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Abstract: In this paper, we investigate the consistency and asymptotic
efficiency of an estimator of the drift matrix, F , of Ornstein-Uhlenbeck
processes that are not necessarily stable. We consider all the cases. (1) The
eigenvalues of F are in the right half space (i.e., eigenvalues with positive
real parts). In this case the process grows exponentially fast. (2) The eigen-
values of F are on the left half space (i.e., the eigenvalues with negative or
zero real parts). The process where all eigenvalues of F have negative real
parts is called a stable process and has a unique invariant (i.e., stationary)
distribution. In this case the process does not grow. When the eigenvalues
of F have zero real parts (i.e., the case of zero eigenvalues and purely imag-
inary eigenvalues) the process grows polynomially fast. Considering (1) and

(2) separately, we first show that an estimator, F̂ , of F is consistent. We
then combine them to present results for the general Ornstein-Uhlenbeck
processes. We adopt similar procedure to show the asymptotic efficiency of
the estimator.
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1. Introduction

Multidimensional processes with linear drift parameter have been used for mod-
elling various physical phenomena. Among recent papers, works by Jankunas
and Khasminskii [13] and Khasminskii, Krylov and Moshchuk [16] on the esti-
mation of the drift parameters of linear stochastic differential equations (of the
form, dXt = AXtdt+

∑n
i=1 σiXtdwi(t) and dXt = AθXtdt+

∑m
i=1 σiXtdwi(t))

can be mentioned. It should be noted that our work on Ornstein-Uhlenbeck
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(OU) processes does not follow from theirs and that the methodology used in
our paper is also quite different from theirs.

The motivation for this work comes from Lai and Wei’s paper [23], in which
the authors have shown the strong consistency of the least square estimators
of the coefficients of the discrete univariate general AR(p) processes. In this
paper, we not only show that an estimator (which is the maximum likelihood
estimator in the special case when A is nonsingular) of the drift parameter of
the general multidimensional OU process is consistent but also show that it is
asymptotically efficient. We consider the following SDE representation of the
OU process:

dYt = FYtdt+ AdWt (1.1)

with any starting point Y0 independent of the Brownian motion {Wt, t ≥ 0}.
Here Y is a p-dimensional process, A is a constant matrix of p × r dimes-
nion and Wt is a r-dimensional standard Brownian motion. Notice that it is
always easier to estimate A through quadratic variation of the process by us-
ing Itô’s rule. But, estimating F is usually the more difficult task. It is gen-
erally believed that one needs stationarity of the process to estimate F . How-

ever, one may observe,
∫ T

0
dYtY

′
t = F (

∫ T

0
YtY

′
t dt)+A(

∫ T

0
dWtY

′
t ). Thus, we de-

fine, F̂T = (
∫ T

0
dYtY

′
t )(
∫ T

0
YtY

′
t dt)

−1 = F + A(
∫ T

0
dWtY

′
t )(
∫ T

0
YtY

′
t dt)

−1 when

(
∫ T

0
YtY

′
t dt) is invertible and, in this case, the estimator is unbiased (as the

expectation of the second term is zero). We show here that F̂T is a consistent
and an asymptotically efficient estimator of F , irrespective of the stationarity
(or stability) of the process, provided F and A together satisfy a RANK con-
dition (a), given in Section 2. This RANK condition is essential to prove that

(
∫ T

0
YtY

′
t dt) is invertible. We note here, if A is a nonsingular matrix, the RANK

condition automatically holds. In fact, it is also easy to see that for a continuous
autoregressive process (i.e., CAR(p)), the RANK condition holds.

We also make another assumption, condition (b). It is the distinctness of the
eigenvalues with positive real parts. However, we point out that this condition
can be relaxed with a condition (b’) and also that if none of the conditions (b)
or (b’) hold it is still possible to proceed with the estimation (see the discussion
after Remark 3.2). Notice that the condition (b’) holds for the drift F in CAR(p)
processes.

An early basic work, proving weak consistency for the stable discrete-time
case, was done by Mann and Wald [26]. Later, many authors extended their
results in many directions, such as, strong consistency, unstable cases, mixed
cases etc. (for details, see [23] and references therein). Most of the works of
Konev and Pergamenshchikov in this direction (discrete and continuous time),
including [17, 18] for the continuous time case, have been done in the context of
sequential estimation, to get fixed accuracy estimators or to derive asymptotic
or other desirable properties of such estimators. So, their aim, techniques and
results somewhat differs from those of ours. The estimation of parameters for the
continuous time stochastic processes have been extensively studied as well (see
for example, Feigin [9], Basawa, Feigin and Heyde [7], Basawa and Prakasa Rao
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[6], Arató [1], Dietz and Kutoyants [8], Kutoyants [20, 21], Barndorff-Nielson
and Sorensen [3], Kutoyants and Pilibossian [22], Jankunas and Khasminskii
[13], Khasminskii, Krylov and Moshchuk [16] Prakasa Rao [27, 28] and refer-
ences therein). Therefore, the estimation of the paramater and its asymptotic
studies have not been new. However, as far as we know, full study of multidi-
mensional OU processes parameter estimation and the study of its asymptotics
have not been done for the mixed model. In the present paper, while showing
consistency and asymptotic efficiency for the multidimensional matrix valued
parameter, which do not follow from that of univariate or vector valued case
(see, for example, Kaufmann [15], Wei [29], Basawa and Prakasa Rao [6], Di-
etz and Kutoyants [8], Kutoyants [20, 21], Barndorff-Nielson and Sorensen [3],
Prakasa Rao [27, 28] and references therein), it develops new methodology to
deal with various cases as is done in Kaufmann [15] and Wei [29].

Our paper is organized as follows. In Section 2, we present the basic assump-
tions and the main theorems. In Section 3, we describe the case in which the
eigenvalues of F have positive real parts. Methodology used here is similar to
that of Lai and Wei’s paper [23]. However, it may be noted that the case, in
which the eigenvalues of F have negative or zero real parts, is quite different
from either of them and it is discussed in Section 4. This case, in fact, combines
the three cases, zero eigenvalues, purely imaginary eigenvalues and the eigen-
values with negative real parts. Details on the rates of growth and so forth for
zero eigenvalues and imaginary eigenvalues are given in the Appendix. Section 5
examines the mixed case for consistency. The section 6 presents the results on
asymptotic efficiency and Section 7 has some concluding remarks.

2. Basic assumptions and the main theorem

We can decompose any p× p matrix F into the rational canonical form

MF = GM =

(

G0 0
0 G1

)(

M0

M1

)

where Gi are pi × pi matrices and Mi are pi × p matrices for i = 0, 1 and
p0 + p1 = p. Rows of Mi and rows of Mj are orthogonal for i 6= j.

All roots of G0 lie in the right half space; all roots of G1 lie on the left half
space.

Example Let

A =













2 −1 0 1 0
0 −8 6 14 1
0 10 −4 −14 −1
0 −10 6 16 1
0 −5 3 7 0













.

Then the characteristic polynomial of A is

f(t) = (t − 2)3(t2 + 1).
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Thus φ1(t) = t−2 and φ2(t) = t2+1 are the distinct irreducible monic divisors of
f(t). After computation, we find that g(t) = φ1(t)

2φ2(t) = (t−2)2(t2 +1) is the
minimal polynomial of A and thus the companion matrices for φ2

1(t) = (t− 2)2

and φ1(t) = t− 2 are given by
(

0 −4
1 4

)

and 2.

Similarly, the companion matrix for φ2(t) = t2 + 1 is
(

0 −1
1 0.

)

The rational canonical form of A is thus

HA =













0 −4 0 0 0
1 4 0 0 0
0 0 2 0 0
0 0 0 0 −1
0 0 0 1 0













In the example above, the rational canonical form of A is formed by 3 blocks:
(

0 −4
1 4

)

, 2 and
(

0 −1
1 0

)

. Therefore the dimensions of the 3 blocks are 2, 1

and 2 respectively.

Assumption

(a) RANK
([

A : FA : · · · : F p−1A
])

= p. (2.1)

(b) The eigenvalues of F , which have positive real parts, are all distinct.

Observe that, from (1.1) Yt = eFtY0 +
∫ t

0
eF (t−s)AdWs and thus have a mul-

tivariate Gaussian distribution with the mean eFt and the covariance matrix
∫ t

0
eFtAA′eF ′t. Since Yt is Gaussian it has a positive density if and only if the

covariance matrix is nonsingular. The RANK assumption which is the special
case of Hörmander’s hypoellipticity condition ensures the positive density of Yt

(for details, see [12]), and hence the nonsingularity of covariance matrix.

Following Basawa and Rao ([6], pp.) it is clear that
∫ T

0
YtY

′
t dt is nonsingular

under the RANK assumption.
Let FA = [A : FA : · · · : F p−1A]. Then RANK (FA) = p by the RANK

assumption. Consider for i = 0, 1,

pi = RANK(MiFAF
−1
A ) ≤ RANK(MiFA) ≤ pi

where F−1
A is the right inverse of FA. Therefore, RANK (MiFA) = pi for i = 0, 1.

Since

MiFA =
[

Mi

[

A : FA : · · · : F p−1A
]]

=
[

MiA : MiFA : · · · : MiF
p−1A

]

=
[

MiA : GiMiA : · · · : Gp−1
i MiA

]

,
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and as the higher power of Gi can be expressed as a linear combination of I,
Gi, . . . , G

pi−1
i ,

RANK
[

MiA : GiMiA : · · · : Gpi−1
i MiA

]

= RANK [MiFA] = pi. (2.2)

If we transform the process Yt to Uit = MiYt for i = 0, 1,

MidYt = MiFYtdt+MiAdWt,

i.e., dUit = GiUitdt+ (MiA) dWt.

From (2.2) and the argument given above, we conclude that
∫ T

0
UitU

′
itdt is pos-

itive definite a.s. for i = 0, 1.

We now present our main theorems whose proofs are given in Section 5 and
in Section 6, respectively. Throughout the paper, we use λmin(C) and λmax(C)
to denote the minimum and maximum eigenvalues of a matrix C.

