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Abstract: This paper studies a generic sparse regression problem with a
customizable sparsity pattern matrix, motivated by, but not limited to, a
supervised gene clustering problem in microarray data analysis. The clus-
tered lasso method is proposed with the l1-type penalties imposed on both
the coefficients and their pairwise differences. Somewhat surprisingly, it be-
haves differently than the lasso or the fused lasso – the exact clustering effect
expected from the l1 penalization is rarely seen in applications. An asymp-
totic study is performed to investigate the power and limitations of the l1-
penalty in sparse regression. We propose to combine data-augmentation and
weights to improve the l1 technique. To address the computational issues
in high dimensions, we successfully generalize a popular iterative algorithm
both in practice and in theory and propose an ‘annealing’ algorithm ap-
plicable to generic sparse regressions (including the fused/clustered lasso).
Some effective accelerating techniques are further investigated to boost the
convergence. The accelerated annealing (AA) algorithm, involving only ma-
trix multiplications and thresholdings, can handle a large design matrix as
well as a large sparsity pattern matrix.
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1. Background

This paper assumes a regression setup

y = Xβ + ǫ, ǫ ∼ N(0, σ2I), (1.1)

where y is the observed response vector and X is the regression (design) matrix
of size n-by-p. The main goal is to recover β under some sparsity assumptions.
One typical assumption is that β is sparse in the sense that many of its compo-
nents are zero (referred to as the zero-sparsity in this paper), where the lasso [26]
by solving the following convex optimization problem is a popular method

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1,

or stated in a multi-objective way [6]

min(‖y −Xβ‖22, ‖β‖1). (1.2)
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The test error is yet always the first concern in fitting a regression model, which
is assumed throughout the paper. One advantage of the lasso lies in its com-
putational feasibility even for large-scale data. For some concrete computation
procedures, we refer to the LARS (Efron et al. [13]), the homotopy method
(Osborne et al. [22]), and a recently re-discovered iterative algorithm (Fu [15],
Daubechies et al., Friedman et al. [14], Wu & Lange [29]) among others. There
are numerous theoretical works on the zero-sparsity, Bunea et al. [8], Zhang &
Huang [31], Candès and Tao [9], to name a few.

On the other hand, motivated by the intuition that the l1-norm is a convex
relaxation of the l0-norm, researchers have tried far more l1-type penalties to
capture various types of sparsity, especially in the field of signal processing and
computer vision. Unfortunately, there is not much theoretical analysis in the
literature, and there is a lack of scalability of current computational algorithms
in very high dimensions. This paper aims to shed light on a range of issues
related to l1 sparsity recovery in a general setup.

The rest of the paper is organized as follows. Motivated by a gene clustering
problem, Section 2 proposes a clustered lasso method, and provides a generic
sparse regression framework with customizable sparsity patterns. A theoretical
study is performed on the power and limitations of the l1-penalty in Section 3.
Improving techniques of data-augmentation and weights are also investigated.
Section 4 tackles the computation problem in high-dimensional space by devel-
oping an iterative algorithm with theoretical justifications. It can be seen as a
generalization of the popular coordinate descent algorithm. All technical details
are left to the Appendices.

2. Clustered lasso

The motivation of this paper is to perform a microarray study to discover aging-
related genes. The microarray dataset consists of large-scale gene expression
data of 133 human kidney samples. The gene expression matrixX is of size 133×
44,928, and the responses, y, are the ages of the 133 subjects. After normalizing
the data, one can run the lasso to classify the large number of genes as relevant
and irrelevant factors in response to age. The number of relevant genes is limited
by n. To deeply study the gene effects and to obtain possibly more relevant
variables in the model, a reasonable idea is to make the nonzero coefficients
come out equal in clusters. As a form of regularization, this is much more
interpretative (in terms of average expression values) than the ridge regression.
One can construct group-based predictors that are measured more accurately
and are less sensitive to noise. Later, if some gene expression values are missing
in the microarrays, these groups can be used to impute the missing values.
Finally, the gene groups may provide some biological insights to identifying
the functionally-related genes that are coexpressed in response to age. (See
Dettling and Bühlmann [11] or Jörnsten and Yu [17] for a detailed description
of this biological motivation.) In consideration of these benefits, we would like
to identify and group relevant variables based on their effects (coefficients).
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The proposed problem requires combined regression and clustering analysis.
One possible way is to directly apply some clustering procedure to the estimated
coefficients, which often results in an ad-hoc algorithm. The estimate from the
fitting stage may not be stable. To carry out the clustering task in the second
stage, one needs to specify a similarity measure and the number of clusters.
Typically, the standard error information of the estimate is discarded in this
step. More importantly, the clustering criterion is different than the test error, so
the obtained clusters may not improve model fitting at all. For high-dimensional
data, this two-stage approach is unstable and inaccurate. Alternatively, a more
ambitious and more trustworthy means is to take the clusters into account when
fitting the regression model, which can be achieved by integrating a penalty
for improper clustering into the objective function. We refer to it as sparse
regression with exact clustering. The notion of “exactness” is necessary in proper
clustering because without the standard error information, statisticians cannot
determine how close two estimates say β̂i and β̂j are, even if the gap between
them is small; however, once getting a gap estimate exactly equal to 0, one
usually has enough confidence to put gene i and gene j into the same group. This
exactness also enhances model parsimony (in comparison to the ridge regression
or the lasso) – the number of degrees of freedom of the model is essentially the
number of nonzero clusters.

In the language of multi-objective optimization [6], the problem can be for-
mulated into

min(‖y −Xβ‖22, ‖β‖0,
∑

i<j

1βi 6=βj
). (2.1)

Two types of sparsity are desirable: zero-sparsity and equi-sparsity, achieved by
minimizing ‖β‖0 and

∑
i<j 1βi 6=βj

, respectively. The problem is a combinatorial
optimization and is NP-hard [1]. Motivated by the fact that the l1-penalty is a
convex approximation of the l0-penalty in optimization, we may try to minimize

(‖y −Xβ‖22, ‖β‖1,
∑

i<j

|βi − βj |),

or equivalently,

1

2
‖y −Xβ‖22 + λ1‖β‖1 + λ2

∑

i<j

|βi − βj |, (2.2)

referred to as the clustered lasso.

Remark. Though similar in form, the clustered lasso (2.2) is different than
the fused lasso (Tibshirani et al. [27]) in that it does not require the regres-
sion features to be ordered and so the clustering problem is much more chal-
lenging. In fact, the clustered lasso organizes all features and thus can be
used as a pre-processing step for the fused lasso. This idea is used later in
Section 3.3 in the algorithm design. It is also worthwhile to make a com-
parison between the clustered lasso and the grouped lasso methods [30, 32].
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Grouped lasso assumes the grouping of features (predictors) is known, aris-
ing naturally from the underlying background, such as the dummy variables
introduced for a multi-level factor. The coefficients within the same predic-
tor group are not necessarily equal. The clustered lasso performs supervised

clustering and groups the predictors taking into account both X and y. Bon-
dell and Reich’s OSCAR [5] is close in spirit in this sense which minimizes
1
2‖y −Xβ‖22 + λ1‖β‖1 + λ2

∑
i<j |βi| ∨ |βj |. It is not difficult to see that the

objective function can be written as 1
2‖y−Xβ‖22+λ′

1‖β‖1+λ2

∑
i<j(|βi|−|βj |),

and thus OSCAR seeks zero-sparsity and equi-sparsity in |β|.

It is more convenient to introduce a general framework for sparse regression
where the objective is to obtain a regression estimate with T -sparsity, i.e.,

min(‖y −Xβ‖22, ‖Tβ‖0), (2.3)

where T is the sparsity pattern matrix specified by the user. A feasible alterna-
tive to overcome the NP-hardness is to solve

min(‖y −Xβ‖22, ‖Tβ‖1). (2.4)

The T matrix can be used to characterize coding sparsity in β, not only the
zero-sparsity in the narrow sense. Some examples are presented as follows.

Example 2.1 (Mixed T ). Suppose a priori knowledge of β is available: the
successive differences of (β1, β2, β3) are equal, β3 equals β4, and β5 is zero.
Then T may include rows of




1 −2 1
1 −1

1




to capture all sparsity in fitting the regression model.

Example 2.2 (Clustered/Fused lasso). In our clustered lasso problem,

T =

[
I

λF

]
, (2.5)

where F is a matrix including all pairwise differences (see (4.28)). And the fused
lasso [27] replaces the F in (2.5) by a neighboring difference matrix (see (4.26)).

Example 2.3 (Dense T ). T can be given by a wavelet transformation matrix
(possibly overcomplete), which is useful in signal denoising and compression.

Example 2.4 (Spatial T ). In the field of computer vision and image process-
ing, there exist many meaningful choices for T , which can be constructed from
various spatial operators, such as the following Laplacian of Gaussian used in
edge detection 


0 1 0
1 −4 1
0 1 0


 .

The two-dimensional fused lasso [14] also makes an example here.
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In summary, the customizable T represents the sparsity requirement posed
in regression analysis. Unless otherwise specified, our studies in the rest of the
paper are toward an arbitrarily given T matrix.

3. Limitations and improvements of the clustered lasso

Somewhat surprisingly, the plain clustered lasso (2.2) suffers some serious prob-
lems. Its test error is often not small although it has two regularization parame-
ters. More importantly, it barely clusters the predictors properly in experiments.
We demonstrate an example as follows. Let βT =({0}3, {4}5, {−4}5, {2}2, {−8}1),
X = [x1,x2, · · · ,xn]

T , xi i.i.d. ∼ MVN(0, σ2Σ), where σ = 5 and Σij =
(−1)(i−j)0.8. This is a parsimonious model with only 4 degrees of freedom (4
nonzero clusters). The training sample size is 100. To make the clustered lasso
less affected by various parameter tuning strategies, we generate a large enough
validation dataset (of size 1000) to find the optimal λ1 and λ2. Ideally, Tβ

have 27 zeros, 3 corresponding to the zero-sparsity, and 24 corresponding to
the equi-sparsity. But for the clustered lasso estimate β̂, T zβ̂ hardly shows
exact-clustering effects, as demonstrated by Figure 1. Although setting the reg-
ularization parameters in the objective function to be large results in more zeros
in T β̂, the fitted model is often poor in both estimation and prediction. The
problem exists for other ad-hoc parameter tunings. Increasing the sample size
does not resolve the issue, either. Our theorem below reveals that this bizarre

1 15 27
−2
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−1

−0.5

0

0.5

1

1.5

2

2.5

3

sparsity indices of Tz (reordered)

T
z
β̂

Tzβ̂ vs. Tzβ

 

 
true
c−lasso

Fig 1. The plain clustered lasso does not show enough exact-clustering effect. The true
β is sparse in that Tβ has 27 exact zeros.
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behavior is in fact due to the l1 relaxation (see Theorem 3.1). In this section,
we study the limitations of the l1 technique in T -sparsity recovery and propose
some effective improvements.

3.1. Power and limitations of the L1-penalty in sparse regression

It is widely known that the l1-norm penalty is a convex approximation to the l0-
norm penalty in optimization. For instance, the variable selection problem can
be formulated as an l0-minimization and discovering the best subset of predictors
is NP-hard. The lasso replaces the l0-norm with the l1-norm in the criterion and
offers a computationally feasible way to tackle this problem. However, it may
not be selection consistent for coherent designs [33, 34]. For a general T , the
nature of this l1 approximation is worth careful study in theory.

For clarity, we adopt the generalized sign notation. Introduce S̃gn(v) = {s :
si = 1 if vi > 0, si = −1 if vi < 0, and si ∈ [−1, 1] if vi = 0}, and s̃gn(v) is

used to denote a specific element in S̃gn(v). The usual sign vector is defined as

sgn(v) = {s : si = 1 if vi > 0, si = −1 if vi < 0, and si = 0 if vi = 0}. Let β̂ be
an optimal solution to the generic sparse regression

min
β

1

2
‖y −Xβ‖22 + λ‖Tβ‖1. (3.1)

T may not have full rank. By the KKT optimality conditions [25] (the nons-

mooth version), β̂ is an optimal solution if and only if β̂ satisfies

XT (Xβ − y) + λT T s̃gn(Tβ) = 0,

for some s̃gn(Tβ). We work in a classical setting (C): assume that p,β are fixed
and n→∞; Σ , XTX/n→ C, a positive definite matrix, with probability 1.
Throughout this paper, given a matrix A, we use AI to denote the submatrix
of A composed of the rows indexed by I, such that AIα = (Aα)I , ∀α. Given
two matrices A,B, B ⊂ A means that B is a submatrix of A, composed of
certain rows of A. Hence AI ⊂ A.

