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Abstract: A reduced-bias nonparametric estimator of the cumulative dis-
tribution function (CDF) and the survival function is proposedusing infinite-
order kernels. Fourier transform theory on generalized functions is utilized
to obtain the improved bias estimates. The new estimators are analyzed in
terms of their relative deficiency to the empirical distribution function and
Kaplan-Meier estimator, and even improvements in terms of asymptotic
relative efficiency (ARE) are present under specified assumptions on the
data. The deficiency analysis introduces a deficiency rate which provides a
continuum between the classical deficiency analysis and an efficiency anal-
ysis. Additionally, an automatic bandwidth selection algorithm, specially
tailored to the infinite-order kernels, is incorporated into the estimators. In
small sample sizes these estimators can significantly improve the estimation
of the CDF and survival function as is illustrated through the deficiency
analysis and computer simulations.
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1. Introduction

We consider the problem of estimating the CDF in contexts of independently
and identically distributed (iid) data and randomly right-censored data. In-
deed, the seminal paper of Kaplan and Meier [12] solves this problem with the
product-limit estimator—the nonparametric maximum likelihood estimator of
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the CDF—but there is still room for improvement, especially when the sample
size is small.

The most obvious drawback of the Kaplan-Meier estimator, like the empir-
ical distribution function (EDF), is its lack of smoothness. Kernel smoothing
easily remedies this problem, but also introduces two new issues of choosing the
best kernel and bandwidth. Kernel smoothing also improves the estimator mean
square error (MSE) performance by decreasing its variance while introducing a
slight bias resulting in an overall improvement of the MSE. The MSE improve-
ment, however, is typically only a second-order improvement, since the original
estimator’s first-order MSE convergence rate already achieves the best-possible√

n-rate. When the asymptotic relative efficiency (ARE) between the Kaplan-
Meier estimator and its smoothed counterpart is one, as is typically the case, a
distinction in performance can be measured by considering the asymptotic rel-
ative deficiency, or just simply the deficiency between the two estimators. The
general notion of deficiency and subsequent calculations with the proposed esti-
mators is provided in Section 3 which also illustrates that an actual increase in
efficiency can be achieved with the new estimators under certain (rather strong)
assumptions of the distribution function.

Higher-order MSE improvement is influenced by the kernel order—the higher
the kernel order, the greater the improvement. Therefore the best kernel-based
estimators, the ones with smallest asymptotic MSE, are the estimators that use
infinite-order kernels. Current methods traditionally invoke second-order kernels
[29] and more recent approaches include using a Bézier curve [13] and a hybrid
kernel estimator [15], but infinite-order kernel methods allow for the greatest
improvement in bias rates without affecting the rates of the variance. The main
argument against the use of large-order kernels in density estimation is the
concern that the estimator may be negative on some intervals when it is known
that the true probability density is always nonnegative. This argument, however,
is moot in the density estimation context (so also in the CDF estimation context)
since the estimator can easily be truncated to zero when it goes negative then
renormalized to have a total area of one without affecting the MSE convergence
rate. General construction of the infinite-order kernel estimators are introduced
in the following section and a compatible bandwidth selection algorithm that
adapts to the infinite-order kernels is described in Section 4.

Another pitfall of all kernel estimators of the density is the lack of consis-
tency at boundary points when the support of the density lies in an interval or
half-interval. Simple reflection [31] solves this problem in the density estimation
context and an analogous fix also exists for CDF estimators. Boundary correc-
tion and standardization methods specific to kernel-smoothed CDF estimators
are discussed in Section 5.

Simulations with iid and censored data illustrate the effectiveness of the
infinite-order kernel estimators coupled with the automatic bandwidth selection
algorithm of Section 6. Uniform improvement in MSE over existing estimators
is observed in the simulations. Since estimation of the CDF is so fundamental
in standard statical analysis, there are many applications of the new estima-
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tors beyond just estimating the underlying CDF. Some of these applications are
included in the last section on Discussions and Conclusions.

2. Estimation with flat-top kernels

The analysis will be confined to independently and identically distributed (iid)
data, but extensions to randomly right censored with possible left truncation
can be more generally derived; cf. [3, 30].

Let X1, . . . , Xn be independent1 and identically distributed random vectors
in R with absolutely continuous distribution function F and corresponding prob-
ability density function f . Estimation of f with infinite-order kernels was con-
sidered in [24] and [3]; here we consider the integration of those estimators in
the construction of the CDF estimator.

The traditional estimator of the CDF is the empirical distribution function,
or EDF, which is given by

F̂ (t) =
1

n

n∑

j=1

I(Xi ≤ t)

where I(·) represents the indicator function. The kernel estimator of the prob-
ability density, f , is then given by

f̂h(x) =

∫ ∞

−∞

1

h
K

(
t − Xj

h

)

dF̂ (t) =
1

nh

n∑

j=1

K

(
x − Xj

h

)

.

where K is a kernel that integrates to one (but not necessarily nonnegative!) and
h is the bandwidth parameter. Specific regularity conditions on K are described
in [30, 32]. Here, the kernels K of interest will be Fourier transforms of a “flat-
top function” (described below) where all necessary regularity conditions are
satisfied [24].

