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Abstract: Supervised dimension reduction has proven effective in analyz-
ing data with complex structure. The primary goal is to seek the reduced
subspace of minimal dimension which is sufficient for summarizing the data
structure of interest. This paper investigates the supervised dimension re-
duction in high dimensional classification context, and proposes a novel
method for estimating the dimension reduction subspace while retaining
the ideal classification boundary based on the original dataset. The pro-
posed method combines the techniques of margin based classification and
shrinkage estimation, and can estimate the dimension and the directions
of the reduced subspace simultaneously. Both theoretical and numerical re-
sults indicate that the proposed method is highly competitive against its
competitors, especially when the dimension of the covariates exceeds the
sample size.
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1. Introduction

Recent advances in biomedical sciences have provided statisticians with a large
spectrum of new research projects, such as gene microarray analysis, protein
structure analysis, and so on. These projects often involve data sets with small
number of observations but huge number of covariates. For instance, a gene
expression dataset concerning diagnosis of leukaemia [11] consists of only 72
patients with 7,129 genes expressed for each patient. Such a “large-p-small-n”
scenario imposes great challenge to conventional statistical techniques due to
the curse of dimensionality. A natural way of remedy is to reduce the data di-
mension, by eliminating some irrelevant covariates or creating some informative
combinations of covariates.

In the literature, various dimension reduction techniques have been devel-
oped, especially in the route of supervised dimension reduction, where both
scalar response Y and p-dimensional covariate X are utilized. Among other
supervised dimension reduction techniques, slice inverse regression (SIR) [18],
sliced average variance estimate (SAVE) [7], and principal Hessian directions
(pHd) [19] are most popularly used. These methods focus on the conditional
distribution of X|Y and rely on certain distributional assumptions such as the
linearity assumption [18]. Recently, the minimum average variance estimation
method (MAVE) [29] is proposed for estimating the conditional mean func-
tion E(Y |X), which requires no distributional assumption and incorporates
estimation of dimension reduction subspace in the framework of local linear
smoother [10].

Note that the aforementioned dimension reduction methods are mainly devel-
oped in the regression context, and very little effort has been devoted to dimen-
sion reduction in the classification context. Most existing methods [2, 4, 6] for-
mulate dimension reduction for classification in a generalized regression frame-
work by treating P (Y |X) as a continuous response, so that successful techniques
for regression such as SIR and SAVE can still be applicable. However, as pointed
out in [6], dimension reduction for classification may require more careful treat-
ment since the classification decision functions can be substantially affected by
some minor change in P (Y |X).



J. Wang and L. Wang/Sparse supervised dimension reduction 916

In addition, the effectiveness of conventional dimension reduction methods
can be deteriorated when dimension ofX is high, or even greater than the sample
size. First, the dimension reduction directions are estimated as a combination of
all covariates, and thus can be difficult to interpret. Second, the hypothesis test-
ing procedures for determining the proper dimension of the dimension reduction
subspace might become unreliable due to the low power of the hypothesis tests,
as demonstrated by the numerical examples in Section 4. To circumvent this
difficulty in the regression context, sparse dimension reduction [20] proposes to
incorporate variable selection techniques, such as LASSO, into the framework
of supervised dimension reduction.

This article introduces a novel sparse supervised dimension reduction tech-
nique for high dimensional multicategory classification, which directly estimates
the reduced subspace and automatically identifies the low-rank structure of
the classification decision functions, while retaining the classification boundary
based on the original dataset. The contribution of the proposed method is three-
fold. First, a margin based loss function is adopted, which directly targets on the
classification decision functions rather than the conditional probabilities as in
logistic regression. As a result, the proposed method is capable of identifying the
central discriminant space (CDS) [6] that is most relevant to the classification,
which is in contrast to most existing methods that seek to estimate the larger
central space (CS) [3]. Second, a bi-level LASSO type penalty is incorporated
that encourages sparsity at both the direction level that forms the basis of the
CDS, and the covariate level within each direction. Consequently, the proposed
method not only automatically recovers the low-rank structure of the CDS con-
sisting of the most relevant directions, but also produces sparse representation
of each direction by removing the redundant covariates. This is advantageous
compared to variable selection with a single-level penalty, which does not esti-
mate the CDS at all. Lastly, the sparsity of the proposed method is especially
attractive in sparse high dimensional classification, where most covariates are
expected to be irrelevant. Furthermore, theoretical study reveals that the pro-
posed method indeed overcomes the difficulty of large-p-small-n, and achieves
an consistent estimation.

The rest of this paper is organized as follows. Section 2 briefly reviews the
CS and central mean subspace (CMS) [5] for regression, as well as the CDS
for classification. Section 3 presents our proposed sparse supervised dimension
reduction method for estimating the central discriminant subspace, together
with a tuning parameter selection criterion through data perturbation technique.
Section 4 compares the proposed method against other top performers through a
variety of simulated and real examples, followed by a brief summary in Section 5.

2. Preliminaries

In this section, we briefly review dimension reduction for regression and clas-
sification. Particularly, we will focus on the CMS for regression and CDS for
classification.
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2.1. Dimension reduction for regression

In a regression setting with response Y ∈ R and covariate X ∈ R
p, assume that

X is standardized such that E(X) = 0p and Var(X) = Ip, where 0p is a vector
of 0’s and Ip is a p× p identity matrix.

