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Abstract: We consider M estimation of a regression model with a nui-
sance parameter and a vector of other parameters. The unknown distri-
bution of the residuals is not assumed to be normal or symmetric. Simple
and easily estimated formulas are given for the dominant terms of the bias
and skewness of the parameter estimates. For the linear model these are
proportional to the skewness of the ‘independent’ variables. For a nonlinear
model, its linear component plays the role of these independent variables,
and a second term must be added proportional to the covariance of its lin-
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1. Introduction

The asymptotic theory of M estimates for regression models has been the
subject of many papers. We refer the readers to the excellent book by Maronna
et al. [7] for a comprehensive review.

In this note, we give formulas for the dominant terms of the bias and skewness
of M -estimates in linear and nonlinear regression models. These formulas could
have applications in many areas, including bias reduction, confidence regions
and Edgeworth expansions. For the least squares estimate the formula for bias
is just that given by Box [1] for the case of normal errors. The main results are
in Section 2 with proofs deferred to Section 6. The exact regularity conditions
are not given but some sufficient conditions are discussed. Section 3 gives some
applications. Section 4 considers the effect of a large number of parameters on
bias and skewness, and shows how to adapt the results when the ‘independent’
variables are random. Section 5 gives some simulation results for an L1-estimate.
Section 7 extends our results to the case, where the residuals may have different
distributions.

2. Main results

First consider the linear model: we observe

YN = α+ x
′

Nβ + eN , 1 ≤ N ≤ n, (2.1)

where xN and β are, respectively, known and unknown p-vectors, {eN} are
random residuals with an unknown distribution F , with density f (if it exists)
not necessarily symmetric, and α is a nuisance parameter centering the residuals
around zero in some way. We estimate the unknown parameters ϕ = (α, β) by

(α̂, β̂) minimising

λ =

n∑

N=1

ρ
(
YN − α− x

′

Nβ
)
, (2.2)

where ρ is some smooth function for which a minimum exists. By smooth we
mean that its derivatives exist except at a finite number of points.

It turns out as is well known that for (α̂, β̂) to be consistent, α must satisfy
the centering condition:

ρ1 = 0, G = distribution of α+ eN , (2.3)

where ρ1 =
∫
ρ(1)(ν − α)dG(ν) and ρ(r) denotes the rth derivative of ρ. In

general, set

ρrs··· =

∫
ρ(r)(e)ρ(s)(e) · · · dF (e),

where the number of indices on the left hand side is the same as the number of
terms in the integrand on the right hand side. For example, ρ2 =

∫
ρ(2)(e)dF (e),
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ρ11 =
∫
ρ(1)(e)ρ(1)(e)dF (e) and ρ123 =

∫
ρ(1)(e) ρ(2)(e) ρ(3)(e) dF (e). The

condition in (2.3) makes α identifiable.

We now show that the bias and skewness of β̂ is essentially proportional to
the ‘skewness’ (third central moments) of the {xN}. Set

x = n−1
n∑

N=1

xN , mij··· = n−1
n∑

N=1

(xN − x)i (xN − x)j · · · , (2.4)

where (·)i is the ith component, M = (mij)p× p and (mij) = M−1. Suppose

det(M) is bounded away from zero as n → ∞. (2.5)

Theorem 2.1. Suppose (2.1), (2.3), (2.5) hold and (α̂, β̂) minimises

λ =

n∑

N=1

ρ
(
YN − α− x

′

Nβ
)
.

Then for ρ, F and {xN} suitably regular

n1/2
(
β̂ − β

)
L
→ Np

(
0, c1M

−1
)

(2.6)

as n → ∞, where c1 = ρ11ρ
−2
2 . Furthermore, β̂ has bias, covariance, third

cumulants and skewness as:

E
(
β̂ − β

)
a
= n−1Ka +O

(
n−2

)

for 1 ≤ a ≤ p, where

Ka = c2

p∑

i,j,k=1

maimjkmijk, c2 = −ρ12ρ
−2
2 + ρ11ρ3ρ

−3
2 /2, (2.7)

and

cov
(
β̂a, β̂b

)
= n−2Kab +O

(
n−2

)
,

E
(
β̂ − β

)
a

(
β̂ − β

)
b
= n−2Kab +O

(
n−2

)
,

where Kab = c1m
ab for 1 ≤ a, b ≤ p. The third cumulants are given by

κ
(
β̂a, β̂b, β̂c

)
= n−2Kabc +O

(
n−3

)

and

E
(
β̂ − β

)
a

(
β̂ − β

)
b

(
β̂ − β

)
c
= n−2K

′

abc +O
(
n−3

)
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for 1 ≤ a, b, c ≤ p, where

Kabc = c3

p∑

i,j,k=1

maimbjmckmijk, (2.8)

c3 = ρ111ρ
−3
2 − 6ρ11ρ12ρ

−4
2 + 3ρ211ρ3ρ

−5
2

and

K
′

abc = Kabc +
3∑

abc

KabKc,

where
∑3

abc fabc = fabc + fbca + fcab, while a plain
∑

sums repeated pairs of
suffixes over their range (that is i, j, k over 1 · · · p in (2.7), (2.8)).

Note that the M on the right hand side of (2.6) should be interpreted as the
limit of the M defined by (2.4) as n → ∞.

Note that page 169 of Huber [5] essentially gave conditions for (2.6) to hold.

In particular, if p = 1 in Theorem 2.1 and µr(β̂) is the rth central moment of

β̂, then

m11 = n−1
n∑

1

(xN − x)
2
, m111 = n−1

n∑

1

(xN − x)
3
,

Eβ̂ = β + n−1K1 +O
(
n−2

)
, K1 = c2m

−2
11 m111,

µ2

(
β̂
)
= n−1K11 +O

(
n−2

)
, K11 = c1m

−1
11 ,

E
(
β̂ − β

)2

= n−1K11 +O
(
n−2

)
, K11 = c1m

−1
11 ,

µ3

(
β̂
)
= n−2K111 +O

(
n−3

)
, K111 = c3m

−3
11 m111,

E
(
β̂ − β

)3

= n−2K
′

111 +O
(
n−3

)
, K

′

111 = c
′

3m
−3
11 m111,

where c
′

3 = c3 + 3c1c2 = ρ111ρ
−3
2 − 9ρ11ρ12ρ

−4
2 + 9ρ211ρ3ρ

−5
2 /2.

A sufficient but not necessary condition on {xN} is that they be bounded.
This ensures that mij··· is bounded. For ρrs··· to be finite a sufficient but not
necessary condition is that ρ(r), ρ(s) · · · are bounded.

Corollary 2.1. For any ρ there exists F for which β̂ has arbitrarily large
(asymptotic) variance.

This is because sup c1 = ∞. We cannot have inf ρ(2) > 0 and ρ(1) bounded.
Note that models which assume (generally unrealistically) that f = Ḟ is

symmetric (for example, normal) force the bias and skewness down to ∼ n−2

and n−3 (since c2 = c3 = 0 assuming ρ is symmetric).
These formulas for bias and skewness have an immediate application to ex-

perimental design: if {xN} are chosen to have skewness zero (or ∼ n−1) then



C. Withers and S. Nadarajah/The bias and skewness of M-estimators in regression 5

the bias and skewness (third moments) of β̂ are reduced from ∼ n−1 and n−2 to
∼ n−2 and n−3, and so the nominal level of the one-sided confidence interval for
βa based on approximate normality has error reduced from ∼ n−1/2 to ∼ n−1.

Example 2.1. For the L1-estimate, ρ(e) =| e |. So, ρ1 = E sign (e1), α = me-
dian of G, ρ2 = 2f(0), ρ11 = 1, ρ3 = −2ḟ(0) and ρ111 = ρ12 = 0. (Here, we use
ρ(2)(e) = 2δ(e) for δ the Dirac function.) So, c1 = f(0)−2/4 (as is well known
for p = 0, i.e. for the variance of the sample median), c2 = −ḟ(0)f(0)−3/8,
c3 = −3ḟ(0)f(0)−5/16 and c

′

3 = −9ḟ(0)f(0)−5/32.