To insure consistency of f̂h, h should satisfy the condition h → 0 as n → ∞
but with nh → ∞. Further conditions are imposed on the asymptotics of h in
Corollary 1 to achieve minimal asymptotic mean square error.

The smoothed estimation of the CDF, F̂h, is constructed by integrating f̂h.
That is,

F̂h(t) =

∫ t

−∞

f̂h(x) dx =
1

n

n∑

j=1

K̄

(
t − Xj

h

)

(1)

where K̄(t) =
∫ t

−∞
K(x) dx.

The estimator F̂h(t) is equivalent to the EDF in terms of first-order asymp-
totic performance, but improvements are achieved in the higher-order terms.
The estimator F̂h(t) effectively smooths the EDF, decreasing its variance at the

1The independent assumption can be relaxed under certain stationarity and mixing con-
ditions; see [18, 9].



A. Berg and D. Politis/Reduced-bias CDF estimation 1439

cost of introducing a slight bias. The variance improvement is uniform across
different kernels, affecting only the second-order constant and not the second-
order rate (refer to equation (2) below); however the additional bias that gets
introduced in the smoothing can be minimized significantly by using kernels of
large order with infinite-order kernels providing the most benefit. The variance
of F̂h(t), as derived in [17], is given by

var
[

F̂h(t)
]

=
F (t)[1 − F (t)]

n
− 2f(t)

(∫

uK̄(u)K(u) du

)
h

n
+ o

(
h

n

)

. (2)

The bandwidth parameter h only enters the variance expression through the
second-order term which is negative. So the larger h is, the smaller the variance
of F̂h(t) becomes. However, we will see below in Theorem 1 that the smaller h
is, the smaller the bias of F̂h(t) becomes. Therefore there is an optimal h that
strikes a compromise between the bias and variance terms which is presented in
Corollary 1 below.

We now construct a family of infinite-order kernels, following [24], that are
derived from “flat-top functions”. We start with a continuous, real-valued func-
tion κ given by

κ(s) =

{

1, |s| ≤ c

g(|s|), otherwise
(3)

where g is any continuous, square-integrable function that is bounded in absolute
value by one and satisfies g(|c|) = 1. The region |s| < c is referred to as the “flat-
top neighborhood”, but in some cases we may wish to relax the requirement to
allow g(s) ≈ 1 when s is close to c. This “effective flat-top neighborhood” is
useful when using an infinitely smooth function κ(s) as described in [22] and
Section 6 below. In general, the choice of c and function g(s) has little impact
on the performance of the infinite-order kernel in comparison to utilizing the
flat-top neighborhood. However, one would want to avoid the ill-performing
discontinuous rectangular kernel due to its Fourier transform (the Sinc function)
having large and slowly-decaying side lobes. The trapezoidal function [26] and a
class of infinitely-differentiable or super-smooth flat-tops [19] have been shown
to be effective in finite sample simulations. The Fourier transform of κ then
produces the infinite-order kernel, K, of interest. Specifically,

K(x) =
1

2π

∫ ∞

−∞

κ(s)e−isx ds. (4)

Equation (4) presents an infinite-order kernel that, like all kernels of order
greater than two, takes on negative values, and corrections due to negativ-
ity of the kernel are discussed in Section 5 on boundary correction and stan-
dardization. Such infinite-order kernels do however retain the property that
∫∞

−∞
K(x) dx = 1 since the integral is equivalent to κ(0) via the inverse Fourier

transform. Infinite-order kernels have been been utilized in a number of appli-
cations including density estimation [5, 25, 28], censored density estimation [3],
time series analysis [26, 27], and nonparametric regression [19].
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The MSE of F̂h(t) with an infinite-order kernel K is now computed under
various assumptions on the smoothness of the underlying density. Let φ(t) be
the characteristic function corresponding to f(x), i.e.

φ(s) =

∫ ∞

−∞

f(x)eisx dx.

The following three assumptions quantifies the degree of smoothness of the
density f(x) by the rate of decay of its characteristic function.

Assumption A(p): There is a p > 0 such that
∫∞

−∞
|t|p |φ(t)| < ∞.

Assumption B: There are positive constants d and D such that |φ(t)| ≤
De−d|t|.

Assumption C: There is a positive constant b such that φ(t) = 0 when |t| ≥ b.

Theorem 1. Let F̂h(t) be a kernel smoothed estimator of the CDF with an
infinite-order kernel derived from a flat-top function.

(i) Suppose assumption A(p) holds, then

sup
t∈R

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ = o

(
hp+1

)
.

(ii) Suppose assumption B holds, then

sup
t∈R

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ = O

(
he−d/h

)
= o
(
e−d/h

)
.

(iii) Suppose assumption C holds. When h ≤ 1/b,

sup
t∈R

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ = 0.

