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Abstract: For estimating a lower bounded location or mean parameter
for a symmetric and logconcave density, we investigate the frequentist per-
formance of the 100(1 − α)% Bayesian HPD credible set associated with
priors which are truncations of flat priors onto the restricted parameter
space. Various new properties are obtained. Namely, we identify precisely
where the minimum coverage is obtained and we show that this minimum

coverage is bounded between 1 − 3α

2
and 1 − 3α

2
+ α

2

1+α
; with the lower

bound 1 − 3α

2
improving (for α ≤ 1/3) on the previously established ([9];

[8]) lower bound 1−α

1+α
. Several illustrative examples are given.
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1. Introduction

The findings in this paper are concerned with interval estimation of a location
parameter θ based on an observable X having cdf G(x − θ) with θ ≥ 0 and
symmetric densities g(x − θ), in other words for cases where there exists a
lower bound constraint for θ with the parameter space’s minimal value taken
to be 0 without loss of generality. More specifically, we establish new analytical
properties of the frequentist coverage

C(θ) = Pθ(Iπ∗ (X) ∋ θ), (θ ≥ 0), (1)

of the 100× (1−α)% Bayesian HPD confidence interval Iπ∗(X) associated with
the flat prior π∗(θ) = 1[0,∞)(θ).

With a known but conservative 1−α
1+α

lower bound for the minimal coverage
infθ≥0 C(θ) (see [9] for the normal case; [8] for the general unimodal case), we
succeed here in establishing for logconcave pdf’s g the better (for α < 1/3) lower
bound 1− 3α

2 for infθ≥0 C(θ). We further establish various new properties of the
frequentist coverage C(θ) for logconcave pdf’s g, such as (i) argminθ≥0C(θ) =

2d0; (ii) 1 − 3α
2 ≤ infθ≥0 C(θ) ≤ 1 − 3α

2 + α2

1+α
; (iii) supθ≥0 C(θ) ≤ 1 − α

2 ; and

(iv) C(θ) decreases on (d1, 2d0), increases on (2d0,∞), where d0 = G−1( 1
1+α

)

and d1 = G−1(1− α
2
). Observe that result (ii) confirms the first order optimality

of the lower bound 1 − 3α
2 , as opposed for instance to the lower bound 1−α

1+α
=

1 − 2α + o(α) for small α. The main application of our results is undoubtedly
for estimating a lower bounded normal mean with known variance, but the
results are nevertheless more general and unified for symmetric densities with
logconcave pdf’s. For instance, an interesting illustration will be given for a
Laplace model.

Here is a glimpse of previous work pertaining to the credible interval Iπ∗ (X)
and its frequentist coverage C(θ). For estimating a lower bounded normal mean
θ (say θ ≥ 0), results due to (a) Roe and Woodroofe [9] (known variance),
and (b) Zhang and Woodroofe [10] (unknown variance σ2) establish the lower
bound 1−α

1+α
for the frequentist coverage of the 100 × (1 − α)% HPD Bayesian

confidence interval with respect to the priors: π(θ) = 1[0,∞)(θ) in (a); and

π0(θ, σ) = 1
σ
1[0,∞)(θ)1(0,∞)(σ) in (b). More recently, Marchand and Strawder-

man [8] established, for a more general setting with underlying symmetry, the
validity of the lower bound 1−α

1+α
for the frequentist coverage of the 100×(1−α)%

Bayesian HPD credible interval derived from the truncation onto the restricted
parameter space of the Haar right invariant prior. We refer to their paper for
details and similar developments for non-symmetric settings (also see [11]; [12]).
The important starting point to keep in mind from the results of Marchand and
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Strawderman [8] is the applicability of the 1−α
1+α

lower bound for symmetric and
unimodal location models.

As mentioned above, the analysis which we have carried out and which is
presented herein was motivated by the conservative nature of the previously
established lower bound 1−α

1+α
and other unknown and potentially useful aspects

of the coverage C(θ). Finally, the results are cast here with the backdrop of a
flurry of recent activity and debate, which is focused on the choice of methods for
setting confidence bounds for restricted parameters as witnessed by the works
referred to above as well at that of Mandelkern [7], Feldman and Cousins [5],
Efron [4], among others.

2. Main results

Our main results apply to location models X ∼ g(x− θ) with densities g which
are unimodal, symmetric about 0, and logconcave (i.e., log g is a concave function
on its support). For such location families, the key assumption of logconcavity
can equivalently be described as corresponding to those families with increasing

monotone likelihood ratio densities, that is g(x−θ1)
g(x−θ0)

increases in x for all θ1, θ0

such that θ1 > θ0. Alternatively, the assumption of logconcavity is connected to
an increasing hazard (or failure) rate (see Lemma 1). Before moving along, here
is a useful checklist of notations and definitions used throughout.