Proposition 3.1. If λ = o(n), then β̂
P→ β, and so T β̂

P→ Tβ.

Consistency is a weak requirement, placing no restrictions on Σ or T . It can
be easily achieved by a properly chosen λ. Yet in using the l1 penalty, we expect
something more in sparsity recovery. In this paper, we are more interested in
another notion of consistency.

Definition 3.1. (Sign consistency, Zhao and Yu [33]) Let θ̂ be a sequence of es-

timators of θ. Then θ̂ is defined to be sign-consistent if P (sgn(θ̂) = sgn(θ))→ 1.

Note that consistency implies nonzero sign consistency. For example, from
Proposition 3.1, P (sgn(β̂I) = sgn(βI)) → 1 for I = {i : βi 6= 0}, and

P (sgn((T β̂)I′) = sgn((Tβ)I′))→ 1 for I ′ = {i : (Tβ)i 6= 0}.
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Definition 3.2. (Zero s-consistency) Let θ̂ be a sequence of estimators of θ

satisfying Aθ = 0 for some matrix A. θ̂ is defined to be zero s-consistent with
respect to A if P (Aθ̂ = 0)→ 1.

The zero-s consistency is a key notion used to characterize sparsity recovery.
For example, in the clustered lasso, zero-s consistency means successfully discov-
ering all the true groups asymptotically. Returning to our T -sparsity problem,
define z = z(T ,β) = {i : (Tβ)i = 0}, nz = nz(T ,β) = {i : (Tβ)i 6= 0}. Then
we have the following result.

Proposition 3.2. If λ = O(
√
n), i.e., lim supn→∞ λ/

√
n < ∞, then β̂ is not

zero s-consistent with respect to T z.

In the following studies, the joint zero s-consistency will be our main con-
cern. Namely, we study the conditions for zero s-consistency (with respect to
some T 1 ⊂ T z) under the consistency assumption. This is because in practice
although blindly increasing λ would bring into play the thresholding power of
the l1-penalty, we prefer a tuned value of λ with small test error (like the one
obtained from cross-validation). The consistency requirement complies with the
usual tuning criteria.

Theorem 3.1. Assume the classical setup (C); T =
[

T 1

T 2

]

, T 1β = 0; λ/n→ 0,

λ/
√
n → ∞. We use A+ to denote the Moore-Penrose inverse of A. Then a

necessary condition for β̂ to be zero s-consistent w.r.t. T 1 is

∃s̃gn(T 2β) s.t. ‖(T 1C
−1T T

1 )
+(T 1C

−1T T
2 ) · s̃gn(T 2β)‖∞

≤ ‖(T 1C
−1T T

1 )
+(T 1C

−1T T
1 )‖∞, (3.2)

and a sufficient condition is given by

‖(T 1C
−1T T

1 )
+(T 1C

−1T T
2 ) · s̃gn(T 2β)‖∞ < 1, ∀s̃gn(T 2β). (3.3)

For a concrete example, suppose T z has full row rank and substitute T z for
T 1, and T nz for T 2. Then, (3.2) and (3.3) become

‖(T zC
−1T T

z )
−1(T zC

−1T T
nz) · sgn(T nzβ)‖∞ ≤ 1. (3.4)

and
‖(T zC

−1T T
z )

−1(T zC
−1T T

nz) · sgn(T nzβ)‖∞ < 1, (3.5)

respectively. Thus the sufficient condition is pretty strong. Simple algebra also
shows that they further reduce to the irrepresentable conditions [33, 34] in the
lasso case where T = I.

As another interesting example, suppose (T 1,T 2) is ‘separable’ in the sense

that T =
[

T 1

T 2

]

=
[

T 11 0

0 T 22

]

. We write C in a corresponding block form
[

C1 C12

CT
12 C2

]

, and assume that C2 is nonsingular. Then the LHS of (3.3) be-
comes

‖(T 11S
−1T T

11)
+T 11S

−1C12C
−1
2 T T

22 · s̃gn(T 2β)‖∞,
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where S = C1−C12C
−1
2 CT

12. Therefore, if the entries of C12 are small enough
(in absolute value), the zero s-consistency w.r.t. T 1 naturally follows. (Note that
(T 11S

−1T T
11)

+ is a continuous function of C12 since the rank of T 11S
−1T T

11 is
preserved.) This conclusion coincides with the lasso studies where T = I (see,
e.g., Zhao and Yu [33]). Unfortunately, the clustered lasso does not fall into
this class because the rows of the T encompass all pairwise differences and thus
never result in a separable (T z,T nz).

Theorem 3.1 indicates that in contrast to consistency, zero s-consistency
imposes further constraints on Σ (the data) aside from the controllable regular-
ization parameter λ. Without going into the mathematical details, these condi-
tions intuitively mean that one should have good control over (T zC

−1T T
z )

+ ·
(T zC

−1T T
nz) to ensure the l1 penalty is effective for sparsity recovery. For in-

stance, if we consider the joint zero s-consistency with respect to T 1 for all
signals satisfying T 1β = 0, the sufficiency condition (3.3) becomes

‖(T 1C
−1T T

1 )
+(T 1C

−1T T
2 )‖∞ < 1. (3.6)

Hence the magnitude of the entries of (T 1C
−1T T

1 )
+T 1C

−1 · T T
2 plays an im-

portant role. Given β, T 1, and C, (3.6) makes a huge difference between the
fused lasso and the clustered lasso: the T 2 of the clustered lasso contains up to
O(p2) more rows in addition to the T 2 of the fused lasso. Recalling that the
matrix infinity norm is the maximum of the l1-norms of all rows, we see the
clustered lasso is certainly more likely to break (3.6).

We illustrate the conditions with the previous example in Figure 1 for both
clustered lasso and fused lasso (which uses the correct ordering from the true β).
For convenience, we ignore the zero-sparsity constraint and concentrate on the
equi-sparsity. Substituting T z for T 1 in (3.2), the LHS equals 0.6 and the RHS
equals 1 for the fused lasso, but these quantities are 3.0 and 1.6 respectively for
the clustered lasso. In (3.6), the LHS is only 1.7 for the fused lasso, but 31.2
for the clustered lasso. The fused lasso and the clustered lasso (though similar
in form) thus show remarkable difference in the behavior of the l1-penalty, the
latter much more difficult to recover the true sparsity even asymptotically.

This explains the dilemma we encountered earlier. No matter how we devise
a scheme to tune the regularization parameters, the design criterion favors the
models with small generalization error. Therefore, the tuned regularization pa-
rameters cannot be very large seen from Proposition 3.1 (if we do not want our
estimate to be inconsistent). But Proposition 3.2 and Theorem 3.1 then limit
the l1’s ability to enforce sparsity. Although this requirement on Σ might not
be very restrictive for the lasso or even for the fused lasso, it becomes so strin-
gent for the clustered lasso that the expected exact-clustering effect is seldom
seen strong enough in applications. In the next subsection, we propose different
means to improve the näıve l1-penalty to gain exact clustering.
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3.2. Improving techniques

3.2.1. Weights

To further improve the sparsity weights can be added into the l1 norm. Zou [34]
shows that asymptotically, this weighted form of lasso (adaptive lasso) is sign
consistent and enjoys the oracle properties. This technique applies to the generic
sparse regression (3.1). According to Theorem 3.1, if we could rescale the rows
of T in an ideal way

DT =

[
I

εI

] [
T z

T nz

]
=

[
T z

εT nz

]
, T ′,

then, the LHSs of (3.2) and (3.3) may be reduced significantly for ε small enough,
while the RHSs remain unchanged. In fact, one of the advantages of the fused
lasso (see example 2.2) is that the two regularization parameters provide adap-
tive weights for the components of Tβ. This weight construction is based on
different types of sparsity. For a general T , however, it may not be possible
to supply this information. Furthermore, it is really between the zero compo-
nents (T zβ) and nonzero components (T nzβ) that the weights should make a
big difference. We introduce weights for each individual component of Tβ and
consider the weighted sparse regression of the form

min
1

2
‖y −Xβ‖22 + λ

∑
wi|(Tβ)i|. (3.7)

where wi are positive.

Theorem 3.2. Assume the classical setup (C). Suppose

w−1
i = Op (A(n)) , ∀j ∈ z, wi = Op (B(n)) , ∀j ∈ nz.

Then for some properly chosen λ(n), the optimal solution β̂ to (3.7) is both zero
s-consistent with respect to T z and

√
n-consistent as long as

A(n)B(n)→ 0. (3.8)

For example, w−1
i = Op(1/

√
n), ∀j ∈ z, and wi = Op (1) , ∀j ∈ nz.

(3.8) is a broad condition. Essentially it only requires

max{wnz}/min{wz} P→ 0, (3.9)

and so provides a flexible way for weight construction. We can use 1/wi =

|(T β̂wts)i| with any consistent estimate β̂wts. This can be viewed as a general-

ization of Zou [34]. (In fact, β̂wts does not even have to be an estimator of β
seen from (3.9), which also justifies the use of one-step SCAD weights [36].) On
the other hand, one should be aware that Theorem 3.2 is an asymptotic study
with p fixed. Therefore, although the weighted l1-penalty can increase model
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sparsity, careful consideration must be given to the practical weight construc-
tion especially in large-p applications. Another issue is that adding the weights
does not improve the test error very much. It can even hurt the goodness-of-fit
to some extent. This is undesirable in statistical modeling and we would like to
combine it with the following data augmentation technique.

3.2.2. Data augmentation

It has been recognized that the l1 with a data-augmentation modification, such
as the elastic net (eNet for short), can achieve much smaller test error and
can resolve singularities and the ‘grouping’ issue [35]. To introduce the data-
augmentation (DA), we facilitate our discussion by focusing on the zero-sparsity
in this subsection. The technique carries over to a customizable T as will shown
in Section 3.3.

If one cares about prediction accuracy only, the ridge regression is a good
alternative to the lasso. In view of data augmentation, it considers an augmented
problem with the design and response given by

[
X√
λI

]
→
[

y

×

]
. (3.10)

where
√
λI decorrelates the predictor columns. The × part is often 0, but data-

dependent choices might be better such as using the univariate estimate
√
λβ̂uni:

β̂uni =
[
xT
i y/(x

T
i xi)

]
p×1

.

In fact, following this idea, we can give the elastic net a natural characterization
and explain why an extra factor comes in to correct the näıve eNet [35]. In [35],
the näıve eNet is introduced as a combination of the lasso and ridge regression
by imposing both the l1 penalty and the l2 penalty on β. Then, to guard against
double shrinkage, Zou and Hastie gave an empirical way to improve this näıve
estimate by multiplying it by a factor of 1 + λ2. The resulting eNet estimate,
according to Theorem 2 of [35], is defined by

β̂
(eNet)

λ1,λ2
= argmin

β
βT XTX + λ2I

1 + λ2
β − 2yTXβ + λ1‖β‖1, (3.11)

assuming xT
i xi = 1 for i = 1, · · · , p. We show the following result.

Theorem 3.3. Given λ1, λ2 > 0, define

β̂λ1,λ2
= argmin

∥∥∥∥
[

y√
λ2X

Ty

]
−
[

X√
λ2I

]
β

∥∥∥∥
2

2

+ λ1‖β‖1. (3.12)

Then β̂λ1,λ2
= β̂

(eNet)
λ1

1+λ2
,λ2

.
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In addition, since the eNet uses a search strategy of first picking a grid of
values for λ2, then searching over the λ1-space for each λ2 in the grid, the tuned
β̂λ∗

1
,λ∗

2
based on (3.12) coincides with the tuned eNet estimate. In short, the

eNet solves the lasso problem of
[

X√
λI

]
→
[

y√
λβ̂uni

]
. (3.13)

This indicates the power of the DA: even using a not so accurate estimator (β̂uni

is not even consistent for nonorthogonal designs) can still effectively reduce the
test error.