To optimize the amount of smoothing under the MSE criterion—i.e., to op-
timize the bandwidth h—we choose the bandwidth that allows the squared bias
rates to be comparable to the second-order variance rates. The optimal band-
widths are provided in the following corollary.

Corollary 1. Let F̂h(t) be as in Theorem 1.

(i) Suppose assumption A(p) holds. Letting h ∼ an−β where a is any pos-
itive constant and β = (2p + 1)−1 optimizes the tradeoff between the bias
and variance of F̂h(t) and gives

sup
t∈R

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ = o

(

n− p+1
2p+1

)

.

(ii) Suppose assumption B holds. Letting h ∼ a/ logn where a < 2d is a
constant optimizes the tradeoff between the bias and variance of F̂h(t) and
gives

sup
t∈R

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ = o

(
1√

n log n

)

.
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(iii) Suppose assumption C holds. Letting h ≤ 1/b be fixed guarantees zero
bias and the best possible variance rate.

Estimation of the survival function with randomly right censored data can
be similarly improved with the smoothing of the Kaplan-Meier estimator with
infinite-order kernels. Density estimation of censored data with infinite-order
kernels is analyzed in [3], and an estimator of the survival function can be sim-
ilarly derived from this density estimator through integration as in (1). The
same conclusions as Theorem 1 and Corollary 1 will also hold for the smoothed
version of the Kaplan-Meier estimator with infinite-order kernels. This is de-
tailed in the following theorem where the proof has been omitted as it follows
naturally from the iid case above.

Define Ŝh(t) to be a smoothed estimator of the survival function, S(t) =
1 − F (t), derived from smoothing the Kaplan-Meier estimator with an infinite-
order kernel of the form given in (4); i.e.,

Ŝh(t) =
∑

sjK̄

(
t − Xj

h

)

(5)

where sj is the height of the jump of the Kaplan-Meier estimator at Xj (cf. [3]
for more details). The following theorem is consistent with the results described
in [16].

Theorem 2. Let Ŝh(t) be a kernel smoothed estimator of the survival function
as in (5) above. Suppose assumption A(p) holds, then

sup
t∈R

∣
∣
∣bias

(

Ŝh(t)
)∣
∣
∣ = o

(
hp+1

)
= o

(

n− p+1
2p+1

)

when h ∼ an−β where a is any positive constant and β = (2p + 1)−1.

The analysis under assumptions B and C of the above theorem are consider-
ably more complex and have been omitted.

3. Deficiency

The notion of deficiency was introduced in the article “Deficiency” by Hodges
and Lehmann [11] wherein several deficiency calculations are provided. Many
articles followed suit using the deficiency concept to compare kernel-smoothed
estimators, but many of the approaches used in calculating the deficiency strayed
from the original and simple techniques employed by Hodges and Lehmann; c.f.
[1, 6, 7, 8, 29, 33]. The simplicity of the original deficiency computations is
maintained in the proof of Theorem 3 below.

The deficiency concept is described as follows. Given an estimator, Sm, based
on a sample of size m and a more efficient estimator, Tn, based on a sample of
size n with equivalent performance as Sm. The difference between the sample
sizes, d = m − n, defines the relative deficiency between the two estimators.
The original paper of Hodges and Lehmann mostly dealt with situations where
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d approaches a finite limit as n goes to infinity in which case the two estimators
have an asymptotic relative efficiency (ARE) of one. However, it is still possible
for two estimators to have an ARE of one yet with a deficiency that approaches
infinity. Therefore calculation of the rate in which d approaches infinity gives a
generalization of the original deficiency concept.

In the following theorem, a formula is derived for computing the generalized
deficiency between two estimators from their MSE performance which explicitly
computes the rate at which d approaches infinity.

Theorem 3. Suppose the mean squared errors of two estimators Sn and Tn are
given as

MSE(Sn) =
c

nr
+

a

nr+δ
+ o

(
1

nr+δ

)

MSE(Tn) =
c

nr
+

b

nr+δ
+ o

(
1

nr+δ

)

Define m = m(n) to be the sample size for which MSE(Tm) equals (up to a
second order term) MSE(Sn). Then the asymptotic deficiency of Tn relative to
Sn is d = m− n and satisfies

d

n1−δ
−→ b − a

cr

In the next theorem, the deficiency of two estimators is calculated when the
second-order term in the MSE expansion decreases at the rate nr log n which is
very close to the leading term of nr. Therefore the deficient index, d, will ap-
proach infinity at a faster rate indicating a larger discrepancy in the performance
of the two estimators.

