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Abstract: Let Y be a Gaussian vector of R of mean s and diagonal co-
variance matrix I'. Our aim is to estimate both s and the entries o; = I'; 5,
for i = 1,...,n, on the basis of the observation of two independent copies
of Y. Our approach is free of any prior assumption on s but requires that
we know some upper bound v on the ratio max; o;/ min; o;. For example,
the choice 7 = 1 corresponds to the homoscedastic case where the com-
ponents of Y are assumed to have common (unknown) variance. In the
opposite, the choice v > 1 corresponds to the heteroscedastic case where
the variances of the components of Y are allowed to vary within some range.
Our estimation strategy is based on model selection. We consider a fam-
ily {Sm X Xm, m € M} of parameter sets where Sy, and 3, are linear
spaces. To each m € M, we associate a pair of estimators (8m, 5m) of (s, o)
with values in S, X X,,. Then we design a model selection procedure in
view of selecting some m among M in such a way that the Kullback risk of
(8, 6.3 1s as close as possible to the minimum of the Kullback risks among
the family of estimators {(8m, 5m), m € M}. Then we derive uniform rates
of convergence for the estimator (8;,, 6, ) over Holderian balls. Finally, we
carry out a simulation study in order to illustrate the performances of our
estimators in practice.
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1. Introduction

Let us consider the statistical framework given by the distribution of a Gaussian

vector Y with mean s = (s1,...,s,)" € R” and diagonal covariance matrix
op 0 - 0
O
0
0 0 oy,
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where 0 = (01,...,0,) € (0,00)". The vectors s and ¢ are both assumed to
be unknown. Hereafter, for any ¢t = (t1,...,t,) € R and 7 = (71, ...,7) €
(0,00)™, we denote by P; . the distribution of a Gaussian vector with mean ¢
and covariance matrix I'; and by K(Ps », P.r) the Kullback-Leibler divergence

between P, and P, .,
k) (l> :
Ti ag;

where ¢(u) = logu + 1/u — 1, for u > 0. Note that, if the ;s are known and
constant, the Kullback-Leibler divergence becomes the squared L2-norm and,
in expectation, corresponds to the quadratic risk.

Let us suppose that we observe two independent copies of Y, namely Yyl =

1
IC(PS,U; Pt,‘l') = 5

n
1=

1

(Ylm, ce Y,Ll])’ and Y2 = (Ylm, ce Y,?})’. Their coordinates can be expanded
as

vV = s+ e, i=1,... nand j=1,2, (1.1)
where !l = ( [1”, . .,eg])’ and el = ( [12}, s 55])’ are two independent stan-

dard Gaussian vectors. We are interested here in the estimation of the two
vectors s and o. Indeed, their behaviors contain substantial knowledge about
the phenomenon represented by the distribution of Y. We have particularly in
mind the case of a variance that stays approximately constant by periods and
that can take several values in the proceeding of the observations. Of course, we
want to estimate the mean s but, in this particular case, we are also interested
in recovering the periods of constancy and the values taken by the variance o.
The Kullback-Leibler divergence measures the differences between two distribu-
tions Ps , and P; ;. Thus, it allows us to deal with the two estimation problems
at the same time. More generally, the aim of this paper is to estimate the pair
(s5,0) by model selection on the basis of the observation of Y and Y2,

For this, we introduce a collection F = {S,;, X X,,,, m € M} of products of
linear subspaces of R™ indexed by a finite or countable set M. In the sequel,
these products will be called models and, for any m € M, we will denote by D,,
the dimension of S,, X 3,,,. To each m € M, we will associate a pair of estimators
(8m, 0m) that is similar to the mazimum likelihood estimator (MLE). It is well
known that, if the o;’s are equal, the estimators of the mean and the variance
factor given by maximization of the likelihood are independent. This fact does
not remain true if the o;’s are not constant. To recover the independence between
the estimators of the mean and the variance, we construct them separately from
the two independent copies Y and Y. For the estimator &,, of s, we take
the MLE based on Y and for the estimator &,, of o, we take the MLE based
on Y Thus, for each m € M, we have a pair of independent estimators
(3, 0m) = (3, (YT), 6, (Y B])) with values in S,, x ¥,,,. The Kullback risk of
(8m, 0m) is given by E[IC(Ps o, Ps,, 4,,)] and is of order of the sum of two terms,

inf  K(Ps.o,Pir)+ Dy . (1.2)
(t,7)ESm X
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The first one, called the bias term, represents the capacity of S, x X, to
approximate the true value of (s,0). The second, called the variance term, is
proportional to the dimension of the model and corresponds to the amount
of noise that we have to control. To warrant a small risk, these two terms
have to be small simultaneously. Indeed, using the Kullback risk as a quality
criterion, a good model is one minimizing (1.2) among F. Clearly, the choice
of a such model depends on the pair of the unknown parameters (s,o) and
make good models unavailable to us. So, we have to construct a procedure to
select an index 7 = m (Y, Y1) € M depending on the data only, such that
E[K(Ps,5, Ps,, .5, )] is close to the smaller risk
R(S, g, .7:) = migﬁ/( E[K(Psyg, P§m,&m)] .

The art of model selection is precisely to provide procedure solely based on the
observations in that way. The classical way consists in minimizing an empirical
penalized criterion stochastically close to the risk. Considering the likelihood
function with respect to Y,

1 n Y[l] —t 2
VteR", 7€ (0,00)", L(t,T) = §ZQ +log7; ,

i=1 Ti
we choose m as the minimizer over M of the penalized likelihood criterion
Crit(m) = L(8m, 6m) + pen(m) (1.3)

where pen is a penalty function mapping M into Ry = [0, 00). In this work, we
give a form for the penalty in such a way to obtain a pair of estimators (8, 5)
with a Kullback risk close to R(s, o, F).

Our approach is free of any prior assumption on s but requires that we know
some upper bound v > 1 on the ratio

o [o. <y

where o* (resp. o) is the maximum (resp. minimum) of the o;’s. The knowledge
of v allows us to deal equivalently with two different cases. First, “y = 17
corresponds to the homoscedastic case where the components of Y and Y
are independent with a common variance (i.e. 0; = o) which can be unknown.
On the other side, “y > 1”7 means that the o;’s can be distinct and are allowed to
vary within some range. This uncommonness of the variances of the observations
is known as the heteroscedastic case. Heteroscedasticity arises in many practical
situations in which the assumption that the variances of the data are equal is
debatable.