In the next, we propose a nondiagonal manner of data augmentation. To
see the motivation we ignore the l1-constraint for the moment and consider the
augmented data fitting

β̂ = argmin

∥∥∥∥
[

y√
λ2β̂uni

]
−
[

X√
λ2I

]
β

∥∥∥∥
2

2

.

Let X = Udiag{di}V T be the SVD. Then ŷ , Xβ̂ is given by ŷ = (1 + λ2) ·
X(XTX +λ2I)

−1XTy =
∑p

i=1
d2
i (1+λ2)

d2
i
+λ2

(uT
i y)ui. For comparison, the OLS fit

is ŷols =
∑

(uT
i y)ui. When di < 1, the projection of y on ui is shrunk; when

di > 1, the projection on ui is extended. The reference value ‘1’ is not data-
dependent. We would rather replace it by an adaptive scale parameter. One way
is to solve the following problem jointly for β and s

min
(β,s)
‖y −Xβ‖22 + λ2‖β − sβ̂uni‖22 + λ1‖β‖1,

or equivalently (by optimizing over s),

min ‖y −Xβ‖22 + λ2

∥∥∥∥∥β −
∑

β̂uni,iβi∑
β̂2
uni,i

β̂uni

∥∥∥∥∥

2

2

+ λ1‖β‖1.

In general, given an initial estimate β̂aug, we construct a matrix Λ(β̂aug)

Λ(β) ,

{
I − ββT /‖β‖22, β 6= 0

I, β = 0
(3.14)

and propose the non-diagonal data augmentation by solving

min

∥∥∥∥
[

y

0

]
−
[

X√
λ2 ·Λ(β̂aug)

]
β

∥∥∥∥
2

2

+ λ1‖β‖1. (3.15)

Suppose β̂aug 6= 0. The eigenvalues ofΛ(β̂aug) are 1’s with multiplicity p−1, and
0 with multiplicity 1, and the eigenvector corresponding to 0 is β̂aug/‖β̂aug‖2.
It is not difficult to show that the whole input matrix

[
X√
λ2Λ

]
(3.16)
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is rank-deficient if and only if all components of Xβ̂aug are exactly equal to
0. Therefore, this resulting nondiagonal DA from introducing a data-dependent
scale parameter is still able to decorrelate the covariates in real-world applica-
tions.

Interestingly, from an empirical Bayesian point of view, (3.16) corresponds
to a multivariate Gaussian prior with a nondiagonal and degenerate covariance
matrix (rank(Λ) = p − 1). Therefore, not all information provided by β̂aug

is used as the prior knowledge. The new data augmentation is more robust
and accommodates a less accurate initial estimate. Indeed, the tuning of the
regularization parameter λ2 makes it possible to save one degree of freedom in
the construction of Λ.

3.3. Algorithm design for supervised exact-clustering

The data-augmentation and weights can be combined in sparse regression to
reduce test error and increase model sparsity simultaneously. We discuss the
practical algorithm design for the supervised exact clustering problem to demon-
strate this point.

Given β̂aug and β̂wts, we perform the nondiagonal DA and introduce weights
into the l1 penalty, which amounts to solving the following optimization problem:

min
β

1

2

∥∥∥∥
[

y

yaug

]
−
[

X

Xaug

]
β

∥∥∥∥
2

2

+ λ
∑

wi|(Tβ)i|, (3.17)

where λ, τ are two regularization parameters, Xaug =
√
τΛ(β̂aug), yaug = 0,

and wi = 1/|(T β̂wts)i|. (3.17) will be referred to as the DAW version of the
sparse regression. In particular, the DAW version of the clustered lasso will be
called DAW-CLASSO for convenience.

For the supervised exact clustering problem, we propose to improve the plain
clustered lasso estimate (denoted by β̂c-lasso) as follows. (Figure 2 plots the
outline of the procedure.)

(i) Fit a fused lasso model with the covariates ordered according to β̂c-lasso,

the estimate denoted by β̂f-lasso.

(ii) Substituting β̂c-lasso for β̂aug and β̂f-lasso for β̂wts, fit the DAW-CLASSO,

the estimate denoted by β̂daw-classo1 .

Then, we can repeat (i) with the covariates re-ordered according to the last es-

timate β̂daw-classo1 , to obtain an updated fused lasso estimate, and then repeat

(ii) with β̂daw-classo1 used for data-augmentation and the updated fused lasso

estimate for weight construction. The new estimate is denoted by β̂daw-classo2 .

The experience shows the improvement brought by β̂daw-classo2 is already sig-
nificant enough, although ideally one can repeat the DAW process within the
allowed time.
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C-lasso

F-lasso

DAW

C-lasso

F-lasso

DAW

C-lasso

augmentation

weights

order

weights

order

augmentation

Fig 2. Algorithm design for the supervised exact clustering.

3.4. Simulation studies

We carried out simulation experiments to empirically study the improvement
brought by DAW. Each simulation dataset contains training data, validation
data, and test data, the numbers of observations denoted by # =“·/ · /·” re-
spectively as follows. The rows of X are independently drawn from N(0,Σ).
We use ({a1}n1 , · · · , {ak}nk) to denote a column vector made by n1 a1’s, · · · ,
nk ak’s consecutively.

Example 3.1 (Many small clusters, overlap likely to occur).
# = 20/100/100, β = ({0}2, {−1.5}2, {−2}2, {0}2, {1}2, {4}3), σ = 5, Σij =
ρ|i−j| with ρ = 0.5. The degrees of freedom (number of nonzero clusters) of the
true model is 4.

Example 3.2 (Same as the Example 3.1, much more correlated).
# = 20/100/100, β = ({0}2, {−1.5}2, {−2}2, {0}2, {1}2, {4}3), σ = 5, Σij =
ρ|i−j| with ρ = 0.9.

Example 3.3 (Big clusters coexist with small clusters, negatively cor-

related design). # = 30/100/100, β = ({0}3, {4}5, {−4}5, {2}2, {−8}1), σ =
5, Σij = (−1)(i−j)0.8. The df of the model is 4.

Example 3.1 and 3.2 demonstrate a situation of many small clusters in the
coefficients, where overlap is likely to occur. The design matrix of the second
is much more correlated than that of the first. Example 3.3 assumes a more
challenging negatively correlated design and the coefficients have big clusters
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Table 1

Performance comparison of the clustered lasso and its DAW versions in terms of test
error and proper sparsity

Example 3.1 Example 3.2 Example 3.3

Test-err p-Spar Test-err p-Spar Test-err p-Spar

C-LASSO 45.0 15.8% 22.1 22.1% 69.3 5.3%

DAW-CLASSO1 40.2 30.9% 16.3 39.2% 63.2 10.5%

DAW-CLASSO2
35.3 30.8% 15.0 37.5% 60.5 12.5%

as well as small clusters. The signal to noise variance ratio of this example is
only about 1. Note that it is not the goal of this study to propose or advocate
a best means for parameter tuning. We set aside a separate validation dataset
to tune the parameter. This large validation tuning ensures fair and stable per-
formance comparisons. For those with multiple regularization parameters, we
use the alternative search strategy [24] which has been shown to be fast and
efficacious.

Each model is simulated 50 times. Then we measure the performance of each
algorithm by the test error and the proper sparsity. The test error is charac-
terized by the scaled MSE (SMSE) 100 · (∑N

i=1(ŷi − yi)
2/(Nσ2) − 1) on the

test data. The proper sparsity is defined as 100% · |{i : (T zβ̂)i = 0}|/|z| which
represents the percentage of proper zeros in T β̂. It is a very sensitive measure
for the clustering problem since it takes into account all pairwise comparisons
within each cluster.

Table 1 compares the performance of the clustered lasso (C-LASSO) and
its DAW versions – DAW-CLASSO1 and DAW-CLASSO2 (by performing the
DAW process once and twice, see Section 3.3). The clustered lasso does not
exhibit enough exact-clustering even in the highly correlated Example 3.2. The
inadequate proper sparsity indicates the great challenge of supervised clustering,
especially with insufficient training data. A similar phenomenon is observed in
the fused lasso studies (Tibshirani et al. [27]) where the ordering of the covariates
is available.

The combined data-augmented weighted l1 technique significantly improves
the performance of the clustered lasso in finite samples: the test error is reduced
effectively, as a result of (nondiagonal) data-augmentation; simultaneously, the
proper sparsity is enhanced after introducing weights into the l1-penalty, by
70% at the minimum. Both improvements are effective regardless of correlation
strength and cluster size.

On the other hand, in spite of the encouraging simulation results we no-
ticed that the computational difficulties cannot be underestimated. The interior
point methods based semidefinite programming (SDP) solvers (like SeDuMi or
SDPT3) cannot even handle the clustered lasso for a moderate value of p. There-
fore, we are in great need of a fast algorithm with good scalability to apply the
proposed methodology in high dimensions.
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4. A fast algorithm for solving the sparse regression

In applying the (improved) clustered lasso to the microarray data, we encounter
insurmountable difficulty with all optimization procedures (to date), mainly due
to the fact that T has p columns and O(p2) rows. Our experience shows that it
is already extremely difficult or infeasible to carry out the supervised clustering
for p just greater than 110. In this section, we propose a simple but scalable
algorithm to solve the generic sparsity problem in practical applications. It is
motivated by the popular coordinate descent algorithm for computing the lasso
solution path.

4.1. Motivation

We start with the lasso which minimizes

1

2
‖y −Xβ‖22 + λ‖β‖1. (4.1)

By the KKT optimality conditions [25], β̂ is an optimal solution if and only if

β̂ satisfies the equation

XT (Xβ − y) + λs̃gn(β) = 0, or λs̃gn(β) = XTy −Σβ, (4.2)

where the same generalized sign notation is used to denote a subgradient of ‖β‖1.
There is a simple but important fact about s̃gn: Given an arbitrary s̃gn(β) ∈
S̃gn(β), let ξ = β + λs̃gn(β), then

β = ΘS(ξ;λ),

where ΘS(·;λ) (or Θ(·;λ), for simplicity) is the soft-thresholding operator using
λ as the threshold value. Rewriting (4.2) as

β + λs̃gn(β) = XTy + (I −Σ)β (4.3)

motivates an iterative design to solve (4.1)

ξ(j+1) = XTy + (I −Σ)β(j), β(j+1) = Θ(ξ(j+1);λ). (4.4)

If ‖Σ‖2 < 1, this nonlinear process can be shown to converge1 to an optimal
point even if Σ is singular (in which case (4.4) is not a contraction, but only a
nonexpansive mapping) [10].

(4.4) has been proposed in different forms [10, 14, 29] and is strongly ad-
vocated for large-data problems. In particular, Daubechies et al. [10] proved
nice theoretical results on its convergence in a functional framework; Friedman
et al. [14] demonstrated its amazing performance in terms of the computation

1This theoretical achievement is considerably stronger than an ‘every accumulation point’
argument often seen in numerical analysis [4].
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time compared to the homotopy method and the LARS. This iterative algorithm
is simple to implement and has very good scalability.

Now we consider the generic sparsity problem

min
1

2
‖y −Xβ‖22 + λ‖Tβ‖1, (4.5)

where T is a given sparsity pattern matrix that can be specified by users in
different situations. In this section, we assume T has full column rank (and thus

is a square or ‘thin’ matrix). The optimal β̂ satisfies the equation

XT (Xβ − y) + λT T s̃gn(Tβ) = 0.

Similar to the derivation of (4.4), we can get

T T ·Θ(Tβ;λ) = XTy + (T TT −Σ)β. (4.6)

The difficulty is, however, T T has no left inverse in the case of a ‘thin’ T . For
example, in the fused lasso,

T =

[
I

λ2F

]
with F =




1 −1
1 −1
· · · · · ·

1 −1


 .

T does not have any right inverse. Accordingly, it is difficult to develop a proper
iterative algorithm based on (4.6).