We now consider the general non-linear model

YN = α+ fN(β) + eN , 1 ≤ N ≤ n. (2.9)

That is we replace the regression functions {x
′

Nβ} by smooth functions {fN (β)}.
We shall see that the role of xN in Theorem 2.1 is now replaced by

xN = ∂fN(β)/∂β,

but there is an additional term in the bias and skewness proportional to the
covariances between the linear and quadratic components of the model, i.e.

mi,jk = n−1
n∑

N=1

(xN − x)i (xN − x)jk ,

where (xN )ij··· = ∂i∂j · · · fN (β) and ∂i = ∂/∂βi.
Define mij··· and mij as before. So, {mijk} now consists of the third moments

of the linear components of the model, {xN = ∂fN(β)/∂β}.

Theorem 2.2. Theorem 2.1 remains valid with {x
′

Nβ} replaced by suitably
smooth {fN(β)} in (2.1) and (2.2) and Ka, Kabc replaced by

Ka =
∑

i,j,k

maimjk (c2mijk − c1mi,jk/2) ,

and

Kabc =
∑

i,j,k

maimbjmck


c3mijk − c21

3∑

ijk

mi,jk


 .

Example 2.2. For the least squares estimate, ρ(e) = e2/2. So, Ee1 = 0, c1 =

µ2(e1), c2 = 0, c3 = c
′

3 = µ3(e1). In particular, β̂a has bias n−1Ka + O(n−2),
where Ka = −µ2(e1)

∑p
i,j,k=1 mai mjk mi,jk/2. For F normal this result is es-

sentially equation (2.24) in Box [1]; see also Clarke [2] for a less explicit formula.

For p = 1 the formula for the skewness of β̂ yields K
′

111 = m−3
11 (µ3(e1)m111 −

6µ2(e1)
2m11). Jennrich [6] proved asymptotic normality for this case.
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Example 2.3. For Huber’s estimate,

ρ(1)(e) =

{
e, | e |≤ 1,
sign(e), | e |> 1.

So,

ρ1 =

∫ 1

−1

edF (e) +

∫

1

dF −

∫ −1

dF, ρ2 =

∫ 1

−1

dF,

ρ11 =

∫ 1

−1

e2dF (e) +

∫

1

dF +

∫ −1

dF, ρ3 = f(−1)− f(1),

ρ12 =

∫ 1

−1

edF (e), ρ111 =

∫ 1

−1

e3dF (e) +

∫

1

dF −

∫ −1

dF.

For ρ3 use ρ(3)(e) = δ(e+ 1)− δ(e− 1), where δ is the Dirac function.

3. Applications

Note M , ci, Ka, Kabc and K
′

abc are easily estimated. Let F̂ be the empirical
distribution of the estimated residuals {eN(ϕ̂), 1 ≤ N ≤ n}, where ϕ = (α, β)

and eN(ϕ) = YN − α− fN(β). Let M̂ , ĉi, K̂a, . . . denote their values at (β̂, F̂ ).
Then for ρ suitably regular

Eĉi = ci +O
(
n−1

)
, (3.1)

so

β̂a − n−1K̂a estimates βa with bias ∼ n−2 (3.2)

and variance ∼ n−1, and the confidence region

{
β :

(
β − β̂

)′

M̂
(
β − β̂

)
≤ zĉ1/n

}
has level P

(
χ2
p ≤ z

)
+O

(
n−1

)
. (3.3)

Unlike the jackknife or bootstrap versions of β̂a which require ∼ n2 or more cal-
culations to reduce the bias to ∼ n−2 (and retain variance ∼ n−1) the estimate
in (3.2) only requires ∼ n calculations.