The research field of the model selection has known an important develop-
ment in the last decades and it is beyond the scope of this paper to make an
exhaustive historical review of the domain. The interested reader could find
a good introduction to model selection in the first chapters of [17]. The first
heuristics in the domain are due to Mallows [16] for the estimation of the mean
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in homoscedastic Gaussian regression with known variance. In more general
Gaussian framework with common known variance, Barron et al. [7], Birgé and
Massart ([9] and [10]) have designed an adaptive model selection procedure to es-
timate the mean for quadratic risk. They provide non-asymptotic upper bound
for the risk of the selected estimator. For bound of order of the smaller risk
among the collection of models, this kind of result is called oracle inequalities.
Baraud [5] has generalized their results to homoscedastic statistical models with
non-Gaussian noise admitting moment of order larger than 2 and a known vari-
ance. All these results remain true for common unknown variance if some upper
bound on it is supposed to be known. Of course, the bigger is this bound, the
worst are the results. Assuming that v is known does not imply the knowledge
of a such upper bound.

In the homoscedastic Gaussian framework with unknown variance, Akaike has
proposed penalties for estimating the mean for quadratic risk (see [1, 2] and [3]).
Replacing the variance by a particular estimator in his penalty term, Baraud
[5] has obtained oracle inequalities for more general noise than Gaussian and
polynomial collection of models. Recently, Baraud, Giraud and Huet [6] have
constructed penalties able to take into account the complexity of the collection of
models for estimating the mean with quadratic risk in Gaussian homoscedastic
model with unknown variance. They have also proved results for the estimation
of the mean and the variance factor with Kullback risk. This problem is close to
ours and corresponds to the case “y = 17. A motivation for the present work was
to extend their results to the heteroscedastic case “y > 1”7 in order to get oracle
inequalities by minimization of penalized criterion as (1.3). Assuming that the
collection of models is not too large, we obtain inequalities with the same flavor
up to a logarithmic factor

E[K(PS,CH P§fmffm)]

<C inf { inf K (Psg, Prr) + Dy loghte Dm} +R O (14)
meM \(t,7)€Sm X,

where C' and R are positive constants depending in particular on v and € is a

positive parameter.

A non-asymptotic model selection approach for estimation problem in het-
eroscedastic Gaussian model was studied in few papers only. In the chapter 6
of [1], Arlot estimates the mean in heteroscedastic regression framework but for
bounded data. For polynomial collection of models, he uses resampling penalties
to get oracle inequalities for quadratic risk. Recently, Galtchouk and Pergamen-
shchikov [14] have provided an adaptive nonparametric estimation procedure for
the mean in a heteroscedastic Gaussian regression model. They obtain an oracle
inequality for the quadratic risk under some regularity assumptions. Closer to
our problem, Comte and Rozenholc [12] have estimated the pair (s,o). Their
estimation procedure is different from ours and it makes the theoretical results
difficultly comparable between us. For instance, they proceed in two steps (one
for the mean and one for the variance) and they give risk bounds separately

for each parameter in Lo-norm while we estimate directly the pair (s, o) for
Kullback risk.
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As described in [8], one of the main advantages of inequalities such as (1.4)
is that they allow us to derive uniform convergence rates for the risk of the
selected estimator over many classes of smoothness. Considering a collection of
histogram models, we provide convergence rates over Holderian balls. Indeed,
for aq, g € (0,1], if s is a;-Holderian and o is ao-Holderian, we prove that the
risk of (8, 6y,) converges with a rate of order of

( n ) 7204/(2044’1)
log'™n

where o = min{ay, as} is the worst regularity. To compare this rate, we can
think of the homoscedastic case with only one observation of Y. Indeed, in this
case, the optimal rate of convergence in the minimax sense is n=2®/(22+1) and,
up to a logarithmic loss, our rate is comparable to this one. To our knowl-
edge, our results in non-asymptotic estimation of the mean and the variance in
heteroscedastic Gaussian model are new.

The paper is organized as follows. The main results are presented in section 2.
In section 3, we carry out a simulation study in order to illustrate the perfor-
mances of our estimators in practice with the Kullback risk and the quadratic
risk. The last sections are devoted to the proofs and to some technical results.

2. Main results

In a first time, we introduce the collection of models, the estimators and the
procedure. Next, we present the main results whose proofs can be found in the
section 4. In the sequel, we consider the framework (1.1) and, for the sake of
simplicity, we suppose that there exists an integer k, > 0 such that n = 2%,

2.1. Model collection and estimators

In order to estimate the mean and the variance, we consider linear subspaces of
R™ constructed as follows. Let M be a countable or finite set. To each m € M,
we associate a regular partition p,, of {1,...,2%} given by the [p,,| = 2%~
consecutive blocks

{(—1)2fhm g1, a2k ) =1 pl

For any I € p,,, and any = € R", let us denote by x|; the vector of R™/IPm| with
coordinates (z;);es. Then, to each m € M, we also associate a linear subspace
E,, of R™IPnl with dimension 1 < d,,, < 2F»~Fm_ This set of pairs (pp, Em)
allows us to construct a collection of models. Hereafter, we identify each m € M
to its corresponding pair (p.,, Em).

For any m = (pm, Em) € M, we introduce the subspace S,, C R" of the
E,,-piecewise vectors,

Sm = {x € R" such that VI € p,,, x|; € En.}
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and the subspace ¥, C R™ of the piecewise constant vectors,
S = { > gy, VI € pm, 91 eR} :
I€pm

The dimension of S, x 3, is denoted by D,,, = |pm|(dm + 1). To estimate the
pair (s, o), we only deal with models S,,, x X,,, constructed in a such way. More
precisely, we consider a collection of products of linear subspaces

F = {8 X S, m € M} (2.1)

where M is a set of pairs (p,,, E,,) as above. In the paper, we will often make
the following hypothesis on the collection of models:

(Hy) There exists 6§ > 1 such that

0

This hypothesis avoids handling models with dimension too great with respect
to the number of observations.

Let m € M, we denote by 7, the orthogonal projection on .S,,,. We estimate
(s,0) by the pair of independent estimators (8, G1m) € Spm X X, given by

S = me[l]

and

G = Z Om, 117 where VI € pi, Gmr = LZ(YF] - (WmY[Q])')2 :
= e l

Thus, we get a collection of estimators {(§,,, ), m € M}.

