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Abstract: When testing a null hypothesis H0 : θ = θ0 in a Bayesian
framework, the Savage–Dickey ratio (Dickey, 1971) is known as a spe-
cific representation of the Bayes factor (O’Hagan and Forster, 2004) that
only uses the posterior distribution under the alternative hypothesis at θ0,
thus allowing for a plug-in version of this quantity. We demonstrate here
that the Savage–Dickey representation is in fact a generic representation
of the Bayes factor and that it fundamentally relies on specific measure-
theoretic versions of the densities involved in the ratio, instead of being a
special identity imposing some mathematically void constraints on the prior
distributions. We completely clarify the measure-theoretic foundations of
the Savage–Dickey representation as well as of the later generalisation of
Verdinelli and Wasserman (1995). We provide furthermore a general frame-
work that produces a converging approximation of the Bayes factor that is
unrelated with the approach of Verdinelli and Wasserman (1995) and pro-
pose a comparison of this new approximation with their version, as well as
with bridge sampling and Chib’s approaches.
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1. Introduction

From a methodological viewpoint, testing a null hypothesis H0 : x ∼ f0(x|ω0)
versus the alternative Ha : x ∼ f1(x|ω1) in a Bayesian framework requires
the introduction of two prior distributions, π0(ω0) and π1(ω1), that are defined
on the respective parameter spaces. In functional terms, the core object of the
Bayesian approach to testing and model choice, the Bayes factor (Jeffreys, 1939,
Robert, 2001, O’Hagan and Forster, 2004), is indeed a ratio of two marginal
densities taken at the same observation x,

B01(x) =

∫
π0(ω0)f0(x|ω0) dω0∫
π1(ω1)f1(x|ω1) dω1

=
m0(x)

m1(x)
.
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(This quantity B01(x) is then compared to 1 in order to decide about the
strength of the support of the data in favour of H0 or Ha.) It is thus mathemat-
ically clearly and uniquely defined, provided both integrals exist and differ from
both 0 and ∞. The practical computation of the Bayes factor has generated
a large literature on approximative (see, e.g. Chib, 1995, Gelman and Meng,
1998, Chen et al., 2000, Chopin and Robert, 2010), seeking improvements in
numerical precision.

The Savage–Dickey (Dickey, 1971) representation of the Bayes factor is pri-
marily known as a special identity that relates the Bayes factor to the posterior
distribution which corresponds to the more complex hypothesis. As described
in Verdinelli and Wasserman (1995) and Chen et al. (2000, pages 164-165), this
representation has practical implications as a basis for simulation methods. How-
ever, as stressed in Dickey (1971) and O’Hagan and Forster (2004), the founda-
tion of the Savage–Dickey representation is clearly theoretical.

More specifically, when considering a testing problem with an embedded
model, H0 : θ = θ0, and a nuisance parameter ψ, i.e. when ω1 can be de-
composed as ω1 = (θ, ψ) and when ω0 = (θ0, ψ), for a sampling distribution
f(x|θ, ψ), the plug-in representation

B01(x) =
π1(θ0|x)
π1(θ0)

, (1)

with the obvious notations for the marginal distributions

π1(θ) =

∫
π1(θ, ψ)dψ and π1(θ|x) =

∫
π1(θ, ψ|x)dψ ,

holds under Dickey’s (1971) assumption that the conditional prior density of ψ
under the alternative model, given θ = θ0, π1(ψ|θ0), is equal to the prior density
under the null hypothesis, π0(ψ),

π1(ψ|θ0) = π0(ψ) . (2)

Therefore, Dickey’s (1971) identity (1) reduces the Bayes factor to the ratio of
the posterior over the prior marginal densities of θ under the alternative model,
taken at the tested value θ0. The Bayes factor is thus expressed as an amount
of information brought by the data and this helps in its justification as a model
choice tool. (See also Consonni and Veronese, 2008.)

