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Abstract

Continuous time Feynman-Kac measures on path spaces are central in applied proba-
bility, partial differential equation theory, as well as in quantum physics. This article
presents a new duality formula between normalized Feynman-Kac distribution and
their mean field particle interpretations. Among others, this formula allows us to
design a reversible particle Gibbs-Glauber sampler for continuous time Feynman-Kac
integration on path spaces. We also provide new Dyson-Phillips semigroup expan-
sions, as well as novel uniform propagation of chaos estimates for continuous time
genealogical tree based particle models with respect to the time horizon and the size
of the systems. Our approach is self contained and it is based on a novel stochastic
perturbation analysis and backward semigroup techniques. These techniques allow to
obtain sharp quantitative estimates of the convergence rate to equilibrium of particle
Gibbs-Glauber samplers. To the best of our knowledge these results are the first of
this kind for continuous time Feynman-Kac measures.
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1 Introduction

Feynman-Kac measures on path spaces are central in applied probability as well as in
biology and quantum physics. They also arise in a variety of application domains such as
in estimation and control theory, as well as a rare event analysis. For a detailed review
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A duality formula and a particle Gibbs sampler

on Feynman-Kac measures and their application domains we refer to the books [24, 25,
37, 42], see also the more recent articles [22, 55] on branching processes and neutron
transport equations and the references therein.

Their mean field type particle interpretations are defined as a system of particles
jumping a given rate uniformly onto the population. From the pure numerical viewpoint,
this interacting jump transition can be interpreted as an acceptance-rejection scheme
with a recycling of rejected particles by duplicating the selected ones. Feynman-Kac
interacting particle models encapsulate a variety of algorithms such as the diffusion
Monte Carlo used to solve Schrödinger ground states, see for instance the series of
articles [14, 16, 41, 74, 75, 58, 59] as well as section 23.5 and chapter 27 in [42] and
the references therein.

Their discrete time versions are encapsulated a variety of well known algorithms such
as particle filters [26] (a.k.a. sequential Monte Carlo methods in Bayesian literature [17,
24, 25, 37, 47]), the go-with the winner [1], as well as the self-avoidind random walk
pruned-enrichment algorithm by Rosenbluth and Rosenbluth [76], and many others. This
list is not exhaustive (see also the references therein). The research monographs [24, 25]
provide a detailed discussion on these subjects with precise reference pointers.

The seminal article [2] by Andrieu, Doucet and Holenstein introduced a new way to
combine Markov chain Monte Carlo methods with discrete generation particle methods.
A variant of the method, where ancestors are resampled in a forward pass, was developed
by Lindsten, Schön and Jordan in [60], and Lindsten and Schön [61]. In all of these
studies, the validity of the particle conditional sampler is assessed by interpreting the
model as a traditional Markov chain Monte Carlo sampler on an extended state space.
The central idea is first to design a detailed encoding of the ancestors at each level
in terms of random maps on integers, and then to extend the “target” measure on a
sophisticated state space incapsulating these iterated random sequences.

In a more recent article [34], the authors provide an alternative and we believe more
natural interpretation of these particle Markov chain Monte Carlo methods in terms of
a duality formula extending the well known unbiasedness properties of Feynman-Kac
particle measures on many-body particle measures. This article also provides sharp
quantitative estimates of the convergence rate to equilibrium of the models with respect
to the time horizon and the size of the systems. The analysis of these models, including
backward particle Markov chain Monte Carlo samplers has been further developed
in [30, 31].

The main objective of the present article is to extend these methodologies to continu-
ous time Feynman-Kac measures on path spaces.

The first difficulty comes from the fact that the discrete time analysis [30, 31, 34]
only applies to simple genetic type particle models, or equivalently to branching models
with pure multinomial selection schemes. Thus, these results do not apply to discrete
time approximation of continuous time models based on geometric type jumps, and any
density type argument cannot be applied.

In contrast with their discrete time version, continuous time Feynman-Kac particle
models are not described by conditionally independent local transitions, but in terms of
interacting jump processes.

The analysis of continuous time genetic type particle models is not so developed as
their discrete time versions. For instance, uniform convergence estimates are avail-
able for continuous time Feynman-Kac models with stable processes [37, 40, 41, 74].
Nevertheless, to the best of our knowledge, sharp estimates for path space models and
genealogical tree based particle samplers in continuous time have never been discussed
in the literature. These questions are central in the study the convergence to equilibrium
of particle Gibbs-Glauber sampler on path spaces.
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In the present article we provide a duality formula for continuous time Feynman-Kac
measures on path-spaces (cf. theorem 1.1). This formula on generalogical tree based
particle models that can be seen as an extension of well known unbiasedness properties
of Feynman-Kac models to their many body version (defined in section 6.1). The second
main result of the article is to design and to analyze the stability properties of a particle
Gibbs-Glauber sampler of path space (cf. theorem 1.2). Our approach combines a
perturbation analysis of nonlinear stochastic semigroups with propagation of chaos
techniques (cf. section 5). Incidentally these techniques also provide with little efforts
new uniform propagation of chaos estimates w.r.t. the time horizon (cf. corollary 5.12).

1.1 Statement of the main results

Let (Xt, Vt) be a continuous time Markov process and a bounded non negative function
on some metric space (S, dS). We denote by Dt(S) the set of càdlàg paths from [0, t] to S.
Unless otherwise is stated, as a rule in the further development of the article

X̂t := (Xs)s≤t ∈ Ŝ := ∪t≥0 Dt(S)

stands for the historical process of some process Xt. In this notation, we extend Vt to
Dt(S) by setting V̂t(X̂t) = Vt(Xt).

The Feynman-Kac probability measures Qt on the path spaces Dt(S) associated
with (Xt, Vt) are defined for any bounded measurable function F on Dt(S) by the path
integration formula

Qt(F ) :=

∫
F (ω) Qt(dω) := Z−1

t E

(
F (X̂t) exp

[
−
∫ t

0

V̂s(X̂s)ds

])
(1.1)

where Zt stands for the normalizing constant.
We also let ηt be the terminal time marginal of the measures Qt. In this notation, for

any bounded measurable function f on S we have

ηt(f) :=

∫
f(x) ηt(dx) := Z−1

t E

(
f(Xt) exp

[
−
∫ t

0

Vs(Xs)ds

])
(1.2)

In addition, the normalizing constant Zt is given by the easily checked free energy
formula

Zt = E

(
exp

[
−
∫ t

0

Vs(Xs)ds

])
= exp

[
−
∫ t

0

ηs(Vs)ds

]
For a more thorough discussion on these Feynman-Kac models we refer the reader to
section 3.2 and section 3.3.1. A selected list of application areas are also discussed in
section 1.2.1.

The path integration formulae (1.1) can rarely be solved analytically and their nu-
merical solving often require extensive calculations. One strategy is to interpret these
probability measures on path space in terms the occupation measures of the ancestral
lines of a genetic type interacting jump process [36, 37, 41, 42].

These particle interpretations are defined as follows:
Consider a system of N particles ξt = (ξit)1≤i≤N ∈ SN evolving independently as Xt

with jump rate Vt; at each jump time the particle jumps onto a particle uniformly chosen
in the pool.