The goal of supervised dimension reduction is to seek the CS S(Bcs) of min-
imal dimension such that

Y ⊥⊥ X|PS(Bcs)X, (2.1)

where ⊥⊥ denotes independence, Bcs is a base of S(Bcs), and PS(Bcs) is an or-
thogonal projection onto S(Bcs). When the conditional mean function E(Y |X)
is of primary interest, the CMS S(Bcms) is defined as the reduced subspace of
minimal dimension such that

Y ⊥⊥ E(Y |X)|PS(Bcms)X. (2.2)

Equivalently, projecting the original data onto S(Bcms) will not lose any infor-
mation in regression of the conditional mean function.

To estimate the CMS, the MAVE method proposes to find a reduced subspace
such that the regression mean function can be properly estimated based on
the projected data on the reduced subspace. Specifically, the MAVE method
estimates the CMS as the solution of

min
B,aj ,bj

n∑

i,j=1

wij

[
Yi − (aj + bT

j B
T (Xi −Xj))

]2
, (2.3)

subject to BTB = Id, where aj+bT
j B

T (Xi−Xj) is a local linear approximation

of E(Y |Xi) based on point Xj , and
∑n

i=1 wij = 1 with wij being the kernel
weights centered at BTXj . The optimization in (2.3) can be solved through an
iterative scheme by fixing B or aj and bj respectively.

2.2. Dimension reduction for classification

In classification, a decision function φ : Rp → {1, . . . ,K} is estimated from a
training sample (Xi, Yi), i = 1, . . . , n, independent and identically distributed
according to some unknown distribution P (x, y), where Xi ∈ R

p and Yi ∈
{1, . . . ,K}. The ideal classification decision function is known as the Bayes rule,
φB(X) = argmaxk∈{1,...,K} pk(X) with pk(X) = P (Y = k|X). The primary
goal of dimension reduction for classification is to seek the CDS, defined as the
subspace S(Bcds) of minimal dimension such that

φB(X) = φB(PS(Bcds)X), (2.4)

for all values of X. That is, the Bayes rule φB obtained from the projected data
on S(Bcds) should be the same as that obtained from the original data.

Note that the CDS can be a proper subspace of the CS, and that the esti-
mation of CDS requires careful treatment as the classification decision function
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is highly sensitive to the distribution of Y |X in many situations. For illustra-
tion, consider a simple binary classification problem with Y ∈ {1, 2} and two
independent standard normal covariates X1 and X2. Suppose the conditional
probability is defined as p(Y = 1|X) = 0.9, if X1 ≥ 0, and γ otherwise, where
0 < γ < 1. In this example, the CS is spanned by (1, 0)′ regarless of the value
of γ. However, the Bayes rule φB(x) = sign(x1) if γ < 0.5, and φB(x) ≡ 1 if
γ ≥ 0.5, implying that the CDS is spanned by (1, 0)′ if γ < 0.5, and a empty
space if γ ≥ 0.5. Clearly, the CDS is a proper subspace of the CS if γ ≥ 0.5,
and it changes substantially when γ changes from above 0.5 to below 0.5.

3. Sparse dimension reduction for classification

This section presents a sparse supervised dimension reduction method for high
dimensional classification with multiple classes. The proposed method combines
the techniques of margin based classification and shrinkage estimation, and is
capable of estimating the dimension and the directions of the CDS simultane-
ously.

3.1. Margin based multicategory classification

In margin based multicategory classification, a classification function vector f =
(f1, . . . , fK) is constructed by minimizing a cost function of f over a linear
function class FK with F = {f(x) = wTx+ b : w ∈ R

p, b ∈ R}:

min
f∈FK

n−1
n∑

i=1

L(yi, f(xi)) + λJ(f), (3.1)

subject to the sum-to-zero constraint
∑K

k=1 fk(x) = 0; ∀x ∈ R
p. Here L(yi, f(xi))

is a loss function, J(f) is a regularization term for penalizing model complexity,

λ > 0 is the degree of penalization, and the zero-sum constraint
∑K

k=1 fk(x) = 0
is enforced to avoid redundancy in f . The decision function φ(x) = argmaxk fk(x)
estimates the Bayes rule φB(x). Note that we restrict the candidate function to
be linear because linear classifiers are in general sufficient to separate different
classes and often yield more stable performance than their nonlinear competitors
in high dimensional settings [12].