Estimates for which ρ(1) or ρ(2) discontinuous, such as the L1-estimate or

Huber’s, fail (3.1). Let f̃ and
˜̇
f be kernel estimates of f and ḟ with kernels of

order m so that in the usual notation, bias ∼ hm and variance ∼ h−1n−1. Let c̃1
and K̃a be the corresponding estimate of c1 and Ka for these examples. Suppose
h = n−e, where m−1 ≤ e ≤ 2. Then β̂a − n−1K̃a estimates βa with bias ∼ n−2

and variance ∼ n−1, as for (3.2).
For Huber’s estimate, (3.3) holds since (3.1) holds for i = 1. For the L1-

estimate (3.3) holds with ĉ1, O(n−1) replaced by c̃1, O(nδ−1) for kernel estimates
with h = n−δ, δ = (2m+ 1)−1.
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Our expressions for bias and skewness enable us to calculate the first term
of the Edgeworth expansion for the distribution of Yn = n1/2(β̂ − β) and its

Studentised version. In particular, if Zn = n1/2(β̂a − βa)K
−1/2
aa or n1/2(β̂a −

βa)K̂
−1/2
aa ,

∆a = Ka +K−1
aa Kaaa

(
z2 − 1

)
/6 and δn = n−1/2∆aK

−1/2
aa , (3.4)

and Φ, φ are the distribution and density of a unit normal random variable,
then P (Zn ≤ z) = Φ(z)− δnφ(z) +O(n−1). So, a one-sided confidence interval
for βa of level Φ(z) +O(n−1) is

βa ≥ β̂a − n−1/2K̂−1/2
aa z − n−1∆̂a. (3.5)

If we drop the last term in (3.5) we must replace O(n−1) by O(n−1/2); c.f.
Withers [10, 11]. If p = 1 (3.4) can be written

∆1 = m−2
11

{
m111

(
ρ111ρ

−1
11 ρ

−1
2

(
z2 − 1

)
/6 + c2z

2
)
−m1,11c1z

2/2
}
.

See Withers [10] for more details on this type of applications. Note Ka and Kabc

may also be used to obtain ‘small sample asymptotics’ for the density and tails
of β̂ by the method of Easton and Ronchetti [3].

4. Some miscellaneous results

Here, we consider two separate topics: the effect of p large, and the effect of
random independent variables. Suppose both n and p large. Let ∆ =max| mij |.

Now p∆ is bounded away from zero since M ∼ 1 by assumption and
∑

j

mij mjk = δik. Typically ∆ ∼ p−1 as p → ∞. From our formulas, Ka ∼ ∆2p2

and Kabc,K
′

abc ∼ ∆3p3. So, if ∆ ∼ p−1, β̂ has bias ∼ p/n and skewness (third

cumulants) ∼ n−2, c.f. Portnoy [8] who shows for the linear case that β̂ − β =
Op(p/n).

Set s.e. = standard error = (variance)1/2, r.b. = relative bias = bias/s.e. and

r.s. = relative skewness = skewness/s.e.3. Then for β̂, r.b. ∼ (p6∆3/n)1/2 ∼
(p3/n)1/2 if ∆ ∼ p−1 and r.s. ∼ (p6∆3/n)1/2 ∼ (p/n)1/2 if ∆ ∼ p−1. This
follows from the expression in Theorem 2.2 for Ka, Kab, Kabc. So, r.b. can
become infinite if p3/n → ∞. Huber [5] (see page 172) showed this for the linear
case under the stronger condition p3/2/n → ∞.

We now ask, what if {xN} in the linear model or {fN} in the nonlinear model
are random?

Theorem 4.1. Suppose (2.9) holds with fN (β) = f(β, UN), where {UN} is a
random sample independent of {eN}. Then Theorem 2.2 holds with the sample
values mij, mijk and mi,jk replaced by their population values κ((xN )i, (xN )j),
κ((xN )i, (xN )j , (xN )k) and κ((xN )i, (xN )jk).
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5. A numerical example