Theorem 2.1 Suppose, for the Ornstein-Uhlenbeck process defined in (1.1), the

assumptions (a) and (b) hold. Define F̂T = (
∫ T

0 dYtY
′
t )(
∫ T

0 YtY
′
t dt)

−1. Then

lim infT→∞
1

T
λmin

(

∫ T

0

YtY
′
t dt

)

> 0 a.s. (2.3)

and

limT→∞F̂T = F a.s.

Theorem 2.2 Under the assumptions of Theorem 2.1, it follows that
E(Tr[(F̂T − F )E(CT )(F̂T − F )′])1/2 = O(1) as T → ∞, where F̂T is as de-

fined in Theorem 2.1 and CT =
(∫ T

0
YtY

′
t dt
)

.

3. Eigenvalues in the right half space

We consider the case where all the eigenvalues of F have positive real parts.
In this case, it can be seen that ‖Yt‖ → ∞ exponentially fast as t → ∞. To
introduce the main result of this section we define a Gaussian random variable

Z = Y0 +

∫ ∞

0

e−FsAdWs.

Since all the eigenvalues of F have positive real parts, it is clear that, e−FtYt =
Y0 +

∫ t

0
e−FsAdWs converges a.s. to Z as t→ ∞. We now derive the following

results.

Theorem 3.1 In addition to the assumptions and notations of Theorem 2.1,
assume further that real parts of all the eigenvalues of F are positive. Then,

e−FT

(

∫ T

0

YtY
′

t dt

)

e−F ′T converges a.s. to B =

∫ ∞

0

e−Ft(ZZ′)e−F ′tdt.
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Moreover, B is positive definite with probability 1. Consequently,

limT→∞T
−1 logλmin

(

∫ T

0

YtY
′

t dt

)

= 2λ0 a.s.

limT→∞T
−1 logλmax

(

∫ T

0

YtY
′
t dt

)

= 2Λ0 a.s. (3.1)

Here and throughout the paper, logx means the natural logarithm of x. Also,
in the sequel we shall let ||x|| denote the Euclidean norm of a p-dimensional vec-
tor x = (x1, . . . , xp)

′, i.e., ||x||2 = x′x. Moreover, by viewing a p×p matrix A0 as
linear operator, we define ||A0|| = sup||x||=1 ||A0x||. Thus, ||A0||2 is equal to the
maximum eigenvalue of A′

0A0. Moreover, if A0 is symmetric and non-negative
definite, then ||A0|| = λmax(A0). In particular, for the companion matrix e−FT

in Theorem 3.1, we have the following Lemma.

Lemma 3.1 Under the hypothesis of Theorem 3.1

log ||eFT || ∼ log ||eF ′T || ∼ Λ0T,

and log ||e−FT || ∼ log ||e−F ′T || ∼ −λ0T (3.2)

where we use the notation f(T ) ∼ CT k to denote limT→∞T
−kf(T ) = C.

Proof. Suppose Re[λk(F )] > 0 for k = 1, 2, . . . , p. Then

|eλk(F )| = eRe[λk(F )] > 1 for k = 1, 2, . . . , p.

Let λ0 = min1≤k≤p Re[λk(F )], Λ0 = max1≤k≤p Re[λk(F )]. Denote the spectral
radius of F by rσ(F ) (cf. [19]). Then

limT→∞||eFT || 1
T = rσ(F ) = supλ∈σ(eF )|λ| = exp

[

supλ∈σ(F )Re(λ)
]

= eΛ0

and so log ||eFT || ∼ log ||eF ′T || ∼ Λ0T . Similarly, log ||e−FT || ∼ log ||e−F ′T || ∼
−λ0T since

limT→∞||e−FT || 1
T = supλ∈σ(e−F )|λ| = exp

[

supλ∈σ(−F )Re(λ)
]

= e−λ0 .

Thus, we have the proof of Lemma 3.1

Proof of Theorem 3.1. Let Zt = Y0 +
∫ t

0
e−FsAdWs, then Yt = eFtZt and

Zt converges a.s. to Z = Y0 +

∫ ∞

0

e−FsAdWs.

Let BT =
∫ T

0
e−FtZTZ

′
T e

−F ′tdt,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−FT

(

∫ T

0

YtY
′

t dt

)

e−F ′T − BT

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

e−F (T−t)ZtZ
′
te

−F (T−t)dt−
∫ T

0

e−FtZTZ
′
T e

−F ′tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

e−Ft
(

ZT−tZ
′
T−t − ZTZ

′
T

)

e−F ′tdt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫ T

0

||e−Ft|| ||e−F ′t|| (||ZT−t|| + ||ZT ||) ||ZT − ZT−t||dt

=

∫ T/2

0

||e−Ft||2(||ZT−t|| + ||ZT ||)||ZT − ZT−t||dt

+

∫ T

T/2

||e−Ft||2(||ZT−t||+ ||ZT ||)||ZT − ZT−t||dt. (3.3)

Since Zt converges almost surely to a finite random variable Z, sup{t≥0} ‖Zt‖
is finite almost surely and for each t ≥ T/2, ||ZT − ZT−t||, being a cauchy
sequence, converges to zero, almost surely, as T → ∞. Also, by Lemma 3.1,
∫∞

0
||e−Ft||2dt < ∞. Thus, we get, ∀ω outside a null set, ∀ǫ > 0, there exists a

T0(ω) such that ‖Zt(ω) − Z(ω)‖ < ǫ/(1 +
∫∞

0 ||e−Ft||2dt + 2 sup{t≥0} ‖Zt(ω)‖)
for all t ≥ T0(ω). Fixing one such ω, for T ≥ 2T0(ω) we have the first in-
tegral of (3.3), which is less than ǫ and the second integral goes to zero as

sup{t≥0} ‖Zt(ω)‖ is finite and
∫ T

T/2
||e−Ft||2dt→ 0 as T → ∞.

Let B =
∫∞

0
e−FtZZ′e−F ′tdt, then with probability 1,

||BT − B||

≤
∫ ∞

T

||e−FtZZ′e−F ′t||dt+
∫ T

0

||e−Ft(ZZ′ − ZTZ
′
T )e−F ′t||dt

≤ ||ZZ′||
∫ ∞

T

||e−F ′t|| ||e−Ft||dt+ ||ZZ′ − ZTZ
′
T ||
∫ T

0

||e−Ft|| ||e−F ′t||dt

→ 0 a.s., as T → ∞. (3.4)

Therefore,

e−FT

(

∫ T

0

YtY
′
t dt

)

e−F ′T converges a.s. to B =

∫ ∞

0

e−FtZZ′e−F ′tdt. (3.5)

To show B =
∫∞

0
e−FtZZ′e−F ′tdt is positive definite with probability 1,

observe that Z has positive Gaussian density. Hence P (Z 6= 0) = 1. Fix an ω,
such that Z(ω) 6= 0. Suppose, if possible,

x′
(∫ ∞

0

e−FtZ(ω)Z(ω)′e−F ′tdt

)

x = 0 for some nonzero vector x ∈ Rp.

Then, for almost all t ∈ (0, T ), x′e−FtZ(ω) = 0, i.e., for almost all t ∈ (0, T ),
∑∞

k=0
1
k!(−1)kx′F ktkZ(ω) = 0. This implies x′F kZ(ω) = 0, for k = 0, 1, . . . , p−
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1. By the assumption (b),
∑p−1

k=0 akF
k is nonsingular for any real number ak

with not all of them being zero. Hence, for any nonzero vector in Rp, in par-
ticular for x, x′

∑p−1
k=0 akF

k is a nonzero vector. In other words, for nonzero

vector x,
∑p−1

k=0 ak(x′F k) is nonzero for any nonzero vector (a0, . . . , ap−1). Thus






x′

x′F

.

.

.
x′Fp−1







is a nonsingular matrix. Hence,







x′

x′F

.

.

.
x′Fp−1







Z(ω) = 0 implies

Z(ω) = 0, which is a contradiction. Thus, we arrive at a contradiction since Z
has a positive Gaussian density and hence Z cannot be equal to zero on a set
of positive measures. Therefore, we conclude that B is positive definite with
probability one.

To prove (3.1), we state the following elementary results (for the proof, see
Lemma 2 of [23]):

Lemma 3.2 Let A, C be p × p matrices such that C is symmetric and non-
negative definite. Then

λmax(C)λmax(AA
′) ≥ λmax(ACA

′) ≥ λmin(C)λmax(AA
′),

λmax(C)λmin(AA′) ≥ λmin(ACA′) ≥ λmin(C)λmin(AA′).

We continue the proof of (3.1) of Theorem 3.1. From Lemma 3.2 we get,

logλmin

(

∫ T

0

YtY
′
t dt

)

≤ logλmax

[

e−FT

(

∫ T

0

YtY
′
t dt

)

e−F ′T

]

− logλmax

(

e−FT e−F ′T
)

∼ 2λ0T.

Also,

logλmin

(

∫ T

0

YtY
′

t dt

)

≥ logλmin

[

e−FT

(

∫ T

0

YtY
′
t dt

)

e−F ′T

]

+ logλmin

(

eFT eF ′T
)

∼ 2λ0T.

Therefore

limT→∞
1

T
logλmin

(

∫ T

0

YtY
′
t dt

)

= 2λ0 a.s.

On the other hand,

logλmax

(

∫ T

0

YtY
′
t dt

)

≤ logλmax

[

e−FT

(

∫ T

0

YtY
′
t dt

)

e−F ′T

]

+ logλmax

(

eFT eF ′T
)

∼ 2Λ0T.
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Also,

logλmax

(

∫ T

0

YtY
′
t dt

)

≥ logλmin

[

e−FT

(

∫ T

0

YtY
′
t dt

)

e−F ′T

]

− logλmin

(

e−FT e−F ′T
)

∼ 2Λ0T.

Therefore

limT→∞
1

T
logλmax

(

∫ T

0

YtY
′

t dt

)

= 2Λ0 a.s.

Hence, we have the proof of Theorem 3.1.

Corollary 3.1 Under the same assumptions and notations as in Theorem 3.1,

(i) limT→∞

∫ T

0

||e−FTYt||dt =

∫ ∞

0

||e−FtZ||dt <∞ a.s. (3.6)

(ii)
1√
T

(

∫ T

0

dWtY
′
t

)

e−F ′T = O(T−1/2).