Checklist

• 1 − α: credibility or posterior coverage or nominal frequentist coverage
(α ∈ (0, 1))

• g: probability density function (pdf) of X − θ
• G: cumulative distribution function (cdf) of X − θ
• Ḡ(≡ 1 − G): survivor function
• G−1: inverse cdf
• λ(·): hazard rate function given by λ(z) = g(z)

G(z)

• π∗: the flat prior density truncated onto the parameter space [0,∞) given
by π∗(θ) = 1[0,∞)(θ)

• Iπ∗(X) = [l(X), u(X)]: the HPD Bayesian credible set of credibility 1−α
associated with π∗

• a = limx→−∞ u(x)
• C(θ): the frequentist coverage at θ of the confidence interval Iπ∗(X) given

by C(θ) = Pθ(Iπ∗(X) ∋ θ)
• d0 = G−1( 1

1+α
)

• d1 = G−1(1 − α
2 )

• u−1(θ) = inf{x|θ ≤ u(x)}
• l−1(θ) = sup{x|θ ≥ l(x)}

(these last two inverses being defined as such in order to facilitate expres-
sions below for frequentist coverage)
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We next collect some useful properties of logconcave densities (see [1], [2] for
surveys). Lemma 2 is a critical result which may well be new and of independent
interest.

Lemma 1. Let g be a unimodal, symmetric about 0 and logconcave density on
R. Then,

(a) g(y)
g(y+θ) is nondecreasing in θ on [0,∞), for y ≥ 0;

(b) g(y)
g(y+θ) is nondecreasing in y on R, for θ ≥ 0;

(c) g(y(θ))
g(y(θ)+θ)

is nondecreasing in θ on [0,∞), for y(·) a nonnegative and non-

decreasing function taking values on [0,∞);
(d) both the cdf G and survivor function Ḡ are log-concave on [0,∞);
(e) the hazard rate λ(·) is nondecreasing on R.

Proof. Part (a) is obvious and is simply a consequence of unimodality. Parts (b)
and (e) are log-concavity, and part (c) follows from (a) and (b). A proof of (d)
can be found in [1] or [2].

Lemma 2. Let g be a unimodal, symmetric about 0 and logconcave density on
R. Then, for all z ≥ 0,

(a)
g(z)

g(2z)
≥ 1

2G(z)
− 1 ; (2)

(b)
G(z)

G(2z)
≥ 1

2G(z)
− 1 . (3)

Proof. Part (a) implies (b) given the increasing hazard rate property of part (e)
of Lemma 1, as

λ(2z) ≥ λ(z) =⇒ G(z)

G(2z)
≥ g(z)

g(2z)
for all z ≥ 0 .

For part (a), begin by observing that for all z > 0:

1

2G(z)
− 1 ≤

1
2 − G(z)

G(z) − G(2z)
=

∫ z

0 g(y) dy
∫ 2z

z
g(y) dy

,

so that (2) holds as soon as, for all z > 0,

∫ z

0

g(y)

g(z)
dy ≤

∫ 2z

z

g(y)

g(2z)
dy,

or equivalently,
∫ z

0

(
g(y)

g(z)
− g(y + z)

g(2z)
) dy ≤ 0. (4)
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Finally, apply part (b) of Lemma 1 inside the above integral to infer that g(y)
g(z)

−
g(y+z)
g(2z) ≤ 0 for all y, z such that y ∈ (0, z), which yields (4) and the proof

of (2).

We now recall previously established properties of Iπ∗(X) and of its frequentist
coverage before pursuing with the main analysis.

Lemma 3 ([8], theorem 1). For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric
about 0, and the HPD credible set Iπ∗(X), we have

(a) Iπ∗(X) = [l(X), u(X)], with l(x) = {x−G−1(1
2 + 1−α

2 G(x))}1(d0,∞)(x) and

u(x) = {x−G−1(αG(x))}1(−∞,d0](x)+{x+G−1(1
2 + 1−α

2 G(x))}1(d0,∞)(x);

(b) C(θ) > 1−α
1+α

, for all θ ≥ 0;

(c) C(0) = 1
1+α

;
(d) limθ→∞ C(θ) = 1 − α.