2.2. Risk upper bound

We first study the risk on a single model to understand its order. Take an
arbitrary m € M. We define ($,,,0m) € Spm X Xy, by

S = TS
and
1
Om = Z Om,1lr where VI € py, o1 = m Z(Sl - smyi)2 +o0; .
I€pm i€l

Easy computations proves that the pair (s,,, 0,,) reaches the minimum of the
Kullback-Leibler divergence on S, X ¥,,,

inf IC(PS,U; Pt,‘l') - IC(PS,U; Psm,crm)

(t,7)ESm XXm
1 O'mJ

Icpm i€l
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The next proposition allows us to compare this quantity with the Kullback risk
of (S, m)-

Proposition 1. Let m € M, if the hypothesis (Hy) is fulfilled, then

D,
IC(PS,U; Psm,am) vV — g E [IC (Ps,cr; Pém,&m)] g IC(PS,U; P,

22
S . 9 Dm
e maom ) R

where k > 1 is a constant that can be taken equal to 1+ 2e~ 1.

As announced in (1.2), this result shows that the Kullback risk of the pair
(8m,0m) is of order of the sum of a bias term K(Ps s, Ps,, »,,) and a vari-
ance term which is proportional to D,,. Thus, minimizing the Kullback risk
E K (Ps,s, Ps,, 5.,,)] among m € M corresponds to finding a model that realizes
a trade-off between these two terms.

Let pen be a non negative function on M, m € M is any minimizer of the

penalized criterion

m € argmin {L (8, ) + pen(m)} . (2.3)
meM

In the sequel, we denote by (5,5) = (8, 64n) the selected pair of estimators. It
satisfies the following result:

Theorem 2. Under the hypothesis (Hp), suppose there exist A, B > 0 such
that, for any (k,d) € N?,

My.q = Card{m € M such that |p,,| = 28 and d,, = d} <A1+ d)P  (2.4)

where M is the set defined at the beginning of the section 2.1. Moreover, assume
that there exist 6,¢ > 0 such that

5
Dy < —T ¥meM. (2.5)
log™“n
If we take
vm € M, pen(m) = (v0 + log' T Dy,) Di, (2.6)
then

E[K (Psq, Ps5)] < C igﬁA{lC(PSVU,PSng)—i-Dm log' ™ Dp} + R (2.7)

where R = R(7,0, A, B,¢,0) is a positive constant and C' can be taken equal to

0+ 1)v0
0_2(1+w>,
log" ™" 2

The inequality (2.7) is close to an oracle inequality up to a logarithmic fac-
tor. Thus, considering the penalty (2.6) whose order is slightly larger than the
dimension of the model, the risk of the estimator provided by the criterion (1.3)
is comparable to the minimum among the collection of models F.
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2.3. Convergence rate

One of the main advantages of an inequality as (2.7) is that it gives uniform
convergence rates with respect to many well known classes of smoothness. To
illustrate this, we consider the particular case of the regression on a fixed design.
For example, in the framework (1.1), we suppose that

V1 <i<n, s =s.(i/n) and o; = o,.(i/n),
where s, and o, are two unknown functions that map [0, 1] to R.
In this section, we handle the normalized Kullback-Leibler divergence

1
Kn (Ps,cra Pt;r) - E’C (Ps,cra Pt;r) )

and, for any o € (0,1) and any L > 0, we denote by Hq(L) the space of the
a-Hoélderian functions with constant L on [0, 1],

Ha(L) ={f:[0,1] =R = Va,y € [0,1], [f(z) = f(y)| < Llz —y|*} .

Moreover, we consider a collection of models F¢ as described in the section 2.1
such that, for any m € M, E,, is the space of dyadic piecewise constant functions
on d,, blocks. More precisely, let m = (pp,, Em) € M and consider the regular
dyadic partition p/, with |p,,|d,, blocks that is a refinement of p,,. We define
Sm as the space of the piecewise constant functions on p/, |

Sy = {f— Z friy such that VI € pl,, fr GR} )

Iepl,

and ¥, as the space of the piecewise constant functions on p,,,

Ym = {g = Z grly such that VI € p,,, g5 € R} :
I€pm

Then, the collection of models that we consider is

FFPC = {8, x%,,, me M} .
Note that this collection satisfies (2.4) with A = 1 and B = 0. The following
result gives a uniform convergence rate for (s, 5) over Holderian balls.

Proposition 3. Let ay, s € (0,1], L1, Lo > 0 and assume that (Hy) is fulfilled.
Consider the collection of models FF'C and 6,¢ > 0 such that, for any m € M,
56yn

1+e n

Dy, <
log

Denoting by (5,0) the estimator selected via the penalty (2.6), if n satisfies

20’2 2 4 2
nz|-———] Ve (1+e)
(L?a* +L§>
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then

n

—2a/(2a+1)
) (2.5)

sup E[Kn(Ps,o, Ps5)] < C (T
(87,01 )EHay (L1) X Hay (L2) 10g n
where a = min{aq, s} and C is a constant which depends on oy, aa, L1, Lo,
0, v, ox, § and €.

For the estimation of the mean s in quadratic risk with one observation of Y,
Galtchouk and Pergamenshchikov [14] have computed the heteroscedastic min-
imax risk. Under some assumptions on the regularity of o, and assuming that
Sy € Hay (L1), they show that the order of the optimal rate of convergence in
minimax sense is Cy, ,n 2%/ 21+ Concerning the estimation of the variance
vector o in quadratic risk with one observation of Y and unknown mean, Wang
et al. [19] have proved that the order of the minimax rate of convergence for the
estimation of ¢ is Cy, o, max {n =41, n=202/(2e24} once s, € Hq, (L1) and
or € Ha,(L2). For ay,as € (0,1] the maximum of these two rates is of order
n—20/at) where a = min{ay, as} is the worst among the regularities of s,
and o,. Up to a logarithmic term, the rate of convergence over Holderian balls
given by our procedure recover this rate for the Kullback risk.

3. Simulation study

To illustrate our results, we consider the following pairs of functions (s, o,)
defined on [0, 1] and, for each one, we precise the true value of 7:

o Ml (y=2)

4 if0<a<1/4
)=y T2 g 2 H0Sz<lz
1 if3/4<e<1
o M2 (y=1)
sp(z) =1 +sin(2rz +7/3) and o.(z)=1,
. Vi3 (v = 7/3)

sp(r) =3x/2 and o.(r) =1/2+ 2sin(4r(z A 1/2)?)/3,
o M4 (7 =2)
sp(x) =1+ sin(dr(xzA1/2)) and o.(z) = (3 +sin(27x))/2 .

In all this section, we consider the collection of models FF¢ and we take
n = 1024 (i.e. k, = 10). Let us first present how our procedure performs on
the examples with the true value of v for each simulation, e = 1072 and § = 3
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Fic 1. Estimation on the mean (left) and the variance (right) in the case M1I.