This poses a great challenge in generalizing the coordinate optimization from
the lasso to the fused lasso or the clustered lasso. In [14], introducing descent
cycles, fusion cycles, and smoothing cycles, Friedman et al. gave an ad-hoc design
for solving the diagonal fused lasso. There is no guarantee that the procedure
converges or provides a solution to the original problem.

We reparameterize (4.5) by introducing H satisfying HT = I. Assuming
that the SVD decomposition of T is given by T = UDV T , we take H =
V D−1UT throughout this section. The generic sparsity regression problem (4.5)
is equivalent to the following constrained lasso problem:

min f(γ) ,
1

2
‖y −XH · γ‖22 + λ‖γ‖1 s.t. THγ = γ. (4.7)

This suggests a simple iterative way to solve (4.5)
{
γ(j) = Θ(HTXTy + (I −HTΣH)γ(j−1);λ)

γ(j+1) = THγ(j)
(4.8)

and
β(j) = Hγ(j). (4.9)

We can prove that the sequence of iterates defined by (4.8) must converge under
some mild conditions. Yet a further challenge is that it does not converge to the
right solution.
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4.2. The ‘annealing’ algorithm

Observe that the original optimization problem (4.5) is also equivalent to

min
1

2
‖y −Xβ‖22 +

λ

k
‖(T · k)β‖1.

for any k positive. We get a variant of (4.8) and (4.9)

{
γ̃(j) = Θ

(
1
kH

TXTy + (I − 1
k2H

TΣH)γ̃(j−1); λ
k

)

γ̃(j+1) = THγ̃(j),
(4.10)

β(j) = Hγ̃(j)/k. (4.11)

Let γ(j) = γ̃(j)/k. Since

γ̃(j) +
λ

k
s̃gn(γ̃(j)) = kγ(j) +

λ

k
s̃gn(γ(j) · k) = kγ(j) +

λ

k
s̃gn(γ(j)),

we obtain
{
γ(j) = Θ

(
1
k2 H

TXTy + (I − 1
k2H

TΣH)γ(j−1); λ
k2

)

γ(j+1) = THγ(j),
(4.12)

β(j) = Hγ(j). (4.13)

For clarity, we write (4.12) as even and odd updates

{
γ
(j)
e = Θ

(
1
k2H

TXTy + (I − 1
k2H

TΣH)γ
(j−1)
o ; λ

k2

)
,

γ
(j)
o = THγ

(j)
e .

(4.14)

Theorem 4.1. The following results hold for the sequence of iterates defined
by (4.14):

1. Convergence. There exists a k0 > 0 such that for any k > k0, γ
(j)
e ,γ

(j)
o ,β(j)

converge given any initial value in (4.14). That is, as j →∞, we have

γ(j)
e (k)→ γe(k),γ

(j)
o (k)→ γo(k),β

(j)(k)→ β(k).

2. Optimality. As k → ∞, every limit point of β(k) (or γe(k), γo(k)) is an
optimal solution to (4.5) (or (4.7)).

3. Rate. Let ∆(k) = γe(k)−γo(k), fopt be the optimal value in (4.7). Then,2

‖∆(k)‖ ≤ C

k2
, (4.15)

and

0 ≤ fopt − f(γe(k)) ≤
C

k2
. (4.16)

2In this paper, we use C to denote a positive constant. These C’s may not take the same
value.
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4. k0. Finally,

k0 ≤
1√
2

σmax(X)

σmin(T )
, (4.17)

where σmax(σmin) denotes the largest (smallest) singular value of the cor-
responding matrix.

See Appendix C for the details of the proof by use of a generalization of
Daubechies et al.’s convergence theorem [10]. In the following, we abbreviate

the subscripts of γ
(j)
e (k) and γe(k) for simplicity. We summarize more findings

in the case that Σ is nonsingular:

Proposition 4.1. Suppose Σ is nonsingular. Then

γopt , arg

(
min
γ

f(γ) s.t. THγ = γ

)

is unique. On the convergence of γ(j)(k) (k > k0), we have

‖γ(j)(k)− γ(k)‖ ≤
(
1− ρ0

k2

)j
‖γ(0)(k)− γ(k)‖, (4.18)

where ρ0 = λ+
min(H

TΣH), the smallest positive eigenvalue of HTΣH; and

‖γ(k)− γopt‖ ≤
C

k2
. (4.19)

Moreover, sign consistency can be achieved by finite k. Specifically,

(γ(k))z = 0,

for any k large enough, where the index set z satisfies
(
γopt

)
z
= 0.

From (4.18), with δ , ‖γ(0)(k) − γ(k)‖, we have ‖γ(j)(k) − γ(k)‖ ≤ ǫ0 if(
1− ρ0

k2

)j
δ ≤ ǫ0 or j ≤ log(δ/ǫ0)

log(1−ρ0/k2) ≈ k2 · 1
ρ0

log(δ/ǫ0), which indicates that

the number of iterations required at k is O(k2). On the other hand, from (4.15)

or (4.19), the error is of order 1/k2. In general, for a small value of k, β(j)(k)

converges fast but to an inaccurate solution, while when k gets larger, β(j)(k)
converges more slowly but to a more accurate point.

We can adopt an ‘annealing’ design (not the simulated annealing) with k
acting as the inverse temperature parameter. Run (4.14) for some k till conver-
gence, then use the estimate as the initial point to move on to a new iteration
associated with a larger k. The outline for our annealing algorithm is given as
follows. The details of the design are given in the next subsection.

1. Initialization. Set the starting values of γ
(0)
o , k, etc.

2. Iteration.

• Update γ
(j)
e , γ

(j)
o , and β(j) according to (4.14) and (4.13).

• If ‖β(j) − β(j−1)‖ is small, then
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– If ‖γ(j)
e − γ

(j)
o ‖ is small enough, exit.

– Otherwise, increase k to a larger value.

• Let j ← j + 1; go to the next iteration.

Both the inner j-convergence and the outer k-convergence can be slow. The
convergence rates may not be geometric (see, e.g., (4.19)) caused by the non-
expansive operators. Some effective techniques are needed to boost the conver-
gences.

4.3. Accelerated annealing

It is natural to think of updating k at each iteration j. In this inhomogeneous
updating, the ‘cooling schedule’, i.e., the growing manner of k(j), is crucial to
guarantee an optimal convergent point that solves (4.7).

Theorem 4.2. Assume Σ is nonsingular. If k(j) satisfies

∞∑

j=1

1

k2(j)
=∞, and k(j)→∞ as j →∞, (4.20)

then the inhomogeneous chain must converge to the optimal solution.

We can take k(j) =
√
j for instance. A detailed proof of Theorem 4.2 is

provided in Appendix C, based on a useful decomposition for inhomogeneous
chains due to Wrinkler [28]. In theory, a valid cooling schedule should be no faster
than the k(j) satisfying (4.20). Theorem 4.2 also implies that it essentially takes
polynomial time to yield a good solution, in contrast to the exponential time
in the simulated annealing [20]. But

√
j might still be too slow in practice. In

most applications, we are only interested in obtaining a good enough solution,
thereby allowing for an even faster cooling schedule. Empirically, we recommend
the stagewise homogenous updating – run a sequence of homogenous chains, each
at a fixed k. The trick is to run the chains for small values of k first to complete
the major improvements over the initial point, but not till convergence since
γ(k) may not be close to γopt; the fine adjustments are left to large-k iterations.
An illustration of the cooling schedule is given in Figure 3. In implementation,
k is doubled once a certain stopping criterion is met. We find the following type
of relative error

‖β(j+1) − β(j)‖
‖∆(j)(k)‖

makes a good stopping criterion, where ∆(j)(k) , γ
(j)
e (k) − γ

(j)
o (k). Due to

(4.15), we may also use

k2 · ‖β(j+1) − β(j)‖. (4.21)
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j

k

Fig 3. Stagewise homogenous updating in AA.

Accelerating the inner j-convergence is even trickier because the iteration
here is nonlinear and nonsmooth. Introduce K satisfying

KTK =
1

k2
HTΣH +U⊥U

T
⊥,

where U⊥ is the orthogonal complement of U , and let α = HTXTy/k2. We
represent the updating kernel (4.14) as (see Appendix C)

ξ(j+1) = (I −KTK)γ(j) +α,γ(j+1) = Θ(ξ(j+1);
λ

k2
). (4.22)

We consider two forms of relaxation parameterized by ω for the above nonlinear
process:

(I) ξ(j+1) = (1− ω)ξ(j) + ω((I −KTK)γ(j) +α),γ(j+1) = Θ(ξ(j+1);
λ

k2
),

(4.23)

(II) ξ(j+1) = (1− ω)γ(j) +ω((I −KTK)γ(j) +α),γ(j+1) = Θ(ξ(j+1);ω · λ
k2

).

(4.24)
Both relaxations seem to converge in practice and yield an optimal solution
when 0 < ω < 2. When ω = 1, they degenerate to the nonrelaxation form
(4.22). Before proceeding, we introduce some more operators Tk,Θk, T̃k, T k: for
any vector v, Tk ◦ v = Jv+α, ∀v, with J = I −ωKTK, Θk ◦ v = Θ(v;λ/k2);

T̃k = Θk ◦ Tk, T k = Tk ◦Θk.

Proposition 4.2. For Relaxation (II), given any γ(0), γ(j)(k) converges to a

fixed point of T̃k as j →∞, provided 0 < ω < 2. All conclusions in Theorem 4.1
hold under this condition, except that the last statement becomes

k0 ≤
√

ω

2

σmax(X)

σmin(T )
. (4.25)

The cooling schedule Theorem (Theorem 4.2) also applies for 0 < ω < 2.
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Convergence analysis is more difficult for Relaxation (I). Currently, we have
obtained the following result.

Proposition 4.3. For Relaxation (I), given any γ(0), γ(j)(k) converges to a

fixed point of T̃k as j →∞, provided 0 < ω ≤ 1. If 2T k− I is nonexpansive, the
same conclusion is true for 1 < ω < 2.

The proof presented in Appendix C is motivated by Browder and Petryshyn’s
reasonable wanderer [7]. We claim that γ(j) converges for 0 < ω ≤ 2 (based on
extensive experience). Relaxation (I) with ω = 2 is of particular interest: in this

situation, ξ(j) does not converge (possessing two accumulation points), but γ(j)

converges and the limit depends on U⊥U
T
⊥ξ

(0) — if U⊥U
T
⊥ξ

(0) = 0, this limit

is an optimal solution, or a fixed point of T̃k. For an inaccurate initial point,
the relaxation with ω = 2 can reduce the number of iterations by 40% or so in
comparison to ω = 1.

We now state the full procedure for the accelerated annealing (AA) algorithm.
Suppose X, y, λ, T (= UDV T ), and H are known. In the initialization stage,

we set a starting value of β(cur) and construct γ(e). The initial k is given by
(4.25). The iteration (starting with j = 0) is specified below with εouter, εinner,a,
εinner,b as prescribed error tolerances.

AA Iteration

• ξ(new) ← (I − 1
k2H

TΣH)UUTγ(e) + 1
k2H

TXTy.

• If j > 0, ξ(new) ← (1 − ω)ξ(cur) + ωξ(new)
.

• γ(e) ← Θ(ξ(new); λ
k2 ).

• β(new) ←Hγ(e),γ(o) ← Tβ(new)
.

• If ‖β(cur) − β(new)‖∞ < max
(
εinner,a/k

2, εinner,b
)

– If ‖γ(o) − γ(e)‖∞ < εouter, exit.

– Otherwise let k ← 2k, j ← 0.

• β(cur) ← β(new)
, ξ(cur) ← ξ(new)

.

• j ← j + 1; go to the next iteration.

This AA algorithm is very simple to implement, and can solve the sparse regres-
sion for any T . There are no complicated operations such as matrix inversion
involved in the iteration. In addition, since the problem is convex, a pathwise
algorithm with warm starts is preferred, where the estimate associated with the
current value of λ is used as the initial point in AA for the next value of λ.
An even more effective trick is to construct the initial estimate via the linear
extrapolation of the last two estimates.