This jump can be interpreted as the death of the particle and the instantaneous birth
of an offspring of a particle uniformly chosen in the pool. After this birth each offspring
evolves as independent copies of the process Xt.

When the i-th particle duplicates it becomes the parent of two offsprings. Running
back in time we can trace the whole genealogy of each particle.
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Let As,t(i) ∈ [N ] be the index of the ancestor of of the i-th particle ξit at level s ≤ t. In
this notation, the i-th ancestral line

Xi
t := (ξAs,t(i)s )0≤s≤t ∈ Dt(S)

of the i-th particle ξit at time t is represented in a synthetic way by the following backward
ancestral path

ξ
A0,t(i)
0 ← . . .← ξAs,t(i)s ← . . .← ξit

In this interpretation, the genealogical tree of the N particles ξt = (ξit)1≤i≤N is defined
by the N ancestral lines

Xt = (Xi
t)1≤i≤N ∈ Dt(S)N .

We underline that the N ancestral lines Xt = (Xi
t)1≤i≤N ∈ Dt(S)N of length t of the N

individuals ξt = (ξit)1≤i≤N is also defined forward in time by a system of N path-valued
particles evolving independently as the historical process X̂t, with jump rate V̂t on Ŝ. At
each jump time an ancestral line jumps onto another uniformly chosen ancestral line
in the pool. Between jumps the ancestral lines evolves as independent copies of the
historical process X̂t.

Let I be an uniform random variable on the index set [N ] := {1, . . . , N}, independent
of particle model discussed above.

Given Xt the distribution of a randomly chosen ancestral line XIt is given by the
occupation measure of the genealogical tree. In addition, in some weak sense we have
the convergence

m(Xt) :=
1

N

∑
i∈[N ]

δXit −→N→∞ Qt and m(ξt) :=
1

N

∑
i∈[N ]

δξit −→N→∞ ηt (1.3)

For a more detailed discussion and precise estimates, we refer to [37, 39, 41, 74], as
well as to theorem 1.3 and section 5.3 in the present article.

The historical process ξ̂t = (ξs)s≤t ∈ Dt(S)N encapsulates the ancestral lines at any
time horizon, including ancestors at any time level s with no currently living descendants
at a time horizon t ≥ s. The process ξ̂t has the same jump rate as ξt. When a jump occurs,
we keep and extend all historical trajectories from the randomly selected particles at
that time.

For a more detailed description of the processes (ξt, ξ̂t,Xt), we refer to section 4.2
dedicated to historical and genealogical tree evolutions, see for instance figure 8 and
the complete genealogical tree presented in figure 9.

Given I, the dual process χ̂t ∈ Dt(S)N is defined as ξ̂t but the I-th ancestral line is a
frozen path with the same law as the historical process X̂t. More precisely, the jump of
the I-th particle onto the j-th one is replaced by the jump of the j-th particle onto the
I-th frozen one. In addition, at these jumps times we flip the j-th and I-th row historical
path up to the present time horizon. A schematic picture of this jump and historical
permutation at time t is given below

• •I

• •
j

= χ̂t− =⇒ χ̂t =
• ◦•

j

��
• •I

The duality terminology comes from the fact that χ̂t coincides with the conditional
stochastic process ξ̂t given a frozen ancestral line, under some many-body Feynman-
Kac measure (cf. theorem 1.1 and the Bayes’ formula (1.6)). We also underline that
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χ̂
t := (χ̂t(s))s≤t ∈ Dt(S)N is not necessarily the historical path of an auxiliary Markov

process.
For a more detailed description of χ̂t in terms of generators we refer to section 4.3

dedicated to particle models with a frozen ancestral line, see for instance (4.10), the
evolution diagrams given in figure 11 as well as the graphical description of the process
χ̂
t provided in figure 12.

The genealogical type tree Yt = (Yit)1≤i≤N ∈ Dt(S)N of the dual process discussed
above is also defined as Xt. The main difference is that the I-th ancestral line is frozen

and YIt
law
= X̂t.

The remaining (N −1) path-valued particles Y−t := (Yjt )j 6=I are defined as above with

a rescaled jump rate (1− 1/N)V̂t, and including an auxiliary jump rate 2V̂t/N at which
the path-particle jump onto the first frozen ancestral line.

For a more detailed description of these dual ancestral lines, we also refer to sec-
tion 4.3, see for instance the graphical description of the dual genealogical tree provided
in figure 13 as well as the generator of the process in path space defined in (4.16).

A realization of the genealogical tree associated with N = 3 particles with 2 interact-
ing jumps and the first frozen ancestral line is illustrated below in figure 2.

◦ ◦ ◦
��

◦ ◦
��

◦
Y3
t

◦
Y2
t

◦ ◦

◦ ◦
Y1
t ◦

time axis [0, t] //

Figure 2: A genealogical tree associated with N = 3 particles with 2 interacting jumps.
The couple of arrows stands for the interacting jumps, the dotted line represents the
frozen ancestral line with I = 1. The vertical axis stands for the state space S.

The first main result of the article is the following duality formula.

Theorem 1.1 (Duality formula). For any time horizon t ≥ 0, any N ≥ 2 and any bounded
measurable function F on Dt(S)(2N) := (Dt(S)N × Dt(S)N ) we have the almost sure
formula

E

(
F (ξ̂t,Xt) exp

[
−
∫ t

0

m(Xs)(V̂s)ds

] )
= E

(
F (χ̂t,Yt) exp

[
−
∫ t

0

V̂s(Y
I
s )ds

]
| I
)
(1.4)

The proof of the above theorem is provided in section 6, see for instance theorem 6.2
and corollary 6.3. We obtain the normalizing constant Zt by choosing the unit function
F = 1 in (1.4). Observe that for any F on Dt(S) we have

(1.4) =⇒ E

(
F (XIt ) exp

[
−
∫ t

0

m(Xs)(V̂s)ds

] )
= Zt ×Qt(F ) (1.5)

The last assertion yields the rather well known unbiasedness property of the occupation
measure of the ancestral lines; see for instance [37] and references therein. Formula
(1.4) can also be interpreted as a Bayes formula for many body probability measures
on the product space Dt(S)(2N). Therefore, using the conditional distributions we can
design a Gibbs sampler. Nevertheless to target Qt, we do not need to store the complete

EJP 25 (2020), paper 157.
Page 5/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP546
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A duality formula and a particle Gibbs sampler

ancestral tree. A more judicious target measure is the probability measure Πt on
Dt(S)N+1 defined by

Πt(F ) =
1

Zt
E

(
F (Xt,X

I
t ) exp

[
−
∫ t

0

m(Xs)(V̂s)ds

] )
Let πt be the marginal of Πt w.r.t. the variable Xt. Theorem 1.1 yields the Bayes formula

Πt(d(z1, z2)) = πt(dz1) At(z1, dz2) = Qt(dz2) Bt(z2, dz1) (1.6)

with the Markov transitions At and Bt defined by

At(z1, dz2) := P(XIt ∈ dz2 | Xt = z1) =: m(z1)(dz2)

and

Bt(z2, dz1) := P(Yt ∈ dz1 | YIt = z2)

The detailed proof of the above assertion is provided in section 6.2, on page 43. Equiv-
alently, under the probability measure Πt, any randomly chosen ancestral line is dis-
tributed with Qt. In addition, under Πt the conditional distribution of the genealogical
tree Xt given a selected ancestral line coincides with the one of the genealogical tree Yt
given the frozen selected ancestral line.