We noted that our formula for bias in the nonlinear model extends one of Box
[1] for the least squares estimate. He gives a numerical example for F normal
and n = 3 showing excellent agreement between exact bias (as estimated by
52,000 simulations) and our formula for Ka. Here, we do a similar comparison
for the linear model with p = 1, xN = x̃N−m−1, x̃i = i/n+ τ(i/n)2 for | i |≤ m,
where n = 2m + 1 and τ is assumed known. By changing τ this allows for
an arbitrary value of µ3x. We take ρ(e) =| e | and F (e) = G(1 + e), where
G(ν) = 1− ν−A/2 for ν ≥ 2−1/A and A > 0. This is chosen as an example of a
one-sided heavy-tailed distribution. (As noted in Example 2.1, α transformsG so

that F has median zero.) So, β̂ has bias n−1K1+O(n−2), whereK1 = c2µ
−2
2x µ3x,

µ2x = µX + τ2µ2X , µ3x = 3τµ2X + τ3µ3X , and µX , µrX is the mean and rth
central moment of {Xi = (i/n)2, | i |≤ m}. Since {Xi} has rth noncentral

moment
∫ 1/2

−1/2
t2rdt+O(n−1), (µX , µ2X , µ3X) = (1/12, 1/180, 1/3780)+O(n−1)

and so K1 = K∗
1 +O(n−1), where K∗

1 = 15(1+ τ2/15)−2(τ + τ3/63)c2/4, which

is zero at τ = 0 or ∞. Figures 1 and 2 plot the estimated biases of β̂, β̂−n−1K1

and β̂ − n−1K∗
1 (labeled 1, 2 and 3) against A and τ .

Estimates were obtained from two separate runs of 105 simulations each for
β = 1, α = 0 and n = 11, 21. Calculations were done using NAG routine
E02 GAF. This took nearly 48 hours of CPU time on a VAX 780. The large
number of simulations was required to obtain good accuracy, as indicated by
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the small variation between runs. This may be due to the non-uniqueness of the
L1-estimate, or more fundamentally the fact that ρ(e) =| e | has a discontinuous
derivative. The bias estimates n−1K1 and n−1K∗

1 are seen to be excellent, and
almost indistinguishable at the number of simulations.

6. Extensions to non-identical residual distributions

Here, we extend Theorems 2.1 and 2.2 to the case, where instead of being
i.i.d. F ,

{eN} are independent with distributions {FN} . (6.1)

We assume that each FN is centered so that Eρ(1)(eN ) = 0. Set ρNrs... =
Eρ(r)(eN )ρ(s)(eN ) . . . and define the linear operator ̺rs... by

̺rs...gi1i2··· = n−1
n∑

N=1

ρNrs..., gN.i1gM.i . . . ,

ρrs...gi1i2··· ,j1j2··· = n−1
n∑

N=1

ρNrs...gN.i1gN.i2 · · · gN.j1j2....

Set aij = ρ2gij and (aij) = (aij)
−1.

Theorem 6.1. Under the condition of Theorem 2.2 with the condition that
{eN} are i.i.d. weakened to (6.1),

n1/2
(
β̂ − β

)
L
→ Np(0, V )

as n → ∞, where

Vij = aik (̺11gkl) a
lj . (6.2)

The other results of Theorem 2.2 hold with Ka, Kabc replaced by

Ka = aai
{
−ajk̺12 + Vjk̺3

}
gijk + aai

{(
ajk̺11 − Vjk̺2

)
gj,ki − Vjk̺2gi,jk/2

}
,

and

Kabc = aai
{
abiack (̺111 − Vbj̺12)− 3VbjVck̺3/2

}
gijk

+

3∑

abc



aajVbaa

ci̺11gi,jk − aaiVbjVck̺2

3∑

ijk

gi,jk/2



 . (6.3)

7. Proofs

Proof of Theorem 2.2. Set ϕ′ = (α′, β′) and gN = gN(ϕ) = α + fN (β) and let
subscripts following a dot denote partial derivatives: h.i1···ir = ∂1 · · · ∂rh(ϕ) for
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∂i = ∂/∂ϕi, 1 ≤ i ≤ m = p+ 1. The idea of the proof is to obtain a stochastic
expansion for δ = ϕ̂− ϕ.

Any smooth function h(ϕ) has a Taylor series

h (ϕ̂) ≈

∞∑

r=0

∑

i1,...,ir

hi1···ir δi1 · · · δir/r!.