0.8 -

0.6

0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10

F1c 2. Estimation on the mean (left) and the variance (right) in the case M2.

in the assumption (2.5) and the penalty (2.6) with § = 2. The estimators are
drawn in plain line and the true functions in dotted line.

In the case of M1, we can note that the procedure choose the “good” model
in the sense that if the pair (s,,0,) belongs to a model of FF¢, this one is
generally chosen by our procedure. Repeating the simulation 100 000 times with
the framework of M1 gives us that, with probability higher than 99.9%, the
probability for making this “good” choice is about 0.9978 (+4 x 10~%). Even
if the mean does not belong to one of the S,,’s, the procedure recover the
homoscedastic nature of the observations in the case M2. By doing 100 000
simulations with the framework induced by M2, the probability to choose an
homoscedastic model is around 0.99996 (1 x 107°) with a confidence of 99.9%.
For more general framework as M3 and M4, the estimators perform visually
well and detect the changements in the behaviour of the mean and the variance
functions.

The parameter ~ is supposed to be known and is present in the definition
of the penalty (2.6). So, we naturally can ask what is its importance in the
procedure. In particular, what happens if we do not have the good value? The
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F1c 3. Estimation on the mean (left) and the variance (right) in the case MS3.

2.0

0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 08 10

Fic 4. Estimation on the mean (left) and the variance (right) in the case M.

following table present some estimations of the ratio
E K (Ps,0, Ps5)]/ inﬁ/[ E (K (Ps,0s Pspnom)]
me

for several values of . These estimated values have been obtained with 500
repetitions for each one. The main part of the computation time is devoted to
the estimation of the oracle’s risk. In the cases M1, M3 and M4, the ratio does
not suffer to much from small errors on the knowledge of v. The more affected
case is the homoscedastic one but we see that the best estimation is obtained
for the good value of 7 as we could expect. More generally, it is interesting to
observe that, even if there is a small error on the value of v, the ratio stays
reasonably small.

In the regression framework with heteroscedastic noise, we can be interested
in separate estimations of the mean and the variance functions. Because our
procedure provide a simultaneous estimation of these two functions, we can ask
how perform our estimators s and ¢ individually. Considering the quadratic risks
E [||s — 5[|*] and E [[lo — &||?] of § and & respectively, it could be interesting to
compare them to the minimal quadratic risk among the collection of estimators.
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TABLE 1. Ratio between the Kullback risk of (8,5) and the one of the oracle

v 1 15 | 2 25 | 3

MI | 0.98 | 1.02 | 1.02 | 1.04 | 1.01
M2 | 1.49 | 1.59 | 1.88 | 2.29 | 2.89
M3 | 1.77 | 1.78 | 1.81 | 1.90 | 1.94
M4 | 1.25 | 1.26 | 1.27 | 1.32 | 1.33

TABLE 2. Ratio between the Lo-risk of 5§ and the minimal one among the 3m’s

y 1 15 2 2.5 3

M1 | 0.98 | 1.01 | 0.95 | 1.04 | 0.98
M2 | 1.52 | 1.67 | 2.04 | 2.43 | 3.04
M3 | 1.73 | 1.76 | 1.82 | 1.88 | 1.96
M4 | 1.47 | 1.48 | 1.47 | 1.47 | 1.49

TABLE 3. Ratio between the La-risk of & and the minimal one among the 6m’s

y 1 15 2 2.5 3

M1 | 1.00 | 1.06 | 1.03 | 1.02 | 1.01
M2 | 1.11 | 1.56 | 1.68 | 2.21 | 3.36
M3 | 2.02 | 2.07 | 2.13 | 2.20 | 2.23
M4 | 1.18 | 1.37 | 1.34 | 1.44 | 1.49

To illustrate this, we give below two sets of estimations of the ratios

~112 . ~ 2 ~ 12 : A 2
E(ls =312/ inf Els—snl?] and E[lo—5I?]/ inf E o~ 6]
in the frameworks presented in the beginning of this section. We can observe

on the following estimations that the quadratic risks of our estimators are quite
close to the minimal ones among the collection of models.

4. Proofs
For any I C {1,...,n} and any x,y € R"™, we introduce the notations
(@, ) = wigi and )7 = a7 .
iel iel

Let m € M, we will use several times in the proofs the fact that, for any I € p,,,
16m.1 = ox®(|] = dm — 1) (4.1)

where x2(|I| — dmm — 1) is a x? random variable with |I| — d,, — 1 degrees of
freedom.
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4.1. Proof of the proposition 1

Recalling (2.2) and using the independence between s, and &,,, we expand the
Kullback risk of (§,,, 0m,),

E[K(Pso, Psyon) = = Z ZE[ S““>2 +6 (6m_’l>] (4.2)

Iepm el Ti
- ;e[S ] (s = 8]
Iepm
+3 ZZE[log 1 10 %
Iepmlel Umvl Oi
= IC(PSG';PSmgm Z |I|E|: (0’m[>:|
IG;D
1 oi + Si_smi)2_aml
_ E 3 5
+3 X E| m ]
I€py, i€l )
1 1 1/2 _[1])2
+3 ZE 5 | E [lmmly/ %<
= K(Psoapsmom)+E1+E2 (4.3)

where

b)) m oa-bysl?

Iep I€pm

:| E Trmllo'l .

iel

To upper bound the first expectation, note that

vIepmu E[&m,l]zgm,l |I|Z7Tm1101—0m1(1_p1)

iel
where
I = Tm,i,i0Oi € 0,1
p IIlcrmz; (0,1) .

We apply the lemmas 10 and 11 to each block I € p,, and, by concavity of the
logarithm, we get

oG]

N

10gIE[ ]—FE[UmI]—l
Om,I Om,I
1 2/@72
< log(l — 1 —1
outt =)+ 12 (14 e =3)
1 2/@72
1+ —+—— | -1
= ( T —2)

1 9 2k7?
1— (p1+|f|—dm—2 '

N

—pr+——



X. Gendre/Simultaneous estimation of the mean and the variance 1358

Using (Hy) and the fact that p; < vd,,/|I|, we obtain

1 1] 2 2k
E, < =Y _
! 221—1(p1+|l|—dm—2

Iep P
1 242 252|112
< 1y Vo, et
2 & Il =vdm (] = vdm)(I] = dm — 2)
2
Y2 Olpm|dm
< %erz)t?r‘)lpml. (4.4)

The second expectation in (4.3) is easier to upper bound by using (4.1) and the
fact that d,,, > 1,

1 1
EQ = 5 Z E |:6'm1:| Z?Tm%lo’i
I€pm i er
1 Y |dm
< = __r=m
S 5 X —dn =3
I€pm
< M. (4.5)

We now sum (4.4) and (4.5) to obtain
E1 + Ey < ¥20|pm |dm + 67202 |pm| < k726°D,y, .