Next we provide an analytic description of the Bayes formula (1.6). Integrating (1.6)
w.r.t. the first coordinate for any z1 ∈ Dt(S)N we have

At(z1, dz2)� (πtAt)(dz2) :=

∫
πt(dy1) At(y1, dz2) = Qt(dz2)

Thus, we can define the dual operator A?t,πt from L1(πt) into L1(Qt) given for any
F ∈ L1(πt) by the Radon-Nikodym formula

A?t,πt(F ) :=
dπFt At
dQt

with πFt (dy) := πt(dy) F (y)

For a more thorough discussion on dual Markov transitions, we refer the reader to [35,
72]. In addition, for any conjugate integers 1/p+ 1/q = 1 with p, q ≥ 1 we have

(F,G) ∈ (Lp(πt)× Lq(Qt)) Qt
(
A?t,πt(F ) G

)
= πt (F At(G))

We define in the same way the dual operator B?t,Qt from L1(Qt) into L1(πt) by

B?t,Qt(G) :=
dQGt Bt
dπt

with QGt (dy) := Qt(dy) F (y)

In this case, we have the duality formula

πt
(
F B?t,Qt(G)

)
= Qt (Bt(F ) G)

Let Ps,t be the Markov semigroup of the reference process Xt, that is

Ps,t(x, dy) := P (Xt ∈ dy | Xs = x)

We consider the following regularity condition

(H0) ∃h > 0 s.t. ∀t ≥ 0 ∀x ∈ S ρ(h) µt,h(dy) ≤ Pt,t+h(x, dy) ≤ ρ(h)−1 µt,h(dy)

(1.7)
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for some constant ρ(h) > 0 and some collection of probability measures µt,h on S indexed
by h > 0 and t ≥ 0 whose values do not depend on the parameters (x, y). A discussion on
the above condition is provided at the end of this section.

Let osc(F ) and ‖µ1 − µ2‖tv be the oscillation of a function F on Dt(S) and the total
variation distance between probability measures µ1 and µ2 (cf. section 2.1 for a more
precise definition).

In this notation, the second main result of the article can be stated basically as
follows.

Theorem 1.2 (Particle Gibbs-Glauber dynamics). For any time horizon t ≥ 0 the measure
Qt is reversible w.r.t. the Markov transitionKt := BtAt on Dt(S) defined for any bounded
measurable function F on Dt(S) and any path x ∈ Dt(S) by the formula

Kt(F )(x) := E
(
m(Yt)(F ) | YIt = x

)
In addition, when (H0) is satisfied, for n ≥ 1, any probability measure µ on Dt(S) and
any bounded function F on Dt(S) we have the contraction inequality

‖µKnt −Qt‖tv ≤ (c (t ∨ 1)/N)n ‖µ−Qt‖tv (1.8)

with the n-th iterate Knt of the Markov transition Kt defined sequentially by the integral
formula

Knt (x1, dx3) :=

∫
Kn−1
t (x1, dx2) Kt(x2, dx3)

In the above display, c stands for some explicit finite constant whose value doesn’t
depend on the parameters (F, t, n,N).

The proof of the above theorem is provided in section 6.2.

For any given time horizon t ≥ 0, the integral operator Kt is the probability transition
of a discrete generation Markov chain X(n)

t taking values in the path space Dt(S) and
indexed by the integer parameter n ∈ N; that is we have

P
(
X

(n+1)
t ∈ dz | X(n)

t = x
)

= Kt(x, dz) :=

∫
Bt(x, dy) At(y, dz)

Initially, we can sample a genealogical tree Xt = (Xi
t)i∈[N ], then we pick randomly an

ancestral line XIt and set X(0)
t = XIt .

For any given x ∈ Dt(S) and y ∈ Dt(S)N , we summarize the overlapping transition of
the particle Gibbs sampler graphically as follows:

{
Y

(n)
t = y

X
(n)
t = x

}
Bt−→

{
Y

(n+1)
t = y ∼

(
Yt | YI

t = x
)

X
(n)
t = x

}
At−→

{
Y

(n+1)
t = y

X
(n+1)
t = x ∼ m (y)

}
.

A realization of the overlapping transition X(n)
t ; X

(n+1)
t for a genealogical tree with

N = 3 ancestral lines is illustrated by the following schematic diagram:
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◦ ◦
ww

◦
X

(n+1)
too

◦ ◦
ww

◦

◦ ◦
X

(n)
t ◦

time axis [0, t] //

Figure 3: A realization of the transition X(n)
t ; X

(n+1)
t of a particle Gibbs sampler on

an genealogical tree with N = 3 ancestral lines. The dotted and plain lines account
together for the three paths in the genealogical tree Y(n+1)

t ; the frozen ancestral line is

represented by the dotted line X(n)
t selected at rank (n). The sequence of arrows stands

for the selected ancestral line X(n+1)
t at rank (n + 1). The vertical axis stands for the

state space S.

As shown in (1.5), under the many-body measure Πt a randomly selected ancestral
lineXIt is unbiased but this random path is biased w.r.t. the distribution of the interacting
particle system. Propagation of chaos type estimates allow to quantify this bias, see [37,
41], as well as chapter 15 in the monograph [25] for discrete time generation particle
systems.

In this connexion, we underline that the Particle Gibbs-Glauber dynamics presented in
theorem 1.2 allows to improve the precision of the conventional particle interpretations
of Feynman-Kac measures by sampling sequentially a series of particle Gibbs samplers
on path spaces with frozen trajectories. Each iteration of the sampler reduces the
distance between the distribution of the ancestral path and the desired target measure.
For instance, whenever (H0) is met and X(0)

t = XIt , the propagation of chaos property
presented in (5.10) and (1.8) yield the following theorem

Theorem 1.3. For any n ≥ 1 and t ≥ 0 we have the inequalities∥∥Law
(
XIt
)
−Qt

∥∥
tv
≤ c t/N

and ∥∥∥Law
(
X

(n)
t

)
−Qt

∥∥∥
tv
≤ (c t/N)n ×

∥∥Law
(
XIt
)
−Qt

∥∥
tv

We end this section with some comments on our regularity assumptions.
Condition (1.7) is satisfied for jump-type elliptic diffusions on compact manifolds S

with a bounded jump rate, see for instance the pioneering work of Aronson [5], Nash [69]
and Varopoulos [81] on Gaussian estimates for heat kernels on manifolds. The estimates
(1.8) are also met under weaker regularity assumptions such as conditions (H1) and
(H2) stated in (3.14) and (3.15). Nevertheless these conditions depends on the stability
properties of the semigroup of the unknown Feynman-Kac measures ηt; thus this type of
condition is difficult to check in practice.