In order to illustrate the Savage–Dickey representation, consider the artificial
example of computing the Bayes factor between the models

M0 : x|ψ ∼ N (ψ, 1), ψ ∼ N (0, 1) ,

and
M1 : x|θ, ψ ∼ N (ψ, θ), ψ|θ ∼ N (0, θ), θ ∼ IG(1, 1) ,

which is equivalent to testing the null hypothesis H0 : θ = θ0 = 1 against the
alternative H1 : θ 6= 1 when x|θ, ψ ∼ N (ψ, θ). In that case, model M0 clearly is
embedded in model M1. We have

m0(x) = exp
(
−x2/4

) /
(
√
2
√
2π)
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and
m1(x) =

(
1 + x2/4

)−3/2
Γ(3/2)

/
(
√
2
√
2π) ,

and therefore

B01(x) = Γ(3/2)−1
(
1 + x2/4

)3/2
exp

(
−x2/4

)
.

Dickey’s assumption (2) on the prior densities is satisfied, since

π1(ψ|θ0) =
1√
2π

exp
(
−ψ2/2

)
= π0(ψ) .

Therefore, since

π1(θ) = θ−2 exp
(
−θ−1

)
, π1(θ0) = exp(−1) ,

and

π1(θ|x) = Γ(3/2)−1
(
1 + x2/4

)3/2
θ−5/2 exp

(
−θ−1

(
1 + x2/4

))
Iθ>0 ,

π1(θ0|x) = Γ(3/2)−1
(
1 + x2/4

)3/2
exp

(
−
(
1 + x2/4

))
,

we clearly recover the Savage–Dickey representation

B01(x) = Γ(3/2)−1
(
1 + x2/4

)3/2
exp

(
−x2/4

)
= π1(θ0|x)/π1(θ0) .

While the difficulty with the representation (1) is usually addressed in terms
of computational aspects, given that π1(θ|x) is rarely available in closed form,
we argue in the current paper that the Savage–Dickey representation faces chal-
lenges of a deeper nature that led us to consider it a ‘paradox’. First, by con-
sidering both prior and posterior marginal distributions of θ uniquely under the

alternative model, (1) seems to indicate that the posterior probability of the null
hypothesis H0 : θ = θ0 is contained within the alternative hypothesis posterior
distribution, even though the set of (θ, ψ)’s such that θ = θ0 has a zero probabil-
ity under this alternative distribution. Second, as explained in Section 2, an even
more fundamental difficulty with assumption (2) is that it is meaningless when
examined (as it should) within the mathematical axioms of measure theory.

Having stated those mathematical difficulties with the Savage–Dickey repre-
sentation, we proceed to show in Section 3 that similar identities hold under no
constraint on the prior distributions. In Section 3, we derive computational al-
gorithms that exploit these representations to approximate the Bayes factor, in
an approach that differs from the earlier solution of Verdinelli and Wasserman
(1995). The paper concludes with an illustration in the setting of variable selec-
tion within a probit model.

2. A measure-theoretic paradox

When considering a standard probabilistic setting where the dominating mea-
sure on the parameter space is the Lebesgue measure, rather than a counting
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measure, the conditional density π1(ψ|θ) is rigorously (Billingsley, 1986) defined
as the density of the conditional probability distribution or, equivalently, by the
condition that

P((θ, ψ) ∈ A1 ×A2) =

∫

A1

∫

A2

π1(ψ|θ) dψ π1(θ) dθ =
∫

A1×A2

π1(θ, ψ)dψ dθ ,

for all measurable sets A1 × A2, when π1(θ) is the associated marginal density
of θ. Therefore, this identity points out the well-known fact that the conditional
density function π1(ψ|θ) is defined up to a set of measure zero both in ψ for
every value of θ and in θ. This implies that changing arbitrarily the value of
the function π1(·|θ) for a negligible collection of values of θ does not impact the
properties of the conditional distribution.

In the setting where the Savage–Dickey representation is advocated, the value
θ0 to be tested is not determined from the observations but it is instead given
in advance since this is a testing problem. Therefore the density function

