i satisfy the last assumption.

Remark 5.4. However, the estimator Ω̃d
ord is not adaptive to the parameter γ

since the constant L in (18) depends on γ. This is not really surprising. Indeed,
the oracle inequality (14) is expressed in terms of the Kullback loss while the
ellipsoids are defined in terms of the entries of T . If we would have considered
the minimax rates of estimation over sets analogous to E(a,R, p) but defined in
terms of the decay of the Kullback bias, then we would have obtained minimax
adaptiveness without any condition on the eigenvalues.

We are also able to prove asymptotic rates of convergence and asymptotic
minimax properties with respect to the Frobenius loss function. For any s > 0,
we define the ellipsoid E ′(s, p, R) as the ellipsoid E(a,R, p) with the sequence
(ai)1≤i≤p−1 := i−s.

Corollary 5.4. If
∑pn

i=1 ki + pn = o(n) and k := 1 ∨ max1≤i≤p ki is smaller
than

√
n then uniformly over the set Uord[(k1, . . . , kpn

),+∞] ∩ Bop(γ),

‖Ω− Ω̃d
ord‖2F = OP

(∑pn

i=1 ki + pn
n

)
(19)
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If s > 1/2, then uniformly over the set E ′(s,R, pn)∩Bop(γ), the estimator Ω̃d
ord

satisfies

‖Ω− Ω̃d
ord‖2F = OP

[
pn

((
R

ns

) 2
2s+1

∧ pn
n

)]
. (20)

Moreover, these two rates are optimal from a minimax point of view.

The estimator Ω̃d
ord achieves the minimax rates of estimation over special

cases of ellipsoids. However, all these results depend on γ and are of asymptotic
nature.

6. Complete graph selection

We now turn to the complete Cholesky factor estimation problem. First, we
adapt the model selection procedure ChoSelect to this setting. Then, we derive
an oracle inequality for the Kullback loss. Afterwards, we state that the pro-
cedure is minimax adaptive to the unknown sparsity both with respect to the
Kullback entropy and the Frobenius norm. Finally, we discuss the computational
complexity and we introduce a faster two-stage procedure.

6.1. Oracle inequalities

Again, d is a positive integer that stands for the maximal size of the models
mi. We consider the collections of models Md

i,co that contain all the subsets of

{1, . . . , i − 1} of size smaller or equal to d. A model m ∈ Md
co corresponds to

a pattern of zero in the Cholesky factors T . As explained in Section 2, such a

model m is also in correspondence with an ordered graph
−→
G which is compatible

with the ordering. Hence, the collection Md
co is in correspondence with the set

of ordered graphs
−→
G of degree smaller than d which are compatible with the

natural ordering of {1, . . . , p}.
For any 2 ≤ i ≤ p and any model mi in Md

i,co we fix the penalty

peni(mi) = log


1 +K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

 , (21)

where K > 1. In the sequel, Ω̃d
co corresponds to the estimator ChoSelect with

the collection Md
co and the penalty (21).

Corollary 6.1. Let K > 1 and η < η′(K) (defined in the proof). Assume that

d ≤ η
n

1 + [log(p/d) ∨ 0]
. (22)
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If n is larger than some quantity n0(K), then Ω̃d
co satisfies

E

[
K
(
Ω; Ω̃d

co

)]

≤ LK,η inf
m∈Md

co

{
K (Ω;Ωm) +

p∑

i=2

|mi|
n− |mi|

[
1 + log

(
i− 1

|mi|

)]
+

p

n

}
+ τ ′n ,

(23)

where the remaining term τ ′n is of the same order as τn in Theorem 4.4.

A proof is provided in Section 10.3. We get an oracle inequality up to log-
arithms factors, but we prove in Section 6.2 that these terms log[(i − 1)/|mi|]
are in fact unavoidable. For the sake of clarity, we straightforwardly derive from
(23) the less sharp but more readable upper bound

E

[
K
(
Ω; Ω̃d

co

)]
≤ LK,η inf

m∈Md
co

{
K (Ω;Ωm) +

p+ |m| log p
n

}
+τn (Ω,K, η, n, p) ,

where |m| :=∑p
i=1 |mi|.

Remark 6.1. As for the previous results, we do not perform any assumption
on the target Ω and the obtained upper bound is non-asymptotic. By Condition
(22), we can consider dimension d up to the order n/[log(p/n)∨1]. If p is much
larger than n, the maximal dimension has to be smaller than the order n/ log(p).
This is not really surprising since it is also the case for linear regression with
Gaussian design as stated in [29] Sect. 3.2. There is no precise results that proves
that this n/ log(p) bound is optimal but we believe that it is unimprovable. If p
is of the same order as n, it is possible to consider dimensions up to the same
order as p.

Remark 6.2. The same bound (23) holds if we use the penalty

pen′
i(mi) = K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

.

For a given K, observe that peni(mi) = log(1 + pen′
i(mi)). Hence, these two

penalties are equivalent when n is large. In Corollary 6.1, we have privileged a
logarithmic penalty, because this penalty gives slightly better results in practice.

Choice of K and d. In practice, we set the maximal dimension to n/{2.5[2+
(log(p/n) ∨ 0)]}. Concerning the choice of K, we advise to use the value 1.1, if
the goal is to minimize risk. When the goal is to estimate the underlying graph,
one should use a larger value of K like 2.5 in order to decrease the proportion
of falsely discovered vertices.

6.2. Adaptiveness to unknown sparsity

In this section, we state that the estimator Ω̃d
co achieves simultaneously the

minimax rates of estimation for sparsity of the matrix T . In the sequel, U1[k, p]
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stands for the set of positive square matrices Ω = T ∗S−1T of size p such that its
Cholesky factor T contains at most k non-zero off-diagonal coefficients on each
line. The set U1[k, p] contains the precision matrices of the directed Gaussian

graphical models whose underlying directed acyclic graph
−→G satisfies the two

following properties:

• It is compatible with the ordering on the variables.

• Each node of
−→G has at most k parents.

We shall also consider the set U2[k, p] that contains positive square matrices
whose whose Cholesky factor is k-sparse (i.e. contains at most k non-zero el-
ements). Hence, the set U2[k, p] corresponds to the precision matrices of the

directed Gaussian graphical models whose underlying directed acyclic graph
−→G

is compatible with the ordering on the variables and has at most k edges. When
Ω belongs to U2[k, p] with k “small”, we say that the underlying Cholesky factors
T are ultra-sparse.

For deriving the minimax rates of estimation, we shall restrict ourselves to
precision matrices whose Kullback divergence with the identity is not too large.
This is why we define

BK(r) := {Ω s.t. K(Ω; Ip) ≤ pr} ,

for any positive number r > 0.

Proposition 6.2. Let k and p be two positive integers such that k ≤ p. The
minimax rates of estimation over the sets U1[k, p] and U2[k, p] are lower bounded
as follows

inf
Ω̂

sup
Ω∈U1[k,p]

EΩ

[
K
(
Ω; Ω̂

)]
≥ Lkp

1 + log (p/k)

n
, if n ≥ Lk2[1 + log(p/k)] ,

(24)

inf
Ω̂

sup
Ω∈U2[k,p]

EΩ

[
K
(
Ω; Ω̂

)]
≥ L

p+ k log(p)

n
, if k ≤ p. (25)

Consider K > 1, β > 1, and η < η(K). Assume that n ≥ n0(K) and choose

a positive integer d that satisfies Condition (22). The penalized estimator Ω̃d
co

defined in Corollary 6.1 is minimax adaptive over the sets U1[k, p]∩BK(nβ) for
all k smaller than d that also satisfy n ≥ Lk2(1 + log(p/k)). It is also minimax
adaptive over U2[k, p] ∩ BK(nβ) for all k less than d:

sup
Ω∈U1[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̃d

co

)]
≤ LK,β,η inf

Ω̂
sup

Ω∈U1[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̂

)]
,

sup
Ω∈U2[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̃d

co

)]
≤ LK,β,η inf

Ω̂
sup

Ω∈U2[k,p]∩BK(nβ)

EΩ

[
K
(
Ω; Ω̂

)]
.