The loss L(y, f(x)) is margin based if it can be written as L(u(f(x), y)), where

u(f(x), y) = (fy(x)− f1(x), . . . , fy(x) − fK(x)) (3.2)

is the generalized functional margin [22]. Clearly, larger components of u(f(x), y)
imply better separation and more accurate classification. Based on the general-
ized functional margin, some popularly used loss functions are proposed:

L(u) =
∑

k 6=y

(1− uk)+ [24], (3.3)
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L(u) =
∑

k 6=y

(
1

K − 1
− uk +

∑K
k=1 uk
K

)

+

[17], and (3.4)

L(u) = (1−min
k 6=y

uk)+ [22], (3.5)

where u(f(x), y) is written as u = (u1, . . . , uK) to simplify notations. Although
the loss functions (3.3), (3.4) and (3.5) decrease with respect to u encourag-
ing better classification, they are constructed based on different principles. In
specific, (3.3) corresponds to the “one-versus-rest” approach, whereas (3.4) and
(3.5) correspond to the simultaneous formulation that treats all classes at one
time. Mathematical analysis reveals that only (3.4) is Fisher consistent when no
dominating class is present [17, 30]. Particularly, when L(u) is set as in (3.4),
the minimizer of E(L(u(f(X), Y ))) subject to the sum-to-zero constraint is

fk(x) =

{
1, if k = argmaxj pj(x);
− 1

K−1 , otherwise,

and hence that φ(x) = argmaxk fk(x) = argmaxk pk(x) = φB(x), assuming
that FK is sufficiently rich [17]. Therefore, we focus our attention on (3.4) in this
article, although the proposed method can be adapted to other loss functions.

The regularization term J(f) in high dimensional classification is usually set
to be the componentwise L1-norm of the candidate function, that is, J(f) =∑K

k=1 ‖wk‖1. The L1-norm regularization term allows the parameter estima-
tion and variable selection at the same time, which is desirable when the data
dimension is high. In addition, λ is a tuning parameter controlling the tradeoff
between the loss function and the regularization term, and thus needs to be
determined in order to optimize the classification performance.

3.2. Sparse dimension reduction

The proposed sparse supervised dimension reduction for classification is mo-
tivated by the MAVE method and the asymptotic consistency of the margin
based classification method. In specific, the dimension reduction matrix B and
the corresponding f can be estimated by solving

minB,f∈FK n−1
n∑

i=1

L(u(f(BTxi), yi)) + λ1

K∑

k=1

‖wk‖1 + λ2‖B‖1, (3.6)

subject to

K∑

k=1

Bwk = 0p and

K∑

k=1

bk = 0.

Here L(u) is defined as in (3.4), and ‖B‖1 =
∑p

r,s=1 |Brs| with B = (Brs)
p
r,s=1,

whose columns correspond to the potential directions of the CDS. The original
sum-to-zero constraint

∑K
k=1 fk(x) = 0; ∀x ∈ R

p is replaced by its equivalent

form
∑K

k=1 Bwk = 0p and
∑K

k=1 bk = 0 for the ease of implementation [26]. The
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resulting classification decision function is φ̂(x) = argmaxk f̂k(B̂
Tx). Note that

the key difference between (3.6) and the ordinary margin based classification in
(3.1) is the dimension reduction matrix B, which leads to automatic estimation
of the CDS without sacrificing the classification accuracy. The estimated CDS
spanned by B̂ allows visualization and exploration of the original dataset with
high dimension, which is one of the primary purposes of dimension reduction [3].

To illustrate the validity of (3.6) in estimating the CDS, note that the data
fitting component n−1

∑n
i=1 L(u(f(B

Txi), yi)) in (3.6) approaches the limit-
ing functional E(L(u(f(BTX), Y ))) as n diverges, and hence that the mini-
mizer of (3.6) approaches that of E(L(u(f(BTX), Y ))) under certain regular-
ity conditions [21]. Analogous to [17], it can be shown that the minimizer of
E(L(u(f(BTX), Y ))) subject to the sum-to-zero constraint is

fk(B
Tx) =

{
1, if k = argmaxj pj(x);
− 1

K−1 , otherwise,
(3.7)

assuming that FK is sufficiently rich. Therefore, φ(BTx) = argmaxk pk(x) =
φB(x), which immediately justifies (3.6) in estimating the CDS. In addition,
(3.7) ensures that (3.6) is able to handle the example in Section 2.2 as (3.6)
directly targets on f(BTx) as opposed to pk(x), and hence that it is able to
identify the correct CDS regardless of how pk(x) may change f(BTx).

Next, Lemma 3.1 suggests that (λ1, λ2) in (3.6) can be suppressed into one
tuning parameter.

Lemma 3.1. Let f̂ be the solution of (3.6), then f̂ depends on (λ1, λ2) only
through λ1λ2.

Proof of Lemma 3.1. The desired result immediately follows from the fact that
fk(B

Txi) = wT
k Bx+bk = (wk/a)

T (aB)x+bk; k = 1, . . . ,K, λ1
∑K

k=1 ‖wk‖1 =

aλ1
∑K

k=1 ‖wk/a‖1 and λ2‖B‖1 = (λ2/a)‖aB‖1, for any constant a 6= 0.

Without loss of generality, we then replace the tuning parameters (λ1, λ2) by
λ = λ1 = λ2, and the sparse dimension reduction formulation in (3.6) becomes

minB,f∈FK n−1
n∑

i=1

L(u(f(BTxi), yi)) + λ

(
K∑

k=1

‖wk‖1 + ‖B‖1

)
, (3.8)

subject to

K∑

k=1

Bwk = 0p and

K∑

k=1

bk = 0.