For the lower bound, the positivity of ¢ in (4.2) and the independence between
Sm and &, give us

E [IC(PS,U; Pém,&m)] 2

N =

a2
3 u[leSnl]
I€pm Om,I
1 E[Hs—émﬂﬂ
~ 2 2 E [6m.1]
I€pm ’

1 |\s—sm|\§—|—a*dm
> - 1]
2 2 s = smll7 + (|| = dm)o*

I€pm

It is obvious that the hypothesis (Hy) ensures d,,, < |I]/2. Thus, we get 0..d,, <
(|I] = dy)o* and

1 |I|owdym |Pmldm _ Dm
E Ps o P§ G Z = Z zZ—.
[IC( ) ms m)] 2 I; (|I| _ dm)U* 2'7 4'7

To conclude, we know that (8,,,5,,) € Sy X X, and, by definition of (s,,, 0.,),
it implies
E [K(PS,Ua Pém,&m)] 2 IC(PS,Ua PSmygm) .
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4.2. Proof of theorem 2

We prove the following more general result:

Theorem 4. Let a € (0,1) and consider a collection of positive weights
{Zm }tmem- If the hypothesis (Hy) is fulfilled and if

Ym € M, pen(m) = v0D,, + Ty, (4.6)
then
(1 = @)E[K (Ps,0; Ps5)]

< mlé% {E[K(Ps,0, Ps,, 5,,)] + pen(m)} + R1(M) + Ra(M)

where R1(M) and Rao(M) are defined by

— [2log(1+dm))
2C6° m|dm log(1 + dp,
Ru(M) — €8y 3 mdm< /[ 108 >>

Tm
meM
and
2(a++0) + 1 n | pm|Tm
== - m - log| 14+ ———— .
Rao(M) 5 > I IeXp( 2] og( t (e £ 2)

meM

In these expressions, || is the integral part and C' is a positive constant that

could be taken equal to 12v/2¢/(y/e — 1).

Before proving this result, let us see how it implies the theorem 2. The choice
(2.6) for the penalty function corresponds to x,, = Dy, log" ™ D,, in (4.6).
Applying the previous theorem with o = 1/2 leads us to

E [IC (Ps,cr; PE,&)]
<2 inf {E[K(Poo, Ps,..6,)] +pen(m)} +2C6°y Ry +8(10 + 1) Re

with

[2log(1+dm)]
2C0%*y+\/ |pm|dm log(1 + d,n)
Rl = Z V |pm|dm ( .
meM m

and

n |Dm|Tm
Ro = m - 1 1 .
2= 2 b 'exp( 20w Og( T o ))

meM

Using the upper bound on the risk of the proposition 1, we easily obtain the
coefficient of the infimum in (2.7). Thus, it remains to prove that the two quan-
tities R1 and Rs can be upper bounded independently of n. For this, we denote
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by B’ = B + 2log(2C#%y) + 1 and we compute

1P| (1 4 do) 10g" T (|pm| (1 + din))

2C0*Y\/|pm|dm log(1 + do,
R, = Z\/wdm< ”Y\/|p| og( )

) [21og(1+dm)]

meM
[21log(1+4d) ]
_ log(1 + d)
< My, q28/2d | 2062y27+/2 -
,%;)dz% (klog?2 +log(1 +d)'"

< AY DY a+ayets ( 27*/2log(1 + d)

|21og(1+d)]
1+4+e€
k>0d>1 (klog2 +log(1 +d)) )

< ARy +RY).

We have split the sum in two terms, the first one is for d = 1,

25" log 2 9B’ 1
= - € < 0.
1 kgo (klog2 +10g2>1+e log© 2 ]%;) (k4 1)1+e

The other part R} is for d > 2 and is equal to
1

Z Z(l + d)B/2fk([210g(1+d)J71)/2 ( log(1 + d)

|2 log(1+d)
1+e
k>0d>2 (klog2 +log(l +d)) )

Noting that 1 < log(1 + d) < [2log(1 + d) ], we have

R < Y2723 (14 d)F exp (—e[2log(1 + d) | loglog(1 + d))

k>0 d>2
\/5 Z(l_i_d)B/fsloglog(H»d) <00 .
\/i -1 d>2

We now handle Rs. Our choice of z,, = D,, 1og1JrE D,,, and the hypothesis (2.5)

imply
1 — (d]pm| +1)~"

Olpm|+ 1)~
We recall that, for any @ € (0,1),if 0 <t < (1 —a)/a, then log(1+1t) > at. Take
a = (8|pm| +1)~! to obtain

I 1 > > .
o8 ( + 5yn 50 pm|+ Dyn = 56+ 1)yn

[P Tm
5yn

< Olpm| =
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For any positive ¢, 1 + t17¢ < (1 +¢)**¢, then we finally obtain

[pm|Zm
Ry = " 1 1
meM
X
<Y il (_—m)
e ? 1067(6 + 1)[pm|
(1+d)log'* (25(1 4 d))
< M, 428 -
D> My eXp( 1007(5 + 1)
k>0d>1

< AR,RY
where we have set
(klog2)'*e
= Zexp klog2 — —————— | <
= ( 50v(6 + 1)

and

(1+d)log" (1 + d)) .

"o _
Ry = exp (B log(1 + d) G T

d>1

We now have to prove theorem 4. For an arbitrary m € M, we begin the
proof by expanding the Kullback-Leibler divergence of (§, &),

1w 5 5
IC(PS,U; PE,&) - 5 Z (0__>
1 1

1=

I
s

Ps Neg) sm crm) + [E(SAm; &m) - IC(PS oy Psm crm)]
+[L£(5,0) — L(8msm)] + [K(Ps,oy Ps.z) — L(8,0)] .

By the definition (2.3) of /i, the inequality
L(5,6) — L(Sm, 0m) < pen(m) — pen(ri) (4.7)

is true for any m € M. The difference between the divergence and the likelihood
can be expressed as

IC(PS o Psm crm) - E(gm; 6m)

S PIDNES

Iep,y, i€l

) (1 - 4”2) (4.8)

2(8i — Sm.i) als

1
O'm[ 2
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Using (4.7) and (4.8), for any « € (0,1), we can write
(1 —a)K(Ps o, Ps.5) (4.9)
< K(Ps 5y Ps,, 5,,) +pen(m) + G(m)

+ Wi(m) + Wa () + Z (1) — pen(m)

where, for any m € M,

Wigm) = 3 = [mnr2e|

U
Tepm = ™1

1 «
Walm) = 37— ((sm = . T%) = s —sl}) .