So, ϕ̂ satisfies for 1 ≤ i0 ≤ m

0 = n−1∂λ (ϕ̂) /∂ϕ̂i0 ≈
∞∑

r=0

∑

i0,...,ir

Ri0···irδi1 · · · δir , (7.1)

where Ri0···ir = n−1
∑n

N=1 RN.i0···ir/r! and RN (ϕ) = ρ(eN (ϕ)).
For Xn a finite subset of {Ri0···ir}, Xn = Op(1) and n1/2(Xn − EXn) is

asymptotically normal and so Op(1). See Hajek and Sidak [4] for conditions. By
the chain rule

RN.i = −ρ(1) (eN ) gN.i, RN.ij = ρ(2) (eN ) gN.igN.j − ρ(1) (eN) gN.ij

and

RN.ijk = −ρ(3) (eN ) gN.igN.jgN.k + ρ(2) (eN )

3∑

ijk

gN.ijgN.k − ρ(1) (eN) gN.ijk.

Set aij = ERij = ρ2gij , where gij··· = n−1
∑n

N=1 gN.igN.j · · · and gkl··· ,ij··· =
n−1

∑n
N=1 gN.k gN.l · · · gN.ij···. Then ERi = −ρ1gi = 0. So, Ri and Uij =

Rij − aij are Op(n
−1/2).

Multiplying (7.1) by ahi0 , where a = (aij) is m×m and (aij) = a−1, gives

δh ≈ −

∞∑

r=0

∑

i1,...,ir

Shi1···irδi1 · · · δir , 1 ≤ h ≤ m, (7.2)

where Shi1···ir =
∑

i0
ahi0Ri0···ir for r 6= 1 and

∑
i0
ahi0Ui0i1 for r = 1. So,

δ = Op(n
−1/2). Iterating (7.2) gives

δh = fhq

(
θ̂q

)
+Op

(
n−q/2

)

for q ≥ 2, where

θ̂q = {Shi1···ir , 0 ≤ r < q} = n−1
n∑

N=1

hNq (eN ) (7.3)

say, and

fh2

(
θ̂2

)
= −Sh,

fh3

(
θ̂3

)
= −Sh +

∑

i

ShiSi −
∑

i,j

(EShij)SiSj , (7.4)
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and so on. From (7.3) with q = 2 we obtain

n1/2 (ϕ̂− ϕ)
L
→ Nm(0, V )

as n → ∞, where V = c1g
−1 and g = (gij). Since θ̂ is a weighted mean of i.i.d.

random variables, by Withers [12]

Eϕ̂− ϕ ≈

∞∑

n=1

n−rCr ,

where Cr = O(1), C1 has hth component C1h =
∑

i,j K
ijfh3.ij(θ)/2, θ = Eθ̂

and Ki1···ir = nr−1κi1···ir (θ̂) = n−1
∑n

N=1 κ
i1···ir (hN3(eN )).

By (7.4) for x, y elements of θ̂, setting ∂x = ∂/∂x and
∑2

xy hxy = hxy + hyx,

∂xfh3

(
θ̂
)∣∣∣

θ
= −I (x = Sh)

and

∂x∂yfh3

(
θ̂
)∣∣∣

θ
=

2∑

xy

{∑

i

I (x = Si, y = Shi)

−
∑

i,j

I (x = Si, y = Sj)EShij

}
. (7.5)

So, C1h =
∑

i nκ(Si, Shi)−
∑

j,k nκ(Sj , Sk)EShjk.
Now

nκ (Si, Sj) = Vij ,

nκ (Sl, Shk) =
∑

i,j

ailahj {−ρ12gijk + ρ11gi,jk} ,

EShjk =
∑

i

ahi



−ρ3gijk + ρ2

3∑

i,j,k

gi,jk



 /2,

where gi,jk = n−1
∑n

N=1 gN.igN.jk. So,

C1h =
∑

i,j,k

ghigjk {c2gijk − c1gi,jk/2} .

By the top line on page 67 of Withers [9],

κ (ϕ̂a, ϕ̂b, ϕ̂c) = n−2Kabc +O
(
n−3

)
,

where

Kabc = −n2κ (Sa, Sb, Sc) + n2
3∑

abc

[
2∑

ab

∑

k

κ (Sak, Sb) κ (Sk, Sc)

−

2∑

ab

∑

j,k

κ (Sj , Sb)κ (Sk, Sc)ESajk

]
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by (7.5). So,

Kabc =
∑

i,j,k

gaigbjgck



c3gijk − c21

3∑

ijk

gi,jk



 .