Also recall that Feynman-Kac semigroups for time homogeneous models equipped
with a reversible reference process Xt can also be turned into conventional Markov
semigroups of h-processes, see for instance [37, 41, 74] as well as chapter 27 in [42] and
references therein. In this context, the long time behavior of Feynman-Kac semigroups
can be discussed in terms of the spectral properties of the h-process. For quadratic
potential functions and Ornstein-Uhlenbeck reference processes the Feynman-Kac model
discussed above reduces to the harmonic oscillator. In some situations, the potential
function can be chosen so that the exponential weight in (1.1) is an exponential change
of measure, see for instance section 4.2 in [37], as well as chapter 18 in [42]. In this
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context the corresponding Feynman-Kac semigroup also coincides with the semigroup of
a conventional Markov process. In more general cases, the spectral properties of the
h-processes are unknown.

1.2 Illustrations and comments

This section gives some comments on the impact of the above results on some
application domain areas. We also provide a detailed discussion on some numerical
aspects of the particle Gibbs-Glauber dynamics introduced above as well as some
comparisons with existing literature on interacting particle systems.

1.2.1 Some application domains

As mentioned in the introduction, the Feynman-Kac measures (1.1) and their mean
field particle interpretations appear in wide variety of applications including in biology,
physics, as well as in signal processing and mathematical finance.

Continuous time models arise when the process Xt is derived from physical or
natural evolution principles, such as continuous time signals in target tracking filtering
problems [78], stochastic population dynamics describing species competition and
populations growths [56], Langevin gradient-type diffusions including their overdampted
versions describing the evolution of a particle in a fluid [57], as well as Brownian
fluctuations of atomic structures in molecular chemistry [54], and many others.

The potential function Vt depends on the problem at hand. In nonlinear filtering, it
represents the log-likelihood of the robust optimal filter. In population dynamics, Vt
can be interpreted as a killing rate of a branching process. In statistical physics and
quantum mechanics, it represents the ground state energy (a.k.a. local energy) of a
physical system, including molecular and atomic systems. It is clearly out of the scope of
the present article to enter into the details of all of these models. For a more thorough
discussion on these application domain areas, we refer to the books [24, 25, 37, 42] and
the reference therein.

In most cases we are mainly interested in computing the final-time marginal of
the Feynman-Kac measures (1.1). For instance, in nonlinear filtering these measures
represent the robust optimal filter, while the path space measures represents the full
conditional distributions of the random trajectories of the signal w.r.t. the observation
process. Thus, they also solve the smoothing problem by estimating the signal states at
any given time using observations from larger time intervals.

Apart from few notable exceptions such as for linear-Gaussian models in Kalman-Bucy
filtering theory and for the harmonic oscillator in the spectral theory of Schrödinger
operators, the flow of final-time marginal measures has no finite recursion and cannot
be solved analytically.

In signal processing literature, the interacting particle system ξt discussed above is
also known as a particle filter on path space.

In Quantum Monte Carlo literature, the particle system ξt discussed above is also
known as the population Monte Carlo algorithm and the particles ξit are often referred
as walkers or replica.

This class of processes can be interpreted as Moran type interacting particle sys-
tems [67, 68]. They can also be seen as Nanbu type interpretation of a particular spatially
homogeneous generalized Boltzmann equation [36, 66].

1.2.2 Practical and numerical aspects

In some particular instances, the random paths of the process Xt can be sampled ex-
actly on any time discretization mesh. This class of models includes linear-Gaussian
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and geometric-type Brownian models, as well as some piecewise deterministic pro-
cesses and some classes of one-dimensional jump-diffusion processes [10, 11, 12, 13, 15].
Discretization-free simulation procedures for general diffusion processes based on se-
quential importance sampling techniques have also been developed in [50]. Using these
discretization-free simulation procedures the interacting jump particle systems discussed
in this article, including the particle Gibbs-Glauber dynamics can be sampled perfectly
using conventional Poisson thinning techniques (a.k.a. Gillespie’s algorithm [51]). The
resulting particle sampler provides an estimate of the marginal of the Feynman-Kac
measures (1.1) on the random paths w.r.t. any time discretization mesh.

More generally, the simulation of the random trajectories of Xt requires to discretize
the time parameter. For a more thorough discussion on the time discretization of
stochastic processes we refer to the seminal book by Kloeden and Platen [53].

This additional level of approximation may also corrupt some statistical properties
of the continuous time process. For instance, the reversible properties of overdampted
Langevin diffusions are lost for any Euler-Maryuama discretization of the underlying
diffusion. In this context, a Metropolis-Hastings type adjustment (a.k.a. MALA) is
required to recover the reversibility property w.r.t. some prescribed target invariant
measure [73]. From the physical viewpoint, the random paths simulated by MALA
algorithms are based on auxiliary non physical rejection-type transitions so that they
loose their initial physical interpretation. Therefore, in physics and statistics, the
unajusted Langevin algorithm (a.k.a. ULA) is often preferred to describe the “true”
random trajectories of the system. Under appropriate global Lipschitz conditions on the
gradient of the confinement potential function several bias-type estimates can be found
in [23, 49].

In the same vein, the sampling of the particle Gibbs-Glauber dynamics described in
theorem 1.2 requires some Euler-type discretization as soon as the underlying process
Xt cannot be directly sampled. In this situation, one natural strategy is to consider the
discrete time version of the Feynman-Kac measures ηt defined as in (1.1) by replacing
Xt by some discrete time approximation (see for instance chapter 5 in [25] and the
references therein). In this context, several discrete time approximations of the particle
Gibbs-Glauber dynamics discussed above can be designed using the discrete time particle
Gibbs samplers discussed in [2, 34]. In contrast with MALA algorithms the reversible-
type properties of the resulting Gibbs samplers in discrete time are preserved w.r.t.
to the discrete-time version of the target Feynman-Kac measures. In addition, these
discrete time approximations are not based on any type of auxiliary Metropolis-Hasting
rejection so that they preserve their physical interpretations.

Several bias-type estimates between continuous and discrete time Feynman-Kac
measures can be found in [25, 32, 33]. Most of these estimates are concerned with the
time discretization of the terminal-time marginal of the Feynman-Kac measures (1.1),
including uniform estimates w.r.t. the time horizon. The extension of these results to
path space models remains an important open research question.

1.2.3 Comparisons with diffusion type particle models

The interacting particle systems discussed in the present article differ from nonlinear
and interacting diffusion processes arising in fluid mechanics and granular flows [7, 8,
64, 65, 79, 80]. In this context, the interaction mechanism is encapsulated in the drift
of diffusion-type particles. One common feature of these interacting processes is the
nonlinearity of the distribution flow associated with these stochastic processes.

One natural idea is to interpret the mean field particle systems associated with these
processes as a stochastic perturbation of a nonlinear process. This interpretation allows
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to enter the stability properties of the nonlinear process into the convergence analysis of
these particle algorithms. This technique has been developed in [28, 29, 37] for discrete
time Feynman-Kac models and further extended in [74] to continuous time models. The
extension to stochastic diffusion flows and McKean-Vlasov type nonlinear diffusions are
developed in [4, 44].

Theorem 5.7 in the present article also provides a novel backward stochastic pertur-
bation formula which simplifies the stability analysis of these models and provides sharp
propagation of chaos estimates.