Proof. (i) Given ǫ > 0, ∀ω outside a null set, ∃T0(ω) such that

||Zt − Z|| < ǫ ∀t ≥ T0(ω).

For T > T0(ω),
∣

∣

∣

∣

∣

∫ T

0

||e−F (T−t)Zt||dt−
∫ T

0

||e−F (T−t)Z||dt
∣

∣

∣

∣

∣

≤
∫ T

0

||e−F (T−t)Zt − e−F (T−t)Z||dt

≤
∫ T

0

||e−F (T−t)|| ||Zt − Z||dt

≤
∫ T0(ω)

0

||e−F (T−t)|| ||Zt − Z||dt+
∫ T

T0(ω)

||e−F (T−t)|| ||Zt − Z||dt.

As T → ∞, the first term tends to 0 since ||e−F (T−t)|| → 0. The second term

also tends to 0 since Zt → Z and
∫ T

T0(ω)
||e−F (T−t)||dt ≤

∫ T

0
||e−F (T−t)||dt =

∫ T

0
||e−Ft||dt ≤

∫∞

0
||e−F (T−t)||dt, which is finite. Therefore,

limT→∞

∫ T

0

||e−FTYt||dt = limT→∞

∫ T

0

||e−F (T−t)Zt||dt

= limT→∞

∫ T

0

||e−F (T−t)Z||dt

=

∫ ∞

0

||e−FtZ||dt,

which is finite almost surely, by Lemma 3.1.
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(ii) Let Mt =
(

∫ t

0
dWsY

′
s

)

e−F ′T , which is a square integrable martingale for

0 ≤ t ≤ T , with quadratic variation,

< M >t= e−FT

(∫ t

0

YsY
′
sds

)

e−F ′T = e−FTCte
−F ′T

where Ct =
∫ t

0
YsY

′
sds. By Karatzas and Shreve (cf [14], p174),

(∫ t

0

dWsY
′

s

)

e−F ′T = Mt = B<M>t

= O

(

λmax(e
−FTCte

−F ′T )
√

ln lnλmax (e−FTCte−F ′T )

)

= O(1)

since for t ≤ T, ||e−FTCte
−F ′T || ≤ ||e−FTCT e

−F ′T || → B, almost surely, as
T → ∞ and B = O(1). Therefore,

1√
T

(

∫ T

0

dWtY
′

t

)

e−F ′T = O(T−1/2)

This completes the proof of Corollary 3.1.

Remark 3.1 If all the eigenvalues of F have positive real parts, we can relax
condition (b) by

(b′)

p−1
∑

k=0

akF
k being nonsingular for any reals a1, . . . , an with at least

one of them being nonzero. (3.7)

Notice that (b’) could hold even if all the eigenvalues of F are equal (say, λ0),
but the degree of the minimal polynomial of F and the degree of the characteristic
polynomial of F are equal.

Remark 3.2 Suppose, assumption (b) does not hold. One can still estimate the
eigenvalues of F .

Let the characteristic polynomial of F be given as φF (x) = a0Π
k
i=1(x −

λi)
piΠl

j=1(x
2 + bjx + cj)

qj where λi are the real roots of multiplicity pi and

x2 + bjx + cj are the irreducible polynomials giving the complex roots with
multiplicity qj and a0 is a constant. Let the minimal polynomial of F be given
by ψF (x) = Πk

i=1(x − λi)
riΠl

j=1(x
2 + bjx + cj)

sj with ri ≤ pi and sj ≤ qj. If
ri = pi and sj = qj for all i, j, then the degree of the minimal polynomial of
F and the degree of the characteristic polynomial of F are the same and the
assumption (b’) holds and our results follow. If some of the ris are less than pis
and/or sjs are less than qj, then, (b’) does not hold for F . However, in that
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case, one can transform F in the rational canonoical form as

























J1

...
Jk

K1

...
Kl

L

























F =

























B1 · · · 0 0 · · · 0 0

0
. . . 0 0 · · · 0 0

0 · · · Bk 0 · · · 0 0
0 · · · 0 C1 · · · 0 0

0 · · · 0 0
. . . 0 0

0 · · · 0 0 · · · Cl 0
0 · · · 0 0 · · · 0 D

















































J1

...
Jk

K1

...
Kl

L

























=

























B1J1

...
BkJk

C1K1

...
ClKl

DL

























where Ji, Kj and L are rectangular matrices of full row rank, (pi−ri), (qj −sj),
(
∑

i ri+
∑

j sj), respectively, andD is a square matrix of the dimension the same
as the degree of the minimal polynomial of F (i.e., same as (

∑

i ri +
∑

j sj)).
For each j, Cj is a partitioned diagonal matrix (i.e., only the diagonal blocks are
nonzero blocks), each block is of dimension 2×2, and its diagonal block matrices
are identical and repeating exactly (qj − sj) times and have the characteristic
polynomial x2 + bjx+ cj, and, for each i, Bi is a diagonal matrix with diagonal
entries consisting of the real characteristic root λi repeating exactly (pi − ri)
times. Thus, we can work with D instead of F . For D the assumption (b’)
holds, since the degree of minimal polynomial of D is same as that of F and,
consequently, the degree of the minimal polynomial of D is the same as the
degree of the characteristic polynomial of D. Estimation of D can be done using
the SDE of LYt. For Bi and Cj , one can consider each one separately and
transform Yt to JiYt and KjYt and use the SDE of any component of JiYt (as it
has the Markov property) to estimate λi and the SDE of the first two (or, any
(2m-1)th and 2mth) components of KjYt together, as they have the Markov
property, to estimate a diagonal block of Cj. Hence the assertion in the last
remark.

4. Eigenvalues on the left half space

In this Section, we study the asymptotic behavior of OU processes where the
real parts of all the eigenvalues of F are either zero or negative. Unlike the

exponential rate of growth for ||YT ||, λmax(
∫ T

0
YtY

′
t dt), λmin(

∫ T

0
YtY

′
t dt) in The-

orem 3.1 and Corollary 3.1 for the the process where all the eigenvalues of F
have positive real parts, the following theorem shows that these quantities grow
at most polynomially fast in t for these processes.

For stable processes Yt (i.e., eigenvalues of F with negative real parts), we
know from Basak and Bhattacharya [5] that

|Y x
t − Y 0

t | → 0 a.s. as t → ∞.

Therefore, the property of Yt starting at x is the same as that from 0. Hence,
without loss of generality, we can assume that Y0 = 0.
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Theorem 4.1 Suppose, for the Ornstein-Uhlenbeck process defined in (1.1),
the RANK condition (2.1) holds and all the eigenvalues of F have negative real
parts. Then

lim infT→∞
1

T
λmin

(

∫ T

0

YtY
′
t dt

)

> 0 a.s. (4.1)

Moreover,

λmax

(

∫ T

0

YtY
′
t dt

)

= O(T ) a.s. (4.2)

Proof. To prove (4.1) and (4.2), consider each component Y i
t , Y

j
t of Yt, i, j =

1, . . . , p. Let π be the invariant distribution of Y . Then by the Strong Law of
Large Numbers,

1

T

∫ T

0

Y i
t Y

j
t dt→ Eπ(Y iY j) <∞ as T → ∞,

which follows, afortiori, by the Law of the Iterated Logarithm by Basak [4].
Therefore,

1

T

∫ T

0

YtY
′
t dt→ Eπ(Y Y ′) =

∫ ∞

0

eFuAA′eF ′udu,

which is positive definite a.s. Therefore,

lim infT→∞
1

T
λmin

(

∫ T

0

YtY
′
t dt

)

> 0 a.s.

and λmax

(

∫ T

0

YtY
′
t dt

)

= O(T ) a.s.

Hence, the proof.

Remark 4.1 (i) It is not difficult to see that for stable Yt, for any m ≥ 1,
E
[

supk−1≤t≤k(Y
′
t PYt)

m
]

is bounded uniformly over k. Hence, it would follow,

for any δ > 0, ||Yt|| = o(t
1

2m +δ) a.s.
(ii) On the other hand, since Yt → Y in distribution and Y is finite with prob-
ability one, one obtains Yt = Op(1).

Corollary 4.1 With the same notations and assumptions as in Theorem 4.1,

let CT =
∫ T

0
YtY

′
t dt. Then

(i) ||C−1/2
T || = O(T−1/2), a.s.

(ii) limT→∞Y
′
TC

−1
T YT = 0 a.s.
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Proof. (i) Since lim infT→∞
1
T λmin(CT ) > 0 a.s. from (4.1), therefore

||C−1/2
T ||2 = λmax(C

−1
T ) =

1

λmin(CT )
= O(T−1) a.s.

(ii) By the previous remark 4.1 (i), we note that,

||Y ′
TC

−1
T YT || ≤ ||YT ||2||C−1

T ||
= o(T 1/2+2δ)O(T−1) a.s., for some δ > 0, small

= O(T−1/2+2δ)

Hence, the proof.

Theorem 4.2 Suppose eigenvalues of F have either negative or zero real parts
(i.e., the eigenvalues are on the Left Half Space, which includes zero eigenvalues,
purely imaginary eigenvalues, eigenvalues with negative real parts). Then,

limT→∞Y
′
T

(

∫ T

0

YtY
′
t dt

)−1

YT = 0 a.s.

To prove Theorem 4.2, we need the following lemma:

Lemma 4.1 Let ǫ > 0; define F ǫ = F − ǫI and dY ǫ
t = F ǫY ǫ

t dt + AdWt.
Then ∂

∂ǫ ln
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

is bounded below, almost surely, uniformly for
large values of T .

Proof. Let Ẏ ǫ
t = ∂

∂ǫY
ǫ
t . Then we have

dẎ ǫ
t =

(

−Y ǫ
t + F ǫẎ ǫ

t

)

dt,

or jointly,

d

(

Y ǫ
t

Ẏ ǫ
t

)

=

(

F ǫ 0
−I F ǫ

)(

Y ǫ
t

Ẏ ǫ
t

)

dt+

(

A
0

)

dWt.

Since all eigenvalues of

(

F ǫ 0
−I F ǫ

)

have negative real parts,

(

Y ǫ
t

Ẏ ǫ
t

)

is stable.

Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

(

Y ǫ
t

Ẏ ǫ
t

)∣

∣

∣

∣

∣

∣

∣

∣

= o(t
1
4
+δ) a.s. for some δ > 0

and

1

T

∫ T

0

(

Y ǫ
t

Ẏ ǫ
t

)

(

Y ǫ
t Ẏ ǫ

t

)

dt

is positive definite (since the RANK condition holds here as well) and it con-
verges almost surely to some positive definite constant matrix as T → ∞.
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Therefore, (Cǫ
T ) and (Ċǫ

T ) have the same order where Cǫ
T =

∫ T

0
Y ǫ

t Y
ǫ

t dt and

Ċǫ
T =

∫ T

0
Ẏ ǫ

t Ẏ
ǫ
t dt. Hence

(Ċǫ
T )(Cǫ

T )−1 = O(1) a.s. as T → ∞. (4.3)

By Corollary 4.1,

limT→∞(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T ) = 0 a.s. and

limT→∞(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T ) = limT→∞(Ẏ ǫ

T )′(Ċǫ
T )−1(Ẏ ǫ

T ) = 0 a.s.

Consider

∂

∂ǫ
(Y ǫ

T )′(Cǫ
T )−1(Y ǫ

T )

= 2(Ẏ ǫ
T )′(Cǫ

T )−1Y ǫ
T + (Y ǫ

T )′
∂

∂ǫ
(Cǫ

T )−1Y ǫ
T

= 2(Ẏ ǫ
T )′(Cǫ

T )−1Y ǫ
T − (Y ǫ

T )′(Cǫ
T )−1

[

∂

∂ǫ
Cǫ

T

]

(Cǫ
T )−1Y ǫ

T

≥ −2
[

(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T )
]1/2

[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]1/2

− (Y ǫ
T )′(Cǫ

T )−1

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

]

(Cǫ
T )−1Y ǫ

T

≥ −2
[

(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T )
]1/2

[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]1/2

− 2
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

∫ T

0

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2

[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

du

≥ −2
[

(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T )
]1/2

[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]1/2

− 2
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

[

∫ T

0

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )du+

∫ T

0

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )du

]

= −2
[

(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T )
]1/2

[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]1/2

− 2
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
]

.

Therefore,

∂

∂ǫ
ln
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

=
[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]−1 ∂

∂ǫ

[

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )
]

≥ −2

[

(Ẏ ǫ
T )′(Cǫ

T )−1(Ẏ ǫ
T )

(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T )

]1/2

− 2
[

p+ Tr
[

(Ċǫ
T )(Cǫ

T )−1
]]

,
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which is bounded below (by a negative number possibly depending on ǫ) uni-
formly for large values of T by (4.3) and using the fact that both (Ẏ ǫ

T )′(Cǫ
T )−1(Ẏ ǫ

T )
and (Ẏ ǫ

T )′(Ċǫ
T )−1(Ẏ ǫ

T ) have the same order and the latter has the order as that
of (Y ǫ

T )′(Cǫ
T )−1(Y ǫ

T ). Hence the proof of Lemma 4.1.

Proof of Theorem 4.2. Let F ǫ = F − ǫI, ǫ > 0. Since all eigenvalues of F are
on the left half space, the real parts of all eigenvalues of F ǫ are negative, i.e.,
Y ǫ

t is a stable process. By Corollary 4.1,

limT→∞(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T ) = 0.

Let f(ǫ) = ln(Y ǫ
T )(Cǫ

T )−1(Y ǫ
T ). Fix an ǫ1 > 0. f is a continuous function on

[0, ǫ1] and is differentiable in (0, ǫ1). Then by the Mean Value Theorem, there
exists an ǫ0 ∈ (0, ǫ1) such that

f(ǫ1) − f(0) = ǫ1
∂

∂ǫ
f(ǫ)

∣

∣

ǫ=ǫ0
.

That is,

(Y ǫ1
T )′(Cǫ1

T )−1(Y ǫ1
T )

Y ′
TC

−1
T YT

≥ exp

{

ǫ1
∂

∂ǫ
f(ǫ) |ǫ=ǫ0

}

, (4.4)

which is uniformly positive (i.e., bounded away from zero) for large values of T
by Lemma 4.1. Since

limT→∞(Y ǫ
T )′(Cǫ

T )−1(Y ǫ
T ) = 0 a.s.

by (4.4)

limT→∞Y
′
TC

−1
T YT = 0 a.s.

Hence the proof of Theorem 4.2.

Corollary 4.2 With the same assumptions and notations as in Lemma 4.1,

||C−1/2
T || = O(T−1/2) a.s.

Proof. Consider

∂

∂ǫ
Tr[(Cǫ

T )−1]

= −2Tr

[

(Cǫ
T )−1

∫ T

0

[

(Y ǫ
u )(Ẏ ǫ

u )′dt
]

(Cǫ
T )−1

]

≥ −2Tr(Cǫ
T )−1

∫ T

0

[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2

du

≥ −Tr (Cǫ
T )

−1

[

∫ T

0

(

Ẏ ǫ
u

)′

(Cǫ
T )−1(Ẏ ǫ

u )du+

∫ T

0

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )du

]

= −Tr(Cǫ
T )−1

(

Tr
[

(Cǫ
T )−1Ċǫ

T

]

+ Tr
[

(Cǫ
T )−1(Cǫ

T )
]

)

.
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Hence ∂
∂ǫ lnTr[(Cǫ

T )−1] ≥ −
(

Tr
[

(Cǫ
T )−1Ċǫ

T

]

+ p
)

which is bounded below (by a
negative number possibly depending on ǫ) uniformly for large values of T . There-

fore, as in (4.4), by the Mean Value Theorem,
Tr[(Cǫ

T )−1]
Tr[(CT )−1] is uniformly positive

(i.e., bounded away from zero) for large values of T . Since Tr[(Cǫ
T )−1] = O(T−1),

we have O(Tr[(CT )−1]) ≤ O(Tr[(Cǫ
T )−1]) = O(T−1). Again, as for any positive

definite matrix KT , O(||KT ||) = O(Tr(KT )), we obtain by Corollary 4.1(i),
||(CT )−1/2|| = ||(Cǫ

T )−1/2|| = O(T−1/2). Hence the result.

Remark 4.2 It is clear from the arguments in the above corollary 4.2 that, for
the eigenvalues of F on the left half space,

1

T
λmin(CT ) =

1

Tλmax(C
−1
T )

> 0,

almost surely, uniformly for large values of T , since Tλmax(C
−1
T ) = T ||C−1

T || ≤
T O(T−1) = O(1) a.s.

5. General Ornstein-Uhlenbeck processes

For the Ornstein-Uhlenbeck process defined in (1.1) with RANK condition (2.1),
we have considered the case in which all the eigenvalues of F have positive real
parts and the case in which all the eigenvalues of F have zero or negative real
parts (i.e., zero eigenvalues, purely imaginary and the eigenvalues with negative
real parts). Now we combine these cases to discuss the mixed model in which F
can be decomposed into rational canonical form as follows:

MF = GM =

(

G0 0
0 G1

)(

M0

M1

)

=

(

G0M0

G1M1

)

,

where all the characteristic roots of G0 lie in the right half space and all the
characteristic roots of G1 lie on the left half space. Let

(

U0t

U1t

)

=

(

M0

M1

)

Yt = MYt.

Then

d

(

U0t

U1t

)

= MdYt = MFYtdt+MAdWt

=

(

G0 0
0 G1

)(

U0t

U1t

)

dt+MAdWt.

Also,
(

∫ T

0

dWtY
′

t

)

M ′ =

(

∫ T

0
dWtU

′
0t

∫ T

0
dWtU

′
1t

)

and M

(

∫ T

0

YtY
′
t dt

)

M ′ =

(

∫ T

0
U0tU

′
0tdt

∫ T

0
U0tU

′
1tdt

∫ T

0
U1tU

′
0tdt

∫ T

0
U1tU

′
1tdt

)

.
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Define, C1T =
∫ T

0
U1tU

′
1tdt. We now derive the following result.

Lemma 5.1 Suppose, for the Ornstein-Uhlenbeck process defined in (1.1), the
assumptions (a) and (b) hold. Then

Σ−1
T =

[

DTM

(

∫ T

0

YtY
′
t dt

)

M ′D′
T

]−1

→
(

B−1 0
0 Ip1

)

a.s. (5.1)

where B is defined in Section 2 (before (3.4)), Ip1
is a p1-dimensional identity

matrix and

DT =

(

e−G0T 0

0 C
−1/2
1T

)

.

Proof. Observing (5.1), we obtain, by Theorem 3.1, that

limT→∞e
−G0T

(

∫ T

0

U0tU
′
0tdt

)

e−G′

0T = B is positive definite a.s.

Again, (ΣT )11 = C
−1/2
1T C1TC

−1/2
1T = Ip1

. Hence, the proof is complete once we

show e−G0T (
∫ T

0
U0tU

′
1tdt)C

−1/2
1T → 0p0×p1

matrix almost surely, as T → ∞.
Notice that, by Corollary 3.1,

limT→∞

∫ T

0

||e−G0TU0t||dt <∞ a.s.

and from Theorem 4.2

limT→∞U
′
1TC

−1
1T U1T = 0 a.s.

Therefore, for all ω outside a null set, and for any given ǫ > 0, there
exists T0(ω) > 0 such that for all t ≥ T0(ω), (U ′

1tC
−1
1t U1t)

1/2 <

ǫ/(limT→∞

∫ T

0
||e−G0TU0t(ω)||dt). Hence

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

e−G0T

(∫ T

0

U0tU
′
1tdt

)

C
−1/2
1T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤
∫ T

0

||e−G0TU0tU
′
1tC

−1/2
1T ||dt

≤
∫ T0(ω)

0

||e−G0TU0t|| ||C−1/2
1T U1t||dt

+

∫ T

T0(ω)

||e−G0TU0t|| ||C−1/2
1T U1t||dt

As T → ∞, the first term goes to 0 since T0(ω) is fixed. The second term is less
than ǫ by the choice of T0(ω) since C1t is increasing in t (in the sense that C1t2−
C1t1 is positive definite whenever t2 > t1) and ||C−1/2

1T U1t|| = (U ′
1tC

−1
1T U1t)

1/2 ≤
(U ′

1tC
−1
1t U1t)

1/2. As ǫ is arbitrary, the proof is complete.
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We now observe that,

F̂T − F =

[

T−1/2A

(

∫ T

0

dWtY
′
t

)

M ′D′
T

][

DTM

(

∫ T

0

YtY
′

t dt

)

M ′D′
T

]−1

×(T 1/2DTM)

and

T−1/2A

(

∫ T

0

dWtY
′
t

)

M ′D′
T =





T−1/2e−G0T
(∫ T

0
U0tdW

′
t

)

A′

T−1/2C
−1/2
1T

(∫ T

0
U1tdW

′
t

)

A′





′

.