Theorem 4. Suppose the mean squared errors of two estimators Sn and Tn are
given as

MSE(Sn) =
c

nr
+

a

nr logn
+ o

(
1

nr logn

)

MSE(Tn) =
c

nr
+

b

nr logn
+ o

(
1

nr logn

)

Define m = m(n) to be the sample size for which MSE(Tm) equals (up to a
second order term) MSE(Sn). Then the asymptotic expected deficiency of Tn

relative to Sn is d = m− n and satisfies

d

(
logn

n

)

−→ b − a

cr

These formulas, combined with the results of Corollary 1 and equation (2),
are used to derive the deficiency of infinite-order kernel estimators to the un-
smoothed EDF under the assumptions A(p), B, and C. In the case of assumption
C, the improvement in MSE performance is first-order, and therefore improve-
ment in terms of efficiency, or ARE, is present.
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Corollary 2. Let F̂h(t) be as in Theorem 1 and F̂ (t) be the empirical distribu-
tion function estimator. Assume F (t) (1 − F (t)) 6= 0.

(i) Suppose assumption A(p) holds. When h ∼ an−β where a > 0 is con-
stant and β = (2p + 1)−1, the deficiency of F̂h(t) relative to F̂ (t) is

(

2af(t)
(∫

uK̄(u)K(u) du
)

F (t) (1 − F (t))

)

n
2p

2p+1

(ii) Suppose assumption B holds. When h ∼ a/ logn where a < 2d is a
constant, the deficiency of F̂h(t) relative to F̂ (t) is

(

2af(t)
(∫

uK̄(u)K(u) du
)

F (t) (1 − F (t))

)

n

log n

(iii) Suppose assumption C holds. When h ≤ 1/b is constant, the deficiency
of F̂h(t) relative to F̂ (t) is

(

2f(t)
(∫

uK̄(u)K(u) du
)

F (t) (1 − F (t))

)

n.

These deficiency rates indicate, asymptotically, the effective increase in sam-
ple size when smoothing F̂ (t) with infinite-order kernels. In particular, under
the very strong assumption C that requires the characteristic function of the
underlying distribution to be compactly supported, there is a deficiency rate of
order n indicating an improvement in actual efficiency. This is because utilizing
infinite-order kernels can retain retain zero bias under such strong assumptions
of the underlying density [28, 3] while the variance of the estimate improves. Of
course, such an assumption of the underlying density is unreasonably strong,
but near near-efficiency improvements, or a deficiency rate of n/ logn, is seen
under assumption B that only requires the characteristic function to decay at
an exponential rate. A number of parametric densities satisfy this assumption
indicating a strong advantage in utilizing infinite-order kernels when smoothing
the empirical distribution function.

4. Bandwidth selection

We now present a simple bandwidth selection algorithm that requires very min-
imal computation and adapts to the specialized family of infinite-order kernels
that is utilized in this paper. The methods suggested in [21] for iid data and in
[3] for censored data present an algorithm that automatically selects the opti-
mal bandwidth in density estimation. Remarkably, these same algorithms can
also be used to select the best bandwidth in CDF estimation. Although the bias
in estimating the CDF is smaller than the bias of the density estimators, the
variance of the CDF estimator is also smaller than the variance of the density
estimator. This algorithm automatically adapts to the appropriate assumption
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A(p), B, or C and generates a bandwidth that is consistent for the ideal band-
width given by Corollary 1. The algorithm is also computationally light as well
as being simple to describe, and we now proceed to describe it.

Let φ̂ be the natural estimate of the characteristic function given by

φ̂(t) =

∫ ∞

−∞

eitx dF̂ (x) =
1

n

n∑

j=1

eitXj .

In the context of censored data, F̂ (x) in the above expression is replaced with the
Kaplan-Meier estimator of the CDF. The main key to the algorithm is finding
when φ(t) ≈ 0; more specifically, determining the smallest value t∗ such that
φ(t) ≈ 0 for all t ∈ (t∗, t∗ +ε) for some pre-specified ε. Then the estimate of the

bandwidth is given by ĥ = 1/t∗. The formal algorithm is presented below.

Bandwidth Selection Algorithm

Let C > 0 be a fixed constant, and εn be a nondecreasing sequence of positive
real numbers tending to infinity such that εn = o(logn). Let t∗ be the smallest
number such that

|φ̂(t)| < C

√

log10 n

n
for all t ∈ (t∗, t∗ + εn) (6)

Then let ĥ = c/t∗ where c is the “flat-top radius” depicted in equation (3).

The positive constant C is irrelevant in the asymptotic theory, but is relevant
for finite-sample calculations. The central idea in this algorithm is determining
the smallest t such that φ(t) ≈ 0. In most cases this can be visually seen without
explicitly computing the threshold in (6).