As shown in the following lemma, the lower bound l(·) is nondecreasing on
(−∞,∞), while the upper bound u(·) is nondecreasing on (d0,∞). Furthermore,
we show how the logconcavity of g forces u(·) to be nondecreasing on (−∞, d0)
as well. (It is easily verified that l(·) and u(·) are continuous functions on R.)

Lemma 4. Consider Iπ∗(X) as given in Lemma 3. Then,

(a) l(·) is nondecreasing on (−∞,∞);
(b) u(·) is nondecreasing on (d0,∞);
(c) u(·) is nondecreasing on (−∞, d0) whenever g is logconcave.

Proof. (a) Since l(x) = 0 for x ≤ d0, we only need to look at the behaviour of
l(x) for x > d0(> 0). We have, for x > d0,

d

dx
l(x) = 1 − 1 − α

2

g(x)

g(G−1(1
2 + 1−α

2 G(x)))
.

Notice, since l(x) ≥ 0, that we must have x ≥ G−1(1
2 + 1−α

2 G(x)) ≥ 0, from
which we infer that g(x) ≤ g(G−1(1

2 + 1−α
2 G(x))) given that g is unimodal with

a mode at 0.
(b) Follows directly with G and G−1 being nondecreasing.1

(c) Under the prior π∗, the posterior density of θ|x is given by {g(θ−x)
G(x) 1[0,∞)(θ)},

and u(x) is, for x ≤ d0, the corresponding quantile of order 1−α ([8], proofs of
Theorem 1 or Lemma 5). Now the logconcavity of g implies that the family of
posterior densities of θ|x, with parameter x, has increasing monotone likelihood
ratio in θ. Finally, the result follows since the quantiles u(x); x ≤ d0; of such
families are nondecreasing in x.

The increasing properties of l(·) and u(·), for logconcave densities g, permit
us to translate the events of coverage, i.e., {Iπ∗(X) ∋ θ}, as {u−1(θ) ≤ X ≤
l−1(θ)}, and leads to the following expressions and further properties of the
frequentist coverage C(θ).

1actually, we have the stronger result that u(x) − x increases in x here for x ≥ d0
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Lemma 5. Under the conditions of Lemma 3 with g logconcave, we have:

(a)

C(θ) =







G(x1(θ)) if θ ∈ [0, a]
G(x1(θ)) − G(x0(θ)) if θ ∈ (a, 2d0]
G(x1(θ)) − G(x2(θ)) if θ ∈ (2d0,∞) ;

(5)

where a = limx→−∞ u(x) (see checklist), and with x0(·), x1(·), and x2(·)
being functions defined by the equations:

(i) G(x0(θ)) = α G(x0(θ) + θ) (θ ∈ (a, 2d0]);

(ii) 2G(x1(θ)) − 1 = (1 − α)G(x1(θ) + θ) (θ ≥ 0);

(iii) 1 − 2G(x2(θ)) = (1 − α)G(x2(θ) + θ) (θ ∈ [2d0,∞)).

(b) Furthermore, x0 and x1 are increasing, while x2 is decreasing, with

lim
θ→0+

x0(θ) = −∞, x0(d1) = −d1, x0(2d0) = −d0;

lim
θ→0+

x1(θ) = d0, lim
θ→∞

x1(θ) = d1;

x2(2d0) = −d0, and lim
θ→∞

x2(θ) = −d1.

Proof. (a) First, observe that the nondecreasing properties of l(·) and u(·) es-
tablished in Lemma 4 imply that l−1(·) and u−1(·) are equally nondecreasing.
Along with Lemma 3, it also follows that l(x) varies continuously from 0 to +∞
as x ∈ ℜ; and that u(x) varies continuously from a to +∞ as x ∈ ℜ. Set

x0(θ) = u−1(θ) − θ; θ ∈ (a, 2d0];

x1(θ) = l−1(θ) − θ; θ ∈ [0,∞);

x2(θ) = u−1(θ) − θ; θ ∈ [2d0,∞).