The first term T−1/2A
(∫ T

0
dWtU

′
0t

)

e−G′

0T = O(T−1/2) by Corollary 3.1(ii).
To show the remaining terms converges to 0, we prove the following Theorem.
This theorem is in the spirit of Theorem 2.2 of Wei [29], which is presented for
the discrete case.

Theorem 5.1 Suppose, for the Ornstein-Uhlenbeck process defined in (1.1), the
RANK condition (2.1) holds. Then

1√
T

(

∫ T

0

dWtU
′
1t

)

C
−1/2
1T → 0 a.s. as T → ∞.

To prove Theorem 5.1, we need the following lemmas.

Lemma 5.2 Fix t0 > 0. Then,

∫ T

t0

U ′
1tC

−1
1t U1tdt = O(logT ) a.s. as T → ∞.

Proof. Notice that,

d

dt
log |C1t| = Tr

(

C−1
1t

d

dt
C1t

)

= Tr
(

C−1
1t U1tU

′
1t

)

= U ′
1tC

−1
1t U1t,

where |C1t| is the determinant of C1t. Observe that, G1 can be further decom-
posed into a rational canonical form as follows:




M11

M12

M13



G1 =





G11 0 0
0 G12 0
0 0 G13









M11

M12

M13



 =





G11M11

G12M12

G13M13



 ,

where all the characteristic roots of G11 have negative real parts, those of G12

are purely imaginary and those of G13 are zero. For i, j = 1, 2, 3, define C1tij =
∫ t

0
U1isU

′
1jsds, where





U11s

U12s

U13s



 =





M11

M12

M13



U1s.
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Thus C1t = ((C1tij))i,j=1,2,3, and hence |C1t| ≤ |C1t11| |C1t22| |C1t33|. Therefore,
by Theorem 4.1 in Section 4 and Theorems 8.1 and 8.2 in the Appendix, one
obtains

∫ T

t0

U ′
1tC

−1
1t U1tdt = log

|C1T |
|C1t0|

= O(logT ) a.s. as T → ∞.

Hence, the proof.

We observe that, from Lemma 5.2, if we let g(T ) =
∫ T

t0
U ′

1tC
−1
1t U1tdt, then

g(T ) ↑ ∞ as T ↑ ∞ almost surely. Also, E(log |C1T |) = E(
∑

i log(λi(C1T ))) =
∑

i E(log(λi(C1T ))) ≤ ∑

i log(E(λi(C1T ))) ≤ p1 log(E(λmax(C1T ))) ≤
p1 log

∫ T

0 E(‖U1t‖2)dt. It is clear that, for the eigenvalues on the left half space,

E(‖U1t‖2) is at most O(tk), i.e., it grows at most like a polynomial in t. Thus,
E(log |C1T |) = O(logT ) as well. Hence, using integration by parts, we obtain,

E

(∫ ∞

t0

U ′
1tC

−1
1t U1t

t
dt

)

<∞. (5.2)

Lemma 5.3 Let M1T =
∫ T

0
dWtU

′
1t. Then, under the hypothesis of Theo-

rem 5.1,

1

T 1/2
M1TC

−1/2
T → 0 in probability.

Proof. Notice that M1t is a martingale with respect to the filtration {Ft}t≥0

where Ft = σ{Ws : 0 ≤ s ≤ t}. Define N1T =
∫ T

t1
dWtU

′
1t = M1T −M1t1 . Then,

for T > t1, N1T is also a martingale. Define Vt = Tr[C−1
1t M

′
1tM1t]/t and Ṽt =

Tr[C−1
1t N

′
1tN1t]/t. Since ‖ 1

T 1/2M1TC
−1/2
T ‖2 ≤ VT ≤ 2ṼT +2Tr(C−1

1T M
′
1t1M1t1]/T

and Tr(C−1
1T M

′
1t1
M1t1 ]/T → 0, almost surely, as T → ∞, it is enough to show

that ṼT → 0, in probability, as T → ∞ and this would be immediate once one
shows E(ṼT ) → 0 as T → ∞. Now use Itô’s Lemma to get

dṼt =

[

Tr
(

C−1
1t d(N

′
1tN1t)

)

+ Tr
[

(Ċ−1
1t )N ′

1tN1t

]

dt
]

t
− Ṽt

t
dt (5.3)

where Ċ−1
1t = −C−1

1t

(

Ċ1t

)

C−1
1t = −C−1

1t U1tU
′
1tC

−1
1t which is non-positive definite.

Thus, Tr
[(

Ċ−1
1t

)

N ′
1tN1t

]

= −U ′
1tC

−1
1t N

′
1tN1tC

−1
1t U1t ≤ 0. Therefore, by (5.3) and

applying the Itô’s Lemma again, one obtains

ṼT ≤
∫ T

t1

Tr
(

C−1
1t d(N

′
1tN1t)

)

/t

=

∫ T

t1

Tr
(

C−1
1t [(dN ′

1t)N1t +N ′
1t(dN1t) + (dN ′

1t)(dN1t)]
)

/t.
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Define τn = inf{t > t1 : |Ṽt| ≥ n}, then

EṼT∧τn ≤ E

∫ T∧τn

t1

Tr
(

C−1
1t (dN ′

1t)(dN1t)
)

/t (5.4)

= E

∫ T∧τn

t1

U ′
1tC

−1
1t U1t

t
dt.

Since VT∧τn and U ′
1tC

−1
1t U1t are non-negative, by Fatou’s Lemma and the Mono-

tone Convergence Theorem,

EṼT ≤ E

∫ T

t1

U ′
1tC

−1
1t U1t

(log t)1+α
dt.

Now, by the argument in (5.2), one has lim sup{T→∞}EṼT ≤ αCt−α
1 . As t1 can

be taken to be arbitrarily large, we have the result.

Lemma 5.4 Let Vt = Tr[C−1
1t M

′
1tM1t]/t. Then, with the same assumptions and

notations as in Lemma 5.3,

∫ ∞

t1

E [E(dVt|Ft)]
+
<∞.

Proof. Applying Itô’s Lemma on Vt,

dVt =

(

Tr
[

C−1
1t d(M

′
1tM1t)

]

+ Tr
[

Ċ−1
1t (M ′

1tM1t)
]

dt
)

t
− Vt

t
dt

where Ċ−1
1t = −C−1

1t

(

Ċ1t

)

C−1
1t = −C−1

1t U1tU
′
1tC

−1
1t and

Tr
[

Ċ−1
1t (M ′

1tM1t)
]

= −U ′
1tC

−1
1t M

′
1tM1tC

−1
1t U1t ≤ 0.

Therefore,

E(dVt|Ft)

≤ E
([

Tr(C−1
1t d(M

′
1tM1t))

]

/t | Ft

)

= E
([

Tr
(

C−1
1t [(dM ′

1t)M1t +M ′
1t(dM1t) + (dM ′

1t)(dM1t)]
)]

/t | Ft

)

= E
([

Tr
(

C−1
1t (dM ′

1t)(dM1t)
)]

/t | Ft

)

= E

(

U ′
1tC

−1
1t U1t

t
dt | Ft

)

=
U ′

1tC
−1
1t U1t

t
dt.

Thus,

[E(dVt|Ft)]
+ ≤ U ′

1tC
−1
1t U1t

t
dt.
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Since U ′
1tC

−1
1t U1t ≥ 0, by Fubini’s theorem and by (5.2)

∫ ∞

t1

E [E(dVt|Ft)]
+

= E

∫ ∞

t1

[E(dVt|Ft)]
+ ≤ E

∫ ∞

t1

U ′
1tC

−1
1t U1t

t
dt <∞.

Hence, the proof.

Proof of Theorem 5.1. Define At1,T
δ = {maxt1<t<TVt > δ} and Ht1 = {Vt1 ≤ ǫ}

for any ǫ > 0. Then, using the Lenglart Inequality (cf. Karatzas and Shreve [14]
p30 or Lenglart [25]),

P
(

At1,T
δ ∩Ht1

)

≤ 1

δ
EVt1IHt1

+
1

δ

∫ T

t1

E
(

[E(dVt|Ft)]
+IHt1

)

.

Therefore,

P
(

At1,T
δ

)

= P
(

At1,T
δ ∩Hc

t1

)

+ P
(

At1,T
δ ∩Ht1

)

≤ P
(

Hc
t1

)

+ P
(

At1,T
δ ∩Ht1

)

≤ P
(

Hc
t1

)

+
1

δ
EVt1IHt1

+
1

δ

∫ T

t1

E
(

[E(dVt|Ft)]
+
IHt1

)

≤ P
(

Hc
t1

)

+
ǫ

δ
+

1

δ

∫ ∞

t1

E [E(dVt|Ft)]
+
,

which is finite since
∫∞

t1
E[E(dVt|Ft)]

+<∞ by Lemma 5.4. Therefore, as T →∞,

P
(

limT→∞A
t1,T
δ

)

= limT→∞P
(

At1,T
δ

)

≤ P
(

Hc
t1

)

+
ǫ

δ
+

1

δ

∫ ∞

t1

E [E(dVt|Ft)]
+
.

Thus,

lim supt1→∞ P
(

limT→∞A
t1,T
δ

)

≤ ǫ

δ
.

Since this is true for all ǫ > 0,

lim supt1→∞ P
(

limT→∞A
t1,T
δ

)

= 0.

This implies,

1

T 1/2

(

∫ T

0

dWtU
′
1t

)

C
−1/2
1T → 0 a.s.

Hence, the Theorem.

Proof of Theorem 2.1. From Lemma 3.1, we have ||e−G0T || = O(e−λ0T ) and,

from Corollary 4.2, we have ||C−1/2
1T || = O(T−1/2) almost surely, as T → ∞.