Remark 6.3. The minimax rates of estimation over U1[k, p] is of order kp[1+
log (p/k)]/n. We do not think that the condition n ≥ Lk2[1+ log(p/k)] is neces-
sary but we do not know how to remove it. The technical condition K (Ω; Ip) ≤
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pnβ is not really restrictive. It comes from the term n5/2K(Ω; Ip) exp [−nLK,η]
in Theorem 4.4 which goes exponentially fast to 0 with n as long as K(Ω, Ip)/p

is grows polynomially with respect to n. In conclusion, our estimator Ω̃d
co is

adaptive to the sparsity of its Cholesky factor T .

Remark 6.4. Let us translate the proposition in terms of directed graphical
models. The Kullback minimax rate of covariance estimation over graphical mod-
els with at most k parents by node is of the order pk(1+ log(p/k))/n. Moreover,
the Kullback minimax rate of covariance estimation over graphical models with
at most k vertices is of the order (p+ k log p)/n. Finally, Ω̃d

co is minimax adap-
tive for estimating the distribution of a sparse directed Gaussian graphical model
whose underlying graph is unknown.

We can also consider the rates of convergence with respect to the Frobenius
norm or the operator norm in the spirit of the results of Lam and Fan [19].
We recall that ‖.‖F and ‖.‖ respectively refer to the Frobenius norm and the
operator norm in the space of matrices. We also recall that the set Bop(γ) is
defined in (16).

Corollary 6.3. Let K > 1, η < η(K), γ > 2, and let d be the largest integer
that satisfies (22). If pnkn[1 + log(pn/kn)] = o(n), then

‖Ω− Ω̃d
co‖2F = OP

(
kn

[
1 + log

(
pn
kn

)]
pn
n

)
, (26)

‖Ω− Ω̃d
co‖ = OP

(√
kn

[
1 + log

(
pn
kn

)]
pn
n

)
,

uniformly on U1[kn, pn] ∩ Bop[γ]. If pn + kn log(pn) = o(n), then

‖Ω− Ω̃d
co‖2F = OP

(
pn + kn log(pn)

n

)
, (27)

‖Ω− Ω̃d
co‖ = OP

(√
pn + kn log(pn)

n

)
,

uniformly on U2[kn, pn] ∩ Bop[γ]. Moreover, all these Frobenius rates of conver-
gence are optimal from a minimax point of view.

Remark 6.5. The estimator Ω̃d
co is asymptotically minimax adaptive to the

sets U1[k, p] ∩ Bop(γ) and U2[k, p] ∩ Bop(γ) with respect to the Frobenius norm.
Moreover, these rates are coherent with the ones obtained by Lam and Fan in
Sect.4 of [19]. We do not think that the rates of convergence with respect to the
operator norm are sharp.

Remark 6.6. These results are of asymptotic nature and require that pn has to
be much smaller than n. Besides, the upper bounds on the rates highly depend
on the largest eigenvalue ϕmax(Ω). This is why we have restricted ourselves to
precision matrices whose eigenvalues lie in the compact [1/γ; γ]. Nevertheless,
to our knowledge all results in this setting suffer from the same drawbacks. See
for instance Th.11 of Lam and Fan [19].
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7. A two-step procedure

The computational cost of Ω̃d
co is proportional to the size of Md

i,co, which is of

the order of pd. Hence, it becomes prohibitive when p is larger than 50. In fact,
Ω̃d

co minimizes a penalized criterion over the collection Md
co. Nevertheless, the

collections Md
i,co contain an overwhelming number of models that are clearly

irrelevant. This is why we shall use a two-stage procedure. First, we compute
a subcollection of Md

co. Then, we minimize the penalized criterion over this
subcollection.

Suppose we are given a fast data-driven method that computes a subset M̂i

of Md
i,co for any i in 1, . . . p.

Algorithm 7.1. Computation of m̂f and Ω̃f

1. For i going from 1 to p,

• Compute the subcollection M̂i of Md
i,co.

• Compute ŝi,mi
for each model mi ∈ M̂i.

• Take m̂f
i := argminmi∈M̂i

log (ŝi,mi
) + peni(mi) .

2. Set m̂f = (m̂f
1 , . . . , m̂

f
p) and build (T̃ f , S̃f) by gathering the estimators

(t̂i,m̂f
i
, ŝi,m̂f

i
).

3. Take Ω̃f = T̃ f (S̃f )−1T̃ f .

In what follows, we refer to this method as ChoSelectf. For any 2 ≤ i ≤ p
and any model mi in Md

i,co, we advise to fix the penalty as in Section 6.1:

peni(mi) = log


1 +K

|mi|
n− |mi|

{
1 +

√
2

[
1 + log

(
i− 1

|mi|

)]}2

 ,

with K > 1. K = 1.1 gives good results in practice.

Remark 7.1. Observe that we use the same data for computing the collections
M̂i and the estimator Ω̃f . The estimator Ω̃f exhibits a small risk as long as the
collections M̂i contain good models as shown by the following proposition:

Proposition 7.1. Let m be a model in Md
co and Am be the event such that

m ∈ M̂1 × · · · × M̂p. Under the same assumptions as Corollary 6.1, it holds
that

E

[
K
(
Ω; Ω̃f

)
1Am

]

≤ LK,η

{
K (Ω;Ωm) +

p∑

i=2

|mi|
n− |mi|

[
1 + log

(
i− 1

|mi|

)]
+

p

n

}
+ τn , (28)

where τn is defined in Theorem 4.4.
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Remark 7.2. Hence, under the event Am∗ where m∗ is the oracle model, Ω̃f

achieves the optimal of convergence. The estimator achieves also a small risk
as soon as any “good” model belongs to the estimated collection. Here, “good”
refers to a small Kullback risk. Observe that it is much easier to estimate a
collection M̂i that contains a “good” model than directly estimating a “good”
model.

In fact, Algorithm 7.1 and Proposition 7.1 are generally applicable to any
collection M and penalties defined by (7) or (11).

The computational cost of Algorithm 7.1 is directly related to the cost of the
computation of Mi and to the size of the collections M̂i. The challenge is to
design a fast procedure providing a fairly small collection M̂i, which contains
relevant models with large probability. Let us describe two examples of such a
procedure.

Algorithm 7.2. Computation of the collection M̂i by the Lasso.
Let D be an integer smaller than n

2.5[2+(log(p/n)∨0)] and let k be any positive
integer.

1. Using the LARS [10] algorithm, compute the regularization path of the
Lasso for the regression of Xi with respect to the covariates X<i.

2. Order the variables X(1), . . . , X((i−1)∧D) with respect to their appear-
ance in the regularization path.

3. Take M̂i := P(X(1), . . . , X(k∧(i−1)∧D))
⋃
RP(i,D),

where P(A) contains all the subsets of A and where RP(i,D) is the
regularization path stopped at D variables.