π1(ψ|θ0)

may be chosen in a completely arbitrary manner and there is no possible reason
for a unique representation of π1(ψ|θ0) that can be found within measure theory.
This implies that there always is a version of the conditional density π1(ψ|θ0)
such that Dickey’s (1971) condition (2) is satisfied—as well as, conversely, there
are an infinity of versions for which it is not satisfied—. As a result, from a
mathematical perspective, condition (2) cannot be seen as an assumption on the
prior π1 without further conditions, contrary to what is stated in the original
Dickey (1971) and later in O’Hagan and Forster (2004), Consonni and Veronese
(2008) and Wetzels et al. (2010). This difficulty is the first part of what we call
the Savage–Dickey paradox, namely that, as stated, the representation (1) relies
on a mathematically void constraint on the prior distribution. In the specific
case of the artificial example introduced above, the choice of the conditional
density π1(ψ|θ0) is therefore arbitrary: if we pick for this density the density of
the N (0, 1) distribution, there is agreement between π1(ψ|θ0) and π0(ψ), while,
if we select instead the function exp(+ψ2/2), which is not a density, there is no
agreement in the sense of condition (2). The paradox is that this disagreement
has no consequence whatsoever in the Savage–Dickey representation.

The second part of the Savage–Dickey paradox is that the representation (1)
is solely valid for a specific and unique choice of a version of the density for both
the conditional density π1(ψ|θ0) and the joint density π1(θ0, ψ). When looking
at the derivation of (1), the choices of some specific versions of those densities
are indeed noteworthy: in the following development,

B01(x) =

∫
π0(ψ)f(x|θ0, ψ) dψ∫

π1(θ, ψ)f(x|θ, ψ) dψdθ
[by definition]

=

∫
π1(ψ|θ0)f(x|θ0, ψ) dψ π1(θ0)∫
π1(θ, ψ)f(x|θ, ψ) dψdθ π1(θ0)

[using a specific version of π1(ψ|θ0)]
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=

∫
π1(θ0, ψ)f(x|θ0, ψ) dψ

m1(x)π1(θ0)
[using a specific version of π1(θ0, ψ)]

=
π1(θ0|x)
π1(θ0)

, [using a specific version of π1(θ0|x)]

the second equality depends on a specific choice of the version of π1(ψ|θ0) but
not on the choice of the version of π1(θ0), while the third equality depends on a
specific choice of the version of π1(ψ, θ0) as equal to π0(ψ)π1(θ0), thus related
to the choice of the version of π1(θ0). The last equality leading to the Savage–
Dickey representation relies on the choice of a specific version of π1(θ0|x) as
well, namely that the constraint

π1(θ0|x)
π1(θ0)

=

∫
π0(ψ)f(x|θ0, ψ) dψ

m1(x)

holds, where the right hand side is equal to the Bayes factor B01(x) and is
therefore independent from the version. This rigorous analysis implies that the
Savage–Dickey representation is tautological, due to the availability of a version
of the posterior density that makes it hold.

As an illustration, consider once again the artificial example above. As already
stressed, the value to be tested θ0 = 1 is set prior to the experiment. Thus,
without modifying either the prior distribution under model M1 or the marginal
posterior distribution of the parameter θ under model M1, and in a completely
rigorous measure-theoretic framework, we can select

π1(θ0) = 100 = π1(θ0|x) .

For that choice, we obtain

π1(θ0|x)/π1(θ0) = 1 6= B01(x) = Γ(3/2)−1
(
1 + x2/4

)3/2
exp

(
−x2/4

)
.

Hence, for this specific choice of the densities, the Savage–Dickey representation
does not hold.

Verdinelli and Wasserman (1995) have proposed a generalisation of the Savage–
Dickey density ratio when the constraint (2) on the prior densities is not verified
(we stress again that this is a mathematically void constraint on the respective
prior distributions). Verdinelli and Wasserman (1995) state that

B01(x) =

∫
π0(ψ)f(x|θ0, ψ) dψ

m1(x)
[by definition]

= π1(θ0|x)
∫
π0(ψ)f(x|θ0, ψ) dψ
m1(x)π1(θ0|x)

[for any version of π1(θ0|x)]

= π1(θ0|x)
∫
π0(ψ)f(x|θ0, ψ)
m1(x)π1(θ0|x)

π1(ψ|θ0)
π1(ψ|θ0)

dψ [for any version of π1(ψ|θ0)]
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= π1(θ0|x)
∫

π0(ψ)

π1(ψ|θ0)
f(x|θ0, ψ)π1(ψ|θ0) dψ

m1(x)π1(θ0|x)
π1(θ0)

π1(θ0)
[for any version of

π1(θ0)]

=
π1(θ0|x)
π1(θ0)

∫
π0(ψ)

π1(ψ|θ0)
π1(ψ|θ0, x) dψ [for a specific version

of π1(ψ|θ0, x)]

=
π1(θ0|x)
π1(θ0)

E
π1(ψ|x,θ0)

[
π0(ψ)

π1(ψ|θ0)

]
.