The computational cost of the AA algorithm is primarily due to matrix mul-
tiplication and thresholding. Although an SVD for T is required, it only needs
a one-time calculation. Furthermore, for some regularly patterned sparsity ma-
trix, like the fused lasso and the clustered lasso, we are able to provide explicit
analytical solutions.
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Let

T 1 =

[
I

λF 1

]
with F 1 =




1 −1
1 −1
· · · · · ·

1 −1


 (4.26)

be the sparsity matrix for the fused lasso, and let

T 2 =

[
I

λF 2

]
(4.27)

denote the sparsity matrix for the clustered lasso, where F 2 is a pairwise differ-
ence matrix that can be defined by

F 2(i, j) =





1, if j = αi

−1, if j = βi

0, otherise

(4.28)

for i = 1, · · · , d(d− 1)/2, with {(αi, βi)} enumerating all possible pairwise com-
binations of {1, 2, · · · , d}. Without loss of generality, assume αd(d−1)/2−2 =
d − 2, βd(d−1)/2−2 = d − 1, αd(d−1)/2−1 = d − 2, βd(d−1)/2−1 = d, αd(d−1)/2 =
d − 1, βd(d−1)/2−2 = d; that is, the bottom right 3-by-3 submatrix of F 2 is




1 −1
1 −1

1 −1



.

Proposition 4.4. The following formulas provide the SVDs for the fused lasso

and the clustered lasso, with F 1 = U1D1V
T
1 , T 1 = Ũ1D̃1Ṽ

T

1 , F 2 = U2D2V
T
2 ,

and T 2 = Ũ2D̃2Ṽ
T

2 :

1. U1 =
√

2
d

[
sin
(
ijπ
n

)]
(d−1)×(d−1)

, D1 = diag{2 sin
(
iπ
2d

)
}(d−1)×(d−1), V 1 =

√
2
d

[
cos
(

(2i−1)jπ
2n

)]
d×(d−1)

.

2. Ũ1 =

[
1√
d
1d×1 V 1(I + λ2D2

1)
− 1

2

0(d−1)×1 U1 · λD1(I + λ2D2
1)

− 1
2

]
, D̃1 =

[
1

(I + λ2D2
1)

1
2

]
,

Ṽ 1 =
[

1√
d
1d×1 V 1

]
.

3. U2 =
[
u21

1√
d
F 2V 1

]
, D2 = diag{0,

√
d, · · · ,

√
d}, V 2 = Ṽ 1, ∀d ≥ 3,

where u21 = 1√
3

[
0 · · · 0 1 −1 1

]T
.

4. Ũ2 =

[
1√
d
1d×1

1√
1+λ2d

V 1

0 λ√
1+λ2d

F 2V 1

]
, D̃2 = diag{1,

√
1 + λ2d, · · · ,

√
1 + λ2d},

Ṽ 2 = V 2 = Ṽ 1.

To apply Proposition 4.4 to the DAW-CLASSO (3.17), we need to generalize
our algorithms and results to the weighted version of (4.5)

min
1

2
‖y −Xβ‖22 + ‖ΛTβ‖1,
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where Λ = diag{λi} with λi > 0. This is trivial though: replacing the universal
threshold λ by the componentwise thresholds λi, we find all conclusions and
proofs carry over.

4.4. Practical performance

As previously mentioned, the task of supervised clustering is quite challeng-
ing in computation. Since the clustered lasso is a convex optimization problem,
the general-purpose solvers such as SeDuMi and SDPT3 can be applied. These
solvers are usually based on interior point (IP) methods. Empirically, we find
that they are more appropriate for small scale problems and are more accurate
than the proposed accelerated annealing algorithm if feasible. The SDP solvers
typically fail when p is much greater than 100, due to high computational com-
plexity and memory requirements. The size of the sparsity matrix T or its left
inverse H can be huge (O(p3)) even for a medium value of p. For the kidney
microarray data described in Section 2, although we can reduce the problem
size by gene filtering — for example, FDR < 0.05 yields about 800 genes —
we could only manage to run the clustered lasso with general-purpose convex
optimization softwares for p less than 110. These seriously restrict the use of
the clustered lasso in real-world applications.

By contrast, the AA iterations only involve low-complexity operations like
matrix-vector multiplications and componentwise thresholdings, which provides
good algorithm scalability. Moreover, statisticians usually have the need to com-
pute the whole solution path to tune the regularization parameters, and so
warms starts (or our extrapolated warm starts) are particularly effective to speed
the computation (due to the convexity of the problem). This, however, does not
apply to the SDP solvers which compute the solution path as a series of inde-
pendent optimization problems. Furthermore, there is no need to compute or
store H in AA seen from Proposition 4.4. In fact, U1 and V 1 are the only dense
matrices needed in calculating all matrix-vector multiplications, and they are of
order p×p. This reduces the storage needs to O(p2). We would also like to point
out that the cooling schedule can be used to provide a speed-accuracy tradeoff.
In a limited time situation, one may use a faster cooling scheme to obtain a
greedy solution. Though not necessarily optimal, it may serve the needs of some
applications.

Finally, we present the results of the AA-implemented DAW-CLASSO on the
kidney data. Supervised clustering was applied to the 800 most correlated genes
after FDR filtering. Five-fold cross-validation was used to tune the parameters.
Figure 4 demonstrates the results. The coefficient estimates are successfully
clustered and gene groups are formed directly due to the exact-clustering effect.
It seems that some of them might be tricky to be found by a two-stage procedure
(modeling→ clustering, see Section 2) based on studying the differences between
the coefficient estimates only. In addition, different than many ad hoc clustering
procedures, the supervised clustering optimizes the clusters during the model
fitting process and automatically selects the number of clusters and cluster sizes.
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Fig 4. Clustering results on the kidney data. Only the nonzero clusters are shown. The
upper panel plots the nonzero coefficient estimates (reordered), and the lower panel is
a histogram of all nonzero clusters. The dominant zero cluster (consisting of about 600
genes) is not shown for a better view of overall clustering results.
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5. Summary

We studied a generic sparse regression problem with a customizable sparsity
pattern matrix T , motivated by a supervised gene clustering problem. Interest-
ingly, we found both in practice and in theory that the granted power of the
l1-penalty to approximate the l0-penalty can be rather poor (even for large sam-
ples), say, when T nz is large and (T z, T nz) is not ‘separable’ (see Theorem 3.1).
This causes serious trouble for the clustered lasso to achieve exact-clustering.

We further proposed using data-augmentation and weights to reduce the
test error and increase the model parsimony simultaneously. From an empirical
Bayesian point of view, our nondiagonal DA amounts to a degenerate multi-
variate Gaussian prior, where one degree of freedom is saved in the covariance
matrix construction to better accommodate a less accurate initial estimate. Re-
garding the weighting technique, Theorem 3.2 generalizes the asymptotic lasso
results [34, 36] and provides a broad condition for weight construction. To the
best of our knowledge, there are no nonasymptotic results available even in
the lasso setting. (For adaptive weights used in orthogonal models, we refer to
Zou [34] and She [24] (which also gave a correction to [34]) for some oracle re-
sults.) Hence a finite-sample theoretical analysis is an important topic of future
research. Another different idea to achieve the same goal of joint accuracy and
parsimony in finite samples is to use nonconvex penalizations [24]. The com-
putational cost can be even more expensive. On the other hand, we can show
(proof omitted) that substituting an appropriate thresholding operator (such
as hard-thresholding or hybrid hard-ridge thresholding) for Θ, the accelerated
annealing still applies for nonconvex penalized clustering models.

Finally, the scalable AA algorithm also raises some interesting open problems,
such as the analysis of relaxation (I) and the rate of convergence studies. These
problems are nontrivial in numerical analysis due to the nonexpansive nature
and nonlinearity of the underlying operators.
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Appendix A: Proofs of Proposition 3.1, Proposition 3.2,

Theorem 3.1, and Theorem 3.2

For the optimization problem

min
1

2
‖y −Xβ‖22 + λ‖Tβ‖1,
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by the KKT optimality conditions [25], β̂ is an optimal solution if and only if

there exists a s̃gn(T β̂) such that

XT (Xβ̂ − y) + λT T s̃gn(T β̂) = 0. (A.1)

Equivalently,

β̂ =
1

n
Σ−1(XTy − λT T s̃gn(T β̂)),

or

β̂ = β +
1

n
Σ−1XT ǫ− λ

n
Σ−1T T s̃gn(T β̂)). (A.2)

• Proof of Proposition 3.1

The proof is obvious by noticing that

1

n
Σ−1XT ǫ ∼ N(0,

σ2

n
Σ−1) = Op(

1√
n
) = op(1)

and
λ

n
Σ−1T T s̃gn(T β̂)) =

λ

n
Op(1) = op(1).

• Proof of Proposition 3.2

Assume for the moment

λ/
√
n→ λ0 ≥ 0. (A.3)

We first develop a
√
n-consistent result similar to Knight and Fu [18] but in a

general situation:

Lemma A.1. Under the assumptions in the Proposition 3.2 and (A.3),
√
n(β̂−

β)⇒ δo, where δo is defined by

argmin
δ

1

2
δTCδ − rT δ + λ0

(
sgn(T nzβ)

TT nzδ + ‖T zδ‖1
)
,

with z = {i : (Tβ)i = 0}, nz = {i : (Tβ)i 6= 0}, and r ∼ N(0, σ2C).

In fact, from the KKT equation (A.2), δ̂ ,
√
n(β̂ − β) satisfies

δ̂ =
1√
n
Σ−1XT ǫ− λ√

n
Σ−1T T s̃gn(

1√
n
T δ̂ + Tβ).

So δ̂ solves 1
2‖ 1√

n
Xδ − ǫ‖22 + λ‖ 1√

n
Tδ + Tβ‖1, or

1

2
‖ 1√

n
Xδ − ǫ‖22 −

1

2
‖ǫ‖22 + λ‖ 1√

n
Tδ + Tβ‖1 − λ‖Tβ‖1 , f(δ).

Noticing that f(δ)⇒ g(δ),
√
n(β̂ − β)⇒ δo follows by Geyer [16].
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We need to show lim supn→∞ P (T zβ̂ = 0) < 1. Observing {β : T zβ = 0} is
a closed set, lim supn→∞ P (T zβ̂ = 0) ≤ P (T zδo = 0) , p0. δo satisfies

Cδo − r + λ0T
T
z s̃gn(T zδo) + λ0T

T
nzsgn(T nzβ) = 0.

Clearly, p0 < 1 if λ0 = 0. Suppose λ0 > 0. T zδo = 0 means

T zC
−1T T

z s̃gn(T zδo) =
1

λ0
T zC

−1r − T zC
−1T T

nzsgn(T nzβ),

which implies

T zC
−1T T

z · s =
1

λ0
T zC

−1r − T zC
−1T T

nz · sgn(T nzβ)

is solvable in the solution space {s : ‖s‖∞ ≤ 1}. (A.4)

Lemma A.2. Let A be a positive semi-definite matrix with the spectral de-
composition given by, say, A = UDUT =

∑
diuiu

T
i . Define z′ = {i : di = 0},

nz′ = {i : di 6= 0}, and the generalized inverse A+ = UD+UT = Unz′D−1
nz′U

T
nz′ .

Then As = α if and only if (i) s = A+α+Uz′η for some η and (ii) UT
z′α = 0.

The proof is omitted.

Apply Lemma A.2 to the problem of (A.4) with A = T zC
−1T T

z , and α =
1
λ0
T zC

−1r − T zC
−1T T

nzsgn(T nzβ). (Note that condition (ii) is naturally sat-
isfied, because

UT
z′A = 0⇒ UT

z′AU z′ = 0⇒ UT
z′T zC

−1/2 ⇒ UT
z′T z = 0,

and so UT
z′α = 0.) Then (A.4) implies ∃η s.t. ‖A+α+U z′η‖∞ ≤ 1, or

∥∥∥∥
[
U z′ Unz′

] [ η

D−1
nz′U

T
nz′α

]∥∥∥∥
∞
≤ 1.

Observing that
[
U z′ Unz′

]
is an orthonormal matrix, say, of size m-by-m,

we know
‖D−1

nz′U
T
nz′α‖∞ ≤

√
m.

