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1. Introduction

Quasi-maximum likelihood estimator (QMLE) is commonly used in practice to
estimate the parameters of ARCH-type models. Literature on statistical infer-
ence for the GARCH(p, q) models is considerable. Recent studies on the prop-
erties of the QMLE can be found in Berkes et al. [3], Berkes and Horváth [2],
Straumann [15], and Robinson and Zaffaroni [13], among others. These papers
establish the strong consistency and asymptotic normality of the QMLE by as-
suming that within a parameter space Θ, the GARCH(p, q) equation admits a
strictly stationary solution for all θ ∈ Θ. In the contrary, Jensen and Rahbek
([7], [8]) relax the stationarity conditions and establish the asymptotic behav-
ior of non-stationary GARCH(1, 1) and ARCH(1) models. That is, the QMLEs
of both stationary and non-stationary GARCH(1, 1) model are asymptotically
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normal and consistent in certain senses. The purpose of this paper is to extend
Jensen and Rahbek’s result to general non-stationary GARCH(p, q) situations.

Consider the GARCH(p, q) model defined by

X2
t = σ2

t ǫ
2
t ,

σ2
t = ω +

p
∑

i=1

βiσ
2
t−i +

q
∑

j=1

αjX
2
t−j ,

where ω, α = (α1, . . . , αq) , and β = (β1 , . . . , βp) are strictly positive real
constants while {ǫt}t∈Z are independent and identically-distributed random
variables of zero mean and unit variance. We assume that the polynomials
α(z) =

∑q
j=1 αjz

j and 1 − β(z) = 1 −∑p
j=1 βjz

j are co-prime.
The GARCH model can be expressed in vector-matrix form Yt = AtYt−1 +b ,

for j ∈ Z , where Yt = (σ2
t+1, . . . , σ

2
t−p+2, X

2
t , . . . , X

2
t−q+2)

T , b = (ω, 0, . . . , 0)T

and
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It is shown in Bougerol and Picard [4] that a GARCH(p, q) model admits a
strict stationary solution if and only if the top Lyapunov exponent

ρ = inf
ℓ∈N

1

ℓ + 1
{E log ||A0A−1 · · ·A−ℓ||}

is strictly negative.
In this paper, we are interested in the case of ρ > 0 . Under this situation,

the GARCH model does not admit any strictly stationary solution. However,
a stochastic process {Xt}0≤t≤n can nevertheless be defined by specifying the
initial probability distribution of the vector Y−1 .

Throughout this paper, we assume that the observed data {Xt}0≤t≤n are
generated by the GARCH(p, q) model with parameters ω0, α0 = (α0

1, . . . , α
0
q)

T ,

and β0 = (β0
1 , . . . , β

0
p)T . The initial values of the variances {σ2

0 , σ
2
−1, . . . , σ

2
−p+1}

and the returns {X2
−1, X

2
−2, . . . , X

2
−q+1} are assumed to be fixed.

In what follows, a QMLE is constructed for estimating θ0 = (α0, β0) from the
observed data {Xt}−(q−1)≤t≤n . Let the parameter space of θ = (α, β) be Θ ⊂
Rp+q . The QMLE is constructed as if the innovation terms {ǫt}t∈Z are standard
normal random variables. The unobservable values ω0 and {σ2

0 , σ
2
−1, . . . , σ

2
−p+1}

are replaced by a given positive real number ω and a given sequence H0 =
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(h0, h−1, . . . , h−p+1) respectively. For all t = 1, 2, . . . and θ ∈ Θ, define the
stochastic process

ht(θ) = ω0 +

p
∑

i=1

βiht−i(θ) +

q
∑

j=1

αjX
2
t−j .

It should be noted that if ω = ω0 , H0 = (σ2
0 , σ

2
−1, . . . , σ

2
−p+1) and θ = θ0 , then,

ht(θ
0) = σ2

t . The quasi log-likelihood function is defined as

Ln(θ) =
1

n

n
∑

t=1

[

X2
t

ht(θ)
+ log(ht(θ))

]

.

Following the approach of Jensen and Rahbek [7], weak consistency and
asymptotic normality of the QMLE are established. This paper is organized
as follows. The main theorem is presented in Section 2. The proof of the main
theorem is outlined in Section 3. Concepts and results related to the Lyapunov
exponents and the products of random matrices used in Section 3 are introduced
in Sections 4 and 5 respectively. A Detail proof of the main theorem is given in
the appendix.

2. Main results

Before stating the assumptions, an alternative vector-matrix representations of
the GARCH model is introduced. Let Y ′

t = (Yt, 1)T and

A′
t =

(

At b
0 1

)

.

The GARCH model can be rewritten as Y ′
t = A′

tY
′
t−1 .

We assume the following conditions throughout this paper.

A1: Eǫ4t <∞, and E|ǫt|−2δ <∞ for some δ > 0 .
A2: The top Lyapunov exponent of A for the data generating process is strictly
positive.
A3: The top Lyapunov exponent of A′ for the data generating process is strictly
positive and simple (cf. Theorem 4.1 for the definition of simplicity).

Remark 2.1. Details about the concepts of the Lyapunov exponents related
to the discussion in this paper are given in Appendix A.1. According to Os-
eledec’s multiplicative ergodic theorem, p + q − 1 real numbers (−∞ is al-
lowed), called Lyapunov exponents, can be associated to a sequence of random
matrices A1, A2, . . . , to characterize the asymptotic behavior of the product
AnAn−1 . . . A1 . These Lyapunov exponents may have multiplicities greater than
one. A Lyapunov exponent is called simple if its multiplicity is one. The greatest
Lyapunov exponent is the top Lyapunov exponent defined in Section 1.
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Remark 2.2. Assumptions A2 and A3 hold simultaneously can be illustrated
via the following example. Consider the case that p = q = 2 , α = (0.15, 0.1) ,
and β = (0.55, 0.35) . The Lyapunov exponents are (0.08,−0.92,−36.97) for A
and (0.08, 0.00,−0.92,−36.97) for A′. In this case, the top Lyapunov exponents
of A and A′ are simple and positive.

When the top Lyapunov exponent ofA is strictly positive, we have the volatil-
ities diverging to infinity, exhibiting the explosive behavior.

Lemma 2.1. Let ρ be the top Lyapunov exponent of A and suppose that ρ > 0 .
Then, we have limt→∞ σ2

t = +∞ a.s.

The main results on consistency and asymptotic normality of the QMLE are
given as follows.

Theorem 2.1. Assume conditions A1–A3. Let H0 = (h0, h−1, . . . , h−p+1) and
ω be arbitrarily chosen fixed values. Here, all the elements inH0 are non-negative
but not all elements equal to zero. Then, there exist a positive-definite matrix Ω
and a fixed open neighborhood M(θ0) of θ0 , independent of n , such that

(I) with probability tending to one as n → ∞, the likelihood function Ln(θ) is
uniquely minimized in M(θ0),

(II) for θn = arg minM(θ0) Ln(θ) we have

θn →p θ0

and √
n(θn − θ0) →d N(0,E(1 − ǫ2t )

2Ω−1).

Remark 2.3. Theorem 2.1 guarantees the existence of a consistent local QMLE
in an open neighborhood M(θ0) of θ0 . As θ0 is unknown, in practice, we search
for the stationary points of Ln(θ) within

Rp+q
+ = {x > 0 : x ∈ Rp+q}

instead. Denote the set of such stationary points by T . Then, θn constructed
in Theorem 2.1 belongs to T . That means, if n is sufficiently large, T contains
a vector that is close enough to the true parameter θ0 . If T is a singleton,
then the only element in T must equal to θn = arg minM(θ0) Ln(θ) . Although
the uniqueness of the stationary point is not guaranteed, based on simulations,
Gauss-Newton type methods usually give a solution close to the true value θ0

in most practical situations.

3. Proofs

This section provides proof of Lemma 2.1 and Theorem 2.1. Lemma 2.1 is shown
in subsection 3.1. An outline of the proof of Theorem 2.1 will be given in sub-
section 3.2 while the technical details are given in the subsequent sections and
the appendix. The following conventions are used throughout the paper.
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Convention 3.1. For k integers 1 ≤ i1, i2, . . . , ik ≤ p+ q − 1, define

∂i1···ikht(θ) =
∂kht(θ)

∂θi1 · · ·∂θik

and

hi1···ik

kt (θ) =
∂i1···ikht(θ)

ht(θ)
.

Convention 3.2. The notation ei refers to a unit vector with the i-th component
equaling one and other components equaling zero. When there is no confusion,
the dimension of ei is not specified.

Convention 3.3. Let x and y be two vectors with the same dimension. x≫ y
means that x ≥ y componentwise.

Convention 3.4. For any matrix M , MT refers to its transpose and Mij refers
to the elements of the i-th row and j-th column.

Convention 3.5. Two matrix norms are used throughout this section. They
are ‖ · ‖1, the largest row sum of the matrix and the operator norm ‖ · ‖, i.e.,
‖M‖ = sup|x|=1 |Mx| .
Convention 3.6. Let Ω be the sample space. It can be chosen as the set that
contains all sample paths of {ǫt}t∈Z . Let L be a shift operator on Ω .

3.1. Proof of Lemma 2.1

Applying the recursive relationship Yt = AtYt−1 + b repeatedly, we have

σ2
t = eT

1











t
∏

j=1

At−j



Y−1 + b+

t−1
∑

j=1

(

j−1
∏

i=1

At−i

)

b







≥ eT
1





t
∏

j=1

At−j



 Y−1 .

By Proposition 4.1, for all Y−1 ≫ 0, Y−1 6= 0 and 0 < δ < ρ , we have
eT
1

(
∏t

j=0 At−j

)

Y−1 > en(ρ−δ) for sufficiently large t . Consequently, σ2
t diverges

almost surely.

3.2. Outline of the Proofs of Theorem 2.1

Note that the process

ℓt(θ) =
X2

t

ht(θ)
+ loght(θ)

is not stationary and therefore, the ergodic theorem and central limit theorem
are not directly applicable to establish the asymptotics of Ln(θ) . In the case of
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GARCH(1, 1), Jensen and Rahbek [7] suggest that the asymptotic properties of
θn can be obtained without using the convergence and asymptotic normality of
Ln(θ) if the derivatives of ℓt(θ) up to order three can be approximated by some
stationary processes. To generalize the results of GARCH(1, 1) to GARCH(p, q),
the most difficult part of the proof is to show that the quantity ht−j(θ

0)/ht(θ
0),

which appears in the derivatives of ℓt(θ) , has the following two properties:

(1) For any fixed positive integer j , ht−j(θ
0)/ht(θ

0) has limiting distribution
when t→ ∞ .