Remark 7.3. The size of the random collection M̂i increases with the param-
eter k. Suppose that i is larger than D. The size of M̂i is generally of the order
2k ∨ D. The case k = 0 corresponds to choosing the regularization path of the
Lasso for M̂i. The estimator Ω̃f then performs as well (up to a log p factor)
as the best parametric estimator with a model in the regularization path. The
collection size is fairly small, but the oracle model may not belong to M̂i with
large probability. This is especially the case is the true covariance Σ is far from
the identity since the Lasso estimator is possibly inconsistent. In many cases,
the true (or the oracle) model is a submodel of the model selected by the Lasso
with a suitable parameter [2]. When choosing k = D, it is therefore likely that

the true model or a “good” model belongs to M̂i.

The regularization path of the Lasso is not necessarily increasing [10]. If we

want that M̂ contains all subsets of sparse solutions of the Lasso we need to
use a variant of the previous algorithm:
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Algorithm 7.3. Let D be an integer smaller than n
2.5[2+(log(p/n)∨0)] and let

k be any positive integer.

1. Using the LARS [10] algorithm, compute all the Lasso solutions for
the regression of Xi with respect to the covariates X<i.

2. For any λ > 0, consider the set of {Xj1 , Xj2 . . .Xjsλ
} of variables

selected by the Lasso. If sλ > k we define Aλ
i = ∅ while we take

Aλ
i = P(Xj1 , . . . , Xjsλ

) is sλ ≤ k. Here, P(A) contains all the subsets
of A.

3. Take M̂i := ∪λ>0A
λ
i

⋃
RP(i,D),

where P(A) contains all the subsets of A and where RP(i,D) is the
regularization path stopped at D variables.

In the following proposition, we show the ChoSelectf outperforms the Lasso
under restricted eigenvalue conditions. We consider an asymptotic setup where
p and n go to infinity with p larger n.

ASSUMPTIONS:

• (H.1) The covariance matrix Σ satisfies restricted eigenvalue conditions
of order q∗ > 0.

c∗ ≤ u∗ΣAu

u∗u
≤ c∗, ∀A with |A| = q∗ and u ∈ R

q∗ .

Moreover, we assume that and q∗ log(p)/n goes to 0 when p and n go to
infinity.

• (H.2) Fix some v < 1. The vector tp (which corresponds to the p-th line
of T ) is q-sparse with some q < nv

log p ∨ n
log p . The set of non-zero component

is denoted m∗. Let us set some K > 24 ∨ (2/(1− v)) and define

M2(K, c∗) =
32

c∗

[
2

3
+

112c∗

9c∗
+

(
16c∗

3c∗

)2
]∨

[4(K + 12)/c∗] .

For any zero-component tp[j], we have

tp[j]
2 ≥ M2(K, c∗)

q log(p)

n
σ2 .

• (H.3) Define M1(c∗, c∗) = 2+16 c∗

c∗
. The quantities q and q∗ are such that

M1(c∗, c
∗)q + 1 ≤ q∗ .

Proposition 7.2. Consider the procedure ChoSelectf with K as in (H.2) and
the penalty (21) and the algorithm 7.3. Take k ≥ M∗

1 q and D = n/ log(p)2.
Under Assumptions (H.1), (H.2), and (H.3)

P
[
m̂f

p = m∗,p
]
→ 1 .
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The proof of the proposition is postponed to the appendix [28]

Remark 7.4. In contrast to ChoSelectf , the Lasso procedure does not consis-
tently select the support of tp under restricted eigenvalue conditions [35, 34].
Observe that our assumptions (H.1), (H.2), (H.3) and our result are quite
similar to the ones obtained by the stability selection method of Meinshausen
and Bühlmann [25].

Remark 7.5. Under similar conditions, one can prover that ChoSelectf selects
consistently the support of any vector ti for n ≤ i ≤ p. In order to consistently
estimate the whole pattern of zero of T , one needs to slightly change the penalty
(21) by replacing (i− 1) by (i− 1) ∨ n.

Remark 7.6. For the sake of simplicity, we have only described two methods for
building the collection M̂. One may also use a collection based on the adaptive
Lasso or more generally any (data-driven) collection M̂. Moreover, ChoSelectf

can be interpreted as a way to tune an estimation procedure and to merge differ-
ent procedures. Suppose we are given a collection A of estimation procedure. For
any procedure a ∈ A, we build a collection M̂a using the model corresponding
to the estimator Ω̂a or using a regularization path associated to a (if possible).

If we take the collection M̂ as the reunion of all M̂a for a ∈ A, then by Propo-
sition 7.1 the estimator Ω̃f nearly selects the best model (from the risk point of
view) among the ones previously selected by the procedures a ∈ A.

8. Simulation study

In this section, we investigate the practical performances of the proposed es-
timators. We concentrate on two applications: adaptive banding and complete
graph selection.

8.1. Adaptive banding

8.1.1. Simulation scheme

Simulating the data. We have used a similar scheme to Levina et al. [22]. Simula-
tions were carried out for centered Gaussian vectors with two different precision
models. The first one has entries of the Cholesky factor exponentially decaying
as one moves away from the diagonal.

Ω1 : T [i, j] = 0.5|i−j], j < i; si = 0.01

The second model allows different sparse structures for the Cholesky factors.

Ω2 : ki ∼ U(1, ⌈j/2⌉); T [i, j] = 0.5, i− ki ≤ j ≤ i − 1

T [i, j] = 0, j < i− ki; si = 0.01

Here U(k1, k2) denotes an integer selected uniformly at random from all integers
from k1 to k2. We generate from this structure for p = 30. Levina et al. pointed
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out that this structure can generate poorly conditioned covariance matrix for
larger p. To avoid this problem, we divide the variables for p = 100 and p = 200
into respectively 4 and 8 different blocks and we generate a random structure
from the random structure from the model described above for each of the
blocks.

For each of the covariance models, we generate a sample of n = 100. We
consider three different values of p: 30, 100, and 200.

We apply the following procedures:

• our procedure ChoSelect as described in Section 5. More precisely, we

take the collection M⌊n/2⌋
ord , the penalty (13), and K = 3.

• the nested Lasso method of Levina et al. [22]. It is computed with the J1
penalty, while its tuning parameter is selected via 5-fold cross-validation
based on the likelihood. We have used the penalty J1 instead of J2 for
computational reasons.

• the banding procedure of Bickel and Levina [6]. The tuning parameter is
chosen according to Sect.5 in [6] with 50 random splits.

• the regularization method of Ledoit and Wolf [21].

For the first covariance model Ω1, we also compute the oracle estimator,
i.e. the parametric estimator which minimizes the Kullback risk among all the

estimators Ω̂m with m ∈ M⌊n/2⌋
ord . We recall that the computation of the oracle

estimator require the knowledge of the target Ω1. The performances of this
estimator are presented here as a benchmark. The experiments are repeated
N = 100 times. In the second scheme, N1 = 10 precision matrices are sampled
and N2 = 10 experiments are made for each sample.

8.1.2. Results

In Tables 1 and 2, we provide evaluations of the Kullback loss

K(Ω; Ω̂) :=
1

2

[
tr(Ω̂Ω−1)− log(|Ω̂||Ω−1|)− p

]
,

the operator distance ‖Ω̂− Ω‖, and the operator distance between the inverses

‖Ω̂−1−Σ‖ for any of the fore-mentioned estimators. We have chosen the Kullback
loss because of its connection with discriminant analysis. The two other loss
functions are interestingly connected to the estimation of the eigenvalues and
the eigenspaces.