)0 e (%)

5 X 2((
G- 3 (5 e}, <13 (2 1) (1-4))

I Epm 1€1
We split the proof of theorem 4 in several lemmas.

Lemma 5. For any m € M, we have
E[G(m)] <0

Proof. Let us compute this expectation to obtain the inequality. By indepen-
dence between !l and ¢!, we get

1
Ela ’ 2] — _A_]E WTL/200 P2 0]
comf] = X (et e
- -5 e ratf].
Om.T 7 I
It leads to E[G(m)] = E [E [G(m) ’5 ]] <o. O

In order to control Z(m), we split it in two terms that we study separately,

Z(m) = Zi(m) + Z_(m)

) )

where

w3 35

Iepm iel

> 1§m,1<0i>

and

w3 (-

Iepm iel
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Lemma 6. Let m € M and x be a positive number. Under the hypothesis (Hy),
we get

E[(Zy(m) — 2),] < 2P o (_n = ([ + 3l (1 . 20z|pm|x>> |
@ 2|pm| yn

Proof. We begin by setting, for all 1 <14 < n,

(0i/0mi—1),

Ti(m) =
" (S gfom —12)
and we denote by
ZT )(1-e }2) .
We lower bound the function ¢ by the remark
Va € (0,1), Yu € [a, 1], (% — 1)2 < %(b(u) .

Thus, we obtain

n 2 n ~
5 () i) e () e

15
i=1 me + j=1

and we use this inequality to get

n ) 2 1/2 n ~ )
) (Am - 1) ) S(m) — %Zfb (U:J) 15, <0

1
Zi(m) = 5( 5
i= m,e —+

<
1 o
< — - 1.
< e B %) Stmk
To control S(m), we use the inequality (4.2) in [15], conditionally to e[/, Let

u >0,

P ((mgag( U‘;) S(m)% > u) - E [JP (S(m) > Ju/ max —

i<n o’m i

E [exp (—% r_IEn Um’i>] .
sn 0y

By the remark (4.1), we can upper bound it by

(i) s ) <elon ()

)

/N
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where the X;’s are i.i.d. random variables with a x? (|I| — d,, — 1) /|I] distri-
bution.
For any A > 0, we know that the Laplace transform of X7 is given by

=(I|=dm—1)/2
2
A) (4.10)

B [e—X1] — (1 s

Let t > 0, the following expectation is dominated by

IE[(ZJr(m)—%t)J - /OOO]P’<Z+(m)>%+u>du

e t

< / E[exp (— (%—l-—) min X1>] du
0 vy 2 ) Iepm
e t

< / E [maxexp (— (ﬁ + —) XI)] du .
0 Iepm v 2

Using (Hy) and (4.10), we roughly upper bound the maximum by the sum of
the Laplace transforms and we get

E [(Z+(m) - %t)J
<2 o jgﬂ —3) (” m

I€pm
gvlpleXp n—( +3)|p|10g L4 del VY
o 2|pm| n

)(llldmb’)/2

Take t = 2z /v to conclude. O

Lemma 7. Let m € M and x be a positive number, then

200+ 1
o

e*O&I

E[(Z-(m)— (2a+ 1)z), ] <

Proof. Note that for all u > 1, we have

20(u) > (l_1>2 .

u

Let t > 0, we handle Z_(m) conditionally to /2 and, using the previous lower
bound on ¢, we obtain

200+ 1
P(Z_(m)> t’ [2]
( (m) 2a c

1< o 172 200+ 1 a o 2
<P = 1 ([. —1)> t+ 2 1 ’[21
(33 @ () |
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1 - a; [1]2 t a; 2 2]
<32 ( 1) e 35 1)

o
i=1 \Omi

Let us note that

g;
max | — -1 <1,
i<n Om,i -

thus, we can apply the inequality (4.1) from [15] to get

P (Z(m> > 20‘22 1t> < exp(—1/2) .

This inequality leads us to

20+ 1 oo
E (z (m) — 22+ t) < / P(Z_(m) > u)du
«a + (2a+1)t/a
20+1 _,
e ",
o
Take t = ax to get the announced result. O

It remains to control Wi(m) and Wa(m). For the first one, we now prove a
Rosenthal-type inequality.

Lemma 8. Consider any m € M. Under the hypothesis (Hyp), for any x > 0,
we have

E[(W1(m) —~0D,,, — x)4]
— 20?4/ |pm|dm log(1 + dn,
< C192"Y\/|pm|dm ( | | Og( )

x

) [2log(14dm)]

where |-] is the integral part and C is a positive constant that could be taken

equal to
_12V/2e
= e
Proof. Using the lemma 10 and the remark (4.1), we dominate W (m),

|I|d
W, 1117 = E F, = E F
(m) < Wi(m) ”Ylep | —dpm —1 ! n—|pm| 1+d !

~ 43.131 .

where the Fy’s are i.i.d. Fisher random variables of parameters (d,, n/ |pm| —
dy, — 1). We denote by F,, the distribution of the F;’s and we have

%Dm < Ypmldm < E[W{(m)] < VO0pm|dm < 0Dy,

Take = > 0 and an integer ¢ > 1, then

E [(W{(m) ~ E[V{(m)])}]

B [(W}(m) ~ BIW{(m)] —2),] < =

(4.11)
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We set V. = W{(m) — E[W{(m)]. It is the sum of the independent centered
random variables

ynd,y,
X = F]—EF]]),Iépm.
Tl )
To dominate E [V], we use the theorem 9 in [11]. Let us compute
2922 dy (1 — 3|pm|) [P
E[X?] = < 29203 |pon|dom
2 X = G+ 91— e 7

and so,

1/q
E (Vi)' < /12020 dynq + i/ VIE [ max | X, 1]
EPm

1 /e
where k' = TSR

We consider ¢ = 1 + [2log(1 + d,,)] where [-| is the integral part. For this
choice, ¢ < 1+ d,, and it implies

2|pm|q <n-— |pm|(1 =+ dm) .