(2) For any θ ∈ Θ , the moments of ht−j(θ)/ht(θ) decays exponentially as
j → ∞ .

Provided that (1) and (2) hold, the remaining of the proof is analogous to
that in Jensen and Rahbek [7]. The proof of (1) and (2) are less trivial than
that of the GARCH(1, 1) case. For property (1), take j = 1 as an example. In
the GARCH(1, 1) case, ht−1(θ

0)/ht(θ
0) can be approximated by

ht−1(θ
0)

ht(θ0)
=

ht−1(θ
0)

ω + (β1 + α1ǫ2t )ht−1
≈ 1

β1 + α1ǫ2t
.

Here, the right-hand side is stationary. In the GARCH(p, q) case, the quantity
(β1 + α1ǫ

2
t )ht−1 has to be replaced by

eT
1 At(ht−1, . . . , ht−p, X

2
t−2, . . . , X

2
t−p−1)

T ,

which involves not only ht−1 , but also ht−2, . . . , ht−p, X
2
t−2, . . . , X

2
t−p−1 . This

complicates the matter. To establish the convergence of ht−j(θ
0)/ht(θ

0) , tech-
niques for product of random matrices are indispensable. Property (1) is estab-
lished in the following lemma, which is a consequence of Proposition 4.1 and
Lemma 4.1 given in Section 4.

Lemma 3.1. There exists a stationary, ergodic, and adapted stochastic vector-
valued process {ηt} such that

A′
tA

′
t−1 · · ·A′

0Y
′
−1

eT
1 A

′
tA

′
t−1 · · ·A′

0Y
′
−1

− η′t → 0 almost surely ,

where, η′t = (ηt, 0) . Equivalently,

(Yt, 1)/ht+1 − η′t → 0 almost surely.

To establish property (2), we bound ht−j(θ)/ht(θ) by the matrix

Qt,j(θ) =

j
∏

i=1

(

B + α1ǫ
2
t−ie1e

T
1

)

,

where

B =













β1 β2 . . . . . . βp

1
. . .

. . .
1 0













.
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To see this, let F ≫ 0 be a (p+ q− 1)-dimensional vector. Since all elements in
At−j are non-negative,

At−jF ≫
(

B + α1ǫ
2
t−je1e

T
1 0

0 0

)

F .

Applying the above step repeatedly,

eT
1 At−1 . . . At−jF ≥ eT

1

{

j
∏

i=1

(

B + α1ǫ
2
t−je1e

T
1 0

0 0

)

}

F .

If the first component of F is one, then

eT
1 {At−1 . . . At−j}F ≥ (Qt,j)11 .

This inequality is applicable when F = Yt−j−1/ht−j . We have the following
lemma. The proof of the lemma is given in Section 5.

Lemma 3.2. For any positive number r , there exist positive constants κ1,
κ2(r) < λ, such that

1

(Qt,ℓ)11
≤ O(κℓ

1) a.s. and

{

E

(

1

(Qt,ℓ)11

)r}1/r

≤ O(κℓ
2) .

4. Product of random matrices

This section is devoted to establishing some properties related to the product
of random matrices P ′

t = A′
tA

′
t−1 . . . A

′
1 that was used in Section 3 to establish

Lemma 3.1. Recall that the GARCH model can be written in vector matrix
notation Y ′

t = A′
tY

′
t−1 (see Section 2). The product P ′

t arises from applying the
above recursive relationship repeatedly. Oseledec’s multiplicative ergodic theo-
rem and the concepts of Lyapunov exponents are essential tools for our purpose.
According to Oseledec’s multiplicative ergodic theorem, p+ q− 1 Lyapunov ex-
ponents are associated to P ′

t to characterize the asymptotic behavior of P ′
t .

The results on

lim
t→∞

1

t
log(eT

1 P
′
tY

′
−1)

and
A′

tA
′
t−1 · · ·A′

0Y
′
−1

eT
1 A

′
tA

′
t−1 · · ·A′

0Y
′
−1

are given in subsection 4.2 and 4.3 respectively. Subsection 4.1 provides an
introduction to Oseledec’s multiplicative ergodic theorem which is essential to
understanding the materials presented in subsections 4.2 and 4.3.
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4.1. Oseledec’s multiplicative ergodic theorem

Results related to Oseledec’s multiplicative ergodic theorem are introduced in
this subsection. References on this topic can be found in Ledrappier [10], the
collections of Cohen et al. [5] and Arnold, Crauel and Eckmann [1]. Section 1.5
of Krengal [9] also provides a short introduction to some of the results.

Oseledec’s multiplicative ergodic theorem is stated in Theorem 4.1, in which,
Lyapunov exponents and their multiplicities are defined. Ledrappier’s version
of multiplicative ergodic theorem and some related results are stated without
proof in Theorem 4.2.

Theorem 4.1 (Oseledec’s Multiplicative Ergodic Theorem, see Krengal [9]
and Cohen, et al. [6]). Let {Mt(ω)}t∈Z be a stationary and ergodic stochas-
tic process of d × d random matrices such that E log+ ‖M1‖ < ∞. Define
Pt = MtMt−1 · · ·M1. Then, there exists an L-invariant measurable set Ω′ ⊂ Ω,
i.e., LΩ′ = Ω′, with P (Ω′) = 1 such that in Ω′, the following holds.

(I). The limit

lim
t→∞

{

P T
t (ω)Pt(ω)

}1/2t
= B(ω)

exists. Let ρ1 > ρ2 > · · · > ρs > −∞ be distinct log-eigenvalues of B(ω) with
multiplicities r1, r2, . . . , rs. Then, ρ1, . . . , ρs and r1, r2, . . . , rs are constants. The
eigenvalues are called the Lyapunov exponents and the largest one is called the
top Lyapunov exponent. If a Lyapunov exponent has a multiplicity one, then it
is called simple.

(II). For 1 ≤ k ≤ s, the random set

Vk(ω) =

{

x ∈ Rd : lim
t→∞

1

t
log |Ptx| ≤ ρk

}

is a subspace with dimension rk + · · ·+ rs.

(III). The subspaces can be arranged in an asending order

Vs ⊂ Vs−1 ⊂ · · · ⊂ V1 = Rd.

When x ∈ Vk(ω) − Vk−1(ω),

lim
t→∞

1

t
log |Ptx| = ρk,

and Vk(Lω) = M1(ω)Vk(ω).

Theorem 4.2. Let M1(ω),M2(ω), . . . be a stationary and ergodic stochastic pro-
cess of invertible d×d matrices such that E log+ ‖M1‖ <∞ and E log+ ‖M−1

0 ‖ <
∞. Define Pt = MtMt−1 · · ·M1. Then, there exists Ω′ ⊂ Ω with P (Ω′) = 1 such
that for all ω ∈ Ω′ , we have a direct sum decomposition

Rd = W1(ω) ⊕W2(ω) ⊕ · · · ⊕Ws(ω),

with the following properties.
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1. For 1 ≤ k ≤ s, and u ∈Wk. We have

1

n
log |Ptu| → ρk .

2. Wk(Lω) = M1(ω)Wk(ω).
3. The dimension of W1(ω) is r1, the multiplicity of the top Lyapunov expo-

nent.
4. Let ξk(ω) ∈Wk(ω) be a random vector. Then,

Ptξk(ω)

|Ptξk(ω)| ∈Wk(Ltω).

5. If the dimension of Wk(ω) is 1 and ξk(ω) is the unit vector in Wk(ω), we
have the version of LeJan [11] for Oseledec’s theorem

Ptξk(ω)

|Ptξk(ω)| = ξk(Ltω).

In addition, ξk(ω) depends only on the values of Mt for −∞ < t ≤ 0 and
hence the process ξk(Ltω) is stationary, ergodic, and adapted.

4.2. Top Lyapunov exponent of A
′

t

The purpose of the subsection is to prove Proposition 4.1 below.

Proposition 4.1. Let x ≫ 0, x 6= 0 be a (p+ q − 1)-dimensional non-random
vector and x′ = (xT , 1)T .

lim
t→∞

1

t
log(eT

1 P
′
tx

′) = lim
t→∞

1

t
log |P ′

tx
′| = lim

t→∞

1

t
log ‖P ′

t‖ = ρ′.

Proof of Proposition 4.1. We prove this statement in two steps.

Step 1: To show that 1
t |P ′

tx
′| → ρ′1. Note that ρ′1 > 0 , |P ′

tep+q | = 1 , and Pt and
x are all non-negative, it is enough to show that 1

t log |P ′
te1|, . . . , 1

t log |P ′
tep+q−1 |

converge to the same limit ρ′1 .

Theorem 4.1 guarantees that 1
t log |P ′

te1| converges. To obtain the conver-
gence of 1

t log |P ′
te2|, . . . , 1

t log |P ′
tep+q−1 | , the following identities will be used.

Similar identities can be found in the proof of Theorem 1.3 in Bougerol and
Picard [4]. For simplicity, we use the notation

(

Πn
j=2A

′
j

)

= A′
tA

′
t−1 · · ·A′

2. Then

P ′
tep = βp

(

Πt
j=2A

′
j

)

e1,

P ′
tep+q−1 = αq

(

Πt
j=2A

′
j

)

e1,

P ′
tek = βk

(

Πt
j=2A

′
j

)

e1 +
(

Πt
j=2A

′
j

)

ek+1, for 2 ≤ k ≤ p− 1,

P ′
teq+k = αk

(

Πt
j=2A

′
j

)

e1 +
(

Πt
j=2A

′
j

)

ep+k+1 , for 1 ≤ k ≤ q − 2.
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It can be seen from these identities that 1
t log |P ′

te2|, . . . , 1
t log |P ′

tep+q−1 | ,
converge to limt→∞

1
t log |P ′

te1| . Take 1
t log |P ′

tep−1| as an example. We have

P ′
tep−1 = βp−1

(

Πt
j=2A

′
j

)

e1+
(

Πt
j=2A

′
j

)

ep = βp−1

(

Πt
j=2A

′
j

)

e1+βp

(

Πt
j=3A

′
j

)

e1

The required result follows from the following fact.
For all positive sequences an , bn and positive constants k1, k2 ,we have 1

t log an →
a and 1

t log bn → b implies 1
t log(k1an + k2bn) → max{a, b} .