We underline that the stochastic perturbation techniques discussed above and in
the present article differs from the log-Sobolev functional techniques [62, 63], entropy
dissipation approaches [18, 20], as well as gradient flows in Wasserstein metric spaces,
optimal transportation inequalities [9, 18, 19, 70, 71] and the more recent variational
approach [3] currently used in the analysis of gradient type flow interacting diffusions.

In this connection, we mention that the backward perturbation analysis developed
in the present article relies on weak Taylor expansions of the evolution semigroup of
Feynman-Kac measures. We project to extend these expansions to nonlinear diffusions
in a forthcoming article.

The duality formula and the particle Gibbs-Glauber dynamics introduced in this article
open up a whole new avenue of research questions.

Recall that the Feynman-Kac measures (1.1) can be interpreted as the distribution
of the random paths of a non absorbed particle evolving as Xt and killed at rate Vt.
This class of models are often referred as particle models in absorbing medium with
soft obstacles [27, 37, 41]. A natural research project is to extend this framework to
absorbing medium with hard obstacles [45, 46, 82].

Another important question is to extend the Taylor expansions of the Gibbs sampler
developed in [34] to continuous time models. One possible route is to combine the
weak Taylor expansions developed in [43] for particle approximating measures with the
backward analysis developed in the present article.

We mention that the perturbation analysis developed in [34] allows to destimate
the Lp-decays rates to equilibrium in terms of the norm of integral operators. In this
connection, one important question is to quantify with more precision the exponential
convergence rates to equilibrium of the Particle Gibbs-Glauber dynamics stated in
theorem 1.2.

2 Some preliminary results

2.1 Basic notation

Let B(E) be the Banach space of bounded functions f on some measurable space
(E, E) equipped with the uniform norm ‖f‖ := supx∈E |f(x)|. Also let Osc(E) ⊂ B(E)

be the subset of functions f with at most. unit oscillations; that is s.t. osc(f) :=

supx,y |f(x)− f(y)| ≤ 1.

We also let M(E) be the set of finite signed measures on E, M+(E) ⊂ M(E) the
subset of positive measures and P(E) ⊂ M+(E) the subset of probability measures.
Given a measure µ on E we write µ(f) the Lebesgue integral given by

µ(f) =

∫
µ(dx) f(x)

The total variation norm on the setM(E) is defined by

‖µ‖tv := sup {|µ(f)| : f ∈ Osc(E)} =
1

2
sup {|µ(f)| : f ∈ B(E), ‖f‖ ≤ 1} (2.1)
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We denote by [s, t]n the collection Weyl chambers defined for any n ≥ 1 by

[s, t]n := {(r1, . . . , rn) ∈ [s, t]n : s ≤ r1 ≤ . . . ≤ rn ≤ t} (2.2)

We denote by dr = dr1 × . . .× drn the Lebesgue measure on [s, t]n.
For a given N ≥ 1, we let 〈N〉 be the semigroup of mappings from [N ] := {1, . . . , N}

into itself equipped with the composition of mappings and the neutral element e(i) = i.
Also let [N ]

2
0 ⊂ [N ]2 be the subset of indices

[N ]
2
0 := {(i, j) ∈ [N ]2 : i ∈ [N ] & j ∈ [N ]− {i}}

2.2 Integral operators

We introduce some integral operator notation needed from the onset. For any
bounded positive integral operator Q(x, dy) and any (µ, f, x) ∈ (M(E)× B(E)× E) we
define by µQ ∈M(E) and Q(f) ∈ B(E) by the formulae

(µQ)(dy) :=

∫
µ(dx)Q(x, dy) and Q(f)(x) :=

∫
Q(x, dy) f(y)

By Fubini theorem we have µQf := µ(Q(f)) = (µQ)(f). Given a pair of operators Q1 and
Q2 we denote by Q1Q2 := Q1 ◦Q2 the composition of the operators defined for functions
f on S by

(Q1 ◦Q2)(f) := (Q1Q2)(f) = Q1(Q2(f)) (2.3)

We also write Qn the n iterate of Q defined by the recursion

Qn(f) = Q(Qn−1(f)) = Qn−1(Q(f))

When Q(1) > 0 we let Q be the Markov operator

Q : f ∈ B(E) 7→ Q(f) := Q(f)/Q(1) ∈ B(E)

We also let φ be the mapping from P(E) into itself defined by

φ(η) = ηQη with Qη :=
Q

ηQ(1)
=⇒ ηQη(1) = 1 and φ(δx)(f) = Q(f)(x) (2.4)

Notice that
Qη(1) = µQη(1) Qµ(1) =⇒ (µQη(1))−1 = ηQµ(1)

The Dobrushin ergodic coefficient βdob(M) of a Markov transition M(x, dy) from E

into itself is defined by

βdob(M) := sup
x,y∈E

‖M(x, .)−M(y, .)‖tv = sup {osc(M(f)) : f ∈ Osc(E)}

For any µ1, µ2 ∈ P(E) and any pair of Markov transition M1,M2 from E into itself we
have

βdob(M1M2) ≤ βdob(M1) βdob(M2) and ‖µ1M − µ2M‖tv ≤ βdob(M) ‖µ1 − µ2‖tv (2.5)

2.3 Taylor expansions

The Feynman-Kac semigroups discussed in section 3.2 have the same form as the
map φ discussed in (2.4) (see for instance (3.7)). The stochastic perturbation analysis
developed in section 5 is mainly based on a second order Taylor expansion of these maps
(see for instance the proof of proposition 3.5, as well as the perturbation semigroup
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equation presented in theorem 5.2 and the Aleeksev-Gröbner interpolation formula
stated in theorem 5.7).

To describe in some details these Taylor expansions, consider the collection of first
order integral operators ∂ηφ indexed by η ∈ P(E) and defined by

∂ηφ : f ∈ B(E) 7→ ∂ηφ(f) = Qη [f − φ(η)(f)] ∈ B(E) =⇒ η∂ηφ = 0 = ∂ηφ(1) (2.6)

Rewritten in integral form, we have

∂ηφ(f)(x) =

∫
∂ηφ(x, dy) f(y) with ∂ηφ(x, dy) := Qη(x, dy)−Qη(1)(x) φ(η)(dy)

For any η, ν ∈ P(E) we have the first order Taylor expansion

φ(ν)− φ(η) = ηQν(1) × (ν − η)∂ηφ

with

(ν − η)∂ηφ(dy) :=

∫
(ν − η)(dx)∂ηφ(x, dy)

Also observe that

∂ηφ(f)(x) = Qη(1)(x)

∫
η(dy) Qη(1)(y)

(
Q(f)(x)−Q(f)(y)

)
=⇒ ‖∂ηφ(f)‖ ≤ ‖Qη(1)‖ osc(Q(f)) and ‖φ(ν)− φ(η)‖tv ≤ βν,η(φ) ‖ν − η‖tv

(2.7)

with
βν,η(φ) := [‖Qν(1)‖ ∧ ‖Qη(1)‖] βdob(Q)

More generally, using the identity

1

x
=

∑
0≤k<n

(1− x)k +
(1− x)n

x
(2.8)

which is valid for any x > 0 and n ≥ 1, we check the Taylor with remainder expansion

φ(ν) = φ(η) +
∑

1≤k≤n

1

k!
(ν − η)⊗k ∂kηφ+

1

(n+ 1)!
(ν − η)⊗(n+1) ∂

n+1

ν,η φ (2.9)

In the above display, ∂kηφ stand for the collection of integral operators

∂kηφ(f) := (−1)k−1 k!
[
Qη(1)⊗(k−1) ⊗ ∂ηφ(f)

]
and ∂

n+1

ν,η φ := ηQν(1) ∂n+1
η φ

For any µ, η ∈ P(E) we have the decomposition

∂ηφ(f) = Qη[f − φ(η)f ] = µQη(1) (∂µφ(f) +Qµ(1) [φ(µ)− φ(η)](f))

2.4 Carré du champ operators

The generator L of a stochastic process Xt on some measurable space (E, E) provides
a simple and natural way to define the evolution of the random path of the process.