5. Boundary correction and standardization

Vanilla versions of the kernel estimators for density estimation break down when
the support of the density is restricted to a subset of the real line. For instance,
in estimating the probability density function of data taken from an exponential
distribution, most kernel estimators give substantial area to negative values even
when it is known that the support of the density is nonnegative. It is not too
difficult to see that simple kernel estimators of the density will not be consistent
at the boundary of the density’s support; cf. [31]. However, a simple remedy by
reflection works well when the support is not too complex. For instance when
the support of the density is [a,∞), then the estimator

ˆ̂
fh(x) =

(

f̂h(x) + f̂h(2a − x)
)

1[a,∞)(x) (7)

is consistent at the boundary point a ([31]).
This problem, therefore, also carries over to the situation of estimating the

CDF. Indeed the EDF and Kaplan-Meier estimators do not suffer from this
drawback, but the kernel smoothed versions do. By integrating (7), we deduce
a boundary-corrected version of the kernel-smoothed CDF estimator with the
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same formulation as (7). For t ∈ [a,∞),

ˆ̂
Fh(t) =

∫ t

−∞

ˆ̂
fh(x) dx

=

∫ t

a

(

f̂h(x) + f̂h(2a − x)
)

dx

= F̂h(t) − F̂h(a) +

∫ a

2a−t

f̂h(x) dx

= F̂h(t) − F̂h(a) + F̂h(a) − F̂h(2a − t)

= F̂h(t) − F̂h(2a − t)

and F̂h(t) = 0 when t < a. In the special case a = 0, we have the simple formula

ˆ̂
Fh(t) =

(

F̂h(t) − F̂h(−t)
)

1[0,∞)(t)

There is an additional issue that only affects higher-order kernel estimators
and not second-order estimators. Specifically, higher-order kernel estimators of
the density are not necessarily nonnegative, which means higher-order kernels
estimators of the CDF are not necessarily contained within the range [0, 1] or
forced to be nondecreasing. The natural remedy for these density estimators is
to truncate negative estimates to zero and then renormalize the area to one.
When this is performed, the corresponding CDF estimator will be a valid CDF.
However this approach causes the kernel estimator of the CDF to lose its sim-
plistic representation that is given in the right-hand side of (1), so instead, a
simple alternative standardization technique is suggested. To insure the esti-
mator is nondecreasing, F̂h(t) is replaced by sup(−∞,t) F̂h(t), and to insure the

range is between 0 and 1, max(F̂h(t), 1) and min(F̂h(t), 0) are invoked.
Replacing F̂h(t) with sup(−∞,t) F̂h(t) is equivalent to replacing the estimator

of the density f̂h(x) with the truncated version f̂+
h (x) = max(f̂h(x), 0) and then

integrating the truncated density estimator from −∞ to t. Since f̂+
h (x) has bet-

ter MSE performance than the nontruncated counterpart f̂h(x) [23], it follows
that the nondecreasing estimator sup(−∞,t) F̂h(t) has better MSE performance

than the original F̂h(t). Similarly, the MSE of the range restricted estimator
produced from max(F̂h(t), 1) and min(F̂h(t), 0) will also be improved since it is
known the CDF has a range bounded in [0,1]. This is formalized in the following
corollary.

Corollary 3. Let F̂h(t) be as in Theorem 1. A modified estimator is defined as

F̃h(t) = min

(

max

(

sup
(−∞,t]

F̂h(t), 0

)

, 1

)

.

Then it follows that

MSE
(

F̃h(t)
)

≤ MSE
(

F̂h(t)
)

and F̃h(t) satisfies the necessary properties of a CDF.
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Fig 1. Infinitely differentiable flat-top function (8) with parameters b = 1 and c = .05.

6. Simulations

We evaluate the performance of the proposed infinite-order kernel estimators
with the more traditional second-order kernel estimators and the EDF/Kaplan-
Meier estimator. Boundary correction, as described in Section 5, is applied to
the estimators when appropriate. As any choice of function g(x) in (3) will insure
the ideal asymptotics of an infinite-order kernel, the selection of infinite-order
kernels is quite large. An easy choice for the function g(x) is the straight line
truncated at zero, i.e. g(x) = (1−x

1−c
)+, x ∈ [c, 1], yielding a trapezoidal shape for

κ. The simulations below invoke this trapezoidal function, κ, with parameter
c = .75.

By making the flat-top function κ(x) infinitely smooth, the resulting kernel
via the Fourier transform will have tails that decay exponentially. Therefore
in situations in estimating the density with boundary conditions, the kernel
derived from the infinitely smooth flat-top function is more close to having the
desirable quality of being compactly supported than the kernel which is derived
from the trapezoidal function. One example of an infinitely smooth κ(x) is [19]

κ(s) =







1 if |s| < c

exp

(
−b exp

(
−b

(|x|−c)2

)

(|x|−1)2

)

if c < |x| < 1

0 if |x| ≥ 1

(8)

which resembles and infinitely smooth trapezoid and is controlled by the two
parameters b and c. In the simulations, we also used this function κ for compar-
isons with the parameters b = 1 and c = .05. A plot of this κ is given below.

This function is perfectly flat only from 0 to .05, but it is “effectively” flat
from 0 to about .5. Therefore the effective flat-top radius is taken to be .5, and
it is this value that is used in the bandwidth selection algorithm described above
in Section 4.