Furthermore, the LASSO type of regularization terms ‖wk‖1 and ‖B‖1 in
(3.8) perform a bi-level variable selection, encouraging sparsity at both the di-
rection level and the covariate level. The zero entries in ‖wk‖1 automatically

remove the redundant columns in B̂ and recover informative directions of the
CDS. In addition, the sparseness of the remaining columns in B̂ leads to simpler
representation and easier interpretation for the informative directions. This is
in contrast to the single-level penalty in L1-norm multicategory support vector
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machine (L1MSVM) [26] that performs only variable selection at the covariate
level. As a result, our method is capable of identifying a low-rank structure
of the CDS that usually has a rank much less than K − 1, whereas L1MSVM
in general yields the decision function vector of dimension K − 1 without fur-
ther dimension reduction. This idea of bi-level penalty is closely related to the
hierarchical penalization in [27], which performs both group and within-group
variable selection for grouped predictors. The novelty of our proposed method
is that each dimension reduction direction is a sparse combination adaptively
identified out of all the covariates, whereas each direction merely consists of the
covariates within a given group in [27].

To solve (3.8), we implement an iterative algorithm.

Algorithm 3.1.
Step 1. Initialize B(0) = Ip, and set precision ǫ = 10−6.

Step 2. Given B(m), find w
(m+1)
k and b

(m+1)
k ; k = 1, . . . ,K by solving

min
wk,bk

n−1
n∑

i=1

L(u(f((B(m))Txi), yi)) + λ
K∑

k=1

‖wk‖1,

subject to
∑K

k=1 B
(m)wk = 0 and

∑K
k=1 bk = 0.

Step 3. Given w(m+1) and b
(m+1)
k , find B(m+1) by solving

min
B

n−1
n∑

i=1

L(u(f(BTxi), yi)) + λ‖B‖1.

Step 4. Repeat Steps 2 and 3 until ‖B(m) −B(m+1)‖1 ≤ ǫ.

Step 5 (optional). Orthonormalize B̂ by Gram-Schmidt process, and update
ŵk accordingly.

As computational remarks, the sub-optimization problems in Steps 2 and 3
can be solved by any linear programming algorithm, which is available in most
standard statistical softwares. When p is large, to expedite Steps 2 and 3, one
can restrict the dimension of B to be p× (K−1), or solve for w(m+1) or B(m+1)

column by column. In addition, Step 5 is mainly for orthonormalizing B̂, which
is optional as the primary goal of dimension reduction in classification is to
recover S(Bcds) rather than the base of S(Bcds).

3.3. Tuning parameter selection

The estimation accuracy of the proposed dimension reduction method largely
depends on the tuning parameters λ, and hence that they need to be properly
determined. In this section, we rewrite φ̂ as φ̂λ to indicate its dependency on
λ, and present a tuning parameter selection criterion based on the prediction
accuracy of φ̂λ, obtained from the projected data on the reduced subspace.

To assess the prediction accuracy of φ̂λ, the generalization error (GE) of φ̂λ
is used, defined as GE(φ̂λ) = E(I(Y 6= φ̂λ(X))), where I(·) is an indicator
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function, and the expectation is taken with respect to the unknown P (x, y) and
thus needs to be estimated from data.

In the literature, estimation of the GE given fixed X’s has been extensively
investigated; c.f., [8, 9, 23] for more details. Wang and Shen [25] proposes a data
adaptive GE estimation technique for random X in the context of classification,
where GE(φ̂λ) is decomposed as a sum of GE’s of binary classifiers,

GE(φ̂λ) =
1

2

K∑

k=1

E(I(t(Y )k 6= t(φ̂λ(X))k)), (3.9)

where t : (1, . . . ,K) → {0, 1}K maps j to a vector of length K which has all
entries equal to 0 except the jth one equal to 1. Furthermore, E(I(t(Y )k 6=

t(φ̂λ(X))k)) is estimated by

EGEk(φ̂λ) + 2n−1
n∑

i=1

Cov(t(Yi)k, t(φ̂λ(Xi))k|X
n) +D1k(X

n, φ̂λ) +D2k(X
n).

Here EGEk(φ̂λ) =
1
n

∑n
i=1 I(t(Yi)k 6= t(φ̂λ(Xi))k) is the empirical GE for the

kth component of (3.9), Cov(t(Yi)k, t(φ̂λ(Xi))k|X
n) with Xn = (X1, . . . ,Xn) is

known as covariance penalty [9] measuring the prediction accuracy of φ on Xn,

D1k(X
n, φ̂λ) = E

(
E(E(t(Y )k|X)− t(φ̂λ(X))k)

2−

1

n

n∑

i=1

(E(t(Yi)k|Xi)− t(φ̂λ(Xi))k)
2|Xn

)

accounts for the randomness of X, and

D2k(X
n) = E(Var(t(Y )k|X))−

1

n

n∑

i=1

Var(t(Yi)k|Xi)

is independent of φ̂λ and thus can be omitted in the estimation of GE(φ̂λ).
To estimate Cov and D1k terms in (3.9), a data perturbation technique [25]

can be employed. The idea is to generate local perturbations of X and Y to
evaluate sensitivity of φ̂λ by estimating its classification accuracy via its deriva-
tive estimation. The formulas are given in (11) and (12) of [25]. The proposed
tuning parameter selection technique yields higher estimation accuracy than
cross validation in a wide variety of numerical examples while achieving asymp-
totic optimality for both fixed and random X’s [25]. The numerical experiments
in Section 4 also demonstrate that this selection criterion yields satisfactory
performance in estimating the dimension and the directions of the CDS.