That limt→∞
1
t log |P ′

te1| = ρ′1 is a consequence of the above fact and the
following inequalities,

|P ′
te1| ≤ ‖P ′

t‖ ≤ |P ′
te1| + |P ′

te2| + · · ·+ |P ′
tep+q−1 | + 1 .

The second inequality is obtained by considering y such that sup|y|=1 |P ′
ty| is

attained. Since the absolute values of all components of y must be smaller than
one, we have

‖P ′
t‖ = |P ′

ty| ≤ |P ′
te1| + |P ′

te2| + · · ·+ |P ′
tep+q−1 | + 1 .

Step 2: To show that 1
t
log(eT

1 P
′
tx

′) → ρ1. Clearly, we have e1P
′
tx ≤ |P ′

tx
′|. To

obtain a lower bound for e1P
′
tx, we use Lemma A.16 to get

|P ′
tx

′| ≤ e1P
′
tx

′

√

1 +
1

β2
1

+ · · ·+ 1

β2
p−1

+
1

α2
1

+ · · ·+ 1

α2
q−1

.

This yields the required result.

4.3. Asymptotic behavior of P
′

t
= A

′

t
A

′

t−1
· · · A

′

1

The purpose of this subsection is to establish the following lemma.

Lemma 4.1. Assume that E log+ ‖A′
t‖ < ∞ and the top Lyapunov exponent

for A′
t is simple. Suppose that F ′ : Ω → Rp+q is a random vector. Assume that

1

t
log |A′

tA
′
t−1 · · ·A′

1F
′| → ρ′1

as t → ∞ , then there exists a stationary, ergodic, and adapted stochastic Rp+q+1-
valued process {η′t}t∈Z such that as n→ ∞,

A′
tA

′
t−1 · · ·A′

1F
′

eT
1 A

′
tA

′
t−1 · · ·A′

1F
′
− η′t → 0 almost surely

and for all t ∈ Z,

η′t+1 =
A′

t+1η
′
t

eT
1 A

′
t+1η

′
t

.
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Outline of the proof of Lemma 4.1:

To proof Lemma 4.1, we construct the stochastic process η′t from Ledrap-
pier’s version of multiplicative ergodic theorem, which is stated in Theorem 4.2.
This theorem associates a stationary and ergodic sequence of invertible matrices
{Mt(ω)}t∈Z with a random vector ξ1(ω) such that

MtMt−1 . . .M1ξ1(ω)

|MtMt−1 . . .M1ξ1(ω)| = ξ1(L
tω) ,

provided that the top Lyapunov exponent of Mt is simple. It is natural to
construct η′t from ξ1(L

tω) . However, since A′
t is not invertible, Mt cannot be

chosen as A′
t . Here, we construct invertible matrix Mt and a linear transform

Et : Rmax(p,q)+1 → Rp+q such that for any x ∈ Rmax(p,q)+1 ,

A′
tA

′
t−1 . . . A

′
1E0x = EtMtMt−1 . . .M1x . (4.1)

The proof is organized as follows. Firstly, the invertible random matrices Mt

and the linear transform Et are defined. Proposition 4.2 relates the matrix A′
t to

Mt , which can be used to establish the identity (4.1). We show in Proposition
4.3 that A′

t and Mt share the same set of Lyapunov exponents except −∞ that
appears in A′

t only. These allow us to establish the asymptotic behavior of A′
t

from those of Mt . Finally, we show that

η′t =
Etξ1(L

tω)

eT
1 Etξ1(Ltω)

can be served as an approximation to

A′
tA

′
t−1 · · ·A′

1F
′

eT
1 A

′
tA

′
t−1 · · ·A′

1F
′
.

Linking A′
t to the invertible matrix Mt:

Mt and the linear transform Et : Rmax(p,q)+1 → Rp+q that links A′
t and Mt ,

are constructed as follows.

Case q > p : Consider the vectors Zt = (σ2
t+1, . . . , σ

2
t−p+2, X

2
t−p+1, . . . ,

X2
t−q+2 , 1) . We have an alternative representation of the GARCH(p, q) model,

Zt = MtZt−1 , where

Mt =

































α1ǫ
2
t + β1 . . . . . . αpǫ

2
t−p+1 + βp αp+1 . . . . . . αq ω

1
. . .

1
ǫ2t−p+1

1
. . .

1 0
1

































.
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Define
Etξ = (ξ1, . . . , ξp, ǫ

2
tξ2, . . . , ǫ

2
t−p+2ξp, ξp+1, . . . , ξq+1)

T

and

G =





Ip 0 0 0
0 0 Iq−p 0
0 0 0 1



 .

Then, we have Y ′
t = EtZt and Zt = GYt .

Case q ≤ p: Consider the vectors Zt = (σ2
t+1, . . . , σ

2
t−p+2, 1) . Define

Mt =



























α1ǫ
2
t + β1 . . . αqǫ

2
t−q+1 + βq βq+1 . . . βp ω

1
. . .

. . .

. . .

1 0

1



























,

Etξ = (ξ1, . . . , ξp, ǫ
2
tξ2, . . . , ǫ

2
t−q+2ξq , ξq+1)

T ,

and

G =

(

Ip 0 0
0 0 1

)

.

We have Zt = MtZt−1 , Y
′

t = EtZt and Zt = GYt .

Remark 4.1. In order to apply Theorem 4.2, we need E log+ ‖M−1
0 ‖ <∞. The

choice of the norm here is immaterial as all matrix norms are equivalent. It is
more convenient to work with the norm ‖·‖1. For {Mt} chosen in this subsection,
the condition holds as E log+ |ǫ0|−2 <∞, or equivalently, E|ǫ0|−2δ <∞ for some
δ > 0.

Proposition 4.2. For any max(p, q) + 1-dimensional vector x, we have

A′
t+1Etx = Et+1Mt+1x

and
E0GA

′
0A

′
−1 . . .A

′
−min(p,q)+2 = A′

0A
′
−1 . . . A

′
−min(p,q)+2 .

Proof. Directly from the definition.

Proposition 4.3. Let ρ′s < ρ′s−1 < · · · < ρ′1 be distinct Lyapunov exponents of
Mt . Then, −∞ and ρ′s, . . . , ρ

′
1 are the Lyapunov exponents of A′

t . The multi-
plicities of a Lyapunov exponents ρ′s, . . . , ρ

′
1 are the same for A′

t and Mt .
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Proof. First, we show that −∞ is a Lyapunov exponent of A′
t . Let Jr(λ) be

the standard Jordan block of order r with diagonal elements equaling λ. Sim-
ple algebraic manipulations show that a non-random full-rank matrix P with
min(p, q)− 1 columns can be found so that

A′
tP = PJmin(p,q)−1(0) ,

where the columns of P satisfy A′
tP

′
min(p,q)−1 = 0 and A′

tP
′
i = P ′

i+1 for 1 ≤ i ≤
min(p, q)− 2. As a result, for n ≥ min(p, q) − 1,

(A′
tA

′
t−1 · · ·A′

1)
T (A′

tA
′
t−1 · · ·A′

1)P = 0,

showing that −∞ is a Lyapunov exponent of A′
t with multiplicity at least equal-

ing to min(p, q) − 1 (see Theorem 4.1).
By Theorem 4.1, we can find vector spaces

Vs(ω) ⊂ Vs−1(ω) ⊂ · · · ⊂ V1(ω) = Rmax(p,q)+1

such that ξ ∈ Vk(Ltω) if and only if

lim
t→∞

1

t
log |MtMt−1 · · ·M1ξ| ≤ ρ′k.

Let VP be the vector space spanned by the columns of P. Define a set of vector
spaces

VP ⊂ E0Vs ⊕ VP ⊂ · · · ⊂ E0V1 ⊕ VP = Rp+q .

What remains is to show that for η ∈ E0Vk ⊕ VP , we have

lim
t→∞

1

t
log |A′

tA
′
t−1 · · ·A′

1η| ≤ ρ′k

and the dimension of E0Vk + VP is min(p, q) − 1 + rk + · · ·+ rs. Note that

(E0Vk ⊕ VP ) − (E0Vk−1 ⊕ VP ) = E0(Vk − Vk−1) ⊕ VP .

Consider η = E0ξ+ηP where ξ ∈ Vk −Vk−1 and ηP ∈ VP . Then, by Proposition
4.2,

lim
t→∞

1

t
log |A′

tA
′
t−1 · · ·A′

1η| = lim
t→∞

1

t
log |EtMtMt−1 · · ·M1ξ| = ρ′k.

The linear transformation E0 does not change the dimension of a vector space.
In addition, for any 1 ≤ k ≤ s, any elements in VP , ηP , say, cannot be writ-
ten as a linear combination of any basis of E0Vk , ξ1, . . . , ξrk

, say. To see this,
assume on the contrary that ηP =

∑rk

i=1 ciE0ξi . Clearly, for t ≥ min(p, q) − 1 ,
A′

t · · ·A′
1ηP = 0 . However,

A′
t · · ·A′

1

rk
∑

i=1

ciE0ξi = Et

rk
∑

i=1

ciMt · · ·M1ξi .

By the invertibility of M , we have Mt · · ·M1ξi are linearly independent and
hence, A′

t · · ·A′
1

∑rk

i=1 ciE0ξi = 0 if and only if all ci = 0 . As a result, the
dimension of E0Vk + VP must be min(p, q) − 1 + rk + · · ·+ rs .
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Proof of Lemma 4.1. By Theorem 4.2, we have a direct sum decomposition
Rmax(p,q)+1 = W1(ω) ⊕W2(ω) ⊕ · · · ⊕Ws(ω) such that for any ξk ∈Wk(Ltω),

lim
t→∞

1

t
log |MtMt−1 · · ·M1ξk| = ρ′k

and
MtMt−1 · · ·M1ξk
|MtMt−1 · · ·M1ξk|

∈Wk(ω).

By Proposition 4.3, ρ′1 for the matrices Mt is simple. Ignoring the sign, there is
only one unit vector in W1(ω) (see Theorem 4.2). Let this unit vector be ξ1(ω) .
We now show that

η′t =
Etξ1(L

tω)

eT
1 Etξ1(Ltω)

meets our requirement. From Proposition 4.2

A′
tA

′
t−1 · · ·A′

−(min(p,q)−2) = EtMtMt−1 · · ·M1GA
′
0 · · ·A′

−(min(p,q)−2).

Decompose the vector

ξ0 = GA′
0 · · ·A′

−(min(p,q)−2)F
′

into the components ofW1(ω),W2(ω), . . . ,Ws(ω), then we have a random vector
(g1, . . . , gs)(ω) and unit vectors ξi(ω) ∈Wi(ω) such that for any integer n,

ξ0 = g1(ω)ξ1(ω) + g2(ω)ξ2(ω) + · · ·+ gs(ω)ξs(ω).