We hence obtain

C(θ) = Pθ(l(X) ≤ θ ≤ u(X))

= Pθ(u
−1(θ) ≤ X ≤ l−1(θ))

= G(l−1(θ) − θ) − G(u−1(θ) − θ),

which is (5) with u−1(θ) = −∞ for θ ∈ [0, a]. Furthermore, it must be that:

• l−1(θ) − G−1(1
2 + 1−α

2 G(l−1(θ)) = θ, for θ ≥ 0,⇒ G(l−1(θ) − θ) =
1
2 + 1−α

2 G(l−1(θ)) ⇒ (ii);
• u−1(θ) − G−1(αG(u−1(θ)) = θ, for θ ∈ (a, 2d0),⇒ G(u−1(θ) − θ) =

αG(u−1(θ)) ⇒ (i)
• u−1(θ) + G−1(1

2 + 1−α
2 G(u−1(θ))) = θ, for θ ≥ 2d0,⇒ G(u−1(θ) − θ) =

1
2 + 1−α

2 G(u−1(θ)) ⇒ (iii).

(b) The right hand sides of (i), (ii), and (iii) increase in θ given that both l−1(θ)
and u−1(θ) increase in θ. This implies that, in terms of θ (≥ 0), x0(θ), x1(θ) in-
crease, while x2(θ) decreases. Now, observe that u(d0) = 2d0 ⇒ u−1(2d0) = d0,
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and x0(2d0)(= x2(2d0)) = d0−2d0 = −d0. Similarly,u(0) = d1 ⇒ x0(d1) = −d1,
and limx→−∞ u(x) = a ⇒ limθ→a+ x0(θ) = −∞. Now, making use of (ii) and
(iii) and the limiting properties limθ→∞ l−1(θ) = ∞, limθ→∞ u−1(θ) = ∞, we
infer that limθ→∞ x1(θ) = d1, and limθ→∞ x2(θ) = −d1. Finally, the prop-
erty limθ→0+ x1(θ) = d0 follows directly from (ii), or again from part (a) of
Lemma 3.

Remark 1. Above, only the properties relative to x0, as well as those of the
coverage C(θ) for θ ≤ 2d0 require the logconcavity of g. Analogously, some
results below (e.g., Corollary 1) do not require the additional assumption of
logconcavity.

Remark 2. From (5) and the properties of x0, x1, and x2 of Lemma 5, it follows
that C(·) is a continuous function on [0,∞), with the exception of a discontinuity
at θ = a, and when a > 0. In this case, we have limθ→a− x0(θ) = −∞, and
limθ→a+ x0(θ) = u−1(a) − a, which will lead to a drop of G(u−1(a) − a) in the
coverage at θ = a. An interesting example of such a discontinuity occurs for a
Laplace model (see Example 3, Figure 2, and Remark 3).

Remark 3. It is pertinent here to discuss the behaviour of u(x) as x → −∞.
In particular, we wish to single out cases where a > 0, which will imply that
u(x) ≥ θ for any θ ∈ [0, a] (i.e., Iπ∗ (x) does not underestimate θ for such θ’s,
and coverage will occur as soon as underestimation does not occur; see (5)). As
an example, consider a Laplace model with g(z) = G(z) = 1

2
e−z; for z > 0; and

which leads to u(x) = − ln(α) for all x < 0, hence a = − ln(α) > 0. Part (a) of
Lemma 3 provides a way to verify this directly. Alternatively, observe that the
posterior survivor function of θ is given by

P (θ ≥ y|x) =
Ḡ(y − x)

Ḡ(−x)
= e−y; for y > 0, x < 0.

Thus, for x < 0, the posterior distribution does not vary and yields a constant
Iπ∗(x) = [0,− ln(α)].

Analogously, logconcave densities g with exponential tails will lead to a
similar non-zero limit at −∞. A family of such densities, which will lead to
u(x) → − ln(α) as x → −∞, is given by g(z) = P (|z|)e−|z|; with P (·) nonde-

creasing and logconcave on (0,∞), P ′(0+) < P (0), and
P ′(z)
P(z) → 0 as z → ∞.

This may be verified by showing that the conditions on P force the density g
to be logconcave, and that the posterior survivor function P (θ ≥ y|x) converges
(for y > 0) as above to e−y when x → −∞. A simple example is given by
P (z) = 1

4(|z| + 1), that is g(z) = 1
4 (|z|+ 1)e−|z|.

On the other hand, if h′ is unbounded where h ≡ − ln(g), then u(x) → 0 as
x → −∞. To prove this, it is sufficient to show that P (θ ≥ y|x) → 0 as x → −∞
for all y > 0. But notice that (for y > 0)

lim
x→−∞

P (θ ≥ y|x) = lim
x→−∞

Ḡ(y − x)

Ḡ(−x)
= lim

x→∞

g(y + x)

g(x)
= 0,

given that limx→∞{ h(y + x) − h(x) } ≥ limx→∞ yh′(x) = ∞.
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Finally, we emphasize that the assumption of logconcavity is indeed required
for the upper bound u(·) to increase on (−∞, d0). As for interesting counterex-
amples, we point out that u(x) → ∞ as x → −∞ for non-logconcave densities

g such that limx→∞
g(y+x)

g(x) = 1, for all y > 0. This is the case for instance of

Student densities with ν ≥ 1 degrees of freedom, as remarked upon previously
by [10].