Thus,

||T 1/2DTM || = T 1/2||M ||
(

||e−G0T ||+ ||C−1/2
1T ||

)

= O(1) a.s. as T → ∞.
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Therefore, from (5.1), Corollary 3.1(ii) and Theorem 5.1, we have limT→∞ F̂T =
F a.s.

To show that (2.3) holds, we observe that, for the eigenvalues of F in the
right half space (2.3) follows from Theorem 3.1 and, for the eigenvalues of F on
the left half space (2.3) follows from arguments in Corollary 4.2 and Remark 4.2.
For the mixed model, we observe

(

∫ T

0

YtY
′
t dt

)−1

= DTMΣTM
′D′

T

where limT→∞ ΣT is a.s. positive definite. Thus, by Lemma 3.2,

λmax





(

∫ T

0

YtY
′
t dt

)−1


 = O(λmax(DTD
′
T )) = O(T−1).

Therefore, the Theorem follows.

6. Asymptotic efficiency

In this section we would like to show that our estimator for the drift matrix
F is asymptotically efficient even if the underlying process is not necessarily
stationary (stable). For matrix-valued estimator there several ways to define
asymptotic efficiency (see Barndorff-Nielson and Sorensen [3], for details).

The result is already known in one-dimensional case and for vector-valued
parameters (e.g., [6, 8, 21, 27] and references therein) when the processes are
not necessarily stationary. For multi-dimensional matrix-valued case, similar
things can be proved once the asymptotic efficiency is properly defined for the
matrix valued estimator.

Observe that, when AA′ is nonsingular, the log-likelihood of F , (see [6], pp.
213–214), on [0, T ] is defined by,

LA(F ) =

∫ T

0

(Y ′
t F

′(AA′)−1dYt) − (1/2)

∫ T

0

(Y ′
t F

′(AA′)−1FYt)dt.

Thus,

dLA(F ) = Tr

[

dF

(

∫ T

0

YtdY
′

t

)

(AA′)−1 − dF

(

∫ T

0

YtY
′
t dt

)

F ′(AA′)−1

]

.

Therefore, dLA(F )/dF =
(∫ T

0
dYtY

′
t

)(∫ T

0
YtY

′
t dt
)−1

. When AA′ is not nonsin-
gular, the log-likelihood of F cannot be written explicitly. Therefore, M.L.E. of
F could not be achieved. However, we would show that the above estimator is
asymptotically efficient under the assumptions of the section 2.

We show that E(Tr[(F̂T − F )E(CT )(F̂T − F )′])1/2 = O(1) as T → ∞.



G.K. Basak, P. Lee/Asymptotics of a drift estimator for general OU processes 1331

Let ST =
(∫ T

0
AdWtY

′
t

)

, and CT =
(∫ T

0
YtY

′
t dt
)

as before. We use

Tr[(F̂T − F )E(CT )(F̂T − F )′] = Tr[STC
−1
T E(CT )C−1

T S′
T ]

≤ Tr[STC
−1
T S′

T ]Tr[C−1
T E(CT )]

while proving the following theorem.

Proof of Theorem 2.2.

Case 1: Eigenvalues of F are in the positive half space.

Observe that, Tr(STC
−1
T S′

T ) = Tr(ST e
−F ′T (e−FTCT e

−F ′T )−1e−FTS′
T ). Since

ST e
−F ′T is a Gaussian process and its mean zero and variance e−FTE(CT )e−F ′T

converges (in fact, to E(B)) as T → ∞, ST e
−F ′T converges to a finite Gaus-

sian random variable in distribution. Also, from Theorem (3.1), as T → ∞,
e−FTCT e

−F ′T converges almost surely to B (which is positive definite with
probability one). Thus, we obtain Tr(ST e

−F ′T (e−FTCT e
−F ′T )−1e−FTS′

T ) con-
verges in distribution to finite random variable with finite expectation.

Now, Tr(C−1
T E(CT )) = Tr((e−FTCT e

−F ′T )−1(e−FTE(CT )e−F ′T )), and from

Theorem (3.1), as T → ∞, (e−FTCT e
−F ′T )−1 converges to B−1 almost surely.

Also, e−FTE(CT )e−F ′T =
∫ T

0
e−FtY0Y

′
0e

−F ′tdt+
∫ T

0
te−FtAA′e−F ′tdt, which is

finite as T → ∞. Thus, it remains to show, as T → ∞, E(e−FTCT e
−F ′T )−1 con-

verges to E(B−1) (which is finite). First observe that, Zt −Y0 =
∫ t

0 e
−FsAdWs

is a symmetric (Gaussian) martingale and with E|Zt −Y0|2 ≤ E|Z −Y0|2 <∞.
Thus MZ = max0≤t<∞(Zt − Y0) exists and has finite expectation. Also, (by
symmetry) mZ = min0≤t<∞(Zt − Y0) exists and has finite second moment. For
symmetric matrices D1 and D2, define, D1 ≥ D2 if D1 − D2 is non-negative
definite. Therefore,

e−FTCT e
−F ′T =

∫ T

0

e−FtZT−tZ
′
T−te

−F ′tdt

≥
∫ T

0

e−Ft(mZ + Y0)(mZ + Y0)
′e−F ′tdt

≥
∫ T0

0

e−Ft(mZ + Y0)(mZ + Y0)
′e−F ′tdt

for all T ≥ T0, for some T0 > 0 (T0 may be taken to be 1). Thus, for all T ≥ T0,

(e−FTCT e
−F ′T )−1 ≤ (

∫ T0

0
e−Ft(mZ+Y0)(mZ +Y0)

′e−F ′tdt)−1. Since right hand
side has finite expectation, using dominated convergence type theorem deduce

E(B−1) = limT→∞E(e−FTCT e
−F ′T )−1 ≤ E(

∫ T0

0
e−Ft(mZ + Y0)(mZ + Y0)

′×
e−F ′tdt)−1. Therefore, E(Tr(C−1

T E(CT ))) is finite and hence, E(Tr[(F̂T − F )×
E(CT )(F̂T − F )′])1/2 = O(1).
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Case 2: Eigenvalues of F are on the left half space.

When all the eigenvalues have real parts negative, by ergodic theorem,
limT→∞

1
T CT =

∫∞

0
eFtAA′eF ′ tdt = limT→∞ E( 1

T CT ). Thus,

lim
T→∞

E(Tr(STC
−1
T S′

T )) = lim
T→∞

E

(

Tr

(

1

T
S′

TST

(∫ ∞

0

eFtAA′eF ′tdt

)−1)
)

= p Tr(AA′), i.e., of O(1).

Also, limT→∞ E(Tr(C−1
T E(CT ))) = limT→∞ E(Tr(( 1

T
CT )−1E( 1

T
CT ))) = p.

Therefore, E(Tr[(F̂T − F )E(CT )(F̂T − F )′])1/2 = O(1).

Zero and purely imaginary eigenvalues.

When the eigenvalues are either all purely imaginary or all zero, replace F
by F − ǫI = F ǫ, as it is done in Section 4, get the result as above by ergodic
theorem.

Now, as in Lemma 4.1, consider

∂

∂ǫ
TrE((Sǫ

T )′(Cǫ
T )−1(Sǫ

T ))

= 2TrE((Ṡǫ
T )′(Cǫ

T )−1Sǫ
T ) + TrE((Sǫ

T )′
∂

∂ǫ
(Cǫ

T )−1Sǫ
T )

= 2TrE((Ṡǫ
T )′(Cǫ

T )−1Sǫ
T ) − TrE((Sǫ

T )′(Cǫ
T )−1

[

∂

∂ǫ
Cǫ

T

]

(Cǫ
T )−1Sǫ

T )

≥ −2E

(

[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
]1/2

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]1/2

)

− TrE

[

(Sǫ
T )′(Cǫ

T )−1

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

]

(Cǫ
T )−1Sǫ

T

]

≥ −2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2 (

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

)1/2

− 2E

(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

×
∫ T

0

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2

[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

du

)

≥ −2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2 (

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

)1/2

− E

(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

×
[

∫ T

0

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )du+

∫ T

0

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )du

])

= −2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2

(

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
])1/2

− E
(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

.
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Therefore,

∂

∂ǫ
lnE

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

=
[

ETr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]−1 ∂

∂ǫ
E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

≥ −2

[

ETr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))

ETr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))

]1/2

−
E
(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
] [

p+ Tr
[

(Ċǫ
T )(Cǫ

T )−1
]]

)

E [Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))]

,

which is bounded below (by a negative number possibly depending on ǫ) uni-
formly for large values of T by (4.3) and using the fact that both TrE((Ṡǫ

T )′×
(Cǫ

T )−1(Ṡǫ
T )) and TrE((Ṡǫ

T )′(Ċǫ
T )−1(Ṡǫ

T )) have the same order and the latter
has the order as that of TrE((Sǫ

T )′(Cǫ
T )−1(Sǫ

T )).
Now as in the argument in consistency part, since all eigenvalues of F are on

the left half space, the real parts of all eigenvalues of F ǫ are negative, i.e., Y ǫ
t is

a stable process and

limT→∞TrE((Sǫ
T )′(Cǫ

T )−1(Sǫ
T )) = O(1).

Similarly, to get a upper bound, consider

∂

∂ǫ
TrE((Sǫ

T )′(Cǫ
T )−1(Sǫ

T ))

= 2TrE((Ṡǫ
T )′(Cǫ

T )−1Sǫ
T ) − TrE((Sǫ

T )′(Cǫ
T )−1

[

∂

∂ǫ
Cǫ

T

]

(Cǫ
T )−1Sǫ

T )

≤ 2E

(

[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
]1/2

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]1/2

)

+ TrE

[

(Sǫ
T )′(Cǫ

T )−1

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

]

(Cǫ
T )−1Sǫ

T

]

≤ 2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2 (

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

)1/2

+ 2E

(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

×

∫ T

0

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2

[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

du

)

≤ 2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2

(

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
])1/2

+ E

(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

×
[

∫ T

0

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )du+

∫ T

0

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )du

])
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= 2
(

E
[

Tr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))
])1/2

(

E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
])1/2

+ E
(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

.