The hypothesis (Hy) allows us to make a such choice. We roughly upper bound
the maximum by the sum and we use (Hyp) to get

q < q _ q

B max X7 < (40d,)"E| max |F; ~ B[]
< (40dm)? 277 (B[Fn)? + |pm|E[FL])
o (216%dim)" L 1] ( (290d,m) (1 42(g = 1)/dm) )q
- 2 2 1_2|pm|Q/(n_ |pm|(1+dm>)
< (696%dm)" [pml -

Thus, it gives
E[VAY" < A8 (\/12H’|pm|qu+ﬁﬂ’ﬁlpmll/qqu)

< 6KV (\/lmemH Ipmll/qqu)
< 126/V290% /| dm (1 + [210g(1 + d,)])
Injecting this inequality in (4.11) leads to
E [(W{(m) — E[W{(m)] — )]
< vVl (Cw VIPmldm (14 210g(1 + dpn))

2z

) [21og(1+dm)]
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Lemma 9. Consider any m € M and let x be a positive number. Under the
hypothesis (Hy), we have

E [(Wa(m) — )] < 101Pm| exp (_n (di + 3)|Pm] log (1 n alp |x>> '
@ 2|pm| yn

Proof. Let us define
s — SmH2
A(m) = E o omir
Om, I
I€pm, ’

The distribution of Wy (m) conditionally to [?! is Gaussian with mean equal to
—aA(m)/2 and variance factor

1/2

5 Ire —oml;

If ¢ is a standard Gaussian random variable, it is well known that, for any A > 0,
P(¢ > V2\) <e ™. (4.12)
We apply the Gaussian inequality (4.12) to Wa(m) conditionally to e[,

F}/2 - om ;
vt >0, P | Wa(m) + %A(m) > |2t ) H(SQ—S)HI ’5[2] <e .

It leads to

P (Wz(m) + S A(m) > \/2tA(m) max -7

i<n Om,i

gz]) <ot

and thus, by the remark (4.1),

g;

o i<n Om,i

t t
P Wy(m Eﬂy—mafol el?] <P Wsy(m) > —max
I

o Iepm,

gz]) <ot

where the X;’s are i.i.d. random variables with a x? (|I| — d,, — 1) /|I] distri-
bution. Finally, we integrate following €[ and we get

t
P(Wa(m) >1t) <E [max exp (—Q—XI>] .
I€pm Y

We finish as we did for Z; (m),
Y
E [(WQ(m) _ 2at)+]
+o0 t
< / E[maxexp(— <%+—>X1>]du
0 I€pm ol 2

—([I|=dm—3)/2
~0 t
< — 1+ —
P> ( - |I|>

I€pm

m - dm m t m
10|p IeXp<_n (dm +3)[p Ilog<1Jr p |>> _
« n

2(pm|

/N
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O

In order to end the proof of theorem 4, we need to put together the results of
the previous lemmas. Because v > 1, for any x > 0, we can write

2alpm
e Lexp | — n log ( 1+ 2alpm|z .
2[pm| m

We now come back to (4.9) and we apply the preceding results to each model.
Let m € M, we take

Tm
22+ )
and, recalling (4.6), we get the following inequalities

(1 — a)E[K(Ps,0, Ps.5)]

xr =

< E[K(Ps,oa Pém,frm)] + pen(m) +E (Wl (ﬁl) B "y@Dm B 2(;-7-1 Oé)) ]
n

(vt gy |+ | (2o - 525) |

(Z(m) —(1+ 2@%) ]
"
< E[K(m)] + pen(m) + R1 (M) 4+ Ra2(M) (4.13)

where Rq(M) and Ry(M) are the sums defined in the theorem 4. As the choice

of m is arbitrary, we can take the infimum among m € M in the right part
of (4.13).

+E +E

+E

4.3. Proof of the proposition 3

For the collection F¥¢ we have A = 1 and B = 0 in (2.4). Let m € M, we
denote by 7, € ¥, the quantity

_ _ . _ 1
Om = Z Om, 11y with VI € pp,, 01 = mZUi .
I1€pm iel

The theorem 2 gives us
E[Kn(PS,U;PE,&)]
C R
< — inf {K(Psg, Pso,) + D log"™** D} + —
nmlg/v({ ( ’ m”")+ 8 }+n
R

n

C 1
< — inf {K(Pyo,Ps,.5,,) + D log' ™ D,
— inf {K(Pio, Ps,5,) + Dimlog b+

— 5,12 — oml? R
g (sl o =omld ) VR
2no, 2no? n

because, for any x > 0, ¢(z) < (z — 1/z)%
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Assuming (s,,0,) € Ha,y (L1) X Ha,(L2), we know (see [13]) that
15 = smll3 < L3 (|pm|dm) >
and
lo = Gmll3 < nL3|pm| 2 .
Thus, we obtain
E [Kn (Ps,cr; PE,&)]

2

L log
< C inf ¢ = (|pmldm) 2
nt {5 ) 2+

L2 e R
2 o, Y
n n

72042
— +
502 D]

If a1 < a9, we can take

1/(142a
it = | (i)
e 20*10g1+5n

Lin 1/(142as)
Pl = (203 log' ™ n)

For oy > aw, this choice is not allowed because it would imply d,,, = 0. So, in
this case, we take

L2 y L2 1/(14202)
doy = 1 and [py| = (M)
202log "n

and

In the two situation, we obtain the announced result.

5. Technical results

This section is devoted to some useful technical results. Some notations previ-
ously introduced can have a different meaning here.

Lemma 10. Let X be a positive symmetric n X n-matriz and oy, ...,0, > 0
be its eigenvalues. Let P be an orthogonal projection of rank D > 1. If we
denote M = PYXP, then M is a non-negative symmetric matriz of rank D and,

if T1,...,Tp are its positive eigenvalues, we have
min o; < min 7; and max 7; < max o; .
1<i<n 1<i<D 1<i<D 1<i<n

Proof. We denote by £'/2 the symmetric square root of X. By a classical result,
M has the same rank, equal to D, than PX/2. On a first side, we have
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(PYX Pz, x)
max 7; = SUp ——————
1<i<D cer |l
z#0
<P2$2, $2>
= sup

(x1,x2)€ker(P) Xim(P) Hx1H2 + Hx2H2
(w1,22)7#(0,0)

)
< sp I,
wacim(p)  ||22]] 1<i<n
2270

On the other side, we can write

. . (Mz, x)
min 7, = min max ————
1<i<D V CR" zeV ||x||?
dim(V)=n—D+1 x#0
: [/ Pe|?
= min max ——————
V CR” wev  z|?
dim(V)=n—D+1 x#0
=t/ 2|2
> min _—
VCR™ zeVnim(P)  ||z|?
dim(V)=n—D+1 A0
: 21/ 2|2 :
> min - max —r——— = Il 0; .
VicrR® zev' ||z 1<i<n
dim(V')>1 @70
O
Lemma 11. Let € be a standard Gaussian vector in R™, a = (a1, ...,a,) € R®
and by, ...,by, > 0. We denote by b* (resp. b,) the mazimum (resp. minimum)

of the b;’s. If n > 2 and Z =% (a; + v/big;)?, then

|2) <o (2050

where k > 1 is a constant that can be taken equal to 1+ 2e~' ~ 1.736.