For simplicity, define P ′
t,k = MtMt−1 · · ·M1ξk(ω). Note that g1(ω) 6= 0 almost

surely. Otherwise, let Ω′′ ⊂ Ω be a measurable set such that P (Ω′′) > 0 and
g1(ω) = 0 when ω ∈ Ω′′. Without loss of generality, assume that g2(ω) 6= 0.

1

t
log |A′

tA
′
t−1 · · ·A′

−(min(p,q)−2)F
′| =

1

t
log |EtMtMt−1 · · ·M1ξ0|

=
1

t
log |Et{g2(ω)P ′

t,2 + · · ·+ gs(ω)P ′
t,s}| .

Using Theorem 4.2,

g2(ω)P ′
t,2 + · · ·+ gs(ω)P ′

t,s

= g2(ω)|P ′
t,2|ξ2(Ltω) + · · ·+ gs(ω)|P ′

t,s|ξs(Ltω) .

When t → ∞, the term g2(ω)|P ′
t,2|ξ2(Ltω) dominates. In Ω′′,

1

t
log |A′

tA
′
t−1 · · ·A′

−(min(p,q)−2)F
′| → ρ′2,

which contradicts the assumption.
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Now, it can be seen that

A′
tA

′
t−1 · · ·A′

−(min(p,q)−2)F
′

= g1(ω)|P ′
t,1|
{

Etξ1(L
tω) + · · ·+ gs(ω)

g1(ω)
·
|P ′

t,s|
|P ′

t,1|
Etξs(L

tω)

}

.

Then

A′
tA

′
t−1 · · ·A′

−(min(p,q)−2)F
′

eT
1 A

′
tA

′
t−1 · · ·A′

−(min(p,q)−2)F
′
=

Etξ1(L
tω) + · · ·+ gs(ω)

g1(ω) ·
|P ′

t,s|

|P ′

t,1
|Etξs(L

tω)

eT
1

{

Etξ1(Ltω) + · · ·+ gs(ω)
g1(ω) ·

|P ′

t,s|

|P ′

t,1
|Etξs(Ltω)

} .

Since

Etξ1(L
tω) + · · ·+ gs(ω)

g1(ω) ·
|P ′

t,s|

|P ′

t,1
|Etξs(L

tω)

eT
1

{

Etξ1(Ltω) + · · ·+ gs(ω)
g1(ω)

· |P ′

t,s|

|P ′

t,1
|
Etξs(Ltω)

} − Etξ1(L
tω)

|Etξ1(Ltω)| → 0 ,

the process

η′t =
Etξ1(L

tω)

|Etξ1(Ltω)|
fulfills the requirement.

By Proposition 4.2 and the fact that

Mt+1ξ1(L
nω) = ξ1(L

n+1ω),

we have η′t+1 =
A′

t+1
η′

t

eT
1

A′

t+1
η′

t

.

5. Miscellaneous results on matrices

This appendix presents two results of the matrices B and (Qt,j)11 introduced
in Section 3. These two results are frequently used. In the following, (Bj)ik is
the (i, k)-th element of the j-th power of B.

Proposition 5.1. (I) (Bj)11 satisfies the recursive relationship

(Bj)11 =

min(j,p)
∑

i=1

βi(B
j−i)11.

(II) For any δ > 0, we have (Bj)11 ≤ K(ρ(B) + δ)j for j = 1, 2, . . . .
(III) If β1, . . . , βp > 0, then the eigenvalue with the largest modulus λ1 is real
and positive, has a multiplicity of one, and is equal to ρ(B). Also, for 1 ≤ i ≤ p,
the elements in the first row of the j-th power of B have order (Bj)1i = O(λj

1).
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Proof. (I) The first conclusion is trivial.

(II) The characteristic equation of B is given by

β1 +
β2

λ
+ · · ·+ βp

λp−1
= λ . (5.1)

Let λ1, . . . , λp be the eigenvalues, then,

|1− β(z)| = |(1− λ1z) · · · (1 − λpz)|
≥ (1 − |λ1| · |z|) · · · (1 − |λp| · |z|)
≥ (1 − |λ1| · |z|)p .

Take R = (|λ1|+δ). By Cauchy’s estimation (see Theorem 10.26 in Rudin [14]),
an upper bound is given by

(Bj)11 ≤ 1

Rj
· 1

(1 −R|λ1|)p
=

(|λ1| + δ)p+j

δp
.

(III) Under the condition that β1, . . . , βp > 0, the characteristic equation (5.1)
has one and only one positive real root, which is also the root with the largest
modulus.

Consider the Jordan decomposition B = PJP−1. Normalizing the first com-
ponent, the eigenvector corresponding to λ1 is

(

1,
1

λ1
, . . . ,

1

λp−1
1

)T

,

and the corresponding row in P−1 with the first component normalized is
(

1, λ1 − β1, λ
2
1 − β1λ1 − β2 , . . . , λ

p−1
1 − β1λ

p−2
1 − · · · − βp−1

)

.

Note that all elements in this row vector must be greater than zero. If any one
of them is negative, for example, the second component, then we have

λp
1 − β1λ

p−1
1 − · · · − βp = (λ1 − β1)λ

p−1
1 − β2λ

p−2
1 − · · · − βp < 0.

The characteristic equation is no longer satisfied by λ1. Since λ1 only appears
once in the Jordan matrix J and the coefficients of λj

1 for eT
1 B

j in the decom-

position Bj = PJjP−1 do not equal to zero, we have (Bj)1i = O(λj
1).

Remark 5.1. A necessary and sufficient condition forBj to decay exponentially
is that ρ(B) < 1. This condition is equivalent to the condition that all roots of
1 − β(z) = 0 lie outside the unit disc. The latter one will be used often.

Lemma 5.1. For any positive number r , there exist positive constants κ1,
κ2(r) < λ, such that

1

(Qt,ℓ)11
≤ O(κℓ

1) a.s. and

{

E

(

1

(Qt,ℓ)11

)r}1/r

≤ O(κℓ
2) .
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Proof. Assume that the eigenvalue decomposition of B11 is λ1u1 + λ2u2 + · · ·+
λpup. Here we set λ1 = λ , i.e., the one with the largest modulus. Let 0 < δ <
ℜ(u1) be arbitrarily chosen, where ℜ(·) refers to the real part of the number.
Since

lim
i,j→∞

(Bi)11(B
j )11

(Bi+j )11
= ℜ(u1) ,

there exists an integer k1 such that when i, j > k1 ,

(Bi)11(B
j)11

(Bi+j)11
> ℜ(u1) − δ .

On the other hand, for any given i,

lim
j→∞

(Bi)11(B
j)11

(Bi+j)11
=

(Bi)11

λi
.

Choose 0 < δi <
(Bi)11

λi . Then, we can find k2 ≥ k1 such that for all 0 ≤ i ≤
k1, and j > k2 ,

(Bi)11(B
j)11

(Bi+j)11
>

(Bi)11

λi
− δi .

Take

ρ = min

(

(Bl)11(B
j)11

(Bl+j )11
,
(Bi)11

λi
− δi,ℜ(u1) − δ|0 ≤ i ≤ k1, 0 ≤ j ≤ k2,

0 ≤ l ≤ k2

)

> 0 ,

we have

0 ≤ ρ ≤ (Bi)11(B
j)11

(Bi+j )11
for all i, j ≤ 1 .

Here ρ depends on B and on the choices of δ and δis.
We turn to the multinomial expansion of (Qt,ℓ)11 .

(Qt,ℓ)11 = eT
1

[

ℓ
∏

i=1

(B + α1ǫ
2
t−ie1e

T
1 )

]

e1

= (Bn)11 +

ℓ
∑

l=1

∑

1≤j1≤j2≤···≤jl≤ℓ

(Bj1−1)11α1ǫ
2
t−j1

· (Bj2−j1−1)11α1ǫ
2
t−j2

· · · (Bjl−jl−1−1)11α1ǫ
2
t−jl

· (Bℓ−jl )11

≥ (Bℓ)11 +

j
∑

l=1

∑

1≤j1≤j2≤···≤jl≤ℓ

ρ
(Bj1−1)11

(B0)11
α1ǫ

2
t−j1

· ρ(Bj2−1)11

(Bj1)11
α1ǫ

2
t−j2 · · · ρ

(Bjl−1)11

(Bjl−1 )11
α1ǫ

2
t−jl

· ρ (Bℓ)11

(Bjl )11

≥ ρ

ℓ
∏

i=1

(

(Bi)11

(Bi−1)11
+ ρα1ǫ

2
t−i

)

.
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Next, we show that

E(
(Bi)11

(Bi−1)11
+ ρα1ǫ

2)−r < K1 <
1

λ

for sufficiently large i and that (Qt,ℓ)11 decays exponentially almost surely. Note

that (Bi)11
(Bi−1)11

→ λ , then for an arbitrarily chosen δ′ > 0 , we have

(Bi)11

(Bi−1)11
> λ − δ′ for j > N .

Let
f(x) = E(λ − x+ ρα1ǫ

2)−r and g(x) = E log(λ− x+ ρα1ǫ
2) .

For non-degenerate ǫ2 , f(0) < λ−r and g(0) > logλ . By the right-continuity of
both f(x) and g(x) at x = 0 , we can choose δ′ > 0 such that K1 = f(δ′) < λ−r

and K2 = g(δ′) > log(λ) also. Almost sure exponential decay of (Qt,ℓ)11 follows
from

1

ℓ
log(Qt,ℓ)11 ≥ 1

ℓ

ℓ
∑

i=1

log(
(Bi)11

(Bi−1)11
+ ρα1ǫ

2
t−i)

≥ 1

ℓ

N
∑

i=1

log(
(Bi)11

(Bi−1)11
+ ρα1ǫ

2
t−i) +

1

ℓ

ℓ
∑

i=N+1

log(λ − δ′ + ρα1ǫ
2
t−i)

→ E log(λ − δ′ + ρα1ǫ
2) almost surely

= K2

> logλ .