By virtue of Lemma 5, we now obtain a first set of new results for the coverage
C(θ), θ ≥ 0.

Corollary 1. For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric about 0, the
frequentist coverage C(θ) of the HPD credible set Iπ∗(X) satisfies the properties:

(a) C(θ) increases in θ for θ ≥ 2d0;
(b) C(θ) ≤ 1 − α

2
for all θ ≥ 0;

(c) C(θ) ≥ 1
1+α

for θ ∈ [0, a].

Proof. (a) Immediate given Lemma 5’s representation G(x1(θ)) − G(x2(θ)) for
the coverage, and given that G(·) and x1(·) are increasing on R, while x2(·) is
decreasing on [2d0,∞).

(b) It follows from Lemma 5 that C(θ) ≤ G(x1(θ)) ≤ G(d1) = 1 − α
2
, for all

θ ≥ 0.
(c) It follows from Lemma 5 that C(θ) = G(x1(θ)) ≥ G(x1(0)) = G(d0) =

1
1+α

, for all θ ∈ [0, a].

Corollary 2. For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric about 0, and
logconcave, the frequentist coverage C(θ) of the HPD credible set Iπ∗(X) satisfies
the properties:

(a) C(θ) ≤ 1 − α for all θ ≥ d1;

(b) C(θ) ≥ 1 − α for all θ ≤ G−1(1 − α2

1+α
) − d0 = d2 (say).

Proof. (a) It suffices to show that C(θ) ≤ 1 − α for θ ∈ [d1, 2d0) since C(θ) ≤
1 − α for all θ ≥ 2d0, given part (d) of Lemma 3 and part (a) of Corollary 1.
Observe that Lemma 5’s increasing property of x0 implies d1 ≤ 2d0 given that
x0(d1) = −d1 ≤ −d0 = x0(2d0). Furthermore, the properties of Lemma 5 tell
us that: x1(θ) ≤ d1 and x0(θ) ≥ −d1 for θ ∈ [d1, 2d0]. Finally as a consequence,
we obtain from (5) with θ ∈ [d1, 2d0) ⇒ θ ≥ d1 = u(0) ≥ a:

C(θ) = G(x1(θ)) − G(x0(θ)) ≤ G(d1) − G(−d1) = 1 − α, for all θ ∈ [d1, 2d0).

(b) Take θ ≥ a as the result is already established for θ ≤ a, given that 1−α ≤
1

1+α
. Now define θ2 such that G(x0(θ2)) = α2

1+α
. It is the case that G(x0(θ)) ≤

α2

1+α
for θ ≤ θ2, given that x0(·) is a nondecreasing function. Furthermore, for

θ ≤ θ2, we have

C(θ) ≥ G(x1(θ)) − G(x0(θ))

≥ G(x1(0)) − α2

1 + α
= G(d0) −

α2

1 + α
=

1

1 + α
− α2

1 + α
= 1 − α.
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There remains to show that θ2 = d2. But this is the case by definitions of x0

and d2, with G−1(∆) = −G−1(1 − ∆) for all ∆ ∈ (0, 1), since

α2

1 + α
= G(x0(θ2)) = αG(x0(θ2) + θ2) ⇒ G−1

(

α

1 + α

)

= x0(θ2) + θ2 ⇒ θ2 = −d0 − G−1

(

α2

1 + α

)

= d2.

Remark 4. Observe that the analysis within the proof of part (b) of the previous
corollary tells us also that

sup
θ≥0

C(θ) ≥ C(d2) ≥ G(x1(d2)) −
α2

1 + α
. (6)

Example 1. For sake of illustration of the results obtained up to now, take a
normal model with X|θ ∼ N(θ, 1), and 1 − α = 0.90. Evaluations give us d1 =
G−1(0.95) ≈ 1.645, 2d0 = G−1( 1

1.1) ≈ 2.68, and d2 = G−1(1− 0.01
1.1 )−d0 ≈ 1.03.