For the second structure, we also consider the pattern of zero estimated by
our procedure, the nested Lasso and the banding method of Bickel and Levina.
More precisely, we estimate the power (i.e. the fraction of non-zero terms in T
estimated as non-zero) and the FDR (i.e. the ratio of the false discoveries over
the true discoveries) in Table 3.
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Table 1

Estimation and 95% confidence interval of the Kullback risk, the operator distance risk, and
the operator distance between inverses risk for the first covariance model Ω1

Method Ledoit Banding Nested Lasso ChoSelect Oracle

Kullback discrepancy K(Ω; Ω̂)
p = 30 2.00± 0.05 0.90 ± 0.05 0.87± 0.02 1.00± 0.03 0.79± 0.02
p = 100 14.4± 0.5 3.6± 0.4 3.2± 0.1 3.7± 0.1 2.9± 0.1
p = 200 33.4± 0.6 9.8± 1.5 6.4± 0.1 7.5± 0.1 5.9± 0.1

Operator distance ‖Ω̂− Ω‖ × 10−2

p = 30 1.86± 0.07 1.28 ± 0.06 1.18± 0.04 1.36± 0.06 1.19± 0.04
p = 100 1.76± 0.09 1.68 ± 0.14 1.52± 0.06 1.75± 0.06 1.49± 0.05
p = 200 1.33± 0.01 2.19 ± 0.22 1.61± 0.04 1.92± 0.06 1.61± 0.05

Operator distance ‖Ω̂−1 − Σ‖
p = 30 0.14± 0.02 0.15 ± 0.02 0.17± 0.02 0.15± 0.02 0.14± 0.02
p = 100 1.4± 0.2 1.4± 0.2 1.7± 0.2 1.5± 0.2 1.4± 0.2
p = 200 5.9± 0.6 5.6± 0.7 6.8± 0.7 6.5± 0.6 5.9± 0.6

Table 2

Estimation and 95% confidence interval of the Kullback risk, the operator distance risk, and
the operator distance between inverses risk for the second covariance model Ω2

Method Ledoit Banding Nested Lasso ChoSelect

Kullback discrepancy K(Ω; Ω̂)
p = 30 112 ± 4 3.2± 0.2 3.2± 0.2 1.2± 0.1
p = 100 253 ± 7 27.4± 1.6 7.6± 0.2 3.5± 0.1
p = 200 565 ± 5 58 ± 2 14.6± 0.2 7.2± 0.1

Operator distance ‖Ω̂− Ω‖ × 10−2

p = 30 9.6± 0.4 8.2± 0.4 7.3± 0.4 3.6± 0.3
p = 100 8.7± 0.2 8.2± 0.2 6.8± 0.2 3.8± 0.2
p = 200 10.0± 0.2 9.5± 0.3 7.9± 0.3 4.4± 0.2

Operator distance ‖Ω̂−1 −Σ‖ × 10−3

p = 30 13.4± 4.2 12.9± 4.0 14.1± 4.4 12.9± 4.0
p = 100 1.5± 0.4 1.4± 0.4 1.3± 0.4 1.4± 0.4
p = 200 1.8± 0.2 1.3± 0.2 1.3± 0.2 1.3± 0.2

Comments of Tables 1 and 2: In the first scheme Ω1, the three methods based
on Cholesky decomposition exhibit a Kullback risk close to the oracle. The ratio
of their Kullback risks over the oracle risk remains smaller than 1.4. The risk of
the nested Lasso and the banding method is about 15% smaller than the risk
of ChoSelect. We observe the same pattern for the operator distance between
precision matrices. In contrast, all these estimators have more or less the same
risks for the operator distance between the covariance matrices. The estimator
of Ledoit and Wolf is a regularized version of the empirical covariance matrix.
Its performances with respect to the Kullback loss are poor but it behaves well
with respect to the operator norms.

In the second scheme, the method of Ledoit and Wolf performs poorly with
respect to the Kullback loss functions and the first operator norm loss function.
ChoSelect performs two times better than the nested Lasso in terms of the
Kullback discrepancy and the operator distance between precision matrices. The
banding method exhibits a far worse Kullback risk. As in the first scheme, the
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Table 3

Estimation and 95% confidence interval of the power and FDR for the second precision
model Ω2

Power×102 FDR×102

Method Banding Nested Lasso ChoSelect Banding Nested Lasso ChoSelect
p = 30 69.7± 2.3 82.4± 0.3 99.2± 1.1 23.0 ± 1.0 17.9± 0.2 4.7± 0.1
p = 100 27.0± 0.1 82.5± 0.01 99.4± 0.2 3.0± 0.1 25.7± 0.2 5.0± 0.1
p = 200 26.2± 0.1 82.9± 0.1 99.6± 0.1 3.5± 0.1 10.0± 0.2 4.5± 0.2

three procedures based on Cholesky decomposition perform similarly in terms
of the operator distance between covariance matrices. These last risks are high
for p = 30 because the covariance matrix is poorly conditioned in this case and
its eigenvalues are high.

The banding method only performs well if the Cholesky matrix T is well
approximated by a banded matrix, which is not the case in the second scheme.
The nested Lasso seems to perform well when there is an exponential decay of
the coefficients as in the first scheme. However, its performance seem to be far
worse when the decay is not exponential. In contrast, ChoSelect seems to always
perform quite well. This observation corroborates the theory: indeed, we have
stated in Corollary 5.1 that ChoSelect satisfies an oracle inequality without any
assumption on Σ. Finally, there no clear interpretation for the risk with respect
to the operator norm between covariances.

Estimating the pattern of zero. In the second scheme, we can compare the ability
of the procedures to estimate well the pattern of non-zero coefficients (Table 3).
The banding method does not work well since the Cholesky factor T is not
banded. ChoSelect a higher power and a lower FDR than the nested Lasso.

8.2. Complete graph selection

8.2.1. Simulation scheme

Simulating the data. In the first simulation study, we consider Gaussian random
vectors whose precision matrices based on directed graphical models.

1. First, we sample a directed graph
−→
G in the following way. For any node

i in {2, . . . , p} and any node j < i, we put an edge going from j to i
with probability (Esp/(i − 1) ∧ 0.5), where Esp is a positive parameter
previously chosen. Hence, the expected number of parents for a given node
is Esp∧(i− 1)/2.

2. The precision matrix Ωc
1 is then defined from

−→
G .

Ωc

1
: T [i, j] ∼ Unif[−1, 1] if j → i in

−→
G ,

T [i, j] = 1 if i = j and T [i, j] = 0 else.

S[i, i] ∼ Unif[1, 2]

In the simulations, we set p = 30, 100, 200, Esp= 1, 3, 5, and n = 100.
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In the second simulation scheme, we consider the case where the “good”
ordering is partially known. More precisely, we first sample a precision matrix
Ωc

1 according to the first simulation scheme. Then, we sample uniformly 10
variables and change uniformly their place in the ordering. This results in a new
precision matrix Ωc

2
. Its Cholesky factor is generally less sparse than the one

of Ωc
1. The purpose of this scheme is to check whether our method is robust to

small changes in the ordering. For this study, we choose p = 200, Esp= 1, 3, 5,
and n = 100.