Appendix A: A detail Proof of Theorem 2.1

We will closely follow the method of Jensen and Rahbek [7] to complete the
proof of Theorem 2.1. It would be much easier to establish Theorem 2.1 with
the additional assumptions that ω = ω0 and H0 = (σ2

0 , σ
2
−1, . . . , σ

2
−p+1) , in

which case ht(θ
0) = σ2

t . Under such assumptions, we have the following Theo-
rem A.1, which is proved in subsections A.1 to A.3. In subsection A.4, we prove
Theorem 2.1 by showing that the difference

sup
M(θ0)

|Ln(θ;ω, h0, h−1, . . . , h−p+1) − Ln(θ;ω0, σ2
0 , σ

2
−1, . . . , σ

2
−p+1)|

and its derivatives up to order three converge in probability to zero.

Theorem A.1. Suppose A1–A3 are satisfied. Let H0 = (σ2
0, σ

2
−1, . . . , σ

2
−p+1)

and ω = ω0. The conclusions in Theorem 2.1 hold.

Some technical lemmae to be used are given in subsection A.5. In what fol-
lows, we give an outline of the proof of Theorem A.1. It suffices to construct
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positive-definite matrices Ω1, Ω2, and a neighbourhood of θ0 , N(θ0) such that
the following conditions C1–C3 hold. Then, Lemma 1 of Jensen and Rahbek [7]
yields our results.

(C1) √
n∇Ln(θ0) →d N(0,Ω1) ,

(C2)
∇2Ln(θ0) →p Ω2 ,

and
(C3) the third-order derivatives are uniformly bounded by n-dependent random
variables Cn,

max
i1,i2,i3

sup
θ∈N(θ0)

∣

∣∂i1,i2,i3Ln(θ)
∣

∣ ≤ Cn ,

where Cn →p c for some 0 < c <∞.

The mean ergodic theorem and the martingale-array central limit theorem
(see Pollard, [12]) can be be used to establish C1–C3 provided that we are able to
construct stationary and ergodic stochastic processes which approximate lt(θ

0)
and its derivatives up to the second order. Similarly, to establish C3, we need
stationary and ergodic stochastic processes vi1,i2,i3

t such that Evi1,i2,i3
t <∞ and

that supθ∈N(θ0)

∣

∣∂i1,i2,i3 lt(θ)
∣

∣ < vi1,i2,i3
t .

The derivatives of lt(θ) up to first three orders are given below (see equations
8-10 in Jensen and Rahbek [7]).

∂ilt(θ) =

[

1 − X2
t

ht(θ)

]

hi
1t(θ) , (A.1)

∂i1i2 lt(θ) =

[

1 − X2
t

ht(θ)

]

hi1i2
2t (θ) −

[

1 − 2
X2

t

ht(θ)

]

hi1
1t(θ)h

i2
1t(θ) , (A.2)

∂i1i2i3 lt(θ) =

[

1 − X2
t

ht(θ)

]

hi1i2i3
3t (θ) −

[

1 − 2
X2

t

ht(θ)

]

×
[

hi1i2
2t (θ)hi3

1t(θ) + hi1i3
2t (θ)hi2

1t(θ) + hi2i3
2t (θ)hi1

1t(θ)
]

+ 2

[

1 − 3
X2

t

ht(θ)

]

hi1
1t(θ)h

i2
1t(θ)h

i3
1t(θ) . (A.3)

Below, we consider the terms X2
t /ht(θ) , h

i
1t(θ) , h

i1i2
2t (θ) , and hi1i2i3

3t (θ) that
appear in the above equations individually. Some useful identities are given.

First, when ω = ω0 and H0 = (σ2
0 , σ

2
−1, . . . , σ

2
−p+1) , we have ht(θ

0) = σ2
t and

X2
t

ht(θ)
= ǫ2t ·

ht(θ
0)

ht(θ)
.

In particular, we have
X2

t

ht(θ0)
= ǫ2t .
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The quantities ∂iht(θ) , ∂
i1i2ht(θ) , and ∂i1i2i3ht(θ) can be expressed in terms

of ht−j(θ) , for j = 1, 2, 3, . . . Consider the following recursive relationship in
vector-matrix form,

Ht(θ) = BHt−1(θ) + υt−1e1 , (A.4)

where Ht(θ) = (ht, ht−1, . . . , ht−q+1)(θ) ,

υt−1 = ω +

q
∑

i=1

αiXt−i ,

and

B =













β1 β2 . . . . . . βp

1
. . .

. . .
1 0













.

With (A.4), the recursive relationships for the derivatives of Ht up to order
three can be obtained. For example, the first order derivatives are given by

∂iHt(θ) = (∂iB)Ht−1(θ) + B(∂iHt−1(θ)) + (∂iυt−1(θ))e1 .

Applying the above recursive relationships repeatedly, we have

Ht(θ) = BtH0 +

t
∑

j=1

Bj−1υt−je1 , (A.5)

∂iHt(θ) =

t
∑

j=1

Bj−1(∂iB)Ht−j(θ)

+

t
∑

j=1

Bj−1(∂iυt−j(θ))e1 , (A.6)

∂i1i2Ht(θ) =

t
∑

j=1

Bj−1(∂i1B)(∂i2Ht−j(θ))

+

t
∑

j=1

Bj−1(∂i2B)(∂i1Ht−j(θ)) , (A.7)

∂i1i2i3Ht(θ) =

t
∑

j=1

Bj−1(∂i1B)(∂i2i3Ht−j(θ))

+

t
∑

j=1

Bj−1(∂i2B)(∂i1i3Ht−j(θ))

+

t
∑

j=1

Bj−1(∂i3B)(∂i1i2Ht−j(θ)) . (A.8)
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By using these recursive relationships, stationary and ergodic stochastic pro-
cesses ui1...ik

kt are constructed in subsection A.1 to approximate hi1...ik

kt .
Conditions C1 and C2 are established in subsection A.2 using the results on

ui1...ik

kt given in subsection A.1. Finally, in subsection A.3, a neighborhood N(θ0)

is constructed so that the items ht(θ
0)/ht(θ) , h

i
1t(θ) , h

i1i2
2t (θ) , and hi1i2i3

3t (θ)
that appear in Equations (A.1)–(A.3) are bounded by some stationary and er-
godic stochastic processes within N(θ0) . Condition C3 is then a consequence of
the mean ergodic theorem.

A.1. Approximating h
i1...ik

kt
by u

i1...ik

kt

This subsection is devoted to establishing the approximations to hi
1t(θ

0) and
hi1i2

2t (θ0) by stationary and ergodic processes which are then used in subsec-
tion A.1 to guarantee C1 and C2. Since we are only interested in θ = θ0 when
establishing C1 and C2, we drop the term (θ0) and write (α, β) instead of
(α0, β0). Throughout this section, we assume that the conditions in Theorem
A.1 hold.

Applying Yt = AtYt−1 + b repeatedly, ht can be written as the sum of

eT
1

{(

j
∏

i=1

At−i

)

Yt−j−1 + b+

j−1
∑

i=1

(

i−1
∏

k=1

At−k

)

b

}

.

Note that the first term will be dominated when ht = σ2
t → +∞ , which is

guaranteed by Lemma 2.1. In addition, we have

Yt−j−1

ht−j
=

A′
t−j−1A

′
t−j−2 · · ·A′

0Y
′
−1

eT
1 A

′
t−j−1A

′
t−j−2 · · ·A′

0Y
′
−1

.

It is shown in Lemma 3.1 that there exists a stationary, ergodic, and adapted
stochastic vector-valued process {ηt} such that when t → ∞,

A′
tA

′
t−1 · · ·A′

0Y
′
−1

eT
1 A

′
tA

′
t−1 · · ·A′

0Y
′
−1

− (ηt, 0)T → 0 almost surely .

The approximation to hi
1t(θ

0) and hi1i2
2t (θ0) are given by ui

1t and ui1i2
2t . For

θi = βµ, where µ = 1, . . . , p, define

ui
1t =

∞
∑

j=1

(Bj−1)11

(

eT
1 At−1 · · ·At−j−µ+1ηt−j−µ

)−1
,

and for θi = αµ, where µ = 1, . . . , q, define

ui
1t =

∞
∑

j=1

(Bj−1)11ǫ
2
t−j−µ+1

(

eT
1 At−1 · · ·At−j−µ+1ηt−j−µ

)−1
.
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The second order derivatives hi1i2
2t are approximated by

ui1i2
2t =

∞
∑

j=1

eT
1 B

j−1(∂i1B)
(

eT
1 At−1 · · ·At−jηt−j−1

)−1
ui2

1,t−j

+
∞
∑

j=1

eT
1 B

j−1(∂i2B)
(

eT
1 At−1 · · ·At−jηt−j−1

)−1
ui1

1,t−j .

The moment condition for {ui1...ik

kt } is established in Lemma A.1. The relation-

ships between hi1...ik

kt and ui1...ik

kt are given in Lemma A.2.

Lemma A.1. For integer k = 1, 2, the processes {ui1...ik

kt } are stationary and

ergodic with finite moments E(ui1...ik

kt )p <∞ for any integer p > 0 .

Proof. Here, the proof is given for the cases θi = {β1} and {θi1 , θi2} = {β1, β1}
only. Other situations can be handled in the same manner. Below, we show the
existence of the moment E(ui1...ik

kt )p. Stationarity and ergodicity follow directly
from the Lebesgue dominated convergence theorem.

When θi = {β1}, applying Minkowski’s inequality and Lemma 3.2, we have

(

E(uβ1)p
)1/p ≤

∞
∑

j=1

(Bj−1)11

[

E

(

1

eT
1 At−1 · · ·At−jηt−j−1

)p]1/p

≤
∞
∑

j=1

(Bj−1)11

[

E

(

1

eT
1 At−1 · · ·At−je1

)p]1/p

≤
∞
∑

j=1

(Bj−1)11

[

E

(

1

(Qt,j)11

)p]1/p

< ∞ .

When {θi1 , θi2} = {β1, β1}, (Qt,j)11 and ui1
1,t−j are independent. Using Minkowski’s

inequality and the preceding result of E(ui
1t)

p, we have

(

E(uβ1β1

2t )p
)1/p

≤
∞
∑

j=1

(Bj−1)11

(

E
(

eT
1 At−1 · · ·At−jηt−j−1

)−p
)1/p [

E
(

uβ1

1,t−j

)p]1/p

+

∞
∑

j=1

(Bj−1)11

(

E
(

eT
1 At−1 · · ·At−jηt−j−1

)−p
)1/p [

E
(

uβ1

1,t−j

)p]1/p

≤
∞
∑

j=1

(Bj−1)11

(

E
(

(Qt,j)11

)−p
)1/p [

E
(

uβ1

2,t−j

)p]1/p

+
∞
∑

j=1

(Bj−1)11

(

E
(

(Qt,j)11

)−p
)1/p [

E
(

uβ1

2,t−j

)p]1/p
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=
[

E
(

uβ1

1t

)p]1/p ∞
∑

j=1

eT
1 B

j−1(∂β1B)
(

E
(

(Qt,j)11

)−p
)1/p

+
[

E
(

uβ1

1t

)p]1/p ∞
∑

j=1

eT
1 B

j−1(∂β1B)
(

E
(

(Qt,j)11

)−p
)1/p

<∞ .