Consequently, given r ∼ N(0, σ2I),

p0 ≤ P (‖D−1
nz′U

T
nz′(

1

λ0
T zC

−1r − T zC
−1T T

nzsgn(T nzβ))‖∞ ≤
√
m) < 1.

For the general case λ = O(n), if β̂ were zero s-consistent w.r.t. T z for some
sequence λ(n), there must exist a subsequence λ(nk) with λ(nk)/nk → λ0 for
some λ0 ≥ 0, such that β(nk) is zero s-consistent w.r.t T z. This contradicts the
above argument.
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• Proof of Theorem 3.1

First, it is easy to derive an asymptotic result similar to Lemma A.1:

n

λ
(β̂ − β)⇒ δo, (A.5)

where δo is nonrandom, defined by

argmin
δ

1

2
δTCδ + (sgn(T nzβ))

TT nzδ + ‖T zδ‖1.

So the KKT equation for δo is

Cδo + T T
z s̃gn(T zδo) + T T

nzsgn(T nzβ) = 0. (A.6)

Recall that β̂ is an optimal solution if and only if (A.2) holds. Therefore,

T 1β̂ = T 1(
1

n
Σ−1XT ǫ)− λ

n
T 1Σ

−1T T s̃gn(T β̂)

= T 1(
1

n
Σ−1XT ǫ)− λ

n
T 1Σ

−1T T
1 s̃gn(T 1β̂)−

λ

n
T 1Σ

−1T T
2 s̃gn(T 2β̂).

It follows that

T 1Σ
−1T T

1 s̃gn(T 1β̂) = −T 1Σ
−1T T

2 s̃gn(T 2β̂) +

√
n

λ
δ′ − n

λ
T 1β̂, (A.7)

where δ′ = T 1Σ
−1XT ǫ/

√
n ∼ N(0,T 1Σ

−1T T
1 ). Now apply Lemma A.2 with

A = T 1Σ
−1T T

1 ,α = −T 1Σ
−1T T

2 s̃gn(T 2β̂) +

√
n

λ
δ′ − n

λ
T 1β̂.

Again, condition (ii) is naturally satisfied becauseU z′T 1 = 0. (A.7) is equivalent

to s̃gn(T 1β̂) = (T 1Σ
−1T T

1 )
+α+U z′η for some η. It is important to point out

that even the original KKT equation (A.2) does not resolve the ambiguity of η

(since T T
1 U z′η = 0 · η = 0). Hence a sufficient condition for T 1β̂ = 0 is given

by
‖(T 1Σ

−1T T
1 )

+α‖∞ < 1, (A.8)

and a necessary condition for T β̂ = 0 is ‖(T 1Σ
−1T T

1 )
+α + U z′η‖∞ ≤ 1 for

some η. On the other hand,

‖(T 1Σ
−1T T

1 )
+α‖∞ = ‖Unz′UT

nz′(Unz′D−1
nz′U

T
nz′α+U z′η)‖∞

= ‖Unz′UT
nz′((T 1Σ

−1T T
1 )

+α+U z′η)‖∞
≤ ‖Unz′UT

nz′‖∞ = ‖(T 1Σ
−1T T

1 )
+(T 1Σ

−1T T
1 )‖∞,

that is,
‖(T 1Σ

−1T T
1 )

+α‖∞ ≤ ‖(T 1Σ
−1T T

1 )
+(T 1Σ

−1T T
1 )‖∞. (A.9)

Now we study the asymptotics.
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Necessity. If β̂ is zero s-consistent w.r.t. T 1, then from (A.5), T 1δo = 0, and

so n
λT 1β̂

P→ 0. In addition,
√
n
λ δ′ = op(1). Hence

‖(T 1Σ
−1T T

1 )
+T 1Σ

−1T T
2 s̃gn(T 2β̂)‖∞ ≤ ‖(T 1C

−1T T
1 )

+(T 1C
−1T T

1 )‖∞ + ǫ

with probability tending to 1, for any ǫ > 0. Observe that s̃gn(T 2β̂) is bounded.

There exists a subsequence indexed by nk such that s̃gn(T 2β̂nk
) → s with

probability 1. By Proposition 3.1, we immediately know s ∈ S̃gn(T 2β). Thus

‖(T 1C
−1T T

1 )
+T 1C

−1T T
2 s‖∞ ≤ ‖(T 1C

−1T T
1 )

+(T 1C
−1T T

1 )‖∞ + ǫ

with probability 1, for any ǫ > 0. The necessary condition follows.
Sufficiency. Our goal is to show P (‖(T 1Σ

−1T T
1 )

+α‖∞ < 1)→ 1 given (3.3).
Suppose lim infn→∞ P (‖(T 1Σ

−1T T
1 )

+α‖∞ ≥ 1) > 0. First, since T 1 ⊂ T z, if

we write T z as
[

T 1

T 2z

]

with T 2z ⊂ T 2, s̃gn(T 2zδo) ∈ S̃gn(T 2zβ). Repeating

the argument for (A.8), we know (3.3) is sufficient to get T 1δo = 0 from the
KKT equation (A.6).

Likewise, we can find a subsequence indexed by nk such that s̃gn(T 2β̂nk
)→

s ∈ S̃gn(T 2β),
n
λδ

′ → 0, n
λT 1β̂ → 0, and Σnk

→ C with probability 1. So we

get P (‖(T 1C
−1T T

1 )
+T 1C

−1T T
2 s‖∞ ≥ 1) > 0, i.e.,

‖(T 1C
−1T T

1 )
+T 1C

−1T T
2 s‖∞ ≥ 1,

which contradicts the assumption.

• Proof of Theorem 3.2

Define W = diag{wi}, W z = diag{wi}j∈z, W nz = diag{wi}j∈nz. Then
the weighted sparse regression (3.7) just replaces the T in (3.1) by WT . Define

δ̂ = a(n, λ)(β̂−β) for some sequence a(n, λ). Similar to the derivation of Lemma

A.1, δ̂ solves

min
1

2
δTΣδ− a√

n

(
1√
n
xT ǫ

)T

δ+
λa

n
‖W zT zδ‖1 +

λa

n
sgn(T nzβ)

TW nzT nzδ.

Following the lines of [34], one can prove that if (i) lim a√
n
exist (say equal to

a0), (ii)
n
λaA→ 0, and (iii) λa

n B → 0, then

δ̂ = a(n, λ)(β̂ − β)⇒ arg

(
min
δ

1

2
δTCδ − a0r

Tδ, s.t. T zδ = 0

)
, (A.10)

where r ∼ N(0, σ2C). To guarantee that such a(n, λ) exists, it is enough to
have nA

λ ≪ n
λB and nA

λ ≪
√
n, where P ≪ Q means limP/Q→ 0. That is, if

√
n

λ
A(n)→ 0, A(n)B(n)→ 0, (A.11)

then β̂ is a(n, λ)-consistent, for any a satisfying (i), (ii), & (iii).
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On the other hand, substituting W zT z for T 1 and W nzT nz for T 2 in (A.8),

we obtain a sufficient condition for T zβ̂ = 0:

∥∥∥∥W
−1
z (T zΣ

−1T T
z )

+

(
−T zΣ

−1T T
nzW nz s̃gn(T nzβ̂) +

√
n

λ

T zΣ
−1xT ǫ√
n

− n

λa(n, λ)
a(n, λ)T zβ̂

)∥∥∥∥
∞

< 1.

Clearly, by (A.10), (A.11), and (ii), this holds with probability tending to 1.
For the special case a =

√
n, it suffices to show λ satisfying

√
nA/λ → 0,

λB/
√
n→ 0 exists. λ =

√
nA/B is one possible choice.

Appendix B: Proof of Theorem 3.3

For any given λ1, λ2 > 0, we know that

∥∥∥∥
[

y√
λ2X

Ty

]
−
[

X√
λ2I

]
β

∥∥∥∥
2

2

+ λ1‖β1‖1

= βT (XTX + λ2I)β − 2(λ2 + 1)yTXβ + λ1‖β‖1 +
(
yTy + λ2y

TXXTy
)
.

Therefore,

β̂λ1,λ2
= argminβT (XTX + λ2I)β − 2(λ2 + 1)yTXβ + λ1‖β‖1

= argminβT

(
XTX + λ2I

1 + λ2

)
β − 2yTXβ +

λ1

1 + λ2
‖β‖1.

Comparing β̂λ1,λ2
to the definition of β̂

(eNet)

λ1,λ2
yields the conclusion in Theorem

3.3.

Appendix C: Proofs of Theorem 4.1, Proposition 4.1, Theorem 4.2,

Proposition 4.2, Proposition 4.3, and Proposition 4.4

• Some Basic Facts

Before our formal proofs, let’s state some basic facts. Recall that T = UDV T ,
H = V D−1UT , and I−TH = U⊥U⊥ where U⊥ is via expanding U to get an
orthonormal matrix Ũ =

[
U UT

⊥
]
; C is used to denote a positive constant,

but not necessarily the same even in a single formula. The subscripts of γ
(j)
e (k)

and γe(k) are omitted for short.

From (4.14), γe(k), or γ(k), satisfies

γ(k) +
λ

k2
s̃gn(γ(k)) = UUTγ(k) +

1

k2
(HTXTy −HTΣHγ(k)),
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i.e.,

γ(k) =
1

k
argmin

λ

k
‖γ‖1 +

1

2
‖y − (XH/k) · γ‖22 +

1

2
‖U⊥U

T
⊥γ‖22

= argminλ‖γ‖1 +
1

2
‖y −XH · γ‖22 +

k2

2
‖U⊥U

T
⊥γ‖22 (C.1)

Let

f(γ) =
1

2
‖y −XH · γ‖22 + λ‖γ‖1, (C.2)

Fk(γ) = f(γ) +
k2

2
‖U⊥U

T
⊥γ‖22, (C.3)

Φk(γ) =
1

k2
Fk(γ). (C.4)

Fact 1) For any k, γ(j)(k) (j = 0, 1, · · · ) defined by (4.14) is the sequence of
iterates solving the lasso problem min

γ
Φk(γ), in the way of (4.4).

This gives another explanation of our approach from the penalty functions
and we immediately know that (see, e.g., [3])
Fact 2) f(γ(k)) ↑, f(γ(k)) ≤ fopt.

From Fact 2), λ‖γ(k)‖1 ≤ fopt. We have
Fact 3) ‖γ(k)‖ is uniformly bounded.

The KKT equation yields

U⊥U
T
⊥γ(k) =

1

k2
(HTXTy −HTΣHγ(k)− λs̃gn(γ(k))).

It follows from Fact 3) that
Fact 4) ‖∆(k)‖ = ‖U⊥U

T
⊥γ(k)‖ = O( 1

k2 ) and ‖∆(k)‖2 ↓ 0.
The latter result is due to the penalty function again.
• Generalization of Daubechies et al.’s Convergence Theorem

Although we have Fact 1), Daubechies et al.’s convergence theorem [10],
which makes use of Opial’s conditions [21] in studying the nonexpansive op-
erators, can not be directly applied, because the 2-norm of the operator K

satisfying

K∗K =
1

k2
HTΣH +U⊥U

T
⊥ =

[
U U⊥

] [ 1
k2A

I

] [
UT

UT
⊥

]
(C.5)

where
A , D−1V TΣV D−1, (C.6)

is exactly 1, whereas Theorem 3.1 [10] requires ‖K‖2 < 1. Therefore, we need
a generalization of Daubechies et al.’s (weak) convergence result.

In fact, we can generalize Theorem 3.1 (or Proposition 3.11 to be more spe-
cific) in [10] to K satisfying

‖K‖2 <
√
2, (C.7)
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which may also validate the over-relaxation technique used to speed the conver-
gence. In this part, we will use some notation compatible with [10], with mild
changes. (Our thresholding operator Θ(·;λ) uses a threshold value λ instead of
λ/2.)

Let

Φ(f ) =
1

2
‖Kf−g‖22+λ‖f‖1,ΦSUR(f ;a) = Φ(f)+

1

2
(f−a)TJ(f−a), (C.8)

and J , I −K∗K. The iterative process can be represented as

fn+1 = Θ(Jfn +K∗g;λ) (C.9)

Since ‖K‖2 <
√
2, −1 < eig(J) ≤ 1, where eig(J) denotes any eigenvalue of J .