This representation of Verdinelli and Wasserman (1995) therefore remains valid
for any choice of versions for π1(θ0|x), π1(θ0), π1(ψ|θ0), provided the conditional
density π1(ψ|θ0, x) is defined by

π1(ψ|θ0, x) =
f(x|θ0, ψ)π1(ψ|θ0)π1(θ0)

m1(x)π1(θ0|x)
,

which obviously means that the Verdinelli–Wasserman representation

B01(x) =
π1(θ0|x)
π1(θ0)

E
π1(ψ|x,θ0)

[
π0(ψ)

π1(ψ|θ0)

]
(3)

is dependent on the choice of a version of π1(θ0).
We now establish that an alternative representation of the Bayes factor is

available and can be exploited towards approximation purposes. When consid-
ering the Bayes factor

B01(x) =

∫
π0(ψ)f(x|θ0, ψ) dψ∫

π1(θ, ψ)f(x|θ, ψ) dψdθ
π1(θ0)

π1(θ0)
,

where the right hand side obviously is independent of the choice of the version
of π1(θ0), the numerator can be seen as involving a specific version in θ = θ0 of
the marginal posterior density

π̃1(θ|x) ∝
∫
π0(ψ)f(x|θ, ψ) dψ π1(θ) ,

which is associated with the alternative prior π̃1(θ, ψ) = π1(θ)π0(ψ). Indeed,
this density π̃1(θ|x) appears as the marginal posterior density of the posterior
distribution defined by the density

π̃1(θ, ψ|x) =
π0(ψ)π1(θ)f(x|θ, ψ)

m̃1(x)
,

where m̃1(x) is the proper normalising constant of the joint posterior density.
In order to guarantee a Savage–Dickey-like representation of the Bayes factor,
the appropriate version of the marginal posterior density in θ = θ0, π̃1(θ0|x), is
obtained by imposing

π̃1(θ0|x)
π0(θ0)

=

∫
π0(ψ)f(x|θ0, ψ) dψ

m̃1(x)
, (4)
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where, once again, the right hand side of the equation is uniquely defined. This
constraint amounts to imposing that Bayes’ theorem holds in θ = θ0 instead
of almost everywhere (and thus not necessarily in θ = θ0). It then leads to the
alternative representation

B01(x) =
π̃1(θ0|x)
π1(θ0)

m̃1(x)

m1(x)
,

which holds for any value chosen for π1(θ0) provided condition (4) applies.
This new representation may seem to be only formal, since both m1(x) and

m̃1(x) are usually unavailable in closed form, but we can take advantage of the
fact that the bridge sampling identity of Torrie and Valleau (1977) (see also
Gelman and Meng, 1998) gives an unbiased estimator of m̃1(x)/m1(x) since

E
π1(θ,ψ|x)

[
π0(ψ)π1(θ)f(x|θ, ψ)
π1(θ, ψ)f(x|θ, ψ)

]
= E

π1(θ,ψ|x)

[
π0(ψ)

π1(ψ|θ)

]
=
m̃1(x)

m1(x)
.

In conclusion, we obtain the representation

B01(x) =
π̃1(θ0|x)
π1(θ0)

E
π1(θ,ψ|x)

[
π0(ψ)

π1(ψ|θ)

]
, (5)

whose expectation part is uniquely defined (in that it does not depend on the
choice of a version of the densities involved therein), while the first ratio must
satisfy condition (4). We further note that this representation clearly differs
from Verdinelli and Wasserman’s (1995) representation:

B01(x) =
π1(θ0|x)
π1(θ0)

E
π1(ψ|x,θ0)

[
π0(ψ)

π1(ψ|θ0)

]
, (6)

since (6) uses a specific version of the marginal posterior density on θ in θ0, as
well as a specific version of the full conditional posterior density of ψ given θ0

3. Computational solutions

In this Section, we consider the computational implications of the above rep-
resentation in the specific case of latent variable models, namely under the
practical possibility of a data completion by a latent variable z such that

f(x|θ, ψ) =
∫
f(x|θ, ψ, z)f(z|θ, ψ) dz

when π1(θ|x, ψ, z) ∝ π1(θ)f(x|θ, ψ, z) is available in closed form, including the
normalising constant.