Lemma A.2. If A3 is satisfied, we have for k = 1, 2,

hi1...ik

kt − ui1...ik

kt →Lp

0,

1

T

T
∑

j=1

[(hi1
1t)(h

i2
1t) − (ui1

1t)(u
i2
1t)] →Lp

0,

and

1

T

T
∑

j=1

(hi1i2
2t − ui1i2

2t ) →Lp

0.

Proof. Step 1: First, we give upper and lower bounds for the differences ui1...ik

kt −
hi1...ik

kt and show that the upper and lower bounds converge to zero in Lp.
Here, we only consider the case {θi} = {β1}. In this case, we have

uβ1

1t − hβ1

1t =

t
∑

j=1

(Bj−1)11

(

1

eT
1 At−1 · · ·At−jηt−j−1

− ht−j

ht

)

.

It should be noted that for any integer j , the summand converges almost surely
to zero as t→ ∞ according to Lemma 3.1 and it can be bounded by

(Bj−1)11

(

1

eT
1 At−1 · · ·At−jηt−j−1

− ht−j

ht

)

≥ (Bj−1)11





1

eT
1 At−1 · · ·At−jηt−j−1

− 1

eT
1 At−1 · · ·At−j

Yt−j−1

ht−j





=
(Bj−1)11

eT
1 At−1 · · ·At−jηt−j−1

·
eT
1 At−1 · · ·At−j(

Yt−j−1

ht−j
− ηt−j−1)

eT
1 At−1 · · ·At−j

Yt−j−1

ht−j

≥ −(Bj−1)11

(Qt,j)11
max

1≤k≤p+q−1

∣

∣

∣

∣

1 − ηt−j−1,k

Yt−j−1,k/ht−j

∣

∣

∣

∣

.

Here, the quantity

max
1≤k≤p+q−1

∣

∣

∣

∣

1 − ηt−1,k

Yt−1,k/ht

∣

∣

∣

∣
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is bounded above by some random variable with finite moment according to
Lemma A.16. In addition, it converges to zero almost surely as t→ ∞ by Lemma
3.1. Therefore, the moments of this quantity converge to zero by dominated
convergence theorem. Also, we have

E

∣

∣

∣

∣

(Bj−1)11

(

1

eT
1 At−1 · · ·At−jηt−j−1

− ht−j

ht

)∣

∣

∣

∣

p

→ 0

by noting that the term

E

(

(Bj−1)11

(Qt,j)11

)

vanishes as a result of Proposition 5.1 and Lemma 3.2.
The lower bound for ui

kt − hi
kt can be given by

ui
1t − hi

1t ≥ −
t
∑

j=1

(Bj−1)11

(Qt,j)11
max

1≤k≤p+q−1

∣

∣

∣

∣

1 − ηt−j−1,k

Yt−j−1,k/ht−j

∣

∣

∣

∣

.

That the p-th moment of the upper bound converges to zero can be shown using
Minkoswki’s inequality and the following fact.

Let at and bt be two sequences. If at decays exponentially and bt → 0, then,
the sequence

xt =

t
∑

j=1

ajbt−j

converges to zero.
To see this, let n be an integer such that for j > n, we have |bn| < δ , where

δ > 0 is an arbitrarily small real number. Suppose that |at| ≤ Kλt. Then, for
t > n,

|xt| ≤ δ

t
∑

j=n+1

|at−j|+
n
∑

j=1

|at−j| · |bj| ≤ K(1 − λ)−1δ +

n
∑

j=1

|at−j| · |bj|.

The last term converges to zero as t → 0, hence the required result.
Next, we construct an upper bound for uβ1

1t − hβ1

1t . Note that by Proposition
5.1 and Lemma 3.2, the sum

∞
∑

j=1

{

E

(

(Bj−1)11

(Qt,j)11

)p}1/p

converges. Then, suppose that n is an integer so that the sum

∞
∑

j=n+1

{

E

(

(Bj−1)11

(Qt,j)11

)p}1/p
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is sufficiently small. Assume that t > n, then we have

ui
1t − hi

1t ≤
n
∑

j=1

(Bj−1)11

(

1

eT
1 At−1 · · ·At−jηt−j−1

− ht−j

ht

)

+

∞
∑

j=n+1

(Bj−1)11

eT
1 At−1 · · ·At−jηt−j−1

.

Then we have the required result hβ1

1t − uβ1

1t →Lp

0.

Step 2: Define v1t =
∑∞

j=1
(Bj−1)11
(Qt,j)11

. Then v1t can be used to bound the differ-
ence,

ui1
1ju

i2
1j − hi1

1jh
i2
1j =

1

2

[

(ui1
1j + hi1

1j)(u
i2
1j − hi2

1j) + (ui2
1j + hi2

1j)(u
i1
1j − hi1

1j)
]

.

Below, we only consider the case {θi1 , θi2} = {β1, β1}. We have







E

∥

∥

∥

∥

∥

∥

1

n

n
∑

j=1

(uβ1

1j + hβ1

1j )(uβ1

1j − hβ1

1j )

∥

∥

∥

∥

∥

∥

p





1/p

≤







E

∥

∥

∥

∥

∥

∥

2

n

n
∑

j=1

v1t(u
β1

1j − hβ1

1j )

∥

∥

∥

∥

∥

∥

p





1/p

≤ 2

n

[

E(v1t)
2p
]1/2p

n
∑

j=1

{

(uβ1

1j − hβ1

1j )2p
}1/2p

→ 0 almost surely.

Step 3: That ui1i2
2t − hi1i2

2t →Lp

0 can be shown in a similar manner as in Step 1
by means of Lemma A.1 and the recursive relationship (A.7).

A.2. Conditions C1 and C2

With the stationary and ergodic stochastic processes ui
1t and ui1i2

2t constructed
in the last subsection, conditions C1 and C2 are established in this subsection.
Again, since we are only interested in θ = θ0 when establishing C1 and C2, we
drop the term (θ0) and write (α, β) instead of (α0, β0).

Define Ω =
(

E(ui1
1tu

i2
1t)
)

1≤i1,i2≤p+q
, where Ω1 and Ω2 in Lemma 2.1 are chosen

to be E(1 − ǫ2)2Ω and Ω respectively. Lemma A.3 gives C1 while Lemma A.4
gives C2. Lemma A.5 establishes the positive-definiteness of Ω.

Lemma A.3. √
n∇Ln →d N(0,E(1 − ǫ2t )

2Ω1).



N.H. Chan and C.T. Ng/Non-stationary GARCH 981

Proof. The convergence of the first order derivative of the quasi log-likelihood
function,

∂iLn =
1

n

n
∑

t=1

(1 − ǫ2t )h
i
1t

can be obtained by the martingale central limit theorem. Using Lemma A.2 and
the mean ergodic theorem, the sum of conditional covariances is

1

n
E(1 − ǫ2t )

2
n
∑

j=1

hi1
j h

i2
j =

1

n
E(1 − ǫ2t )

2
n
∑

j=1

[

hi1
1th

i2
1t − ui1

1tu
i2
1t + ui1

1tu
i2
1t

]

= E(1 − ǫ2t )
2 · E

{

ui1
1tu

i2
1t

}

+ o(1) .

To show that the Linderberg condition holds, we bound hi
1t by a stationary and

ergodic process. For θi = βµ, consider

hi1
1t ≤

t
∑

i=1

Bi−1
11

ht−i−µ+1

ht
≤

t
∑

i=1

Bi−1
11

(

Qt,i+µ−1
11

)−1

= vi
1t

and for θi = αµ consider

hi1
1t ≤

t
∑

i=1

Bi−1
11 ǫ2t−i−µ+1

ht−i−µ+1

ht
≤

t
∑

i=1

Bi−1
11 ǫ2t−i−µ+1

(

Qt,i+µ−1
11

)−1

= vi
1t.

Here vi
1t is stationary and ergodic by Lemma 3.2. The Linderberg condition

holds as hi
1t ≤ vi

1t and

1

n

n
∑

i=1

E
(

(1 − ǫ2t )
2(hi

1t)
2) 1{|(1− ǫ2t )h

i
1t)| > δ

√
n}
)

≤ 1

n

n
∑

i=1

E
(

(1 − ǫ2t )
2(vi

1t)
2 1{|(1 − ǫ2t )v

i
1t| > δ

√
n}
)

= E
(

(1 − ǫ2t )
2(vi

1t)
2 1{|(1− ǫ2t )v

i
1t| > δ

√
n}
)

→ 0 .

Lemma A.4.
∂i1i2Ln(θ0) →p E

(

ui1
1t

) (

ui2
1t

)

.

Proof.

1

n

n
∑

i=1

{

(1 − ǫ2t )h
i1i2
2t − (1 − 2ǫ2t )h

i1
1th

i2
1t

}

=
1

n

n
∑

i=1

{

(1 − ǫ2t )(h
i1i2
2t − ui1i2

2t + ui1i2
2t )

}
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− 1

n

n
∑

i=1

{

(1 − 2ǫ2t )(h
i1
1th

i2
1t − ui1

1tu
i2
1t + ui1

1tu
i2
1t)
}

∼ 1

n

n
∑

i=1

{

(1 − ǫ2t )u
i1i2
2t − (1 − 2ǫ2t )u

i1
1tu

i2
1t

}

in Lp.

Since ǫ2t and (u1t, u2t) are independent, we have E(1 − ǫ2t )u2t = 0 and E(2ǫ2t −
1)ui1

1tu
i2
1t = Eui1

1tu
i2
1t.

Lemma A.5. Ω1 is positive-definite.

Proof. In the following, the notations h1t = (h1
1t, . . . , h

p+q
1t ) and u1t = (u1

1t, . . . ,
up+q

1t ) are used. Let λ be a p+ q-dimensional non-random constant vector such
that λu1t = 0. We need to show that λ must be zero. Consider the recursive
relationship for ht and its derivatives,

ht = ω + β1ht−1 + · · ·+ βpht−p + α1X
2
t−1 + · · ·+ αqX

2
t−q.

For θi = βµ,
∂iht = β1∂

iht−1 + · · ·+ βp∂
iht−p + ht−µ.