We compute the following estimators:

• the procedureChoSelectf as described in Section 7. We take the collection
Md

co with

d = n
2.5[2+log(n∧p)] . The collection M̂ is computed according to Algorithms

7.1 and 7.2 with k = 8. Finally, we use the penalty (21) with K = 1.1.
• the procedure ChoSelect with collection M7

co, the penalty (21) with K =
1.1. Since this method is computationally prohibitive, we only apply it for
p = 30.

• the regularization method of Ledoit and Wolf [21].
• the Glasso method [3]. It is computed using the Glasso R-package by
Friedman et al. [13], while the tuning parameter is chosen via 5-fold cross
validation based on the likelihood. Following Rothman et al. [27] and Yuan
and Lin [33], we do not penalize the diagonal of Ω.

• the Lasso method of Huang et al. [15]. The regularization parameter is
calculated by 5-fold cross validation based on the likelihood.

For each estimator and simulation scheme, we evaluate the Kullback loss
K(Ω; Ω̂), the operator ‖Ω̂−Ω‖, and the operator distance between the inverses

‖Ω̂−1 − Σ‖. We also consider the pattern of zero estimated by our procedure
ChoSelectf and the Lasso of Huang et al. [15]. More precisely, we evaluate the
power (i.e. the fraction of non-zero terms in T estimated as non-zero) and the
FDR (i.e. the ratio of the false discoveries over the true discoveries) in the first
simulation study. Empirical 95% confidence intervals of the estimates are also
computed. The experiments are repeated N = 100 times: N1 = 10 precision
matrices are sampled and N2 = 10 experiments are made for each precision
matrix sampled.

8.2.2. Results

Comparison of ChoSelect and ChoSelectf. In Table 4, we have set p = 30 in
order to compute the method ChoSelect and compare it with ChoSelectf. It
seems that both methods perform more or less similarly. When the sparsity of
the Cholesky factor decreases (Esp=5), ChoSelectf exhibits a slightly smaller
Kullback risk.

These simulations confirm that ChoSelectf exhibits similar performances to
ChoSelect with a much small computational complexity. In the other simula-
tions, we only compute ChoSelectf.
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Table 4

Comparison between ChoSelect and ChoSelectf using the first covariance model Ωc

1
and

p = 30

Kullback discrepancy K(Ω; Ω̂)

Method ChoSelectf ChoSelect

Esp=1 0.69± 0.04 0.69± 0.04
Esp=3 1.29± 0.04 1.31± 0.05
Esp=5 1.95± 0.06 1.82± 0.06

Table 5

Comparison between the procedures for the first covariance model Ωc

1

Method Ledoit Glasso Lasso ChoSelectf

Kullback discrepancy K(Ω; Ω̂)
p = 100 Esp=1 7.7± 0.1 3.7± 0.1 3.1± 0.1 2.6± 0.1

Esp=3 13.9± 0.2 9.4± 0.1 7.2± 0.1 5.9± 0.1
Esp=5 16.7± 0.2 12.6± 0.2 10.9± 0.2 10.1± 0.2

p = 200 Esp=1 19.4± 0.2 9.4± 0.2 7.4± 0.1 5.9± 0.1
Esp=3 41.0± 0.8 21.7± 0.3 18.1± 0.2 13.6± 0.2
Esp=5 54.8± 2.1 35.2± 0.2 28.8± 0.3 24.7± 0.4

Operator distance ‖Ω̂−Ω‖
p = 100 Esp=1 5.5± 0.2 4.6± 0.2 3.8± 0.2 3.2± 0.1

Esp=3 8.6± 0.2 9.3± 0.2 6.8± 0.2 4.6± 0.1
Esp=5 11.5± 0.1 11.9± 0.2 9.5± 0.1 7.6± 0.3

p = 200 Esp=1 6.2± 0.1 5.7± 0.2 4.6± 0.1 3.8± 0.2
Esp=3 10.6± 0.1 10.7± 0.2 8.8± 0.2 5.4± 0.1
Esp=5 15.0± 0.3 15.0± 0.2 13.0± 0.3 8.1± 0.2

Operator distance ‖Ω̂−1 − Σ‖
p = 100 Esp=1 1.5± 0.1 1.1± 0.1 1.1± 0.1 0.8± 0.1

Esp=3 4.3± 0.2 3.9± 0.2 5.5± 0.3 3.6± 0.3
Esp=5 8.4± 0.5 9.1± 0.7 13.0± 0.7 8.4± 0.5

p = 200 Esp=1 2.4± 0.1 1.9± 0.1 1.7± 0.1 1.2± 0.1
Esp=3 8.3± 0.5 6.3± 0.3 10.7± 0.6 6.6± 0.3
Esp=5 16.9± 1.4 14.7± 1.0 30.3± 2.9 17.6± 1.6

Estimation of Ω. This study corresponds to the situation where a “good” order-
ing of the variables is known. In Table 5, ChoSelectf has a smaller Kullback risk
than the Lasso, which is better than the Glasso, and Ledoit and Wolf’s method.
This is especially true when p is large. We also observe the same results it terms
of the operator distance between the precision matrices. The results for the op-
erator distance between covariance matrices are more difficult to interpret. It
seems that the risk of the Lasso is high, while the Glasso and ChoSelectf per-
form more or less similarly. Ledoit and Wolf’s method gives good results when
Esp=3, 5.

Estimation of the graph. In Table 6, we compare the ability of the procedures
to estimate the underlying directed graph. This is why we only consider the
procedures based on Cholesky decomposition: the Lasso of Huang et al. and
ChoSelectf. The Lasso exhibits a high power but also a high FDR (larger than
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Table 6

Estimation and 95% confidence interval of the power and FDR for the first covariance
model Ωc

1
with p = 200

Method Lasso ChoSelectf

Power×102 FDR×102 Power×102 FDR×102

Esp=1 58.0± 0.6 79.9± 0.4 40.6± 0.6 5.4± 0.6
Esp=3 65.3± 0.6 72.7± 0.3 50.9± 0.5 9.7± 0.4
Esp=5 67.4± 0.4 69.2± 0.2 52.0± 0.3 21.1± 0.7

Table 7

Comparison between the procedures for the second covariance model Ωc

2
with p = 200

Method Ledoit Glasso Lasso ChoSelectf

Kullback discrepancy K(Ω; Ω̂)
Esp=1 19.2 ± 0.2 8.8± 0.2 7.5± 0.1 6.0± 0.1
Esp=3 39.6 ± 0.7 21.8± 0.2 18.9 ± 0.2 14.7± 0.2
Esp=5 56.4 ± 1.4 35.6± 0.3 32.0 ± 0.4 28.9± 0.4

Operator distance ‖Ω̂− Ω‖
Esp=1 6.4± 0.2 5.6± 0.1 4.8± 0.2 3.8± 0.1
Esp=3 10.5 ± 0.2 10.7± 0.2 8.6± 0.2 5.9± 0.2
Esp=5 15.0 ± 0.1 14.7± 0.3 13.6 ± 0.2 9.1± 0.2

Operator distance ‖Ω̂−1 − Σ‖
Esp=1 2.4± 0.1 1.7± 0.1 1.8± 0.1 1.3± 0.1
Esp=3 7.6± 0.4 6.3± 0.4 9.3± 0.5 6.6± 0.4
Esp=5 20.1 ± 1.6 16.3± 1.3 35.1 ± 2.5 21.5± 1.5

50%). In contrast, ChoSelectf keeps the FDR reasonably small to the price of a
small loss in the power. When p increases, the power of the procedures decreases.
These results corroborate the results of Proposition 7.2. When the number of
parents (i.e. ESP) increases, it seems that the FDR of the ChoSelectf increases.
We recall that if one wants a lower FDR in the graph estimator, one should
choose a larger value for K. In practice, taking K = 2.5 or K = 3 enforces the
FDR to be smaller than 10%.