A slightly modified bandwidth selection algorithm was invoked that retains
the function of the bandwidth algorithm described above. The key in the band-
width algorithm is to find the smallest value of t∗ so that φ̂(t∗) ≈ 0. To automate
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Table 1

Comparison of the EDF with a Gaussian kernel estimator and two infinite-order kernel
estimators (trapezoid and smoothed trapezoid) on iid normal data∗

t = −1.5 t = 0 t = 1.5
n 15 30 15 30 15 30

MSEEDF 4.30 2.09 16.29 8.73 4.42 2.14
MSEGauss 3.50 1.75 13.02 7.20 3.67 1.82

MSEtrap 2.85 1.48 11.72 6.49 2.93 1.63

MSEsmooth 2.95 1.55 12.01 6.71 3.06 1.69

*MSE values are blown up by 103 for easier comparison.

Table 2

Comparison of the EDF with a Gaussian kernel estimator and two infinite-order kernel
estimators (trapezoid and smoothed trapezoid) on censored Weibull data∗

t = .75 t = 1.25 t = 1.75
n 15 30 15 30 15 30

MSEEDF 6.47 3.51 17.0 7.75 12.0 5.62
MSEGauss 5.45 2.84 10.1 5.27 8.56 4.11

MSEtrap 5.83 2.70 8.68 4.28 9.32 4.06

MSEsmooth 5.04 2.36 9.81 4.85 8.84 5.62

*MSE values are blown up by 103 for easier comparison.

this procedure, the value t∗ was chosen to be the first value for which φ̂(t∗) starts
to level off.

A Gaussian kernel is used in the second-order kernel estimator, and cross
validation, as suggested in [4], is used to select the bandwidth for this estimator.
Estimates were simulated over 1000 realizations.

The first simulation study considers the estimation of a N(0, 1) CDF from iid
data. One may imagine the second-order Gaussian kernel estimator to do quite
well in this context, but in fact the infinite-order kernel performs consistently
better over the selected points. MSE estimates are provided at three points
(t = −1.5, 0, 1.5) and under two different sample sizes (n = 15, 30).

The second simulation study considers the estimation of a Weibull distribu-
tion with censored data. Lifetime variables, the variables of interest, are simu-
lated from a Weibull distribution with shape parameter 3 and scale parameter
1.5 and the censoring variables are independently drawn from a Weibull distri-
bution with shape parameter 4 and scale parameter 3. Since the support of the
lifetime density is on the positive real line, the boundary correction of Section 7 is
implemented. MSE estimates are provided at three points (t = .75, 1.5, 1.5) and
under two different sample sizes (n = 15, 30). Here again the infinite-order ker-
nels consistently outperform the second-order kernel estimator and the Kaplain-
Meier estimator in term of MSE performance.

7. Discussion and conclusions

The proposed estimators have implications far beyond just providing a more ac-
curate estimators of the CDF and survival function. For instance, it is standard
practice to compare the effects of two drugs based on their respected survival
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Fig 2. Lifetime and censored Weibull densities considered in the simulations with a plot of
the survival function also included.

functions, but the cost of running clinical trials limits the sample size of the
available data. From the deficiency calculations of Section 3, we see that the
proposed estimators can produce the same results as the traditional Kaplan-
Meier estimator yet with a significantly smaller sample size.

Another very standard use of the EDF is found in the bootstrap method.
In the smoothed bootstrap, data is drawn from a smoothed EDF, and when
the estimator of the smoothed EDF is improved, the smoothed bootstrap is
also improved to give more accurate inferences [10, 20]. The bootstrap method
is particularly beneficial when sample sizes are small, and therefore invoking
infinite-order kernel estimators in this situation is often very natural in which
having an improved CDF estimator may be crucial.

Hazard function estimation on small samples can also be significantly be
improved. Hazard estimators, constructed from dividing a smoothed density
estimate by a smoothed survival function, as in [14], have performance that is
typically dictated by the convergence of the density estimator [3]. However in
small sample sizes, accurate estimation of the survival function is just as crucial
as accurate estimation of the density.

The new infinite-order kernel estimators of the CDF and survival function is
shown through analysis and demonstrated through simulations to be more accu-



A. Berg and D. Politis/Reduced-bias CDF estimation 1449

rate than the EDF and Kaplain-Meier estimators with significant improvements
seen in small sample sizes and data from a distribution that has a rapidly de-
caying characteristic function. Significant improvements in terms of an increase
in efficiency is also produced by the new estimators when the characteristic
function of the data is identically zero after some finite value. Additionally, the
bandwidth selection algorithm that accompanies the new estimator is compu-
tationally simpler with faster convergence rates than the cross-validation band-
width selection algorithms used with finite-order kernels.

Appendix A: Technical proofs

Proof of Theorem 1.
From the following computation

E
[

F̂h(t)
]

=
1

n

n∑

j=1

E

[

K̄

(
t − Xi

h

)]

,

computing the bias of F̂h(t) amounts to computing the bias of K̄
(

t−Xi

h

)
. Start-

ing with its expectation, we have

E

[

K̄

(
t − Xi

h

)]

=

∫ ∞

−∞

K̄

(
t − x

h

)

f(x) dx

=

∫ ∞

−∞

K̄

(
t − x

h

)

dF (x)

= K̄

(
t − x

h

)

F (x)

∣
∣
∣
∣

x=∞

x=−∞
︸ ︷︷ ︸

=0

+
1

h

∫

F (x)K

(
t − x

h

)

dx

=
1

h

∫

F (x)K

(
t − x

h

)

dx.