For θi = αµ,
∂iht = β1∂

iht−1 + · · ·+ βp∂
iht−p +X2

t−µ.

Then,

λh1t = β1λh1,t−1 + · · ·+ βpλh1,t−p

+
1

ht

{

λ1ht−1 + · · ·+ λpht−p + λp+1X
2
t−1 + · · ·+ λp+qX

2
t−q

}

.

Let Pt,k =
∏k

j=1 ηt−j+1,2. Applying Lemma A.16, 3.1, A.2, and using the as-
sumption that λu1t = 0, we have

λ1Pt−1,1 + · · ·+ λpPt−1,p + λp+1ǫ
2
t−1Pt−1,1 + · · ·+ λp+qǫ

2
t−qPt−1,q = 0.

On the other hand, we have

β1Pt−1,1 + · · ·+ βpPt−1,p + α1ǫ
2
t−1Pt−1,1 + · · ·+ αqǫ

2
t−qPt−1,q = 1.

Let β∗
1 = β1 + λ1, . . . , β

∗
p = βp + λp and α∗

1 = α1 + λp+1, . . . , α
∗
q = αq + λp+q .

Define

ψk =

min(q,t)
∑

j=1

αjB
t−j
11 and ψ∗

k =

min(q,t)
∑

j=1

α∗
j (B

∗
11)

t−j ,

where B∗ is the matrix B formed by the parameters (α∗, β∗) . It can be shown
that

∞
∑

j=1

ψjǫ
2
t−jPt−1,j = 1 and

∞
∑

j=1

ψ∗
j ǫ

2
t−jPt−1,j = 1.
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What remains are similar to the arguments in Berkes et al. [3]. If there is a
positive integer m such that ψm 6= ψ∗

m and for all 0 < i < m, ψi = ψ∗
i , then



ǫ2t−m − 1

ψ∗
m − ψm

∞
∑

j=1

(ψm+j − ψ∗
m+j)Pt−m−1,j



Pt−1,m = 0.

Since the first and second terms in the square bracket are independent, the
distribution of ǫ2t−m must be degenerate, which is impossible under our assump-
tion. Thus we must have ψj = ψ∗

j for all j = 1, 2, . . . . Within the radius of
convergence,

ψ(z) =
α(z)

1 − β(z)
=

α∗(z)

1 − β∗(z)
= ψ∗(z),

by the assumption that α(z) and 1 − β(z) are co-prime, α(z) = α∗(z) and
β(z) = β∗(z). That is, λ = 0.

A.3. Condition C3

This subsection is devoted to bounding the quantities ht(θ
0)/ht(θ) , h

i
1t(θ) ,

hi1i2
2t (θ) , and hi1i2i3

3t (θ) that appear in Equations (A.1)–(A.3). The results are
given in Lemmas A.8 to A.11. It should be noted that the conditions ω = ω0

and H0 = (σ2
0 , σ

2
−1, . . . , σ

2
−p+1) are never used in this subsection, and so, the

results given here are applicable to proving Theorem 2.1, too.
The neighborhood N(θ0) is chosen as a rectangular region θL ≪ θ ≪ θU such

that all components in θL are strictly positive. The notations θL = (βL, αL) and
θU = (βU , αU) are used. Using Proposition 5.1 and Lemma 3.2, together with
the continuity of E 1

(Qt,j)11(β,α0)
with respect to β , if βL is chosen enough close

to βU , then

sup
N(θ0)

∞
∑

j=1

(Bj )11(β
U )

(Qt,j)11(βL, α0)

converges almost surely and has a finite expectation.
For this selected neighborhood N(θ0), we have the following two useful lem-

mas.

Lemma A.6.
ht(β, α

0)

ht(β, α)
< κU and

ht(β, α
0)

ht(β, α)
> κL

for some positive constants κU and κL .

Lemma A.7. For (β1 , α), (β2, α) ∈ N(θ0) , with β1 ≫ β0 ≫ β2, we have

E

{

ht−j(β
1, α)

ht(β2 , α)

}r

≤ O

(

E

{

1

(Qt,j)11(β2 , α0)

}r)

.
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Proof of Lemma A.6. The lemma holds by setting

κU = sup
N(θ0)

{

1,
ω0

ω
,
α0

1

α1
,
α0

2

α2
, . . . ,

α0
p

αp

}

(A.9)

and

κL = inf
N(θ0)

{

1,
ω0

ω
,
α0

1

α1
,
α0

2

α2
, . . . ,

α0
p

αp

}

. (A.10)

This can be directly checked by the expansion formula (A.5) of ht(θ),

ht(θ) = eT
1 B

tH0 +

t
∑

j=1

(Bj−1)11υt−j(θ).

Proof of Lemma A.7. By Lemma A.6 and (A.12) of Lemma A.13,

ht−j(β
1 , α)

ht(β2 , α)
=

ht−j(β
1 , α)

ht−j(β1, α0)

ht(β
2, α0)

ht(β2 , α)

ht−j(β
1 , α0)

ht−j(β2 , α0)

ht−j(β
2 , α0)

ht(β2, α0)

≤ κU

κL

ht−j(β
1, α0)

ht−j(β2, α0)

1

(Qt,j)11(β2 , α0)
.

Note that
ht−j(β1,α0)
ht−j(β2,α0) is independent of (Qt,j)11(β

2 , α0) . We need to prove that

there is a stationary and ergodic process v0t such that Eht(β
1,α0)

ht(β2,α0) < Ev0t <∞ .

In fact, if β2 ≪ β0 , by Lemma A.14, we have

ht(β
1 , α0)

ht(β2 , α0)
≤ ht(β

L, α0)

ht(βU , α0)

= 1 + (βU
1 − βL

1 )

t
∑

j=1

(Bj−1)11(β
U )
ht−j(β

L, α0)

ht(βL, α0)
+ · · ·

+ (βU
q − βL

q )

t
∑

j=1

(Bj−1)11(β
U )
ht−j−q+1(β

L, α0)

ht(βL, α0)

≤ 1 + (βU
1 − βL

1 )

t
∑

j=1

(Bj−1)11(β
U )

1

(Qt,j)11(βL, α0)
+ · · ·

+ (βU
q − βL

q )
t
∑

j=1

(Bj−1)11(β
U )

1

(Qt,j+q−1)11(βL, α0)

≤ 1 + (βU
1 − βL

1 )

∞
∑

j=1

(Bj−1)11(β
U )

1

(Qt,j)11(βL, α0)
+ · · ·

+ (βU
q − βL

q )

∞
∑

j=1

(Bj−1)11(β
U )

1

(Qt,j+q−1)11(βL, α0)

= v0t .
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In the remaining subsection, the bounds for ht(θ
0)/ht(θ) , h

i
1t(θ) , h

i1i2
2t (θ) ,

and hi1i2i3
3t (θ) are given in Lemmas A.8 to A.11.

Lemma A.8. There exists a stationary and ergodic process {v0t} such that

sup
θ∈N(θ0)

{

ht

ht(θ)

}

≤ v0t

and the r-th moment Evr
0t <∞ for r = 1, 2, 3, 4.

Proof. Let θ ∈ Θ and partition the vector θ into β and α. Then

ht

ht(θ)
=
ht(β

0, α0)

ht(β, α0)

ht(β, α
0)

ht(β, α)
.

We establish a bound for the right-hand side. By Lemma A.6,

ht(β
0, α0)

ht(β, α0)
< κU ,

where κU is defined in (A.9), which is non-stochastic and does not depend on
θ. Consider the quantity

ht(β
0, α0)

ht(β, α0)
.

By (A.13) of Lemma A.13,

ht(β, α
0) ≥ ht(β

L, α0) .

Together with Lemma A.14 and (A.12) in Lemma A.13,

sup
θ

ht

ht(β, α0)
≤ ht

ht(βL, α0)

= 1 + (β1 − βL
1 )

t
∑

j=1

(Bj−1)11
ht−j(β

L, α0)

ht(βL, α0)

+ · · ·+ (βp − βL
p )

t
∑

j=1

(Bj−1)11
ht−j−q+1(β

L, α0)

ht(βL, α0)

≤ 1 + (β1 − βL
1 )

t
∑

j=1

(Bj−1)11
1

(Qt,j)11(βL, α0)

+ · · ·+ (βp − βL
p )

t
∑

j=1

(Bj−1)11
1

(Qt,j+q−1)11(βL, α0)

≤ 1 + (β1 − βL
1 )

∞
∑

j=1

(Bj−1)11
1

(Qt,j)11(βL, α0)

+ · · ·+ (βp − βL
p )

∞
∑

j=1

(Bj−1)11
1

(Qt,j+q−1)11(βL, α0)

= v0t . (A.11)
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The result for higher moments can be obtained by applying Minkoswki’s In-
equality to (A.11).

Lemma A.9. There exist a neighbourhood N(θ0) and a stationary and ergodic
processes {vi

1t} such that
sup

θ∈N(θ0)

hi
1t(θ) ≤ vi

1t,

and the r-th moment Evr
1t <∞ for r = 1, 2, 3, 4.

Proof. Suppose that there exist θL and θU such that θL ≪ θ ≪ θU for all
θ ∈ N(θ0). We consider the derivatives with respect to θi for θi = αµ and
θi = βµ respectively as follows.

Case (i): When θi = βµ, the derivative becomes

t
∑

j=1

(Bj−1)11ht−j−µ+1(β, α)

ht(β, α)
.

By Lemma A.7,

E
ht−j−µ+1(β, α)

ht(β, α)
< κ

1

(Qt,j)11(β, α0)
,

thus, the derivative is bounded by

κ

∞
∑

j=1

(Bj−1)11(β
U )

(Qt,j+µ−1)11(βL, α0)
= vi

1t,

which is almost surely convergent with finite expectation.

Case (ii): When θi = αµ, the derivative becomes

t
∑

j=1

(Bj−1)11ǫ
2
t−j−µ+1ht−j−µ+1(β, α)

ht(β, α)
,

which is bounded by

κ

∞
∑

j=1

ǫ2t−j−µ+1

(Bj−1)11(β
U )

(Qt,j+µ−1)11(βL, α0)
= vi

1t.

Lemma A.10. There exists a stationary and ergodic process {vi1i2
2t } such that

sup
θ∈N(θ0)

hi1i2
2t ≤ vi1i2

2t ,

and the r-th moment E(vi1i2
2t )r <∞ for r = 1, 2, 3, 4.
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Proof. From equation (A.7) for the second derivatives, we only need to consider
the term

t
∑

j=1

Bj−1(∂i1B)(∂i2Ht−j(θ)).