Also E(ϕ̂ − ϕ)a(ϕ̂ − ϕ)b(ϕ̂ − ϕ)c = n−2K
′

abc + O(n−3), where K
′

abc = Kabc +∑3
abc VabC1c. Apply the Cramer-Wold device to the expression on page 580 of

Withers [11].
Finally, replace (ϕ, fN ) by (ϕ0, foN), where foN = fN − f , ϕ0 = (αn, β) and

αn = α + f(β); this is valid since α + fN(β) = αn + foN(β). The result of the

theorem holds since
{
g =

(
1 0

′

0 M

)}
for this parameterisation.

Note 7.1. Note that the method of proof gives expansion for cumulants of ϕ̂
as power series in n−1, and allows us to relax the i.i.d. conditions on {eN}.
Further details on the proofs are in Withers and Nadarajah [13] which treats the
case of multivariate {YN}.

Note 7.2. The proof of Theorem 4.1 is the same except that gij··· and gi,jk are
replaced by their expectations.

Proof of Theorem 6.1. This follows the proof above. Note Ri0...ir and Shi1...ir

are defined as above. Note Sl = aliRi and Shk = ahjRjk, so

nκ (Sl, Shk) = aliahjnκ (Ri, Rjk)

= aliahjn−1
n∑

N=1

κ
(
− ρ(1) (eN ) gN.i, ρ

(2) (eN ) gN.jgN.k

−ρ(1) (eN) gN.jk

)

= aliahjn−1
n∑

N=1

(−gN.igN.jgN.kρN12 + gN.igN.jkρN11)

= aliahj (−̺12gijk + ̺11gi,jk) .

Similarly, ERijk = −̺3gijk + ̺2
∑3

ijk gi,jk, so

C1h = ajkahi (−̺12gijk + ̺11gj,ik)− Vjka
hi


̺3gijk −

3∑

ijk

̺2gi,jk


 /2.

Also aij = ̺2gij and

Vij = n cov (Si, Sj) = aikajln cov (Rk, Rl) = aikajl̺11gkl.

Now write the last term for C1h as

(
ahi̺2gi,jkVjk + ahi̺2gj,kiVjk + ̺2gk,ija

hiVjk

)
/2.
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So, the second plus fourth terms simplify to

ahi
{(

ajk̺11 − Vjk̺2
)
gj,ki − Vjk̺2gi,jk/2

}
,

while the first plus third terms add to ahi{ajk(−̺12+Vjka
jk̺3)gijk since Vjk =

ajl(̺11glm)amk. This proves (6.2).
Put fh.h = ∂fh/∂Sh =−1, fh.i,hi = ∂2fh/∂Si∂Shi = 1 and fh.i,j = ∂2fh/∂Si∂Sj

= −EShij . So,

fa.ikfb.jfc.eκ
ijκkl = fa.ik nκ

(
θ̂i, Sb

)
nκ

(
θ̂k, Sc

)

= nκ (Si, Sb)nκ (Sai, Sc)− (ESajk)nκ (Sj , Sb)nκ (Sk, Sc)

= Vibnκ (Sai, Sc)− (ESajk)VjbVkc,

and

n2κ (Sa, Sb, Sc) = aaiabjackn2κ (Ri, Rj , Rk) = −aaiabjack̺111gijk.

So,

K
abc

= aaiabjack̺111gijk +

3∑

abc

{
Vkba

ciaji (−̺12gijk + ̺11gi,jk)

−VjbVkca
ai


−̺3gijk + ̺2

3∑

ijk

gi,jk


 /2

}
.

Of these five terms, the first plus second simplifies to aaiack(abj)̺111−3Vbj̺12)gijk
and the fourth simplifies to 3aaiVbjVck̺3gijk/2, so the first plus second plus
fourth gives aai{abjack̺111 − 3Vbja

ck̺12 + 3VbjVck}gijk. The third plus fifth
terms give the last two of the three terms in (6.3).
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