We first consider a computational solution that approximates the Bayes fac-
tor based on our novel representation (5). Given a sample (θ̄(1), ψ̄(1), z̄(1)), . . . ,
(θ̄(T ), ψ̄(T ), z̄(T )) simulated from (or converging to) the augmented posterior dis-
tribution π̃1(θ, ψ, z|x), the sequence
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1

T

T∑

t=1

π̃1(θ0|x, z̄(t), ψ̄(t))

converges to π̃1(θ0|x) in T under the following constraint on the selected version
of π̃1(θ0|x, z, ψ) used therein:

π̃1(θ0|x, z, ψ)
π1(θ0)

=
f(x, z|θ0, ψ)∫

f(x, z|θ, ψ)π1(θ) dθ
.

which again amounts to imposing that Bayes’ theorem holds in θ = θ0 for
π̃1(θ|x, z, ψ) rather than almost everywhere. (Note once more that the right
hand side is uniquely defined, i.e. that it does not depend on a specific version.)
Therefore, provided iid or MCMC simulations from the joint target π̃1(θ, ψ, z|x)
are available, the converging approximation to the Bayes factor B01(x) is then

1

T

T∑

t=1

π̃1(θ0|x, z̄(t), ψ̄(t))

π1(θ0)

m̃1(x)

m1(x)
.

(We stress that the simulated sample is produced for the artificial target
π̃1(θ, ψ, z|x) rather than the true posterior π1(θ, ψ, z|x) if π̃1(θ, ψ) 6= π1(θ, ψ).)
Moreover, if (θ(1), ψ(1)), . . . , (θ(T ), ψ(T )) is a sample independently simulated
from (or converging to) π1(θ, ψ|x), then

1

T

T∑

t=1

π0(ψ
(t))

π1(ψ(t)|θ(t))

is a convergent and unbiased estimator of m̃1(x)/m1(x). Therefore, the com-
putational solution associated to our representation (5) of B01(x) leads to the
following unbiased estimator of the Bayes factor:

B̂01

MR
(x) =

1

T

T∑

t=1

π̃1(θ0|x, z̄(t), ψ̄(t))

π1(θ0)

1

T

T∑

t=1

π0(ψ
(t))

π1(ψ(t)|θ(t)) . (7)

Note that

E
π̃1(θ,ψ|x)

[
π1(θ, ψ)f(x|θ, ψ)

π0(ψ)π1(θ)f(x|θ, ψ)

]
= E

π̃1(θ,ψ|x)

[
π1(ψ|θ)
π0(ψ)

]
=
m1(x)

m̃1(x)

implies that

T

/ T∑

t=1

π1(ψ̄
(t)|θ(t))

π0(ψ̄(t))

is another convergent (if biased) estimator of m̃1(x)/m1(x). The availability
of two estimates of the ratio m̃1(x)/m1(x) is a major bonus from a compu-
tational point of view since the comparison of both estimators may allow for
the detection of infinite variance estimators, as well as for coherence of the ap-
proximations. The first approach requires two simulation sequences, one from
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π̃1(θ, ψ|x) and one from π1(θ, ψ|x), but this is a void constraint in that, if H0 is
rejected, a sample from the alternative hypothesis posterior will be required no
matter what. Although we do not pursue this possibility in the current paper,
note that a comparison of the different representations (including Verdinelli and
Wasserman’s, 1995, as exposed below) could be conducted by expressing them
in the bridge sampling formalism (Gelman and Meng, 1998).

We now consider a computational solution that approximates the Bayes factor
and is based on Verdinelli and Wasserman (1995)’s representation (6). Given a
sample (θ(1), ψ(1), z(1)), . . . , (θ(T ), ψ(T ), z(T )) simulated from (or converging to)
π1(θ, ψ, z|x), the sequence

1

T

T∑

t=1

π1(θ0|x, z(t), ψ(t))

converges to π1(θ0|x) under the following constraint on the selected version of
π1(θ0|x, z, ψ) used there:

π1(θ0|x, z, ψ)
π1(θ0)

=
f(x, z|θ0, ψ)∫

f(x, z|θ, ψ)π1(θ) dθ
.