Effect of the ordering. In Table 7, we study here the performances of the proce-
dures when the ordering of the variables is slightly modified. The Glasso method
and the regularization method of Ledoit and Wolf perform as in the first scheme
since these procedures do not depend on a particular ordering of the variables.
Lasso and ChoSelectf procedures provide slightly worse results than in the first
scheme, especially when the sparsity decreases. Indeed, the effect of a bad or-
dering is higher when the sparsity is low. Nevertheless, ChoSelectf still performs
better than the other procedures for the Kullback risk and the operator dis-
tance between precision matrices, while the Glasso and ChoSelectf still perform
similarly the operator distance between covariance matrices. The respective per-
formances are different when the ordering is completely unknown (see the Ap-
pendix [28]).
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Conclusion. When the ordering is known or partially known, ChoSelectf has a
small risk with respect to the Kullback discrepancy and the operator distance
between precision matrices. Moreover, ChoSelectf provides a good estimation
of the underlying graph. It is difficult to interpret the results for the operator
distance between the covariance matrices. If the objective is to minimize the
operator distance ‖Σ̂ − Σ‖, it seems that a direct estimation of Σ should be
prefered to the inversion of an estimation of Ω.

9. Discussion

Adaptive banding problem. ChoSelect achieves an oracle inequality and is adap-
tive to the decay in the Cholesky factor T . We have also derived corresponding
asymptotic results for the Frobenius loss function. This procedure is compu-
tationally competitive with the other existing methods. Finally, we explicitly
provide the penalty and there are therefore no calibration problems contrary to
most procedures in the literature. In a future work, we would like to study the
performances of ChoSelect with respect to the operator norm and prove corre-
sponding minimax bounds. Bickel and Levina have indeed proved risk bounds
for their banding procedure [6]. This method is based on maximum likelihood
estimators as ChoSelect. This is why we believe that ChoSelect may also satisfy
fast rates of convergence with respect to the operator distance.

Complete graph estimation problem. We have derived that ChoSelect satisfies an
oracle type inequality and we have derived the minimax rates of estimation for
sparse Cholesky factors T . ChoSelect is shown to achieves minimax adaptiveness
to the unknown sparsity of Cholesky factor. As in the banded case, we provide
an explicit penalty. However, this procedure is computationally feasible only for
small p. In contrast, the method ChoSelectf introduced in Section 7 shares some
advantages of the previous method with a much lower computational cost. In
Algorithm 7.2, we propose two collections based on the Lasso. In practice, there
are maybe smarter ways of building the collections M̂i than using the Lasso.

10. Proofs

10.1. Some notations and probabilistic tools

First, we introduce the prediction contrasts li(., .). Consider i be an integer
between 2 and p and let (t, t′) be two row vectors in R

i−1 then the contrast
li(t, t

′) is defined by

li(t, t
′) := Var




i−1∑

j=1

(t[j]− t′[j])X [j]


 . (29)

Consider a model mi ∈ Mi. We define the random variable ǫmi
by

X [i] =
∑

j∈mi

−ti,mi
[j]X [j] + ǫmi

+ ǫi a.s. . (30)
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By definition of ti,mi
in Section 4.1, the variable ǫmi

is independent of ǫ and
of Xmi

. Besides, its variance equals li(ti,mi
, ti). If follows from the definition of

si,mi
that si,mi

= li(ti,mi
, ti) + si. The vectors ǫ and ǫm refer to the n samples

of ǫ and ǫm. For any model m and any vector Z of size n, ΠmZ refers to the
projection of Z onto the subspace generated by (Xi)i∈m whereas Π⊥

mZ stands
for Z−ΠmZ. For any subset m of {1, . . . , p}, Σm denotes the covariance matrix

of the vector X∗
m. Moreover, we define the row vector Zm := Xm

√
Σ−1

m in order
to deal with standard Gaussian vectors. Similarly to the matrix Xm, the n×|m|
matrix Zm stands for the n observations of Zm.

Lemma 10.1. The conditional Kullback-Leibler divergence K (ti, si; t
′
i, s

′
i) de-

composes as

K (ti, si; t
′
i, s

′
i) =

1

2

[
log

s′i
si

+
si
s′i

− 1 +
li(ti, t

′
i)

s′i

]
. (31)

The estimators t̂i,mi
and ŝi,mi

are expressed as follows

X<it̂
∗
i,mi

= −Xmi
(X∗

mi
Xm)−1X∗

mi
Xi , (32)

ŝi,mi
= ‖Π⊥

mi
Xi‖2n = ‖Π⊥

mi
(ǫi,mi

+ ǫi)‖2n . (33)

This lemma is a consequence of the definitions of t̂i,mi
, ŝi,mi

, andK (ti, si; t
′
i, s

′
i)

in Sections 3 and 4.1.

10.2. Proof of Proposition 4.1

Proof of Proposition 4.1. First, we decompose the Kullback-Leibler divergence
into a bias term and a variance term using Expression (31).

E
[
2K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= E

[
log

ŝi,mi

si
+

si + li(t̂i,mi
, ti)

ŝi,mi

− 1

]
.

By definition, t̂i,mi
is the least-squares estimator of ti over the set of vectors of

size i−1 whose support is included in mi and −X<it
∗
i,mi

is the best predictor of

Xi given Xmi
. Hence, the prediction error li(t̂i,mi

, ti)+si equals li(t̂i,mi
, ti,mi

)+
si,mi

and it follows that

E
[
2K
(
ti, si; t̂i,mi

, ŝi,mi

)]
= 2K (ti, si; ti,mi

, si,mi
)

+ E

[
log

ŝi,mi

si,mi

+
li
(
t̂i,mi

, ti,mi

)

ŝi,mi

+

(
si,mi

ŝi,mi

− 1

)]
. (34)

Let us compute the expectation of these three last terms. Notice that nŝi,mi
/si,mi

=
n‖Π⊥

mi
Xi‖2n/si,mi

follows the distribution of a χ2 distribution with n− |mi| de-
grees of freedom.

E

[
si,mi

ŝi,mi

− 1

]
= E

[
n

χ2(n− |mi|)
− 1

]
=

|mi|+ 2

n− |mi| − 2
, (35)
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by Lemma 5 in [4]. Similarly, we compute the expectation of the logarithm as
follows:

E

[
log

ŝi,mi

si,mi

]
= E

[
log

(
χ2(n− |mi|)

n

)]
= Ψ(n− |mi|) + log

(
n− |mi|

n

)
,

(36)
by definition of the function Ψ(.). The last term li(t̂i,mi

, ti,mi
)/ŝi,mi

is slightly
more difficult to handle. Let us first decompose li(t̂i,mi

, ti,mi
):

li(t̂i,mi
, ti,mi

) = (ti,mi
− t̂i,mi

)Σmi
(ti,mi

− t̂i,mi
)∗

= (ǫi+ ǫi,mi
)∗Xmi

(X∗
mi

Xmi
)−1Σmi

(X∗
mi

Xmi
)−1X∗

mi
(ǫi + ǫi,mi

) ,

by Lemma 10.1 and definition of ǫi,mi
. Observe that ǫi + ǫi,mi

is independent
of Xmi

. Hence, conditionally to Xmi
, li(t̂i,mi

, ti,mi
) only depends on ǫi + ǫi,mi

through its orthogonal projection onto the space generated by (Xj)j∈mi
. Mean-

while, ŝi,mi
= ‖Π⊥

mi
(ǫi + ǫi,mi

)‖2n is the orthogonal projection of (ǫi + ǫi,mi
)

along the same subspace. Thus, li(t̂i,mi
, ti,mi

) and ŝi,mi
are independent condi-

tionally to Xmi
. Moreover, ŝi,mi

is independent of Xi,mi
. Hence, li(t̂i,mi

, ti,mi
)

and ŝi,mi
are independent. Following the proof of Lemma 2.1 in [29], we ob-

serve that E[li(t̂i,mi
, ti,mi

)] is the expectation of the trace of an inverse Wishart
Wish−1(|mi|, n) times si,mi