Note that ΦSUR is still strictly convex in f and Proposition 2.1 [10] holds; in

particular, for fopt = argmin
f

ΦSUR(f ;a) given a,

ΦSUR(fopt + h;a) ≥ ΦSUR(f opt;a) + ‖h‖22, ∀h. (C.10)

Let fn+1 = argmin
f

ΦSUR(f ;fn). Then it is easy to get

Φ(fn+1) +
1

2
(fn+1 − fn)TJ(fn+1 − fn) = ΦSUR(fn+1;fn)

≤ ΦSUR(fn;fn)− 1

2
‖fn+1 − fn‖22 = Φ(fn)− 1

2
‖fn+1 − fn‖22

=⇒ Φ(fn+1) +
1

2
(fn+1 − fn)T (I + J)(fn+1 − fn) ≤ Φ(fn).

Hence Φ(fn) ↓ and the series
∑∞

n=0(f
n+1 − fn)T (I + J)(fn+1 − fn) is con-

vergent. On the other hand, since eig(J) > −1, ‖fn+1 − fn‖2 ≤ A · ‖(I +
J)1/2(fn+1 − fn)‖2, where A is some strictly positive constant.

With these facts, it is not difficult to write out the full proof for the (weak)
convergence of fn for any K satisfying (C.7), by making corresponding changes
in Lemma 3.5 and Lemma 3.7 [10]. The details are left to the readers.

• Proofs of Theorem 4.1 and Proposition 4.2

Now, with Fact 1) and the above generalization, γ(j),γ
(j)
o defined by (4.14)

must converge given any initial value, because ‖K‖2 = 1 <
√
2. (Recall that K

is defined by (C.5).) By Fact 3), {γ(k)} has at least one accumulation point.
Consider a subsequence γ(kl) → γo as l → ∞. Then f(γo) = lim

l→∞
f(γ(kl)) ≤

fopt due to Fact 2). So any accumulation point of γ(k) is an optimal solution.
The convergence rate of ‖∆(k)‖ is covered by Fact 4).
From Fact 2), f(γ(k)) ↑, fopt−f(γ(k)) ≥ 0. So f(γ(k)) converges. Note that

f(γ) ,
1

2
‖y−XHγ‖22+λ‖γ‖1 ≥

1

2
‖y−XHγ‖22+λ‖UUTγ‖1−λ‖U⊥U

T
⊥γ‖1.
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It follows from Fact 4) that

f(γ(k)) ≥ 1

2
‖y −XHγ(k)‖22 + λ‖UUTγ(k)‖1 −

1

k2
C.

Let gopt be the optimal value of

min g(γ) ,
1

2
‖y−XHUUTγ‖22+λ‖UUTγ‖1 s.t. ‖U⊥U

T
⊥γ‖ ≤ ‖U⊥U

T
⊥γ(k)‖.
(C.11)

Then

f(γ(k)) ≥ gopt −
C

k2
. (C.12)

Observe that for any γ minimizing (C.11), UUTγ + θU⊥U
T
⊥γ is an optimal

solution, too, for ∀θ : 0 ≤ θ ≤ 1. It is enough to consider

min g(γ) s.t. ‖U⊥U
T
⊥γ‖ = 0,

which is equivalent to

min f(γ) s.t. U⊥U
T
⊥γ = 0

Thus γopt is always one optimal solution to (C.11) given any k. By (C.12),

f(γ(k)) ≥ g(γopt)−
C

k2
= f(γopt)−

C

k2
.

For Relaxation (II), it is of the same form as (C.9) if we let

J(or Jk) = I − ωKTK, for 0 < ω < 2, (C.13)

with ω = 1 corresponding to the non-relaxed version (4.14) (or (4.22)). Since√
ω ·‖K‖2 <

√
2, γ(j) defined by (4.24) converges. Clearly, the above conclusions

and proofs go through.
For the choice of k0, our generalization guarantees the convergence if (C.7)

is satisfied, whereas

ω‖A‖2 ·
1

k2
< 2⇐⇒ k2 >

ω

2
‖D−1V TΣV D−1‖2.

Since

‖D−1V TΣV D−1‖2 ≤
σ2
max(X)

σ2
min(T )

,

it is sufficient to have

k >

√
ω

2
· σmax(X)

σmin(T )
.

Hence k0 ≤
√

ω
2 ·

σmax(X)
σmin(T ) .
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The cooling schedule part of Proposition 4.2 is left to the proof of Theo-
rem 4.2.

• Proof of Proposition 4.1

Represent the iteration of γ(j) by nonexpansive operators T̃k,Θk, Tk:

γ(j+1) = T̃k ◦ γ(j) = Θk ◦ (Tk ◦ γ(j)), (C.14)

where Θk◦v = Θ(v;λ/k2), Tk◦v = Jkv+αk with αk = HTXTy/k2. Θk, Tk, T̃k

are nonexpansive in that

‖Θk ◦v−Θk ◦v′‖ ≤ ‖v−v′‖, ‖T̃k ◦v− T̃k ◦v′‖ ≤ ‖Tk ◦v−Tk ◦v′‖ ≤ ‖v−v′‖.

(See Lemma 2.2 and Lemma 3.4 of [10].) Define T k = Tk ◦Θk to be used later.

If Σ is nonsingular, eig(K) > 0, and thus T̃k becomes a contraction. It is not

difficult to show (4.18) since λmin(A) = λ+
min

(
Ũ

[

A 0

0 0

]

Ũ
T
)
= λ+

min(H
TΣH).

Since f(γ) is strictly convex, γopt is unique.
To prove the finite-k sign consistency we introduce the following result:

Fact 5) Let vo be the unique optimal solution of the convex optimization
min f0(v) , h(v) + ‖B(v)‖1 with h,B smooth. Define the index sets z = {i :
(B(vo))i = 0}, and nz = {i : (B(vo))i 6= 0}. Let voo be the optimal solution of

min
v

h(v) + sgn (B(vo)nz)
T
B(v)nz s.t. (B(v))z = 0. (C.15)

Then vo = voo.
In fact, by the generalized KKT (see, e.g., [25]), vo solves min f0(v) if and

only if
∇h(vo) +DB(vo)

T s̃gn (B(vo)) = 0.

Let b = s̃gn (B(vo)). Then min f0(v) ⇐⇒ min f1(v) , h(v) + bTB(v). And
we know bi = ±1, ∀i ∈ nz, bi ∈ [−1, 1], ∀i ∈ z. Now consider min f2(v) ,

h(v) + bTnz · (B(v))nz s.t. (B(v))z = 0 with an optimal solution voo. We have
f1(vo) = f2(vo) ≥ f2(voo) = f1(voo). Hence vo = voo.

Back to our problem, observe that ηk , UTγ(k),ηopt , UTγopt respectively
solve

min
η

1

2
‖XV D−1 · η − y‖22 + λ‖Uη +U⊥U

T
⊥γ(k)‖1,

and

min
1

2
‖XV D−1 · η − y‖22 + λ‖Uη‖1.

Define index sets z = {i : (γopt)i = 0}, nz = {i : (γopt)i 6= 0}. Given any index
set I, we use U I to denote the submatrix of U composed of its corresponding
rows such that (Uα)I = U I ·α, ∀α. Fact 5) states that ηopt solves

min
1

2
‖XV D−1 · η− y‖22 + λsgn

(
(γopt)nz

)T · (Uη)nz s.t. (Uη)z = 0, (C.16)
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because Uηopt = γopt. Clearly, sgn ((Uηk)nz) = sgn
(
(γopt)nz

)
for k large

enough since Uηk → γopt. We claim that (Uηk)z = (γopt)z = 0 is also true for
any k large enough.

Otherwise, noticing γopt is finite dimensional, there must exist some index
sets nzz ⊂ z, and zz = z\nzz such that each component of (Uηkj

)nzz is
nonzero, and (Uηkj

)zz = 0, for some subsequence ηkj
with kj →∞ as j →∞,

which implies U⊥U
T
⊥γ(kj) → 0. It follows that a further subsequence of ηkj

asymptotically solves

min
1

2
‖XV D−1 · η − y‖22 + λsgn

(
(γopt)nz

)T · (Uη)nz

+ λbTnzz · (Unzzη) s.t. U zzη = 0 (C.17)

for some sign vector bnzz (with each component±1). Obviously, none of the rows
of Unzz lies in the (row) space spanned by the row vectors of U zz. Excluding the
case of degeneracy, the optimization problem does not have the same optimal
solution ηopt as (C.16). Hence the finite-k sign consistency holds. We also know
for k large, ηk solves

min
1

2
‖XV D−1·η−y‖22+λsgn

(
(γopt)nz

)T ·(Uη)nz s.t. (Uη)z=
(
U⊥U

T
⊥γ(k)

)
z
.

(C.18)
Note that (C.18) is a simple quadratic programming (QP) problem.

Let rz ⊂ z be one index set such that U rz has full row rank and rank(U rz) =
rank(U z). Since ηk always exists, the optimization problem (C.18) can be sim-
plified into

min
1

2
‖XV D−1·η−y‖22+λsgn

(
(γopt)nz

)T ·(Unzη) s.t. U rzη = (U⊥U
T
⊥)rzγ(k),

or

min
1

2
ηTAη −αTη s.t. U rzη = δk, (C.19)

where α = D−1V TXTy − λUT sgn((γopt)nz), δk = (U⊥U
T
⊥)rzγ(k).

Solving this QP, we obtain

ηk =
{
A−1α−A−1UT

rz(U rzA
−1UT

rz)
−1U rzA

−1α
}

+A−1UT
rz(U rzA

−1UT
rz)

−1δk. (C.20)

Note that since U rz has full row rank, (U rzA
−1UT

rz)
−1 exists. Now it follows

immediately that

Lemma C.1. ‖UUT · (γ(k)−γ(k′))‖ ≤ C · ‖U⊥U
T
⊥ · (γ(k)−γ(k′))‖, ∀k, k′.

Letting k →∞, we get the convergence rate of γ(k): ‖γ(k)−γopt‖ = O(1/k2).
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• Proof of Theorem 4.2

We prove the theorem for the general relaxed case in the form of (II), where
0 < ω < 2, with ω = 1 corresponding to the non-relaxed version; see (C.13).
The operators introduced in (C.14) will be used for simplicity, except that Θk

is redefined by Θk ◦ v = Θ(v;ωλ/k2), ∀v.
First, from

T̃k(n) ◦ · · · ◦ T̃k(1) ◦ γ(0) − γopt

=
(
T̃k(n) ◦ · · · ◦ T̃k(N) ◦ (T̃k(N−1) ◦ · · · ◦ T̃k(1) ◦ γ(0))− T̃k(n) ◦ · · · ◦ T̃k(N) ◦ γopt

)

+(T̃k(n) ◦ · · · ◦ T̃k(N) ◦ γopt − γopt),

we get

‖T̃k(n) ◦ · · · ◦ T̃k(1) ◦ γ(0) − γopt‖
≤ ‖T̃k(n) ◦ · · · ◦ T̃k(N) ◦ (T̃k(N−1) ◦ · · · ◦ T̃k(1) ◦ γ(0))− T̃k(n) ◦ · · · ◦ T̃k(N) ◦ γopt‖

+‖T̃k(n) ◦ · · · ◦ T̃k(N) ◦ γopt − γopt‖
≤ (‖Tk(n)‖ · · · · · ‖Tk(N)‖) · ‖T̃k(N−1) ◦ · · · ◦ T̃k(1) ◦ γ(0) − γopt‖

+‖T̃k(n) ◦ · · · ◦ T̃k(N) ◦ γopt − γopt‖ , I · II + III.