Results from Corollaries 1 and 2 thus imply that the frequentist coverage C(θ)
necessarily exceeds the nominal coverage 0.90 for θ ≤ d2 ≈ 1.03; i.e., for values
of the mean θ that are within a little more than one standard deviation of the
lower bound of the parameter space. On the other hand, the exact coverage
falls below the nominal coverage and increases for θ ≥ d1 ≈ 1.645. Furthermore,
we may infer that: (i) C(0) = 0.90, (ii) supθ≥0 C(θ) ≤ 0.95, and from (6)

(iii) supθ≥0 C(θ) ≥ G(x1(d2)) − 0.01
1.1

≈ G(x1(1.03)) − 0.01
1.1

≈ 0.939. These
above features, along with the increasing property of C(θ) for θ ∈ [2d0,∞)
(Corollary 1, part a), are illustrated in Figure 1.

The next few results, culminating in Corollary 3, show that the minimum

coverage is attained at θ = 2d0, and is bounded between 1− 3α
2 and 1− 3α

2 + α2

1+α
.

The first of these results gives further information about the behaviour of C(θ)
for θ ≤ d1.

Lemma 6. For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric about 0, and
logconcave, the frequentist coverage C(θ) of the HPD credible set Iπ∗(X) satisfies
the property:

C(θ) ≥ C(2d0) for all θ ≤ d1.

Proof. Take θ ∈ [0, d1]. From (5), we infer that C(θ) ≥ C(2d0) as long as

G(x1(θ)) + G(x0(2d0)) ≥ G(x1(2d0)) + G(x0(θ)). (7)

Lemma 5’s properties of x0 and x1 imply that G(x1(θ)) + G(x0(2d0)) ≥
G(d0) + G(−d0) = 1, and G(x1(2d0)) + G(x0(θ)) ≤ G(d1) + G(−d1) = 1; which
implies (7) and our desired result.
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Lemma 7. For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric about 0, and
logconcave, the frequentist coverage C(θ) of the HPD credible set Iπ∗(X) satisfies
the properties:

(i)

C(θ) ≥ C(2d0) ≥ 1 − 3α

2
, for all θ ≥ 2d0.

(ii)

C(2d0) ≤ 1 − 3α

2
+

α2

1 + α
.

Proof of (i). Since C(·) increases on [2d0,∞) (Corollary 1, part a), it suffices to
show that

C(2d0) ≥ 1 − 3α

2
. (8)

From (5) and the other properties of Lemma 5, we obtain

C(2d0) = G(x1(2d0)) − G(x2(2d0))

=
1 − α

2
{G(x1(2d0) + 2d0) + G(x2(2d0) + 2d0)}

≥ 1 − α

2

{

G(3d0 +
1

1 + α

}

.

From this, we obtain that condition (8) is equivalent to G(3d0) ≥ 1−3α2

1−α2 , and
we conclude the proof by establishing the stronger property (given that d0 > 0)

G(2d0) ≥
1 − 3α2

1 − α2
.

With the property G(d0) = 1
1+α

, rewritten as α = Ḡ(d0)
1−Ḡ(d0)

, we infer that

G(2d0) ≥
1 − 3α2

1 − α2
⇔ Ḡ(2d0)

Ḡ(d0)
≤ 2α

1 − α
⇔ Ḡ(2d0)

Ḡ(d0)
≤ 2Ḡ(d0)

1 − 2Ḡ(d0)
.

Finally, the proof of (i) is complete since (3) implies the above chain of impli-
cations, as well as (8).

Proof of (ii). From (5) and the other properties of Lemma 5, we obtain in a
straightforward manner:

C(2d0) = G(x1(2d0)) − G(x0(2d0))

≤ G(d1) − G(−d0)

= 1 − α

2
− α

1 + α
= 1 − 3α

2
+

α2

1 + α
.

The last piece of the analysis consists in showing that the frequentist coverage
C(θ) decreases on (d1, 2d0). The proof of the next result relies in part on several
lemmas which are stated and proven in the Appendix.
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Theorem 1. For X ∼ g(x−θ), θ ≥ 0, g unimodal, symmetric about 0, and log-
concave, the frequentist coverage C(θ) of the HPD credible set Iπ∗(X) decreases
on (d1, 2d0).

Proof. Take θ ∈ (d1, 2d0). Make use (5) and part (c) of Corollary 4 to obtain

C ′(θ) ≤ x′
1(θ) g(x1(θ)) − x′

0(θ) g(x0(θ))

≤ (1 − α)g(d0) g(d0 + d1)

2g(d0) − (1 − α)g(d0 + d1)
− α

1 − α
g(d1) .