Consider the case that θi1 = βµ1
. We have

t
∑

j=1

(Bj−1)11
∂i2ht−j−µ1

(θ)

ht−j−µ1
(θ)

ht−j−µ1
(θ)

ht(θ)

≤
t
∑

j=1

(Bj−1)11(β
U )

{

sup
θ∈N(θ0)

∂i2ht−j−µ1
(θ)

ht−j−µ1
(θ)

}

{

ht−j−µ1
(βU , α)

ht(βL, α)

}

≤
∞
∑

j=1

(Bj−1)11(β
U )

vi2
1,t−j−µ+1

(Qt,j+µ−1)11(βL, α0)

= vi1i2
2t .

A result similar to Lemma A.10 is stated below without proof.

Lemma A.11. There exists a stationary and ergodic process {vi1i2i3
3t } such that

sup
θ∈N(θ0)

hi1i2i3
3t ≤ vi1i2i3

3t ,

and the r-th moment E(vi1i2i3
3t )r <∞ for r = 1, 2, 3, 4.

A.4. Proofs of Theorem 2.1

Consider the neighborhood N(θ0) constructed in subsection 3.5. Theorem 2.1
can be shown using Theorem A.1. In Lemma A.12, results on the asymptotic
properties of the differences

Ln(θ, ω,H0) − Ln(θ, ω0, H
0
0) ,

where H0
0 = (σ2

0 , σ
2
−1, . . . , σ

2
−p+1)

T , are given. Theorem 2.1 directly follows from
Lemma A.12 and Theorem A.1.

Lemma A.12. For all ω > 0 and H0 > 0, the first order derivatives satisfy
√
n
(

∂iLn(θ0, ω, H0) − ∂iLn(θ0, ω0, H0
0)
)

→p 0 ,

the second order derivatives satisfy
(

∂i1i2Ln(θ0 , ω, H0) − ∂i1i2Ln(θ0, ω0, H0
0)
)

→p 0,

and the third order derivatives satisfy

sup
N(θ0)

(

∂i1i2i3Ln(θ, ω,H0) − ∂i1i2i3Ln(θ, ω0, H0
0)
)

→p 0 ,

where θi are chosen from α and β .
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Proof of Lemma A.12. Consider a p+1-dimensional close set U containing ϕ0 =
(ω0, H0

0) as an interior point and covering all ϕ = (ω,H0) of interest. Below,
the notations ht(θ, ϕ) and Ln(θ, ϕ) are used. The lemma can be shown by using
the mean-value theorem and the following convergence results,

sup
ϕ∈U

√
n∂i0i1Ln(θ0, ϕ) →p 0,

sup
ϕ∈U

|∂i0i1i2Ln(θ0, ϕ)| →p 0,

sup
ϕ∈U,θ∈N(θ0)

|∂i0i1i2i3Ln(θ0, ϕ)| →p 0,

where the variable associated with the index i0 is chosen from ϕ, while that
associated with i1, i2, i3 are chosen from (β, α) .

The derivatives up to order three that appear in the above relations are
given in Equations (A.1)–(A.3). The fourth order derivatives can be obtained
by differentiating Equation (A.3). By using Lemma A.15, the convergence results
hold if the following two conditions are satisfied.

1. X2
t /ht(θ, ϕ) and the quantities hi1...ik

kt that relate to differentiations with
respect to (α, β) only are bounded by some stationary and ergodic pro-
cesses with finite unconditional moments.

2. The quantities hi1...ik

kt that involve differentiations with respect to ϕ decay
almost surely at the rate ≤ O(tkµt) for some non-negative integer k and
0 < µ < 1 .

The first condition is established in Lemmas A.8 to A.11. We now show that
the second condition holds. By Equation (A.5), when θi0 = ω,

∂i0Ht(θ, ϕ) =

t
∑

j=1

Bt−je1 =







O(λt) if λ > 1,
O(1) if λ < 1,
O(t) if λ = 1.

where λ is the eigenvalue of B with the largest modulus. Similarly, when θi0 =
h−µ+1 , we have

∂i0Ht(θ, ϕ) = Bt−jeµ = O(λt).

Note that
1

ht(θ, ϕ)
=
ht(θ

0 , ϕ)

ht(θ, ϕ)
· 1

ht(θ0, ϕ)
.

A bound for the first term on the right-hand side is given in Lemma A.8. For
the second term, we have

1

ht(θ0, ϕ)
≤ 1

eT
1 At−1 · · ·A0Y−1

.

According to Proposition 4.1, for all 0 < δ < ρ,

ht(θ
0, ϕ) ≥ O(e(ρ−δ)t).



N.H. Chan and C.T. Ng/Non-stationary GARCH 989

If δ is chosen so that O(e(ρ−δ)t) > O((Qt,t)11(θ
0)) , then,

sup
ϕ∈U,θ∈N(θ0)

∂i0ht(θ, ϕ)

ht(θ, ϕ)
= O(µt)

for some 0 < µ < 1 . Using similar arguments as presented above, it is not
difficult to show that we have in general,

sup
ϕ∈U,θ∈N(θ0)

∂i0...ikht(θ, ϕ)

ht(θ, ϕ)
= O(tk

′

µt)

for some non-negative integer k′ ≤ k and 0 < µ < 1 .

A.5. Technical Lemmae

Lemma A.13. If β ≪ β0 , for t ≥ 1 and j ≤ t, the following inequality holds

ht(β, α
0) > (Qt,j)11(β, α

0)ht−j(β, α
0) . (A.12)

Let θ1 = (β1, α) and θ2 = (β2, α) , here both vectors share the same parameters
α and further assume that β1 ≫ β2 , then

ht(β
1, α) ≥ ht(β

2 , α) . (A.13)

Proof. Inequality (A.13) follows from

ht(β
1, α) = eT

1 B
t(β1)H0 +

t
∑

j=1

(Bj−1)11(β
1)υt−j(α)

≥ eT
1 B

t(β2)H0 +

t
∑

j=1

(Bj−1)11(β
2)υt−j(α)

= ht(β
2 , α) .

Using (A.4) and (A.13), we have

Ht(β, α
0) = BHt−1(β, α

0) + υt−1(α
0)e1

≫ BHt−1(β, α
0) + α0

1ǫ
2
t−1ht−1(β

0, α0)e1

≫ BHt−1(β, α
0) + α0

1ǫ
2
t−1ht−1(β, α

0)e1

= (B + α0
1ǫ

2
t−1e1e

T
1 )Ht−1(β, α

0)

≫ · · ·
≫ Qt,j(β, α0)Ht−j(β, α

0) .

By noting that all entries in the above inequality are positive,

ht(θ
L) > (Qt,j)11(θ

L)ht−j(β, α
0) .
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Lemma A.14. Given two sets of parameters (β1 , α) and (β2 , α) , the following
expansion holds,

Ht(β
1 , α)−Ht(β

2, α) =

t
∑

j=1

Bj−1(β1)(B(β1) − B(β2))Ht−j(β
2, α) .

In particular, the first element is given by

ht(β
1, α) − ht(β

2, α) = (β1
1 − β2

1)
t
∑

j=1

Bj−1(β1)ht−j(β
2 , α)

+ · · ·+ (β1
q − β2

q )

t
∑

j=1

Bj−1(β1)ht−j−q+1(β
2 , α) .

Proof. The recursive relationships for Ht(β
1, α) and Ht(β

2, α) are given by

Ht(β
1 , α) = B(β1)Ht−1(β

1, α) + υt−1(α)

and
Ht(β

2 , α) = B(β2)Ht−1(β
1 , α) + υt−1(α),

respectively. It follows that

Ht(β
1, α) −Ht(β

2 , α)

= B(β1)Ht−1(β
1 , α)− B(β2)Ht−1(β

2 , α)

= (B(β1) −B(β2))Ht−1(β
1 , α) + B(β2)(Ht−1(β

1, α) −Ht−1(β
2, α))

= · · ·

= Bt(β2)(H0 −H0) +

t
∑

j=1

Bj−1(β1)(B(β1) −B(β2))Ht−j(β
2, α)

=

t
∑

j=1

Bj−1(β1)(B(β1) −B(β2))Ht−j(β
2 , α) .

Lemma A.15. If {an} is a stationary ergodic process with finite unconditional
expectation and bn → 0 almost surely , then

1

n

n
∑

t=1

atbt → 0 almost surely .

Moreover, if
∑n

t=1 tbt converges almost surely, then

1√
n

n
∑

t=1

atbt → 0 almost surely.
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Proof. Using mean ergodic theorem, we have

1

n

n
∑

t=1

at → Ean almost surely .

Simple mathematical analysis arguments yield the lemma.

Lemma A.16. Let η′t be defined in Lemma 4.1 and η′′t = P ′
tx

′/eT
1 P

′
tx

′ . For
p > 1 , define ζ′t = eT

2 η
′
t and ζ′′t = eT

2 η
′′
t . For p = 1 , define ζ′t = ǫ−2

t η′t and
ζ′′t = ǫ−2

t η′′t . We have

(I) A′
t+1η

′
t = (ζ′t+1)

−1η′t+1 and A′
t+1η

′′
t = (ζ′′t+1)

−1η′t+1 .

(II) eT
1 η

′
t = eT

1 η
′′
t = 1 .

(III) Define

Kt = 1 + β1 +
β2

β1
+ · · ·+ βp

βp−1
+ α1ǫ

2
t +

α2

α1
+ · · ·+ αq

αq−1
.

Then, ζ′t ≥ K−1
t and ζ′′t ≥ K−1

t .

(IV) For 2 ≤ k ≤ p ,

eT
k η

′
t =

k−1
∏

j=1

ζ′t−j+1 ≤ β−1
k−1 ,

eT
k η

′′
t =

k−1
∏

j=1

ζ′′t−j+1 ≤ β−1
k−1 ,

eT
k η

′
t

eT
k η

′′
t

≤ β
−(k−1)
1

k−1
∏

j=1

Kt−j+1 .

(IV) For 1 ≤ k ≤ q − 1 ,

eT
p+kη

′
t = ǫ2t−k+1

k
∏

j=1

ζ′t−j+1 ≤ α−1
k ,

eT
p+kη

′′
t = ǫ2t−k+1

k
∏

j=1

ζ′′t−j+1 ≤ α−1
k ,

eT
k η

′
t

eT
k η

′′
t

≤ α−k
1

k
∏

j=1

Kt−j+1 .

Proof. This is a consequence of Lemma 4.1.
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