. We then obtain that

E

[
li
(
t̂i,mi

, ti,mi

)

ŝi,mi

]
= E

[
Wish−1(|mi|, n)
χ2(n− |mi|)/n

]
=

n|mi|
(n− |mi| − 1)(n− |mi| − 2)

,

(37)
since E

[
Wish−1(|mi|, n)

]
= |mi|/(n− |mi| − 1) by Von Rosen [26]. Gathering

identities (35), (36), and (37) with (34) yields the first result (5). Let us now
compute the function Ψ(.).

Lemma 10.2. For any d larger than 3,

− 1

d− 2
≤ Ψ(d) ≤ 0 and Ψ(d) = −1

d
+O

(
1

d2

)
.

The proof is given in the technical Appendix [28]. Since log(1− d/n) is neg-
ative, we obtain the first upper bound on Rn,d. For any positive number x,
log(1 + x) ≤ x and consequently log(1 − x) is smaller than −x/(1 − x) for
any x such that 0 < x < 1. It then follows that Ψ(n − d) + log(1 − d/n) ≥
−(d+ 1)/(n− d− 2) and Rn,d ≥ (d+ 1)/[2(n− d− 2)]. Analogously, we obtain
the expansion of Rn,d when d/n goes to 0 thanks to Lemma 10.2 and the Taylor
expansion of the logarithm.

10.3. Proof of the risk upper bounds

10.3.1. Proof of the main theorem

Proof of Theorem 4.4. This result is based on a Kullback oracle inequality for
all the estimators (t̃i, s̃i) with 1 ≤ i ≤ p. Consider an integer 1 ≤ i ≤ p.
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Assumption (Hi
K,η): Given K > 1 and η > 0, the collection M and the number

η satisfy

∀mi ∈ Mi ,

[
1 +

√
2Hi(|mi|)

]2
|mi|

n− |mi|
≤ η < η(K) , (38)

where we recall that η(K) is defined in Eq.(12) in [29].

Obviously, Assumption (HK,η) is equivalent to the union of the assumptions
(Hi

K,η).

Proposition 10.3. Let K > 1 and η < η(K). Assume that n ≥ n0(K), that
(Hi

K,η) holds, and that the penalty function is lower bounded as follows

peni(m) ≥ K
|m|

n− |m|
(
1 +

√
2Hi(|m|)

)2
for any m ∈ Mi and some K > 1 .

(39)
Then, the penalized estimator (t̃i, s̃i) satisfies

E
[
K
(
ti, si; t̃i, s̃i

)]
≤LK,η inf

mi∈Mi

[
E
[
K
(
ti, si; t̂i,m, ŝi,m

)]
+ peni(m)

]

+ τn [ti, si,K, η] .

The remaining term τn(ti, si,K, η) is defined by

τn [ti, si,K, η] :=
LK

n
+ L′(K, η)n5/2 [1 +K (ti, si; 0, 1)] exp [−nLK,η] ,

where 0 stands here for the null vector of size i− 1.

Let us apply this property for any i between 1 and p. Then, we get an upper
bound for E[K(Ω; Ω̃)] by applying the chain rule as in Section 4.1. The risk
bound (8) follows.

Proof of Proposition 10.3. The proof of this result is mainly inspired by ideas
introduced in the proofs of Th.3 in [4] and of Th.3.4 in [29]. The case i = 1 is
a consequence of Proposition 4.1 since |M1| = 1. Let us assume that i is larger
than one. For the sake of clarity, we forget the subscripts i in the remainder of
the proof.

Let us introduce some new notations. First, 〈., .〉n is the inner product in R
n

associated to the norm ‖.‖n. Let m be any model in the collection M.

We shall use the constants κ1, κ2, and ν(K) as defined in the proof of Th.3.4
in [29]. We provide their expression for completeness although they are not really
of interest.

κ1 :=

√
3

K+2

1−√
η − ν(K)

, κ2 :=
(K − 1)

[
1−√

η
]2 [

1−√
η − ν(K)

]2

16
∧ 1 ,

ν(K) :=

(
3

K + 2

)1/6

∧
1−

(
3

K+2

)1/6

2
.
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Besides, we introduce the positive constant κ0 as the largest number that sat-
isfies

κ0 ≤ 1− 2

K + 1
and

K + 2

3
≤ (1− κ0)

K + 1.5

2.5
.

For clarity, the proof is split into six lemmas.

Lemma 10.4.

2(1− κ0)K
[
t, s; t̃, s̃

]
≤ 2K

[
t, s; t̂m, ŝm

]
+ (1− κ0)pen(m)

+
l(t̃, t)

s̃
[R1(m̂) ∨ (1− κ2)(1− κ0)]

+ R2(m) +
s

s̃
R3(m̂) +R4(m, m̂) ,

where for all model m′ ∈ M,

R1(m
′) := κ1 + 1− κ0 −

‖Π⊥
m′ǫm′‖2n
l(tm′ , t)

+ κ2(1− κ0)ϕmax

[
n(Z∗

m′Zm′)−1
] ‖Πm′(ǫ+ ǫm′)‖2n

l(tm′ , t) + s
,

− K(1− κ0)
[
1 +

√
2H(|m′|)

]2 |m′|
n− |m′|

‖Π⊥
m′(ǫ+ ǫm′)‖2n
l(tm′ , t) + s

,

R2(m) := 2
〈Π⊥

mǫ,Π⊥
mǫm〉n

ŝm
+

‖Π⊥
mǫm‖2n − l(tm, t)

ŝm
,

R3(m
′) := κ−1

1

〈Π⊥
m′ǫ,Π⊥

m′ǫm′〉2n
sl(tm′ , t)

+
‖Πm′ǫ‖2n

s

+ κ2(1− κ0)ϕmax

[
n(Z∗

m′Zm′)−1
] ‖Πm′(ǫ+ ǫm′)‖2n

l(tm′ , t) + s

− K(1− κ0)
[
1 +

√
2H(|m′|)

]2 |m′|
n− |m′|

‖Π⊥
m′(ǫ+ ǫm′)‖2n
l(tm′ , t) + s

,

R4(m,m′) :=
(
‖ǫ‖2n − s(1− κ0)

) [ 1

ŝm
− 1

ŝm′

]
.

This lemma gives a decomposition of the relevant terms that we have to
bound. See [28] Sect.1.1 for a detailed computation. In the next four lemmas,
we bound each of these terms.