Proof. We recall that E[Z] = Y (af + b;) and, for any A > 0, the Laplace
transform of (a; + v/bie;)? is

Aa? 1
E [exp (—)\(ai + \/b_igi)z’)} = exp (—H%Ab — log(1+ 2)\bi)> .

Thus, the Laplace transform of Z is equal to

() = E[e]
" a? 1 —

=1
n n

2)\%a2b; 1
_ _—)E[Z] i% 1 _
= e X exp ( E 72w, 2 ;:1 T(2)\bl)>

=0
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where r(x) = log(l + z) — « for all z > 0. To compute the expectation of the
inverse of Z, we integrate ¢ by parts,

1 (o)
elz] = [ vo
> S 20%a%h; 1
—AE[Z] i% 1 _
/0 e X exp ( g T 20, 2 ;:1 T(2)\bl)> d\

- EtE /fab

n

3 2Ab2 4Xa2b(1+ \b;)
<120 (14 20D)?

where

J a,b()‘) -
We now upper bound the integral,

E[Z] > exp (= D1y Aaf/(1+ 2)by))
e I A v e

/°° 2n\b*2 i
o (14 2X\b,)1Hn/2

4% (1 + \b* _
+/0 w X gap(Ne 9N

Where we ha,\/e Set
ga b()\) — En )\a"i

For any ¢t > 0, te™! < e !. Because g, is a positive function and n > 2, we
obtain

E[Z] >~ 2nAb*> 4b* (1 + \b¥)
E|—o2—1] < S d
[ Z ] /0 SIS IETCEa / o(1 4 220,y rrn2 A
20" /b.)? | 4(b"/b-)(n— 2+ b*/b.)

n—2 en(n —2)
2(b* /b.)? 2(n—1)
< n—2 (1 + en )
< 21+ 2671)%

References

[1] AKAIKE, H. (1969). Statistical predictor identification. Annals Inst.
Statist. Math.. MR0286233

[2] AKAIKE, H. (1973). Information theory and an extension of the maximum
likelihood principle. In Proceedings 2nd International Symposium on Infor-
mation Theory, P. Petrov and F. Csaki, Eds. Akademia Kiado, Budapest,
267-281. MR0483125


http://www.ams.org/mathscinet-getitem?mr=0286233
http://www.ams.org/mathscinet-getitem?mr=0483125

3]

[18]

[19]

X. Gendre/Simultaneous estimation of the mean and the variance 1372

AKAIKE, H. (1974). A new look at the statistical model identification.
IEEE Trans. on Automatic Control. MR0423716

ARLOT, S. (2007). Rééchantillonnage et sélection de modeles. Ph.D. thesis,
Université Paris 11.

BARAUD, Y. (2000). Model selection for regression on a fixed design.
Probab. Theory Related Fields 117, 467-493. MR1777129

BARAUD, Y., GIRAUD, C., AND HUET, S. (2006). Gaussian model selection
with an unknown variance. To appear in Annals of Statistics.

BARRON, A., BIRGE, L., AND MASSART, P. (1999). Risk bounds for model
selection via penalization. Probab. Theory Related Fields 113, 301-413.
MR1679028

BIRGE, L. AND MASSART, P. (1997). From model selection to adaptive
estimation. Festschrift for Lucien Lecam: Research Papers in Probability
and Statistics. MR 1462939

BIRGE, L. AND MASSART, P. (2001a). Gaussian model selection. Journal
of the European Mathematical Society 3, 3, 203-268. MR 1848946

BIRGE, L. AND MASSART, P. (2001b). A generalized ¢, criterion for gaus-
sian model selection. Prépublication 647, Universités de Paris 6 and Paris
7.

BOUCHERON, S., BOUSQUET, O., Lucosi, G., AND MAssART, P. (2005).
Moment inequalities for functions of independent random variables. Annals
of Probability 33, 2, 514-560. MR2123200

CoMTE, F. AND ROzENHOLC, Y. (2002). Adaptive estimation of mean
and volatility functions in (auto-)regressive models. Stochastic Processes
and their Applications 97, 1, 111-145. MR 1870963

DEVORE, R. AND LORENTZ, G. (1993). Constructive approzimation.
Vol. 303. Springer-Verlag. MR1261635

GALTCHOUK, L. AND PERGAMENSHCHIKOV, S. (2005). Efficient adaptive
nonparametric estimation in heteroscedastic regression models. Université
Louis Pasteur, IRMA, Preprint. MR2187340

LAURENT, B. AND MASSART, P. (2000). Adaptive estimation of a
quadratic functional by model selection. Annals of Statistics 28, 5, 1302—
1338. MR1805785

MaLLows, C. (1973). Some comments on ¢,. Technometrics 15, 661-675.
MCQUARRIE, A. AND Tsa1, C. (1998). Regression and times series model
selection. World Scientific Publishing Co, Inc. MR1641582

R DEVELOPMENT CORE TEAM. (2007). R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, http://wuw.R-project.org.

WaNG, L. AND al. (2008). Effect of mean on variance function estima-
tion in nonparametric regression. The Annals of Statistics 36, 2, 646-664.
MR2396810


http://www.ams.org/mathscinet-getitem?mr=0423716
http://www.ams.org/mathscinet-getitem?mr=1777129
http://www.ams.org/mathscinet-getitem?mr=1679028
http://www.ams.org/mathscinet-getitem?mr=1462939
http://www.ams.org/mathscinet-getitem?mr=1848946
http://www.ams.org/mathscinet-getitem?mr=2123200
http://www.ams.org/mathscinet-getitem?mr=1870963
http://www.ams.org/mathscinet-getitem?mr=1261635
http://www.ams.org/mathscinet-getitem?mr=2187340
http://www.ams.org/mathscinet-getitem?mr=1805785
http://www.ams.org/mathscinet-getitem?mr=1641582
http://www.R-project.org
http://www.ams.org/mathscinet-getitem?mr=2396810

	Introduction
	Main results
	Model collection and estimators
	Risk upper bound
	Convergence rate

	Simulation study
	Proofs
	Proof of the proposition 1
	Proof of theorem 2
	Proof of the proposition 3

	Technical results
	References