Moreover, if
(
ψ̃(1), z̃(1)

)
, . . . ,

(
ψ̃(T ), z̃(T )

)
is a sample generated from (or con-

verging to) π1(ψ, z|x, θ0), the sequence

1

T

T∑

t=1

π0(ψ̃
(t))

π1(ψ̃(t)|θ0)

is converging to

E
π1(ψ|x,θ0)

[
π0(ψ)

π1(ψ|θ0)

]

under the constraint

π1(ψ, z|θ0, x) ∝ f(x, z|θ0, ψ)π1(ψ|θ0) .

Therefore, the computational solution associated to the Verdinelli and Wasserman
(1995)’s representation of B01(x) (6) leads to the following unbiased estimator
of the Bayes factor:

B̂01

VW
(x) =

1

T

T∑

t=1

π1(θ0|x, z(t), ψ(t))

π1(θ0)

1

T

T∑

t=1

π0(ψ̃
(t))

π1(ψ̃(t)|θ0)
. (8)

Although, at first sight, the approximations (7) and (8) may look very similar,
the simulated sequences used in both approximations differ: the first average
involves simulations from π̃1(θ, ψ, z|x) and from π1(θ, ψ, z|x), respectively, while
the second average relies on simulations from π1(θ, ψ, z|x) and from π1(ψ, z|x, θ0),
respectively.
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Fig 1. Comparison of the variabilities of five approximations of the Bayes factor evaluating
the impact of the diabetes pedigree covariate upon the occurrence of diabetes in the Pima
Indian population, based on a probit modelling. The boxplots are based on 100 replicas and
the Savage–Dickey representation proposed in the current paper is denoted by MR, while
Verdinelli and Wasserman’s (1995) version is denoted by VW.

4. An illustration

Although our purpose in this note is far from advancing the superiority of the
Savage–Dickey type representations for Bayes factor approximation, given the
wealth of available solutions for embedded models (Chen et al., 2000, Marin
and Robert 2010), we briefly consider an example where both Verdinelli and
Wasserman’s (1995) and our proposal apply. The model is the Bayesian posterior
distribution of the regression coefficients of a probit model, following the prior
modelling adopted in Marin and Robert (2007) that extends Zellner’s (1971)
g-prior to generalised linear models. We take as data the Pima Indian diabetes
study available in R (R Development Core Team, 2008) dataset with 332 women
registered and build a probit model predicting the presence of diabetes from
three predictors, the glucose concentration, the diastolic blood pressure and
the diabetes pedigree function, assessing the impact of the diabetes pedigree
function, i.e. testing the nullity of the coefficient θ associated to this variable. For
more details on the statistical and computational issues, see Marin and Robert
(2010) since this paper relies on the Pima Indian probit model as benchmark.

This probit model is a natural setting for completion by a truncated normal
latent variable (Albert and Chib, 1993). We can thus easily implement a Gibbs
sampler to produce output from all the posterior distributions considered in the
previous Section. Besides, in that case, the conditional distribution π1(θ|x, ψ, z)
is a normal distribution with closed form parameters. It is therefore straight-
forward to compute the unbiased estimators (7) and (8). Figure 1 compares
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the variation of this approximation with other standard solutions covered in
Marin and Robert (2010) for the same example, namely the regular importance
sampling approximation based on the MLE asymptotic distribution, Chib’s ver-
sion based on the same completion, and a bridge sampling (Gelman and Meng,
1998) solution completing π0(·) with the full conditional being derived from the
conditional MLE asymptotic distribution. The boxplots are all based on 100
replicates of T = 20, 000 simulations. While the estimators (7) and (8) are not
as accurate as Chib’s version and as the importance sampler in this specific case,
their variabilities remain at a reasonable order and are very comparable. The R
code and the reformated datasets used in this Section are available at the follow-
ing address: http://www.math.univ-montp2.fr/~marin/savage/dickey.html.
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