From this, we obtain that the property C ′(θ) ≤ 0 for θ ∈ (d1, 2d0) is equivalent
to the inequality

(1 − α)2 g(d0) g(d0 + d1) + α(1 − α)g(d1) g(d0 + d1) ≤ 2α g(d0) g(d1).

Using the fact that d1 ≥ d0 > 0 and the unimodality of g, we infer that the
above condition is implied by either the condition

g(d1)

g(d0 + d1)
≥ 1 − α

2 α
;

or, given part (b) of Lemma 1, by the stronger condition

g(d0)

g(2d0)
≥ 1 − α

2 α
.

Finally, the result follows with this very last inequality being equivalent to (2)

given that α = Ḡ(d0)
1−Ḡ(d0)

.

Corollary 3. For X ∼ g(x − θ), θ ≥ 0, g unimodal, symmetric about 0, and
logconcave, the frequentist coverage C(θ) attains its minimum at θ = 2d0, and
is bounded below by 1 − 3α

2 .

Proof. The result is a direct consequence of Theorem 1, Lemma 7, and Lemma 6.

3. Examples and final comments

We conclude with some comments and illustrative examples. We also refer to
[3] and [6] for further examples and illustrations.

Remark 5. The new lower bound 1 − 3α
2 for the frequentist coverage is an

improvement over the existing lower bound 1−α
1+α

for α < 1/3, and a significant
improvement for relatively smaller α. For instance, with a nominal coverage
of 1 − α = 0.90, the lower bounds are 0.85 and 0.81 respectively. Also, as
alluded to in the introduction and as a consequence of Lemma 7, the bound
1 − 3α

2 is, for α < 1/3, fairly sharp especially for relatively smaller α given

that infθ≥0 C(θ) ≤ C(2d0) ≤ 1 − 3α
2 + α2

1+α
. For instance with 1 − α = 0.90,
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we obtain 0.85 ≤ infθ≥0 C(θ) ≤ 0.8590. There is some numerical evidence to
support the applicability of the lower bound 1 − 3α

2 for some models that are
not logconcave location models. This is perhaps the case notably for estimating
a lower bounded normal mean with unknown variance, (a model associated with
a pivotal Student distribution which is not logconcave), based on the reported
numerical evaluations in [10].

Example 2. (Normal model; Example 1 continued) As a followup to Example 1,
with X|θ ∼ N(θ, 1), θ ≥ 0, and = 1−α = 0.90, the coverage C(θ) is presented in
Figure 1. Notice that the coverage decreases on (d1, 2d0) (Theorem 1), and the
minimum is attained at 2d0 ≈ 2.68 and is bounded above by 0.85 (Corollary 3).
In fact, the exact minimal coverage C(2d0) is about equal to 0.859, almost the
same as the upper bound given above in Remark 5, or Lemma 7.

Example 3. (Laplace model) Consider X|θ ∼ Laplace(θ) with g(z) = Ḡ(z) =
1
2e−z for z > 0, and G−1(t) = − log(2(1− t)) for t ≥ 1/2. In view of these closed
forms, explicit forms for Iπ∗(X) and its coverage C(θ) are available. With further
details provided in [3] or [6], we obtain for instance from (5), with a = − ln(α)
(see Remark 2), d0 = G−1( 1

1+α
) = ln(1+α

2α
), d1 = G−1(1 − α

2
) = − ln(α) (= a):

C(θ) =























1 − αeθ

2eθ−(1−α)
if 0 ≤ θ ≤ − ln(α)

1 − αeθ

2eθ−(1−α) − αe−θ

2(α−
√

α2−αe−θ)
if − ln(α) < θ ≤ 2 ln(1+α

2α
)

1 − αeθ

2eθ−(1−α)
− (1−α)e−θ

2(
√

α2+2(1−α)e−θ−α)
if θ ≥ 2 ln(1+α

2α
) .
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Furthermore, we can show here that C(θ) is precisely increasing for θ ∈ (0, d1)
and α ≤ 1/3 (we already know it is decreasing on (d1, 2d0), and increasing on
(2d0,∞)). This implies here as well that supθ≥0 C(θ) = C(d1). A graph of
this coverage is presented in Figure 2 for 1 − α = 0.95. We recognize several
of the established features of C(θ), such as those illustrated in Examples 1
and 2. Observe the drop at a = − ln(0.05) ≈ 2.996 of G(x0(a)) = G(x0(d1)) =
G(−d1) = α

2 = 0.025 (we made use here of (5) and Lemma 5’s properties of
x0). Notice also that the minimum is attained at 2d0 = 2 ln( 1.05

2(0.05)) ≈ 4.70

and equal to C(2d0) ≈ 0.92727 (using directly the expression above), which is
very close to the upper bound 0.92738 given by Lemma 7. Finally, in this case,
supθ≥0 C(θ) = C(− ln(0.05)) ≈ 0.9744; which of course is less (but only a little
less) than Corollary 1’s upper bound 0.975.