Therefore,

∂

∂ǫ
lnE

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

=
[

ETr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]−1 ∂

∂ǫ
E
[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
]

≤ 2

[

ETr((Ṡǫ
T )′(Cǫ

T )−1(Ṡǫ
T ))

ETr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))

]1/2

+
E
(

[

Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))
] [

p+ Tr
[

(Ċǫ
T )(Cǫ

T )−1
]]

)

E [Tr((Sǫ
T )′(Cǫ

T )−1(Sǫ
T ))]

,

which is bounded above (by a positive number possibly depending on ǫ) uni-
formly for large values of T by (4.3).

As in the proof of Theorem 4.2, let f(ǫ) = lnTrE((Sǫ
T )(Cǫ

T )−1(Sǫ
T )). Fix an

ǫ1 > 0. f is a continuous function on [0, ǫ1] and is differentiable in (0, ǫ1). Then
by the Mean Value Theorem, there exists an ǫ0 ∈ (0, ǫ1) such that

f(ǫ1) − f(0) = ǫ1
∂

∂ǫ
f(ǫ)

∣

∣

ǫ=ǫ0
.

That is,

TrE((Sǫ1
T )′(Cǫ1

T )−1(Sǫ1
T ))

TrE(S′
TC

−1
T ST )

= exp

{

ǫ1
∂

∂ǫ
f(ǫ) |ǫ=ǫ0

}

, (6.1)

which is uniformly bounded and positive (i.e., bounded away from zero and
infinity) for large values of T as argued above. Since

limT→∞TrE((Sǫ
T )′(Cǫ

T )−1(Sǫ
T )) = O(1).

by (6.1)

limT→∞TrE(S′
TC

−1
T ST ) = O(1).

Mimicking the above argument, find

∂

∂ǫ
Tr
(

E((Cǫ
T )−1)E(Cǫ

T )
)

= −Tr

(

E

[

(Cǫ
T )−1

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

]

(Cǫ
T )−1

]

E(Cǫ
T )

)

+ Tr

(

E((Cǫ
T )−1)E

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

])
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≥ −2E

(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

×

∫ T

0

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

du

)

−2E

(

∫ T

0

[

(Y ǫ
u )′(E((Cǫ

T )−1))(Y ǫ
u )
]1/2 [

(Ẏ ǫ
u )′(E((Cǫ

T )−1))(Ẏ ǫ
u )
]1/2

du

)

≥ −E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

− 2E

(

[

Tr(E((Cǫ
T )−1))(Cǫ

T )
]1/2

[

Tr(E((Cǫ
T )−1))(Ċǫ

T )
]1/2

)

≥ −E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

− 2
(

Tr
[

E((Cǫ
T )−1)E(Cǫ

T )
])1/2

(

Tr
[

E((Cǫ
T )−1)E(Ċǫ

T )
])1/2

Therefore,

∂

∂ǫ
ln Tr(E((Cǫ

T )−1)E(Cǫ
T ))

=
[

Tr(E((Cǫ
T )−1)E(Cǫ

T ))
]−1 ∂

∂ǫ
Tr(E((Cǫ

T )−1)E(Cǫ
T ))

≥ −
E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
][

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
]

)

Tr(E((Cǫ
T )−1)E(Cǫ

T ))

−2

[

Tr(E((Cǫ
T )−1)E(Ċǫ

T ))

Tr(E((Cǫ
T )−1)E(Cǫ

T ))

]1/2

,

which is bounded below (by a negative number possibly depending on ǫ) uni-
formly for large values of T by (4.3) and from the fact that both
Tr(E((Cǫ

T )−1)E(Ċǫ
T )) and Tr(E((Cǫ

T )−1)E(Cǫ
T )) have the same order.

Similary, to get an upper bound, consider

∂

∂ǫ
Tr
(

E((Cǫ
T )−1)E(Cǫ

T )
)

= −Tr

(

E
[

(Cǫ
T )−1

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

]

(Cǫ
T )−1

]

E(Cǫ
T )

)

+ Tr

(

E((Cǫ
T )−1)E

[

∫ T

0

(Y ǫ
u )(Ẏ ǫ

u )′du+

∫ T

0

(Ẏ ǫ
u )(Y ǫ

u )′du

])

≤ 2E

(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

×

∫ T

0

[

(Y ǫ
u )′(Cǫ

T )−1(Y ǫ
u )
]1/2

[

(Ẏ ǫ
u )′(Cǫ

T )−1(Ẏ ǫ
u )
]1/2

du

)
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+2E

(

∫ T

0

[

(Y ǫ
u )′(E((Cǫ

T )−1))(Y ǫ
u )
]1/2

[

(Ẏ ǫ
u )′(E((Cǫ

T )−1))(Ẏ ǫ
u )
]1/2

du

)

≤ E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

+ 2E

(

[

Tr(E((Cǫ
T )−1))(Cǫ

T )
]1/2

[

Tr(E((Cǫ
T )−1))(Ċǫ

T )
]1/2

)

≤ E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
]

[

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
])

+ 2
(

Tr
[

E((Cǫ
T )−1)E(Cǫ

T )
])1/2

(

Tr
[

E((Cǫ
T )−1)E(Ċǫ

T )
])1/2

Therefore,

∂

∂ǫ
ln Tr(E((Cǫ

T )−1)E(Cǫ
T ))

=
[

Tr(E((Cǫ
T )−1)E(Cǫ

T ))
]−1 ∂

∂ǫ
Tr(E((Cǫ

T )−1)E(Cǫ
T ))

≤
E
(

[

Tr((Cǫ
T )−1E(Cǫ

T ))
] [

p+ Tr[(Ċǫ
T )(Cǫ

T )−1]
]

)

Tr(E((Cǫ
T )−1)E(Cǫ

T ))

+2

[

Tr(E((Cǫ
T )−1)E(Ċǫ

T ))

Tr(E((Cǫ
T )−1)E(Cǫ

T ))

]1/2

,

which is bounded above (by a positive number possibly depending on ǫ) uni-
formly for large values of T by (4.3).

Thus, using the similar argument as in (6.1) we show, since limT→∞Tr(E×
((Cǫ1

T )−1)E(Cǫ1
T )) = O(1), limT→∞Tr(E(C−1

T )E(CT )) = O(1). Hence, for eigen-

values of F on the left half space, we prove that E(Tr[(F̂T − F )E(CT )(F̂T −
F )′])1/2 = O(1).

Case 3: Mixed model.

In this case, use the decomposition of F as in Section 5, to decompose Y ′
tM

′ =
(U ′

0t, U
′
1t). Then, one gets,

Tr(STCT
−1S′

T ) = Tr(STM
′D′

T (DTMCTM
′D′

T )−1DTMS′
T )

≤ Tr(STM
′D′

TDTMS′
T )Tr(DTMCTM

′D′
T )−1

≤
(

Tr(S0T e
−G′

0
T e−G0TS′

0T ) + Tr(S1TC1T
−1S′

1T )
)

×

Tr(DTMCTM
′D′

T )−1.

Since for a symmetric invertible partition matrix,

K =

[

E F
F ′ H

]

with E and H invertible, Tr(K) = Tr(E − FH−1F ′)−1 + Tr(H − F ′E−1F )−1.

Taking E = e−G0TC0Te
−G′

0
T , F = e−G0T

∫ T

0
U0tU

′
1tdtC

−1/2
1T and H = I, i.e.,
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identity matrix of order p1. Since F converges to zero almost surely by the
proof of Lemma 5.1 and by the same lemma E converges to B almost surely,
one obtains Tr(DTMCTM

′D′
T )−1 → Tr(B−1) + p1 almost surely, as T → ∞.

Therefore,

E
[(

Tr(e−G0TS′
0TS0T e

−G′

0T ) + Tr(S1TC1T
−1S′

1T )
)

×

Tr(DTMCTM
′D′

T )−1
]1/2

≤ E(Tr(e−G0TS′
0TS0T e

−G′

0
T ))E(Tr(DTMCTM

′D′
T )−1)

+ E(Tr(S1TC1T
−1S′

1T ))E(Tr(DTMCTM
′D′

T )−1)

= O(1) (6.2)

by the case 1, and case 2. Similarly,

Tr
(

(DTMCTM
′D′

T )−1DTE(MCTM
′)D′

T

)

≤ Tr((DTMCTM
′D′

T )−1)Tr(DTE(MCTM
′)D′

T )

and Tr(DTE(MCTM
′)D′

T ) = Tr(e−G0TE(C0T )e−G′

0
T ) + Tr(C−1

1T E(C1T )) ex-
pectation of which is finite by case 1 and case 2. Therefore one proves, for the
mixed model, E(Tr[(F̂T − F )E(CT )(F̂T − F )′])1/2 = O(1).

7. Concluding remarks and discussion

It is easy to see that the state space equation of the general continuous au-
toregressive process (CAR(p)) of the form dXp−1

t = αpXt + αp−1X
1
t + · · · +

α1X
p−1
t + σdWt is a special case of multidimensional OU processes where

F =

(

0(p−1)×1 Ip−1

αp · · · α1

)

, A = (0, . . . , 0, σ)
′

with αi real numbers, σ > 0 andWt a one-dimensional Browian motion. Clearly,
A is not singular. However, the RANK condition (a) holds for this F and A and,
the condition (b’) holds for this F . Hence, from our result, the consistency and
the asymptotic efficiency of the F̂ of general CAR(p) follows.

It is important to observe that this estimation procedure may be the first step
in developing a test of zero roots of some F , which is necessary to determine
whether univariate processes are co-integrated. Also, if one needs to develop a
test to determine whether the model for Yt is stationary, it is often enough to test
whether all eigenvalues of F have negative real parts against the alternative that
some of them have zero real parts. Therefore, one need not often worry about the
assumption (b) or (b’) for testing stationarity. Thus, a related question arises on,
whether any Asymptotically Mixed Normality property holds for the estimator

F̂T , i.e., whether (
∫ T

0
YtY

′
t dt)

1/2(F̂T − F ) follows asymptotically Normal, so
that we could compute approximate confidence interval for the above testing
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procedures for the necessary parameters in F . As far as we know, these results
are still unknown. Investigating the Asymptotically Mixed Normality property
may be an important future direction to consider. One can look into LAMN
property as well.