These operators are also the stepping stone of stochastic calculus. They play the same
role as the vector fields associated with a dynamical system and they allow to derive
integration by parts formula; see for instance section 4.1 in the context of mean-field
particle processes. The carré du champ operator ΓL associated with the generator L
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characterizes the predictable quadratic part of these integration by parts formula (see
for instance (4.2) and (4.3)).

In this section we review some basic inequalities that allows to quantify the first
order fluctuation term as well as the second order bias term in the Aleeksev-Gröbner
interpolation formula stated in theorem 5.7.

The carré du champ operator ΓL acts on an algebra of functions D(L) ⊂ B(E) and it
is defined by the quadratic form

(f, g) ∈ D(L)2 7→ ΓL(f, g) = L(fg)− fL(g)− gL(f) ∈ B(E)

When f = g sometimes we write ΓL(f) instead of ΓL(f, f). We also have the Cauchy-
Schwartz inequality

|ΓL(f, g)| ≤
√

ΓL(f, f)ΓL(g, g) and ΓL(cf) = c2 ΓL(f) (2.10)

The above inequality yields the estimate

ΓL(f + g) = ΓL(f) + ΓL(g) + 2ΓL(f, g) ≤
[√

ΓL(f) +
√

ΓL(g)
]2

(2.11)

Let Ld be some bounded jump-type generator of the following form

Ld(f)(u) = λ(u)

∫
(f(v)− f(u)) J(u, dv)

for some bounded rate function λ and some Markov transition J on E. In this case, we
have

ΓLd(f, g)(u) =

∫
Ld(u, dv) (δv − δu)

⊗2
(f ⊗ g)

The convergence analysis of the particle measures (1.3) developed in section 5.2 is also
based on the n-th order operators given by the formula

Γ
(n)

Ld
(f1, . . . , fn)(u) :=

∫
Ld(u, dv) (δv − δu)

⊗n
(f1 ⊗ . . .⊗ fn) (2.12)

Applied to mappings of the form (2.4), for any µ, η ∈ P(E) we have the carré du
champ formula

(ηQµ(1))2 ΓL (Qη(1), ∂ηφ(f))

= ΓL (Qµ(1), ∂µφ(f)) + [φ(µ)− φ(η)](f) ΓL (Qµ(1))

(2.13)

for any f ∈ D(L) as soon as Qη(1), ∂ηφ(f) ∈ D(L).

2.5 Historical processes

The article discusses several classes of particle models evolving in path spaces,
such as the complete ancestral tree models and the genealogical tree based evolutions
discussed in section 1.1.

In this short section, we review some basic facts on the concatenation of paths and
the description of historical semigroups.

For any s ≤ t, we denote by Ds,t(S) the set of càdlàg paths from [s, t] to the metric
space (S, dS). Fo any given x = (xr)s≤r≤t ∈ Ds,t(S) we let x− ∈ Ds,t(S) the stopped path
given by

x−(u) :=

{
xu if u ∈ [s, t[

xt− if u = t
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For any r ≤ s ≤ t and any x = (xu)r≤u≤s ∈ Dr,s(S) and y = (yu)s≤u≤t ∈ Ds,t(S) the
concatenate path (x ∨ y) ∈ Dr,t(S) is defined by

(x ∨ y)(u) :=

{
xu if u ∈ [r, s[

yu if u ∈ [s, t]
=⇒ x ∨ y = x− ∨ y

The set Dr,s(S) can be embedded into Dr,t(S) by considering the stopped process
extension

x = (xu)r≤u≤s ∈ Dr,s(S) 7→ x∧s := (xu∧s)r≤u≤t ∈ Dr,s(S) with u ∧ s := min {u, s}

When s = t, the set Ds,s(S) reduces to S and for any x = (xu)r≤u≤s ∈ Dr,s(S) and y ∈ S
the concatenate path (x ∨ y) ∈ Dr,s(S) is given by to the càdlàg path

(x ∨ y)(u) :=

{
xu if u ∈ [r, s[

y if u = s
(2.14)

Observe that

x = x ∨ xs and x− = x ∨ xs−

Let Xs,t(y) be the stochastic semigroup of the process Xt starting at Xs = y at

time s ≤ t. The stochastic semigroup X̂s,t : Ds(S) 7→ Dt(S) of the historical process

X̂t := (Xs)s≤t is defined for any x ∈ Ds(S) and s ≤ t by the stop-and-go formula

X̂s,t(x) = x ∨ X̃s,t(x) = x− ∨ X̃s,t(x) ∈ Dt(S) (2.15)

with the mapping

X̃s,t : x = (xu)0≤u≤s ∈ Ds(S) 7→ X̃s,t(x) = (Xs,u(xs))s≤u≤t ∈ Ds,t(S)

2.6 Coalescent operators

The complete ancestral as well as the genealogical tree evolutions (ξ̂t,Xt) discussed
in section 1.1 belong to the class of interacting jump processes in the space of càdlàg
paths.

When a jump occurs in a genealogical tree evolution, a path-particle is killed and
instantaneously other path-particle duplicates. When a jump occurs in a complete
ancestral tree evolution, a path-particle restarts its evolution from a new selected state.
In this situation, the jump of the historical particle is characterized by the concatenation
of the stopped process of the historical particle with a new terminal state, from which
the particle restarts its free evolution. The dual process χ̂t of the historical process
incorporates an additional permutation of the historical paths.

To describe with some precision these jumps, we need to introduce some new objects.