3.4. Asymptotic properties

In this section, we present some asymptotic results showing that the proposed
method is able to estimate the CDS, while yielding comparable asymptotical
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classification performance to standard classification methods, such as L1MSVM,
in terms of the generalized hinge loss for the large-p-small-n classification. Sim-
ilar results have been established in [13, 29] in the regression context.

To handle the large-p-small-n problem, we first introduce some notations.
Write X(p) = (X(1), . . . , X(p))T as a truncated infinite-dimensional random
vector X = (X(1), X(2), . . .)T , and p is allowed to grow with n at a much faster
rate. To relate to the existing learning theory, we work on the following equiv-
alent formulation of (3.6),

minB,f∈FK s(B, f ) = n−1
n∑

i=1

L(u(f(BTxi), yi)) (3.10)

subject to

K∑

k=1

‖wk‖1 + ‖B‖1 ≤ s,

K∑

k=1

wk = 0p and

K∑

k=1

bk = 0,

and define f̂ (p)(B̂Tx) as the solution of (3.10). The optimal performance is
defined by f (p) = argminf∈F(p)EL(u(f(X), Y )), where F(p) = {f : fk =
wT

k x(p) + b,wk ∈ Rp} is the class of all linear decision functions. For any
f ∈ F(p), its performance is measured by the excess hinge risk eL(f , f

(p)) =
EL(u(f(X), Y ))− EL(u(f (p)(X), Y )) ≥ 0.

We now quantify the magnitude of eL(f̂
(p)(B̂Tx), f (p)) under the following

assumptions.
Assumption A: Assume that sup0<j<∞X(j) <∞.

Assumption B: There exists a finite s∗ such that f (p) ∈ F(p, s∗) for all p,

where F(p, s∗) = {f : fk = wT
k B

Tx(p) + b,
∑K

k=1 ‖wk‖1 + ‖B‖1 ≤ s∗}.

Theorem 3.1. Suppose Assumptions A and B hold, and (n−1 log pn)
1/2 → 0.

Then for s = s∗,

eL(f̂
(pn)(B̂Tx), f (pn)) = O

(
(n−1 log pn)

1/2 log(n(log pn)
−1)
)
, a.s..

Proof of Theorem 3.1. Note that f̂ (p)(B̂Tx) = argminf∈F(p,s∗) s(B, f), and for

all f ∈ F(p, s∗), its L1-norm, ‖f‖1 =
∑K

k=1 ‖w
T
k B

T ‖1 ≤
∑K

k=1 ‖w
T
k ‖1s

∗ ≤ s∗2,
is bounded. As a result, F(p, s∗) ⊂ FL1(p, s

∗2) with FL1(p, s
∗2) = {f : fk =

wT
k x(p) + b,

∑K
k=1 ‖wk‖1 ≤ s∗2}, and

P (eL(f̂
(p)(B̂Tx), f (p)) > δ)

≤ P ∗

(
sup

{f∈F(p,s∗): eL(f ,f (p))>δ}

n−1
n∑

i=1

(L(u(f (p)(Xi), Yi))−

L(u(f(Xi), Yi)) > 0

)

≤ P ∗

(
sup

{f∈FL1(p,s
∗2): eL(f ,f (p))>δ}

n−1
n∑

i=1

(L(u(f (p)(Xi), Yi))−

L(u(f(Xi), Yi)) > 0

)
. (3.11)
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The probability in inequality (3.11) can be bounded by Theorem 2 of [26] and
the desired result immediately follows from Corollary 1 therein.

Assumption B describes an L1-norm “sparse scenario”, which is weaker than
the commonly used assumption on the L0-norm sparseness. Specifically, suppose
that the true decision functions are sparse in L0-norm, depending on only a

finite number of predictors, that is f
(p)
k (x) = (w∗

k)
T (B∗)Tx + b∗, where the

number of non-zero entries in b∗ and B∗ is finite, independent of p. Then, it
is straightforward to verify that f (p) ∈ F(p, s∗) for some constant s∗, which
satisfies Assumption B.

Under the spareness assumption, Theorem 3.1 yields an error rate tending
to zero as long as pn grows no faster than exp(n), which indicates the optimal
performance can be obtained even for p ≫ n. More importantly, the rate of
convergence in Theorem 3.1 is comparable to that of L1MSVM [26], implying
that the proposed method achieves the purpose of dimension reduction without
sacrificing its classification performance.