That is,
‖T̃k(n) ◦ · · · ◦ T̃k(1) ◦ γ(0) − γopt‖ ≤ I · II + III (C.21)

in short. Moreover,

T̃k(N+M) ◦ · · · ◦ T̃k(N) ◦ γopt − γopt

=
(
T̃k(N+M) ◦ · · · ◦ T̃k(N) ◦ γopt − T̃k(N+M) ◦ · · · ◦ T̃k(N) ◦ γ(k(N))

)

+
(
T̃k(N+M) ◦ · · · ◦ T̃k(N+1) ◦ γ(k(N)) − γopt

)

=
(
T̃k(N+M) ◦ · · · ◦ T̃k(N) ◦ γopt − T̃k(N+M) ◦ · · · ◦ T̃k(N) ◦ γ(k(N))

)

+

M∑

j=1

{
T̃k(N+M) ◦ · · · ◦ T̃k(N+j) ◦ γ(k(N + j − 1))−

T̃k(N+M) ◦ · · · ◦ T̃k(N+j) ◦ γ(k(N + j))
}
+
(
γ(k(N +M))− γopt

)
.

Hence

III ≤ 2 sup
j≥N
‖γ(k(j))− γopt‖+

∑

j≥N

‖γ(k(j))− γ(k(j + 1))‖. (C.22)

Since Σ is nonsingular,

I ≤
n∏

j=N

(
1− ωρ0

k2(j)

)
= exp

(
n∑

N

log

(
1− ωρ0

k2(j)

))
≤ exp

(
−

n∑

N

1

k2(j)
· ωρ0

)
.

(C.23)
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If we can show ∞∑

1

‖γ(k(j)) − γ(k(j + 1))‖ converges , (C.24)

then since k(j)→∞, ∃N such that sup
j≥N
‖γ(k(j))−γopt‖,

∑∞
N ‖γ(k(j))−γ(k(j+

1))‖, and thus III, are small enough. For this N , ∃M such that
∑N+M

N
1

k2(j) is

large enough to guarantee I·II is small enough. So any cooling schedule satisfying

∞∑

j=1

1

k2(j)
=∞, and k(j)→∞,

guarantees the convergence to the optimal point γopt.
In the remainder, we will prove (C.24). It is enough to show

Lemma C.2. ‖γ(k)− γ(k′)‖2 ≤
(

1
k2 − 1

k′2

)
· C for ∀k, k′ : k ≤ k′.

We still consider the general relaxation form (II), with 0 < ω < 2.

‖γ(k′)− γ(k)‖2
≤ ‖γ(k′)− T̃k ◦ γ(k′) + T̃k ◦ γ(k′)− γ(k)‖2
≤ ‖γ(k′)− T̃k ◦ γ(k′)‖2 + ‖T̃k ◦ γ(k′)− T̃k ◦ γ(k)‖2
≤ ‖T̃k′ ◦ γ(k′)−Θk ◦ Tk′ ◦ γ(k′) + Θk ◦ Tk′ ◦ γ(k′)− T̃k ◦ γ(k′)‖2

+‖Tk ◦ γ(k′)− Tk ◦ γ(k)‖2
≤ ‖Θk′ ◦ (Tk′ ◦ γ(k′))−Θk ◦ (Tk′ ◦ γ(k′))‖2

+‖Θk ◦ (Tk′ ◦ γ(k′))−Θk ◦ (Tk ◦ γ(k′))‖2 + ‖Tk ◦ γ(k′)− Tk ◦ γ(k)‖2
≤ ‖Θk′ ◦ (Tk′ ◦ γ(k′))−Θk ◦ (Tk′ ◦ γ(k′))‖2 + ‖Tk′ ◦ γ(k′)− Tk ◦ γ(k′)‖2

+‖Tk ◦ γ(k′)− Tk ◦ γ(k)‖2 , I∗ + II∗ + III∗

That is,
‖γ(k′)− γ(k)‖2 ≤ I∗ + II∗ + III∗ (C.25)

It is easy to verify

|Θk′v −Θkv| � λω

(
1

k2
− 1

k′2

)
,

where ‘�’ means the component-wise ‘≤’. Therefore,

I∗ ≤ C ·
(

1

k2
− 1

k′2

)
. (C.26)

Using Fact 3), we have

II∗ =

∥∥∥∥
(

1

k2
− 1

k′2

)
(ω ·UAUTγ(k′)−HTXy)

∥∥∥∥
2

≤
(

1

k2
− 1

k′2

)
· C. (C.27)
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To control III∗, we rewrite it as

III∗2 = ‖Jk (γ(k
′)− γ(k))‖22 =

∥∥∥(I − ωKTK) (γ(k′)− γ(k))
∥∥∥
2

2

=
∥∥∥
(
U(I − ω

k2
A)UT + (1− ω)U⊥U

T
⊥

)
· (γ(k′)− γ(k))

∥∥∥
2

2

= (γ(k′)− γ(k))
T ·U(I − ω

k2
A)2UT · (γ(k′)− γ(k))

+(1− ω)2 (γ(k′)− γ(k))
T ·U⊥U

T
⊥ · (γ(k′)− γ(k)) .

Hence,

III∗ ≤
((

1− ω
ǫ

k2

)2 ∥∥∥UUT (γ(k′)− γ(k))
∥∥∥
2

2

+ (1 − ω)2
∥∥∥U⊥U

T
⊥ (γ(k′)− γ(k))

∥∥∥
2

2

)1/2

, (C.28)

for some ǫ > 0, because Σ and thus A are nonsingular.
Summarizing (C.26), (C.27), and (C.28), we obtain

√
τ21 + τ22 −

√
(1− ωǫ

k2
)2τ21 + (1 − ω)2τ22 ≤ C ·

(
1

k2
− 1

k′2

)

where τ1 =
∥∥∥UUT (γ(k′)− γ(k))

∥∥∥
2
, τ2 =

∥∥∥U⊥U
T
⊥ (γ(k′)− γ(k))

∥∥∥
2
.

Using Lemma C.1 and the fact that 0 < ω < 2, we get

√
τ21 + τ22 −

√
(1 − ωǫ

k2
)2τ21 + (1− ω)2τ22

=
τ21 + τ22 −

(
1− ωǫ

k2

)2
τ21 − (1− ω)

2
τ22

√
τ21 + τ22 +

√(
1− ωǫ

k2

)2
τ21 + (1− ω)

2
τ22

≥ ǫ′τ22
2
√
τ21 + τ22

≥ ǫ′′ · τ2

for some ǫ′, ǫ′′ > 0. Hence

∥∥∥U⊥U
T
⊥ (γ(k′)− γ(k))

∥∥∥ ≤ C ·
(

1

k2
− 1

k′2

)

By Lemma C.1 again, Lemma C.2 is true. Now the proof of Theorem 4.2 is
complete.

• Proof of Proposition 4.3

First (4.23) can be rewritten using the introduced operators:

ξ(j+1) = ((1 − ω)I + ωT k) ◦ ξ(j). (C.29)
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Obviously, T k is nonexpansive. We claim that the set of fixed points of T k,
denoted by F , is nonempty. In fact, let γ be a minimizer of the convex function
Φk defined by (C.4). The KKT optimality condition gives

γ = Θk ◦ (Jkγ +αk) = T̃k ◦ γ.

Let ξ = Jkγ + αk. Then ξ = Jk(Θk ◦ ξ) + αk = T k ◦ ξ. So T k has at least
one fixed point. In the rest of this proof, all subscripts k are abbreviated for
simplicity.

For 0 < ω < 1, (C.29) is the Mann iterates [19] introduced for nonexpansive
mapping T . The sequence is known to converge to a fixed point of T if F is
nonempty; see Opial [21], Browder and Petryshyn [7], or Dotson [12].

Now consider 1 < ω < 2. Let ω = 1 + ω′. So ω′ ∈ (0, 1) and

ξ(j+1) = ω′(2T − I) ◦ ξ(j) + (1 − ω′)T ◦ ξ(j)

If 2T − I is nonexpansive, (1− ω)I + ωT is nonexpansive for any ω ∈ (1, 2).
Let ξ ∈ F . Clearly, T ◦ ξ = ξ = (2T − I) ◦ ξ. On the one hand,

‖ξ(j+1) − ξ‖22 =
∥∥∥ω′

(
(2T − I) ◦ ξ(j) − ξ

)
+ (1− ω′)

(
T ◦ ξ(j) − ξ

)∥∥∥
2

2

≤ ω′2‖ξ(j) − ξ‖22 + (1− ω′)2‖ξ(j) − ξ‖22
+2ω′(1− ω′)〈(2T − I) ◦ ξ(j) − ξ, T ◦ ξ(j) − ξ〉.

On the other hand,

a2‖ξ(j) − T ◦ ξ(j)‖22 = a2‖(2T − I) ◦ ξ(j) − T ◦ ξ(j)‖22
= a2

∥∥∥
(
(2T − I) ◦ ξ(j) − ξ

)
−
(
T ◦ ξ(j) − ξ

)∥∥∥
2

2

≤ a2‖ξ(j) − ξ‖22 + a2‖ξ(j) − ξ‖22
−2a2〈(2T − I) ◦ ξ(j) − ξ, T ◦ ξ(j) − ξ〉.

Letting a2 = ω′(1− ω′), we obtain

‖ξ(j+1) − ξ‖22 + ω′(1 − ω′)‖ξ(j) − T ◦ ξ(j)‖22 ≤ ‖ξ(j) − ξ‖22,

and so

‖ξ(j+1) − ξ(j)‖22 = ω2‖ξ(j) − T ◦ ξ(j)‖22

≤ ω2

(ω − 1)(2− ω)

(
‖ξ(j) − ξ‖22 − ‖ξ(j+1) − ξ‖22

)
.

It follows that
∑ ‖ξ(j+1) − ξ(j)‖22 converges. Note that we only used quasi-

nonexpansiveness [12] in the above proof.
Hence (1−ω)I+ωT is asymptotically regular – in fact, it is a reasonable wan-

derer [7]. Furthermore, ξ(j), or γ(j), converges by Opial’s classical work [21].
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• Proof of Proposition 4.4

The SVD for F 1 is well known (see, e.g., [2] for a detailed derivation).
Consider a d-by-d matrix E of all ones: E = 1 · 1T . It is easy to diagonalize

E. First,
E ·

[
1 F T

1

]
=
[
1 F T

1

]
· diag{d, 0, · · · , 0}.

So F T
1 ⊥ 1, i.e., F 11 = 0. It follows that V T

1 1 = D−1
1 UT

1 F 11 = 0, and Ṽ 1 is
orthonormal. Hence E = Ṽ 1diag{d, 0, · · · , 0}V T

1 .

For T 1 =

[
I

λF 1

]
, we have

T T
1 T 1 = I+λ2V 1D

2
1V

T
1 = Ṽ

T

1 Ṽ 1+λ2V 1D
2
1V

T
1 = Ṽ 1

[
1

I + λ2D2
1

]
Ṽ

T

1 .

On the other hand,

T 1Ṽ 1

[
1

I + λ2D2
1

]− 1
2

=

[
I

λF 1

]
·
[

1√
d
1 V 1

]
·
[

1

(I + λ2D2
1)

− 1
2

]

=

[
1√
d
1 V 1

λ√
d
· 0 λU 1D1

]
·
[

1

(I + λ2D2
1)

− 1
2

]

= Ũ1.

For F 2, F
T
2 F 2 = dI − 1 · 1T = Ṽ 1diag{0, d, · · · , d}Ṽ

T

1 . Therefore, D2 =
diag{0,

√
d, · · · ,

√
d}, and if we take V 2 = Ṽ 1, U2 =

[
u21 · · · u2d

]
sat-

isfies F 2Ṽ 1 = U2D2. It implies
[
u22 · · · u2d

]
= 1√

d
F 2V 1. u21 is a nor-

malized eigenvector of F 2F
T
2 corresponding to eigenvalue 0 and can take

[
0 · · · 0 1 −1 1

]T
/
√
3,

which is easy to verify.
Finally, for T 2, T

T
2 T 2 = I+λ2F T

2 F 2 = I+λ2V 2D
2
2V

T
2 = V 2(I+λ2D2

2)V
T
2 .

Moreover, T 2V 2(I + λ2D2
2)

− 1
2 =

[

I
λF 2

]

V 2(I + λ2D2
2)

− 1
2 =

[

V 2

λU2D2

]

(I +

λ2D2
2)

− 1
2 = Ũ2.
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