We denote by T and C the set of transpositions σι and coalescent maps cι indexed by
ι = (i, j) ∈ [N ]

2
0 and given for any k ∈ [N ] by

σi,j(k) :=


k if k 6∈ {i, j}
j if k = i

i if k = j

and ci,j(k) :=

{
k if k 6= i

j if k = i
(2.16)

Definition 2.1. For any a, b ∈ 〈N〉 and x = (xr)s≤r≤t ∈ Ds,t(S)N we set

xa := (xa(i))i∈[N ] ∈ Ds,t(S)N Ca,b(x) := xa ∨ xbt and Ca := Ca,a (2.17)
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Observe that for any a1, b1 and any a2, b2 ∈ 〈N〉 we have

Ca1,b1 ◦ Ca2,b2 = Ca2◦a1,b2◦b1 and Ca1(x) = xa1

We also mention that for any (i, j) ∈ [N ]20 we have

Cci,j ◦ Cσj,i = Cσj,i◦ci,j = Ccj,i and therefore Cσi,j ,cj,i = Ce,ci,j ◦ Cσi,j (2.18)

Observe that for any index k ∈ [N ] we have the partition

[N ]20 := {(i, j) ∈ [N ]20 : i ∈ [N ]− {k}} ∪ {(k, j) ∈ [N ]20 : j ∈ [N ]− {k}}

Definition 2.2. For any k ∈ [N ] and any (i, j) ∈ [N ]20 we let

(
Cke,ci,j ,C

k
ci,j

)
:=


(
Ce,ci,j ,Cci,j

)
if i ∈ [N ]− {k}(

Cσk,j ,cj,k ,Ccj,k
)

if i = k

(2.19)

A schematic picture of the jumps

x; Ce,ci,k(x) = x ∨ xci,kt and x; Cσi,k,ci,k(x) = xσi,k ∨ xci,kt

is given below

• •k

• •i
= x =⇒ Ce,ci,k(x) =

• •k

• ◦•i

OO
and Cσi,k,ci,k(x) =

• ◦•i

��
• •k

We underline that the jump in Ce,ci,k(x) occurs on the k-th row trajectory while the
jump in Cσi,k,ci,k(x) occurs on the i-th row trajectory.

A schematic picture of the path-valued jump x; Cci,k(x) = xci,k is given below

• •k

• •i
= x =⇒ Cci,k(x) =

• •k

• •k

Between jumps all the particle models discussed in this article evolve independently
as independent copies of the reference process Xt introduced in section 1.1. Let Xi

s,t

with i ∈ [N ] be N independent copies of the stochastic semigroup Xs,t. We extend the

stochastic semigroups introduced (2.15) to product spaces and we let Xs,t, X̂s,t and X̃s,t
the stochastic semigroups with the i-th coordinates mappings defined for any for any
z ∈ SN and any x ∈ Ds(S)N by the formulae

X is,t(z) := Xi
s,t(z

i) X̂ is,t(x) := X̂i
s,t(x

i) and X̃ is,t(x) := X̃i
s,t(x

i)

=⇒ X̂s,t(x) = x ∨ X̃s,t(x) = x− ∨ X̃s,t(x) ∈ Dt(S)N
(2.20)

We also denote ξ̂s,t and χ̂
s,t the stochastic evolution semigroup of the processes ξ̂t

and χ̂t; that is, for any s ≤ t we have the stochastic evolution semigroup formulae

ξ̂s,t(ξ̂s) = ξ̂t and χ̂
s,t(χ̂s) = χ̂

t with the initial condition ξ̂0 = ξ0 = χ̂
0

We define in the same vein the stochastic evolution semigroups Xs,t and Ys,t of the
genealogical tree processes Xt and Yt.

At jump times, these path-space interacting jumps stochastic flows are described
by the composition of the coalescent operators presented in (2.17) and (2.19) with the
stochastic evolution semigroups (2.20).
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Definition 2.3. For any a ∈ C and any s ≤ t and k ∈ [N ] we define

X̂ as,t := Ca ◦ X̂s,t X̂ k,as,t := Cka ◦ X̂s,t

T̂ as,t := Ce,a ◦ X̂s,t T̂ k,a
s,t := Cke,a ◦ X̂s,t

(2.21)

Observe that

X̂ as,t(x) = Ca(X̂s,t(x)) =
(
X̂ a(i)
s,t (x)

)
i∈[N ]

=
(
X̂
a(i)
s,t

(
xa(i)

))
i∈[N ]

This yields for any r ≤ s ≤ t and any a, b ∈ 〈N〉 and x ∈ Dr(S)N the composition formula(
X̂ as,t ◦ X̂ br,s

)
(x) = X̂ as,t

(
X̂ br,s(x)

)
=
(
X̂
a(i)
s,t

(
X̂(b◦a)(i)
r,s

(
x(b◦a)(i)

)))
i∈[N ]

More generally, for any sequence of mappings an ∈ 〈N〉 any x ∈ Dt0(S)N and any non
decreasing time steps tn we have the formula(

X̂ antn−1,tn ◦ . . . ◦ X̂
a1
t0,t1

)
(x)

=
((
X̂
an(i)
tn−1,tn ◦ X̂

an−1,n(i)
tn−2,tn−1

◦ . . . ◦ X̂a1,n(i)
t0,t1

)(
xa1,n(i)

))
i∈[N ]

with the composition
ap,n := ap ◦ ap+1 ◦ . . . ◦ an

Finally observe that for any a1, . . . , an ∈ C and any k ∈ [N ] and x ∈ Dt0(S)N we have

Ckci,j = 1i6=k Cci,j + 1i=k Ccj,k

=⇒
(
X̂ k,antn−1,tn ◦ . . . ◦ X̂

k,a1
t0,t1

)
(x)k = X̂k

t0,tn(xk)

(2.22)

The composition of the stochastic flows T̂ as,t is slightly more involved. For instance, for
any s ≤ r ≤ t and any a, b ∈ C and x ∈ Ds(S)N we have the concatenate path formulae

T̂ as,t(x) = X̂s,t(x) ∨ X as,t(xs) ∈ Dt(S)N

In addition, we have the composition rule(
T̂ ar,t ◦ T̂ bs,r

)
(x) = X̂s,r(x) ∨

(
X̃r,t ◦ T̂ bs,r

)
(x) ∨

(
X ar,t ◦ X bs,r

)
(xs)

The proof of the first assertion is immediate. To check the second, observe that

T̂ ar,t
(
T̂ bs,r(x)

)
= X̂r,t

(
X̂s,r(x) ∨ X bs,r(xs)

)
∨ X ar,t(X bs,r(xs))

= X̂s,r(x) ∨ X̃r,t
(
T̂ bs,r(x)

)
∨ X ar,t(X bs,r(xs)) (by (2.20))

A graphical description of these compositions is given below in figure 6.

x =

•k

•
j1

•
j2

0 s

;

k • ◦k

��

•
k

k

•
j1

j1 • •

j1j1

j2 • •
j2

◦
j2

OO

j2

0 s r t

Figure 6: Genealogical tree associated with the composition T̂ cj2,j1r,t ◦ T̂ ck,j1s,r
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The dotted lines ( j. . .) represent the paths associated with x, the plain lines (
j
−−−)

represent the paths associated with the stochastic semigroup Xj . A synthetic description
of the composition associated with the graph in figure 6 is given below in figure 7.