4. Numerical experiments

This section presents numerical studies to examine the finite-sample effective-
ness of the proposed sparse supervised dimension reduction procedure (SSDR).
The purpose of the numerical studies is two-fold. First, we compare the es-
timation accuracy of S(B̂) by SSDR to some popular competitors, including
SIR, SAVE and pHd, when Bcds is know. Specifically, the vector correlation
coefficient q2 [16] and the trace correlation r2 [15] between B̂ and Bcds,

q2(B̂,Bcds) =

d∏

s=1

ρs, r2(B̂,Bcds) =
1

d

d∑

s=1

ρs,

are employed to assess the closeness between S(B̂) and S(Bcds), where ρ1, . . . , ρd
are eigenvalues of BT

cdsB̂B̂TBcds and d is the dimension of Bcds. If d = 0, for

simplicity, we define q2(B̂,Bcds) = r2(B̂,Bcds) = 1 if the dimension of B̂ is also

0, and 0 if the dimension of B̂ is greater than 0. Note that both q2(B̂,Bcds) and

r2(B̂,Bcds) range from 0 to 1, and larger values of q2(B̂,Bcds) and r
2(B̂,Bcds)

indicate S(B̂) and S(Bcds) are closer.
Second, we compare the classification accuracy of the classification decision

functions constructed based on the corresponding B̂. This can be viewed as
a complementary assessment of the estimation accuracy of B̂, when Bcds is
unknown as in the real examples. In specific, we first obtain B̂ through various
dimension reduction methods, then project the original dataset onto S(B̂) and

construct the classification decision function φ̂(B̂Tx) by applying multicategory

SVM (MSVM) [17] to the projected data on S(B̂). A test error, defined as

TE(φ̂, B̂) =
1

#{test set}

∑

test set

I(yi 6= φ̂(B̂Txi)),
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is used to measure the classification accuracy of φ̂ and the estimation accuracy
of B̂. Furthermore, to illustrate that SSDR can retain the classification accuracy
while estimating S(Bcds), we also compare its test error with the standard clas-
sification methods including L1MSVM and linear discriminant analysis (LDA).

All numerical analyses are conducted in R2.7.2. The “dr” routine in the dr
package is employed for SIR, SAVE and pHd, which estimates the dimension
reduction spaces and performs marginal tests concerning their dimensions, and
the “solve” routine in lpSolveAPI package is employed for solving the linear
programming problems in Algorithm 3.1.

4.1. Simulation

Two simulated examples are examined.

Example 1. Data {(Xi1, . . . , Xi10, Yi)}; i = 1, . . . , 1000 are generated as fol-
lows. First, {Xij}; i = 1, . . . , 1000, j = 1, . . . , 10 are sampled from independent
standard normal distribution. Next, Yi − 1|Xi ∼ Bernoulli(p1(Xi)) with

p1(Xi) =

{
0.9 if Xi1 ≥ 0;
γ otherwise.

Two situations with different γ’s are considered: (a) γ = 0.1; (b) γ = 0.6. This
yields the first simulated example, in which 100 randomly selected cases are
used for training and the remaining 900 for testing. According to the generat-
ing probability distribution, S(Bcds) for γ = 0.1 and γ = 0.6 are spanned by
(1,0T

9 )
T and a empty set, respectively.

Example 2. Data {(Xi1, . . . , Xi100, Yi)}; i = 1, . . . , 1000 are generated as fol-
lows. First, Xa

i1, . . . , X
a
i100 are sampled from independent standard normal dis-

tribution. Second, denote Zi1 =
∑50

j=1X
a
ij and Zi2 =

∑100
j=51X

a
ij , and

Yi = 1 + I(Zi1 <= 0) + 2 ∗ I(Zi2 <= 0); i = 1, . . . , 100.

Third,Xij = Xa
ij+θ∗sign(Zi1); j = 1, . . . , 50, and Xij = Xa

ij+θ∗sign(Zi2); j =
51, . . . , 100, for θ = 0.2 or 1, which specifies the degree of separation among
the four classes. This yields the second simulated example, where 80 randomly
selected cases are used for training and the remaining 920 for testing. Clearly,
S(Bcds) is spanned by (1T

50,0
T
50)

T and (0T
50,1

T
50)

T .

To eliminate dependency of our proposed method on tuning parameter λ,
we apply the tuning parameter selection criterion in Section 3.3 and search
for the minimizer of the estimated GE over 61 equally spaced grid points on
{10−3+t/10; t = 0, . . . , 60}. The tuning parameter in MSVM is selected through
the same grid search method with the same 61 grid points. Finally, the numerical
results, averaged over 100 simulation replications, are summarized in Table 1.

Evidently, SSDR delivers superior performance over its competitors. Specifi-
cally, in Examples 1a and 1b, SSDR recovers S(Bcds) in almost all replications,
and yields smaller test errors than SIR, SAVE and pHd. In Example 1a, SAVE
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Table 1

Averaged q2, r2 and test errors as well as estimated standard errors (in parenthesis) of SIR,
SAVE, pHd, SSDR, L1MSVM and LDA in the simulated examples. Here Example 1a

and 1b correspond respectively to the simulated Example 1 with γ = 0.1 and γ = 0.6, and
Example 2a and 2b correspond respectively to the simulated Example 2 with θ = 0.2 and

θ = 1

Example 1a Example 1b Example 2a Example 2b
SIR q2 0.884(.0059) 0.420(.0496) − −

r2 0.884(.0059) 0.420(.0496) − −

SAVE q2 0.009(.0094) 0.990(.0100) − −

r2 0.009(.0094) 0.990(.0100) − −

pHd q2 0.000(.0000) 1.000(.0000) − −

r2 0.000(.0000) 1.000(.0000) − −

SSDR q2 0.987(.0019) 1.000(.0000) 0.189(.0026) 0.242(.0039)
r2 0.987(.0019) 1.000(.0000) 0.441(.0029) 0.492(.0040)