Finally, the findings in this paper does provide a sharper description of the
frequentist coverage properties of the HPD credible interval I∗π(X) with the
improved lower bound on the minimal coverage mitigating in favour of desirable
features (of course, added to the fact that the interval I∗π(X) has exact credibility
for a uniform prior on [0,∞)). However, one can turn around the argument to
point out the non-conformity of the frequentist and nominal coverage of I∗π(X)
in the worse case scenario θ = 2d0. For instance, if 1−α = 1/3, Lemma 7 implies
that infθ≥0 C(θ) is at most 7/12 (at least 1/2), in other words a departure of at
least 1/12 between nominal and frequentist coverage at θ = 2d0.



É. Marchand et al./Frequentist coverage of Bayesian credible intervals 1041

4. Appendix

All the results in this Appendix are called upon in Theorem 1 and are established
under the same assumptions as those of Theorem 1, that is: X ∼ g(x−θ), θ ≥ 0,
g unimodal, symmetric about 0, and logconcave.

Lemma 8. For θ ∈ [d1, 2d0],

(a) the function g(x0(θ))
g(x0(θ)+θ)

increases in θ;

(b) the function g(x1(θ))
g(x1(θ)+θ) increases in θ, and is bounded below by g(d0)

g(d0+d1) .

Proof. (a) Follows from the unimodality of g and the properties of x0 since
x0(θ) < 0 ≤ x0(θ) + θ for θ ∈ [d1, 2d0].

(b) The increasing property follows from Lemma 1 (part c) and Lemma 5’s
increasing property of x1. With the addition of part (a) of Lemma 1, the lower
bound is valid, since for θ ∈ [d1, 2d0],

g(x1(θ))

g(x1(θ) + θ)
≥ g(x1(d1))

g(x1(d1) + d1)
≥ g(d0)

g(d0 + d1)
.

Lemma 9. For θ ∈ [d1, 2d0], we have

(a) x′
1(θ) = (1−α)g(x1(θ)+θ)

2g(x1(θ))−(1−α)g(x1(θ)+θ) ;

(b) x′
0(θ) = αg(x0(θ)+θ)

g(x0(θ))−αg(x0(θ)+θ)
.

Proof. The expressions follow by differentiation of Lemma 5’s implicit equations
for x0 and x1.

Corollary 4. For θ ∈ [d1, 2d0],

(a) both x′
1(θ) and x′

0(θ) decrease in θ;

(b) x′
1(θ) ≤ (1−α)g(d0+d1)

2g(d0)−(1−α)g(d0+d1) , and x′
0(θ) ≥ α

1−α
.

(c) x′
1(θ) g(x1(θ)) ≤ (1−α)g(d0) g(d0+d1)

2g(d0)−(1−α)g(d0+d1)
, and x′

0(θ) g(x0(θ)) ≥ α
1−α

g(d1).

Proof. (a) Follows directly from Lemma 8 applied to 1
x′

1
(θ) and 1

x′

0
(θ) as given

in Lemma 9.
(b) The upper bound for x′

1 follows from Lemma 9 and Lemma 8’s lower

bound for g(x1(θ))
g(x1(θ)+θ) . Exploiting the fact that x′

0 is decreasing on [d1, 2d0],

Lemma 9, and the equality x0(2d0) = −d0, the lower bound for x′
0 is obtained

as:

x′
0(θ) ≥ x′

0(2d0) =
αg(x0(2d0) + 2d0)

g(x0(2d0))−αg(x0(2d0)+2d0)
=

αg(d0)

g(−d0)−αg(d0)
=

α

1−α
.

(c) Since x1(θ) ∈ [d0, d1] (Lemma 5), we have with g being unimodal and d0 > 0:
g(x1(θ)) ≤ g(d0) for all θ ∈ [d1, 2d0] (and actually all θ ≥ 0 as well). The result
then follows directly from (b).
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Similarly, again making use of Lemma 5 and part (b), we have x0(θ) ∈
[−d1,−d0] for θ ∈ [d1, 2d0], and x′

0(θ)g(x0(θ)) ≥ α
1−α

g(−d1) = α
1−α

g(d1), for
all θ ∈ [d1, 2d0].
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