Lemma 10.5. Let us assume that n ≥ n0(K), where n0(K) is defined in the
proof. There exists an event B1 of probability larger than 1−LKn exp [−nL′(K, η)]
with L′(K, η) > 0 such that

R1(m̂)1B1
≤ v(K, η)(1 − κ0) ,

where v(K, η) is a positive constant (strictly) smaller than 1.
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Lemma 10.6. Assume that n ≥ n0(K). Then, under the event B1 defined in
the proof of Lemma 10.5,

E

[s
s̃
R3(m̂)1B1

]
≤ LK,η

n
.

These two upper bounds are at the heart of the proof. The sketch of their
proofs is analogous to Lemmas 7.10 and 7.11 in [29]. The main tools are de-
viation inequalities of χ2 random variables and of the largest eigenvalue of a
Wishart matrix. See [28] Sect.1.2 and 1.3 for detailed proofs.

Since l(t̃, t)/s̃ is smaller than 2K
[
t, s; t̃, s̃

]
, it follows that

2E
[
K
(
t, s; t̃, s̃

)
1B1

]

≤ LK,η

{
2E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m) + E [(R2(m) +R4(m, m̂))1B1

]
}

.

Lemma 10.7. Assume that n ≥ n0(K). Considering the event B1 defined in
Lemma 10.5, we bound R2(m) by

E [R2(m)1B1
] ≤ LK,η

n
.

See [28] Sect.1.4 for a detailed proof.

Lemma 10.8. Assume that n ≥ n0(K). Considering the event B1 defined in
Lemma 10.5, we bound R4(m) by

E [R4(m, m̂)1B1
] ≤ Lpen(m) + n exp [−nLK ] .

The proofs of this lemma relies on the same ideas as the proofs of Lemma 3
in [4]. See [28] Sect.1.5 for a detailed proof.

Gathering these two lemmas, we control the Kullback risk of (t̃, s̃) on the
event B1

2E
[
K
(
t, s; t̃, s̃

)
1B1

]
≤ LK,η

{
2E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m)

}

+
LK

n
+ (n+ L) exp [−nLK ] . (40)

To conclude, we need to control the Kullback risk of the estimator (t̃, s̃) on the
event Bc

1.

Lemma 10.9. Outside the event B1, the Kullback risk is upper bounded as
follows:

E
[
K
(
t, s; t̃, s̃

)
1Bc

1

]
≤ LK,ηn

5/2 [1 +K(t, s; 0, 1)] exp [−nLK ] .

This lemma is based on Hölder’s inequality and on an upper bound of the mo-
ments of the parametric losses K(t, s; t̂m, ŝm). A detailed proof is in the technical
Appendix [28] Sect.1.6. Combining (40) and Lemma 10.9 allows to conclude

E
[
K
(
t, s; t̃, s̃

)]
≤ LK,η

[
E
[
K
(
t, s; t̂m, ŝm

)]
+ pen(m)

]
+

LK

n

+ LK,ηn
5/2 [1 +K(t, s; 0, 1)] exp [−nLK ] .
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10.3.2. Proof of the corollaries

Proof of Corollary 5.1. The functionsHi(.) equal 0 for all the collectionsMd
i,ord.

Hence, the collections Md
ord satisfies (HK,η). We conclude by gathering Propo-

sition 4.1 and Theorem 4.4.

Proof of Corollary 6.1. First, we claim that for any K > 1 the penalties (21)
are lower bounded by penalties defined in (7) with some K ′ > 1 if

|mi|/(n− |mi|)
{
1 +

√
2 [1 + log ((i− 1)/|mi|)]2

}
≤ ν′(K) .

If we assume that d[1 + log(p/d) ∨ 0] ≤ nη′(K), for some well chosen function
η′(K), then (HK′,η) is fulfilled and that the risk bound (23) holds. A detailed
proof is in the technical Appendix citetechnical Sect.1.7.

Proof of Proposition 7.1. Under the event Am, the model m belongs to the col-
lection M̂1 × · · · × M̂p. Hence for any i in 1, . . . p, log(ŝi,m̂f

i

) + pen(m̂f
i ) ≤

log(ŝi,mi
) + pen(mi). The rest of the proof is analogous to the proof of Theo-

rem 4.4.

10.4. Proofs of the minimax bounds

The minimax bounds are based on Fano’s method [32]. Since the Kullback
discrepansy is not a distance, we cannot directly apply this method. Instead,
we use a modified version of Birgé’s lemma [7] for covariance estimation. In the
sequel, we note ‖t‖l2 the Euclidean norm of a vector t.

Lemma 10.10. Let A be a subset of {1, . . . , p}. For any positive matrices Ω
and Ω′, we define the function d(Ω,Ω′) by

d(Ω,Ω′) :=
∑

i∈A

log

[
1 +

‖ti − t′i‖2l2
4

]
+
∑

i∈Ac

si
s′i

+ log

(
si
s′i

)
− 1 . (41)

Let Υ be a subset of square matrices of size p which satisfies the following as-
sumptions:

1. For all Ω ∈ Υ, ϕmax(Ω) ≤ 2 and ϕmin(Ω) ≥ 1/2.
2. There exists (s1, s2) ∈ [1; 2]2 such that ∀Ω ∈ Υ, ∀1 ≤ i ≤ p, si ∈ {s1, s2}.

Setting δ = minΩ,Ω′∈Υ,Ω6=Ω′ d(Ω,Ω′), provided that maxΩ,Ω′∈Υ K(P⊗n
Ω ;P⊗n

Ω′ ) ≤
κ1 log |Υ|, the following lower bound holds

inf
Ω̂

sup
Ω∈Υ

EΩ

[
K
(
Ω; Ω̂

)]
≥ κ2δ .

The numerical constants κ1 and κ2 are made explicit in the proof.
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The general setup of the proofs is to pick a maximal subset Υ of matrices
that are well separated with respect to d(., .) and such that their Kullback dis-
crepansy is not too large. The existence of these subsets is ensured by technical
combinatorial arguments. We postpone the complete proofs to the technical
appendix [28] Sect.2.

10.5. Proof of the Frobenius bounds

We derive the Frobenius rates of convergence from the Kullback bounds. Indeed,
we prove in [28] that

‖
√
ΣΩ′√Σ− Ipn

‖2F = 4 [K (Ω;Ω′)] + o [K (Ω;Ω′)] , (42)

when K (Ω;Ω′) is close to 0. Hence, one may upper bound the Frobenius distance
between Ω′ and Ω in terms of Kullback discrepancy using that

‖Ω′ − Ω‖2F = tr
[√

Ω
(√

ΣΩ′√Σ− Ipn

)
Ω
(√

ΣΩ′√Σ− Ipn

)√
Ω
]

≤ ϕ2
max (Ω) ‖

√
ΣΩ′√Σ− Ipn

‖2F .

The complete proof of Corollaries 5.4 and 6.3 are postponed to the technical
Appendix [28] Sect.4.
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[25] Meinshausen, N. and Bühlmann, P. (2010). Stability selection. J. R.
Stat. Soc. Ser. B Stat. Methodol. 72, 4, 417–473.

[26] Rosen, D. V. (1988). Moments for the inverted wishart distribution.
Scand. J. Statist. 15, 2, 97–109.

[27] Rothman, A., Bickel, P., Levina, E., and Zhu, J. (2008). Sparse
permutation invariant covariance estimation. Electron. J. Stat. 2, 494–515.
MR2417391

[28] Verzelen, N. (2009). Technical Appendix to “Adaptive estimation of
covariance matrices via cholesky decomposition”.

[29] Verzelen, N. (2010). High-dimensional gaussian model selection on a
gaussian design. Ann. Inst. H. Poincaré Probab. Statist. 46, 2, 480–524.
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