SIR TE 0.163(.0024) 0.267(.0016) − −

SAVE TE 0.500(.0035) 0.254(.0004) − −

pHd TE 0.504(.0004) 0.254(.0004) − −

SSDR TE 0.124(.0025) 0.254(.0004) 0.217(.0041) 0.000(.0000)
L1MSVM TE 0.111(.0017) 0.254(.0004) 0.218(.0025) 0.000(.0001)

LDA TE 0.163(.0024) 0.278(.0012) 0.414(.0074) 0.025(.0036)

and pHd can hardly identify any direction of S(Bcds), whereas both SSDR and

SIR deliver satisfactory performance and S(B̂) by SSDR is closer to S(Bcds)
than that by SIR as it yields larger value of q2 and r2. In Example 1b, SSDR,
SAVE and pHd are able to recover S(Bcds) in all replications, while SIR tends to
overestimate S(Bcds). In Examples 2a and 2b, the number of covariates is larger
than that of observations and hence that SIR, SAVE and pHd are not applica-
ble, whereas SSDR is able to handle this large-p-small-n scenario. From Table 1,
the small values of q2 and r2 suggest that S(B̂) by SSDR is somewhat different
from S(Bcds). However q

2 and r2 are no longer appropriate to assess the esti-

mation accuracy of S(B̂) in Example 2 as there can be multiple CDS’s leading
to perfect classification due to the high dimension. Figure 1 displays averaged
q2 and r2 of SSDR in Example 2 with θ = 1 and p = 10, 20, 50, 100, 200, 500 over
100 independent replications. Clearly, both q2 and r2 decrease as p increases,
while the test error of SSDR remains 0 for all p’s. This suggests that although
S(B̂) by SSDR deviates from S(Bcds) when p is large, the classification decision

function based on S(B̂) remains the same as that based on S(Bcds).
Finally, we compare the test error of SSDR to that of standard classification

methods including L1MSVM and LDA that do not provide estimate of S(Bcds)
at all. It is clear that SSDR outperforms LDA in all examples, and compares
similarly to L1MSVM. In Example 2b, although S(B̂) is seemingly different
from S(Bcds), SSDR is able to yield perfect classification in all replications.
In Example 2a, due to the high dimension but relatively small separation with
θ = 0.2, all methods fail to achieve the perfect classification but SSDR is still
able to deliver smaller test error than both L1MSVM and LDA.
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Fig 1. The averaged q2, r2 and test error in Example 2 with θ = 1 and various p’s.

4.2. Real examples

We now examine two real examples, Wisconsin breast cancer and Lung cancer.
Both datasets are available from the University of California at Irvine machine
learning data repository at http://www.ics.uci.edu/∼mlearn/MLRepository.html.
The Wisconsin breast cancer dataset, collected at University of Wisconsin Hos-
pitals, consists of 569 cases with two diagnoses, 212 malignant and 357 benign.
The main goal is to develop a diagnosis method to determine whether a case
is benign or malignant, based on 30 features computed from a digitized image
of a fine needle aspiration. More details about the data is given in [28]. The
Lung cancer dataset consists of only 32 patients with three different types of
pathological lung cancers, 9 from the first, 13 from the second and 11 from the
third type, and 56 discrete features extracted from clinical and X-ray data. In
Lung cancer, there are four missing values in the 4th feature and one missing
value in the 38th feature, which are replaced by the modes of the 4th and 38th
features, respectively. The data is described in details by [14].

In the Wisconsin breast cancer example, we randomly choose 200 cases for
training and the remainder for testing; in the Lung cancer example, 24 randomly
chosen cases are for training and the remainder for testing. For each pair of
training and testing sets, tuning is conducted for λ using the same grid search
scheme as in the simulated examples. Since S(Bcds) is unavailable in these real

examples, the test errors and the dimension of B̂, averaged over 100 simulation
replications, are summarized in Table 2.

In the Wisconsin breast cancer example, SSDR yields the smallest test error
than other dimension reduction methods, and compares favorably to L1MSVM
and LDA as well. Furthermore, both SSDR and SIR find one significant direction
for the CDS in all replications, SAVE identifies too many significant directions
for the CDS which deteriorates its classification accuracy, and pHd does not

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 2

Averaged test errors and dimensions as well as estimated standard errors (in parenthesis) of
SIR, SAVE, pHd, SSDR, L1MSVM and LDA in the real examples. Here WBC and Lung

correspond respectively to the Wisconsin breast cancer and the Lung cancer examples

WBC Lung
SIR Dim 1.00(.000) −

TE 0.048(.0010) −

SAVE Dim 8.12(.263) −

TE 0.269(.0095) −

pHd Dim 0.00(.000) −

TE 0.373(.0016) −

SSDR Dim 1.00(.000) 1.74(.073)
TE 0.024(.0006) 0.368(.0104)

L1MSVM Dim − −

TE 0.029(.0009) 0.381(.0174)
LDA Dim − −

TE 0.052(.0011) 0.529(.0151)

find any significant direction and yields the worst classification performance. In
the Lung cancer example, SIR, SAVE and pHd are not applicable because of
the large-p-small-n scenario, while SSDR yields averaged test error 0.368, which
outperforms L1MSVM, LDA and the classification results (test error 0.375, the
best among eight popular classification methods) reported in [1], where they
use all 36 cases and 56 features for training and estimate the test error through
leave-one-out cross validation.