If we define Kh(t) = 1
hK

(
t
h

)
, then the expectation above can be written in

very simply as

E

[

K̄

(
t − Xi

h

)]

= F ⋆ Kh(t)

where ⋆ denotes convolution.
To proceed, we will employ Fourier transform theory on (mathematical) dis-

tributions, otherwise known as generalized functions. By invoking generalized
functions, we can compute the Fourier transform of not just the standard class
of integrable functions, but also many non-integrable functions like constants
and cumulative distribution functions. This theory, in general, is very technical
and readers unfamiliar with the subject are referred to [2] for a nice treatment
of the subject.
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As K is the Fourier transform of κ, κ is therefore the inverse Fourier transform
of K. Through a simple change of variables, we have

F−1 (Kh(t)) = κ(th)

where the notation F and F−1 will represent the Fourier transform and its
inverse.

Next we wish to derive the Fourier transform of the CDF F (t). This is the
first generalized function that we encounter and its Fourier transform involves
the Dirac delta function, δ(s). Using the Heaviside step function H(x) given by
H(x) = 1(x > 0), we rewrite F (t) as

F (t) =

∫ t

−∞

f(x) dx =

∫ ∞

−∞

f(x)H(t − x) dx = f ⋆ H(t)

Therefore the Fourier transform of F (t) reduces to the product of the Fourier
transforms of f(x) and H(x); i.e.

F (F (t)) = φ(s)

(

πδ(s) +
1

is

)

= πφ(0)δ(s) +
φ(s)

is

= πδ(s) +
φ(s)

is
.

We will now proceed with estimating the bias of F̂h(t).

bias
(

F̂h(t)
)

= Kh ⋆ F (t) − F (t)

= F
(
F−1 (Kh ⋆ F (t) − F (t))

)

= F
(
F−1 (Kh) · F−1 (F ) −F−1 (F )

)

= F
((
F−1 (Kh) − 1

)
F−1 (F )

)

= F
(

(κ(sh) − 1)

(

πδ(s) +
φ(s)

is

))

= F
(

(κ(sh) − 1)
φ(s)

is

)

− πF ((κ(sh) − 1) δ(s))

= F
(

(κ(sh) − 1)
φ(s)

is

)

− πF
(

(κ(sh) − 1)

∣
∣
∣
∣
s=0

)

︸ ︷︷ ︸

=0

=
1

2π

∫

|s|>1/h

(κ(sh) − 1)
φ(s)

is
ds.

The last equality comes from the flat-top property of κ function; specifically,
κ(sh) = 1 for |sh| ≤ 1 implies κ(sh) − 1 = 0 for |s| ≤ 1/h. Since κ is bounded
by one, we have the following bound on the bias of F̂h(t),

∣
∣
∣bias

(

F̂h(t)
)∣
∣
∣ ≤ 2

2π

∫

|s|>1/h

|φ(s)|
|s| ds.
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We now bound the bias under the three assumptions A(p), B, and C. Under
assumption A(p), we have

∫

|s|>1/h

|φ(s)|
|s| ds =

∫

|s|>1/h

|s|p|φ(s)|
|s|p+1

ds

≤ hp+1

∫

|s|>1/h

|s|p|φ(s)| ds

= o(hp+1).

(9)

Under assumption B,

∫

|s|>1/h

|φ(s)|
|s| ds ≤ h

∫

|s|>1/h

|φ(s)| ds

≤ h

∫

|s|>1/h

De−d|s| ds

≤ Dh

ed/h

∫

|s|>1/h

ed(1/h−|s|) ds

= O
(

he−d/h
)

.

(10)

And under assumption C,

∫

|s|>1/h

|φ(s)|
|s| ds = 0 (11)

when h ≤ 1. Therefore parts (i) through (iii) are proven from equations (9),
(10), and (11) respectively.

Proof of Theorem 3.
If the mean square errors are equal, up to a fraction of the sample size, then

we have
c

nr
+

a

nr+δ
+ o

(
1

nr+δ

)

=
c

mr
+

b

mr+δ
+ o

(
1

mr+δ

)

which implies
1

nr

[

c +
a + o(1)

nδ

]

=
1

mr

[

c +
b + o(1)

mδ

]

.

Dividing through by c and solving for m
n

gives

m

n
=

[

1 +
b + o(1)

cnδ

]1/r [

1 +
a + o(1)

cmδ

]−1/r

.

From the above expression, we see that m/n → 1 and therefore o(1/n) =
o(1/m). Using the approximation (1 + x)s = 1 + sx + O(x2) gives

m

n
= 1 +

b

crnδ
− a

crmδ
+ o

(
1

nδ

)
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Recalling m = n + d, we have

d

n
=

b

crnδ
− a

crmδ
+ o

(
1

nδ

)

.