Besides, when the drift coefficient matrix depends on an unknown discrete
paratmeter θ which follows a Markov chain (that helps the process to switch
regimes), finding a consistent and asymptotically efficient estimator becomes
important. Above questions can be asked in that setup as well.

In applications, we almost always use discrete sampled data. Similar questions
can be asked for this model, when the data sampled are in deterministic (equal
or unequal) time interval or in random interval. That can also be a focus of the
future direction.

8. Appendix

8.1. Purely imaginary eigenvalues

In this Section, we study the asymptotic behavior of OU processes when the
drift matrix F only contains purely imaginary eigenvalues. The main results are
summarized in the following:

Theorem 8.1 Suppose for the Ornstein-Uhlenbeck process defined in (1.1), the
RANK condition (2.1) holds and all the eigenvalues of F are purely imaginary.
Let 2ρ be the dimension of the largest block of the rational canonical form of F
as defined in Section 2 (see the Example). Then

||YT || =

{

O(T 1/2
√

ln lnT ) a.s. if ρ = 1

O(T 2ρ−5/2
√

ln lnT ) a.s. if ρ ≥ 2.

Moreover,

λmax

(

∫ T

0

YtY
′

t dt

)

=

{

O(T 2(ln lnT )) a.s. if ρ = 1
O(T 4ρ−4(ln lnT )) a.s. if ρ ≥ 2.

(8.1)

To prove Theorem 8.1, we need the following Lemmas.

Lemma 8.1

∞
∑

n=j

(−1)n(vt)2n−j

(2n− j)!
=

{

O(1) if j = 0, 1
O(tj−2) if j ≥ 2.

Proof.

∞
∑

n=j

(−1)n(vt)2n−j

(2n− j)!

= (−1)j

[

(vt)j

j!
− (vt)j+2

(j + 2)!
+

(vt)j+4

(j + 4)!
− · · ·

]
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=











































cos(vt) if j = 0
− sin(vt) if j = 1

(−1)j/2
{

cos(vt) −
[

1 − (vt)2

2!
+ · · ·+ (−1)j/2−1 (vt)j−2

(j−2)!

]}

if j is even, j ≥ 2

(−1)(j−3)/2
{

sin(vt) −
[

vt − (vt)3

3! + · · ·+ (−1)(j−1)/2 (vt)j−2

(j−2)!

]}

if j is odd, j ≥ 3

=

{

O(1) if j = 0, 1
O(tj−2) if j ≥ 2.

Hence, the lemma follows.

Lemma 8.2 With the same assumptions as in Theorem 8.1,

||eFt|| =

{

O(1) a.s. if ρ = 1
O(t2ρ−3) a.s. if ρ ≥ 2.

.

Proof. Suppose F is a 2ρ × 2ρ matrix and has ρ eigenvalues of λ1 = iv and
λ̄1 = −iv. Since the characteristic equation for F is 0 = |λI − F | = (λ −
iv)ρ(λ+ iv)ρ = (λ2 + v2)ρ, by the Cayley-Hamilton theorem,

(F 2 + v2I)ρ = 0. (8.2)

Case 1: When ρ = 1, then F 2n = (−1)nv2nI and

eFt =

∞
∑

n=0

F 2nt2n

(2n)!
+ F

∞
∑

n=0

F 2nt2n+1

(2n+ 1)!

= I
∞
∑

n=0

(−1)n(vt)2n

(2n)!
+
F

v

∞
∑

n=0

(−1)n(vt)2n+1

(2n+ 1)!

= I cos(vt) +
F

v
sin(vt). (8.3)

Therefore, ||eFt|| = O(1) when ρ = 1.
Case 2: When ρ ≥ 2, then A = F 2 + v2I is a nilpotent matrix of order ρ by

(8.2). Thus,

F 2 = −v2

[

I − A

v2

]

and

F 2n = (−1)nv2n

ρ−1
∑

k=0

(−1)k

(

n

k

)

Ak

v2k

= (−1)nv2n

(

I − nA

v2
+ · · ·+ (−1)ρ−1

(

n

ρ− 1

)

Aρ−1

v2(ρ−1)

)

.

Therefore,

eFt =

∞
∑

n=0

F 2nt2n

(2n)!
+ F

∞
∑

n=0

F 2nt2n+1

(2n+ 1)!
. (8.4)
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Let fj(n) = 2n(2n − 1) · · · (2n − j + 1) if j ≥ 1 and f0(n) = 1. Then, since
f0(n), f1(n), . . . , fk(n) are independent, there exist unique C0, C1 · · ·Ck ∈ Z
such that

(

n

k

)

=

k
∑

j=0

Cjfj(n).

Similarly, let f∗j (n) = (2n + 1)(2n) · · · (2n − j + 2) if j ≥ 1 and f∗0 (n) = 1.
Then, there exist unique C∗

0 , C
∗
1 , . . .C

∗
k ∈ Z such that

(

n

k

)

=

k
∑

j=0

C∗
j f

∗
j (n).

By Lemma 8.1, the first term of (8.4) can be expressed as

∞
∑

n=0

(−1)n(vt)2n

(2n!)





(ρ−1)∧n
∑

k=0

(−1)k

(

n

k

)

Ak

v2k





=

ρ−1
∑

k=0

(

−A

v2

)k




∞
∑

n=k

(−1)n(vt)2n

(2n)!





k
∑

j=0

Cjfj(n)









=

ρ−1
∑

k=0

(

−A

v2

)k




k
∑

j=0

(vt)jCj

(

∞
∑

n=k

(−1)n(vt)2n−j

(2n− j)!

)





=



















1
∑

k=0

(

− A
v2

)k × O(t) for ρ = 2

ρ−1
∑

k=0

(

− A
v2

)k ×O(t2k−2) for ρ ≥ 3

=

{

O(t) for ρ = 2
O(t2ρ−4) for ρ ≥ 3.

Similarly, the second term of (8.4) can be expressed as

F

∞
∑

n=0

F 2nt2n+1

(2n+ 1)!

=
F

v

∞
∑

n=0

(−1)n(vt)2n+1

(2n+ 1)!

(ρ−1)∧n
∑

k=0

(−1)k

(

n

k

)

Ak

v2k

=
F

v

ρ−1
∑

k=0

(

− A

v2

)k




k
∑

j=0

(vt)jCj

(

∞
∑

n=k

(−1)n(vt)2n−j+1

(2n− j + 1)!

)





=
F

v

ρ−1
∑

k=0

(

− A

v2

)k

×O(t2k−1)

= O(t2ρ−3).

Hence, the lemma follows.
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Lemma 8.3
∫ T

0

(T − s)kAdWs = O
(

T k+1/2
√

ln lnT
)

Proof. Let Mu =
∫ u

0
(t − s)kAdWs, which is a square integrable martingale for

[0 < u ≤ t] and <M >u=
∫ u

0
(t−s)2kAA′ds = [t2k+1−(t−u)2k+1]AA′/(2k+1).

Since Mu = B<M>u by Karatzas and Shreve ([14] p. 174),

∫ T

0

(T − s)kAdWs = O(BT 2k+1 ) = O(T k+1/2
√

ln lnT ).

Hence, the lemma follows.

Proof of Theorem 8.1. If ρ = 1, then there exist C ∈ R such that ||eFt|| ≤ C
by (8.3). Therefore,

||YT || = ||eFTY0 +

∫ T

0

eF (T−s)AdWs||

≤ CY0 + C
[

O(
√
T ln lnT )

]

= O(
√
T ln lnT ).

For ρ ≥ 2, by Lemma 8.2 and 8.3,

||YT || = ||eFTY0 +

∫ T

0

eF (T−s)AdWs||

≤ O

(

||eFTY0||+
∥

∥

∥

∥

∥

∫ T

0

2ρ−3
∑

k=0

Ck(T − s)kAdWs

∥

∥

∥

∥

∥

)

= O

(

||eFTY0||+
∥

∥

∥

∥

∥

2ρ−3
∑

k=0

Ck

∫ T

0

(T − s)kAdWs

∥

∥

∥

∥

∥

)

≤ O

(

||eFTY0||+
2ρ−3
∑

k=0

|Ck| × ||O(T k+1/2
√

ln lnT )||
)

= O(T 2ρ−5/2
√

ln lnT ).

To show (8.1), we have

λmax

(

∫ T

0

YtY
′

t dt

)

= O

(

Tr

∫ T

0

YtY
′
t dt

)

= O

(

∫ T

0

||Yt||2dt
)

=

{

O(T 2(ln lnT )) a.s. if ρ = 1
O(T 4ρ−4(ln lnT )) a.s. if ρ ≥ 2.

Hence, the proof of the theorem.
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8.2. Zero eigenvalues

In this Section, we study the asymptotic behavior of the OU processes when
the drift matrix F contains only zeros eigenvalues.(i.e., F is a nilpotent matrix.)
The main results are summarized in the following:

Theorem 8.2 Suppose for the OU process defined in (1.1), the RANK condition
(2.1) holds and, all eigenvalues of F are zeros. Let γ be the dimension of the
largest block of the rational canonical form of F as defined in Section 2 (i.e.,
F γ = 0; see the Example). Then

||YT || = O(T γ−1/2
√

ln lnT ) a.s.

Moreover,

λmax

(

∫ T

0

YtY
′
t dt

)

= O(T 2γ(ln lnT )) a.s. (8.5)

Proof. Since F is a k× k nilpotent matrix of order γ (1 ≤ γ ≤ k), then F γ = 0
and

eFt =

γ−1
∑

n=0

F ntn

n!
= O(tγ−1).

||YT || ≤ O

(

||eFTY0||+
∫ T

0

γ−1
∑

k=0

Ck(T − s)kAdWs

)

= O(||eFTY0||) + O

(

γ−1
∑

k=0

Ck

∫ T

0

(T − s)kAdWs

)

= O(T γ−1) + O(T γ−1/2
√

ln lnT )

= O(T γ−1/2
√

ln lnT ).

To prove (8.5) observe,

λmax

(

∫ T

0

YtY
′

t dt

)

= O

(

Tr

∫ T

0

YtY
′
t dt

)

= O

(

∫ T

0

||Yt||2dt
)

= O(T 2γ(ln lnT )).

Hence, the proof.
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