Next, we display both real examples in the obtained reduced subspace via
SSDR. As illustrated in Figure 2, the estimated directions by SSDR provide
good separation of different classes of samples in both examples. In Wisconsin
breast cancer example, patients with smaller values on direction 1 are much
more likely to be malignant. In Lung cancer example, patients with negative
values on both directions are more likely to have the third type of lung cancer,
and patients of the first and second type of lung cancer can be discriminated
according the relative largeness in these two directions. Furthermore, in the
Wisconsin breast example, the estimated CDS is spanned by

Direction 1 = 0.097X2 + 0.184X7 + 0.467X8 + 0.753X11 + 0.065X15 −

0.286X20 + 0.543X22 + 0.582X23 + 0.074X25 + 0.064X27 +

0.737X28;

and in the Lung cancer example, the estimated CDS is spanned by

Direction 1 = 0.237X2 + 0.191X6 + 0.019X13 + 0.033X14 − 0.23X19 −

0.651X20 − 0.013X25 + 0.199X28 + 0.161X34 − 0.089X41, and

Direction 2 = −0.077X2 − 0.132X3 − 0.05X4 + 0.114X8 + 0.025X15 −

0.105X19 − 0.251X20 + 0.05X23 + 0.127X29 + 0.249X30 +

0.031X31 − 0.036X34 + 0.222X35 − 0.035X37 − 0.053X39 +

0.117X41 − 0.017X53 + 0.024X55.
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Fig 2. The estimated CDS based on two randomly chosen replications from the Wisconsin
breast cancer and the Lung cancer example. The left panel is the Wisconsin breast cancer
example and the right panel is the Lung cancer example, where the digits denote different
classes respectively.

Evidently, SSDR yields sparse representation of the dimension reduction di-
rections in both examples. In Wisconsin breast cancer example, one direction
with only 11 out of 30 covriates is identified, and in Lung cancer example, two
directions with only 10 and 18 out of 56 covariates are identified.

5. Summary

This article proposes a novel methodology for estimating the dimension re-
duction subspace for classification. In contrast to existing methods viewing the
classification problem as a generalized regression problem, our proposed method
directly pursues the minimal sufficient discriminant subspace to retain the clas-
sification boundary based on the original dataset. In addition, it enables esti-
mation of the dimension and the sparse directions of the dimension reduction
subspace simultaneously. Its asymptotic classification performance is shown to
be comparable to the standard classification techniques in large-p-small-n sce-
nario. Numerical analyses demonstrate that the proposed method outperforms
several other top competitors in both simulated and real examples.

It is worthy of pointing out that we assume that the true classification bound-
aries are linear as linear classification boundaries seem more appropriate when
the data dimension is high [12]. This assumption may fail when the dimension is
relatively small and the true classification boundaries are often nonlinear. The
extension of the proposed dimension reduction approach to nonlinear case is
under investigation.

References

[1] Aeberhard, S., Coomans, D. and De Vel, O. (1994). Comparative
analysis of statistical pattern recognition methods in high dimensional set-
tings. Pattern Recog., 27, 1065-1077.



J. Wang and L. Wang/Sparse supervised dimension reduction 930

[2] Antoniadis, A., Lambert-Lacroix, S. and Leblanc, F. (2003). Ef-
fective dimension reduction methods for tumor classification using gene
expression data. Bioinformatics, 19, 563-570.

[3] Cook, R.D. (1998). Regression Graphics: Ideas for Studying Regressions
Through Graphics. Wiley, New York. MR1645673

[4] Cook, R.D. and Lee, H. (1999). Dimension reduction in regressions with
a binary response. J. Am. Stat. Assoc., 94, 1187-1200. MR1731482

[5] Cook, R.D. and Li, B. (2002). Dimension reduction for the conditional
mean. Ann. Statist., 30, 455-474. MR1902895

[6] Cook, R.D. and Yin, X. (2001). Dimension reduction and visualization
in discriminant analysis (with discussion). Aust. N. Z. J. Statist., 43, 147-
199. MR1839361

[7] Cook, R.D. and Weisberg, S. (1991). Discussion of “Sliced inverse re-
gression for dimension reduction” by K.C. Li. J. Am. Statist. Assoc., 86,
328-332. MR1137117

[8] Efron, B. (1983). Estimating the error rate of a prediction rule: improve-
ment on cross-validation. J. Am. Statist. Assoc., 78, 316-331. MR0711106

[9] Efron, B. (2004). The estimation of prediction error: covariance penalties
and cross-validation. J. Am. Statist. Assoc., 99, 619-632. MR2090899

[10] Fan, J. and Gijbels, I. (1996). Local Polynomical Modelling and Its Ap-
plications. Chapman and Hall, London. MR1383587

[11] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J., Coller, H., Loh, M., Downing, J. and Caligiuri, M.

(1999). Molecular classification of cancer: class discovery and class predic-
tion by gene expression monitoring. Science, 286, 531-6.

[12] Hastie, Tibshirani and Friedman (2009). The elements of statistical
learning, 2nd Edition. Springer-Verlag, New York.
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