Multiplying both sides of the above equation by nδ gives

d

n1−δ
=

b

cr
− a

cr

( n

m

)δ

+ o (1) −→ b − a

cr
.

Proof of Theorem 4.
The proof of Theorem 4 follows the same lines as the proof of Theorem 3

with nδ replaced with log n.
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[8] Ghorai, J. K. and Rejtő, L. (1990). Relative deficiency of kernel type

estimators of quantiles based on right censored data. Comm. Statist. Theory
Methods 19 1653–1670. MR1075495 (91k:62037)

[9] Gyorfi, L., Hardle, W., Sarda, P. and Vieu, P. (1989). Nonparamet-
ric Curve Estimation from Time Series. Lecture Notes in Statistics 60.

[10] Hall, P., DiCiccio, T. and Romano, J. (1989). On Smoothing and the
Bootstrap. The Annals of Statistics 17 692–704.

[11] Hodges Jr, J. and Lehmann, E. (1970). Deficiency. The Annals of Math-
ematical Statistics 41 783–801.

http://www.ams.org/mathscinet-getitem?mr=MR614972
http://www.ams.org/mathscinet-getitem?mr=MR2001192
http://www.ams.org/mathscinet-getitem?mr=MR711744
http://www.ams.org/mathscinet-getitem?mr=MR1033148
http://www.ams.org/mathscinet-getitem?mr=MR1075495


A. Berg and D. Politis/Reduced-bias CDF estimation 1453

[12] Kaplan, E. and Meier, P. (1958). Nonparametric Estimation from In-
complete Observations. Journal of the American Statistical Association 53

457–481.
[13] Kim, C., Park, B., Kim, W. and Lim, C. (2003). Bezier curve smooth-

ing of the Kaplan-Meier estimator. Annals of the Institute of Statistical
Mathematics 55 359–367.

[14] Kim, C., Bae, W., Choi, H. and Park, B. U. (2005). Non-parametric
hazard function estimation using the Kaplan-Meier estimator. J. Non-
parametr. Stat. 17 937–948. MR2192167 (2006g:62033)

[15] Kim, C., Kim, S., Park, M. and Lee, H. (2006). A bias reducing tech-
nique in kernel distribution function estimation. Computational Statistics
21 589-601.

[16] Kulasekera, K., Williams, C., Coffin, M. and Manatunga, A.

(2001). Smooth estimation of the reliability function. Lifetime Data Anal-
ysis 7 415–433.

[17] Li, Q. and Racine, J. (2007). Nonparametric Econometrics: Theory and
Practice. Princeton University Press.

[18] Liu, R. and Yang, L. (2007). Kernel estimation of multivariate cumulative
distribution function.

[19] McMurry, T. and Politis, D. (2004). Nonparametric regression with
infinite order flat-top kernels. Journal of Nonparametric Statistics 16 549–
562.

[20] Polansky, A., Schucany, W. and et al. (1997). Kernel Smoothing to
Improve Bootstrap Confidence Intervals. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 59 821–838.

[21] Politis, D. N. (2003). Adaptive bandwidth choice. Journal of Nonpara-
metric Statistics 15 517–533.

[22] Politis, D. N. (2005). Higher-order accurate, positive semi-definite es-
timation of large-sample covariance and spectral density matrices. UCSD
Economics Discussion Papers.

[23] Politis, D. N. and Romano, J. P. (1995). Bias-corrected non-
parametric spectral estimation. J. Time Ser. Anal. 16 67–103.
MR1323618 (95k:62256)

[24] Politis, D. N. and Romano, J. P. (1999). Multivariate density estima-
tion with general flat-top kernels of infinite order. J. Multivariate Anal. 68

1–25. MR1668848 (2000d:62057)
[25] Politis, D. and Romano, J. (1993). On a family of smoothing kernels

of infinite order. In Computing Science and Statistics In Proceedings of
the 25th Symposium on the Interface (M. Tarter and M. Lock, Eds.), The
Interface Foundation of North America 141–145.

[26] Politis, D. and Romano, J. (1995). Bias Corrected Nonparametric Spec-
tral Density Estimator. Journal of Time Series Analysis 16 67–103.

[27] Politis, D. and Romano, J. (1996). On flat-top kernel spectral density
estimators for homogeneous random fields. Journal of Statistical Planning
and Inference 51 41–53.

http://www.ams.org/mathscinet-getitem?mr=MR2192167
http://www.ams.org/mathscinet-getitem?mr=MR1323618
http://www.ams.org/mathscinet-getitem?mr=MR1668848


A. Berg and D. Politis/Reduced-bias CDF estimation 1454

[28] Politis, D. and Romano, J. (1999). Multivariate density estimation with
general flat-top kernels of infinite order. Journal of Multivariate Analysis
68 1–25.

[29] Reiss, R.-D. (1981). Nonparametric estimation of smooth distribution
functions. Scand. J. Statist. 8 116–119. MR623587 (82k:62080)
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