T̂ ck,j1
s,r (x) =

•k ◦•k

��
•

j1
•

j1

•
j2

•
j2

0 s r

and
(
T̂ cj2,j1
r,t ◦ T̂ ck,j1

s,r

)
(x) =

•k ◦•k

��

•k

•
j1

•
j1

•
j1

•
j2

•
j2

◦•
j2

OO

0 s r t

Figure 7

2.7 Empirical measures

We fix some integer N ≥ 2 and for any 1 ≤ i < j ≤ N and x = (xi)1≤i≤N on some
N -fold cartesian product EN of some measurable space (E, E) we set

x−i =
(
x1, . . . , xi−1, xi+1, . . . , xN

)
∈ EN

x−{i,j} =
(
x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xN

)
∈ EN−2

For any 1 ≤ i ≤ N and x = (xi)1≤i≤N ∈ EN we consider the functions

ϕx−i : u ∈ E 7→ ϕx−i(u) =
(
x1, . . . , xi−1, u, xi+1, . . . , xN

)
∈ EN

m : x ∈ SN 7→ m(x) =
1

N

∑
i∈[N ]

δxi ∈ P(E) (2.23)

In this notation, the generator Lt of the stochastic flow x ∈ SN 7→ Xs,t(x) ∈ SN

introduced in (2.20) is given for any F ∈ D(L) and x ∈ Dt(S)N by the formula

Lt(F )(x) =
∑
i∈[N ]

Lt(Fx−i)(x
i)

In the above display, D(L) ⊂ B(SN ) stands for the set of functions F ∈ B(SN ) s.t. for any
x ∈ SN we have

Fx−i := F ◦ ϕx−i ∈ D(L)

Let X = (Xi)1≤i≤N be N independent random samples from some distribution
η ∈ P(S). Using (2.9) we have the first order expansion

φ(m(X))− φ(η)

= (m(X)− η)∂ηφ− η(Qm(X)(1))× (m(X)− η)(Qη(1))× (m(X)− η)∂ηφ

(2.24)

Several estimates can be derived from the above decomposition. For instance using
Cauchy-Schwartz inequality we have the bias estimate

log (Q(1)(x)/Q(1)(y)) ≤ q =⇒ N |E [φ(m(X))(f)]− φ(η)(f)| ≤ eq osc(Q(f))

The stochastic perturbation analysis discussed above will be used repeatedly in sec-
tion 5.2 dedicated to the convergence analysis of the empirical measures associated with
the genetic particle models discussed in section 1.1. For instance, theorem 5.7 is the
extended version of the second order expansion (2.24) to interacting particle occupation
measures.
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3 A brief review on Feynman-Kac measures

3.1 Exponential maps

For any s ≤ t and N ≥ 1 we let Zs,t be the exponential map defined by

Zs,t : x = (xr)0≤r≤t ∈ Dt(S)N 7→ Zs,t(x) := exp

(
−
∫ t

s

m(xr)(Vr) dr

)
∈ [0, 1] (3.1)

To simplify notation, when s = 0 sometimes we write Zt instead of Z0,t. When N = 1, the
map Zs,t reduces to the exponential map Zs,t defined by

z = (zr)0≤r≤t ∈ Dt(S) 7→ Zs,t(z) := exp

(
−
∫ t

s

Vr(zr) dr

)
∈ [0, 1] (3.2)

Observe that for any s ≤ t we have

Zt := Z0,t =⇒ Zt(X̂t) = Zs(X̂s) Zs,t(X̂t) with the historical process X̂t = (Xs)0≤s≤t

To clarify the presentation when there are no possible confusions we write Zt(X) and
Zs,t(X) instead of Zt(X̂t) and Zs,t(X̂t).

3.2 Evolution semigroups

Consider the flow of Feynman-Kac measures

(γ, η) : t ∈ R+ := [0,∞[ 7→ (γt, ηt) ∈ (M+(S)× P(S))

defined for any f ∈ B(S) by the formulae

ηt(f) = γt(f)/γt(1) with γt(f) := E (f(Xt) Zt(X)) (3.3)

Observe that

logE (Zt(X)) = −
∫ t

0

ηs(Vs)ds

This shows that

Zt(X) := Zt(X)/E(Zt(X)) = exp

[
−
∫ t

0

V s(Xs)ds

]
with V t := Vt − ηt(V ) (3.4)

We also consider the Feynman-Kac semigroup

Qs,t(f)(x) = E (f(Xt) Zs,t(X) | Xs = x) with Zs,t(X) := Zt(X)/Zs(X) (3.5)

When V = 0 the semigroup Qs,t resumes to the Markov semigroup Ps,t of the reference
process Xt.

Definition 3.1. The mathematical model (γt, ηt, Qs,t) defined above and the measure Qt
defined in (1.1) is called the Feynman-Kac model associated with the reference process
and the potential function (Xt, Vt).

We further assume that the (infinitesimal) generators Lt of Xt are well defined on
some common sub-algebra D(S) ⊂ B(S), and for any s < t we have Qs,t(B(S)) ⊂ D(S).

We let Vt(f) = Vtf the multiplication operator on B(S). We also let Lt = Lct + Ldt be
the decomposition of the generator Lt in terms of a diffusion-type operator Lct and a
bounded jump-type generator of the following form

Ldt (f)(u) = λt(u)

∫
(f(v)− f(u)) Jt(u, dv)
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for some bounded rate function λt and some Markov transition Jt on S.
In this notation, for any f ∈ D(S) and s ≤ t we have

∂tγt(f) = γt(L
V
t (f)) with LVt = Lt − Vt =⇒ γt = γsQs,t (3.6)

The semigroup associated with the normalized Feynman-Kac measures ηt is given for
any s ≤ t by the formula

ηt = φs,t(ηs) :=
ηsQs,t
ηsQs,t(1)

=⇒ ∂tηt(f) = Λt(ηt)(f) := ηt(L
V
t (f)) + ηt(Vt) ηt(f) (3.7)

with the collection of functional linear operators

Λt(η) : f ∈ D(S) 7→ Λt(η)(f) := η(LVt (f)) + η(Vt) η(f) ∈ R

Finally we recall that ηt = Law(Yt) can be interpreted as the law of a nonlinear
Markov process Yt associated with the collection of generators Lt,η defined for any
(η, f, x) ∈ (P(S),D(S)× S) by

Lt,η(f)(x) := Lt(f)(x) + Vt(x)

∫
(f(y)− f(x)) η(dy) =⇒ Λt(η) = ηLt,η (3.8)

3.3 Path space measures

3.3.1 Historical processes

Consider a Feynman-Kac model (γ′t, η
′
t, Q
′
s,t,Q

′
t) associated with some auxiliary Markov

process X ′t on some metric space (S′, dS′), and some bounded non negative potential
functions V ′t on S′. For instance, for any function f on S′ and any function F on Dt(S

′)

we have

η′t(f) ∝ E

(
f(X ′t) exp

[
−
∫ t

0

V ′s (X ′s)ds

])
and

Q′t(F ) ∝ E

(
F (X̂ ′t) exp

[
−
∫ t

0

V̂ ′s (X̂ ′s)ds

])
with the historical process

X̂ ′t := (X ′s)s≤t and the potential function V̂ ′t

(
X̂ ′t

)
:= V ′t (X ′t).

Assume that the process Xt discussed in (3.3) is given by the historical process

Xt := X̂ ′t ∈ Dt(S
′) and set Vt(Xt) := V ′t (X ′t) (3.9)

In this situation, we have Q′t = ηt, with the measure ηt defined in (3.3); that is we have

Q′t(F ) ∝ E

(
F (Xt) exp

[
−
∫ t

0

Vs(Xs)ds

])
∝ ηt(F )

In the reverse angle, consider a collection of Feynman-Kac measures (γ̂t, η̂t, Q̂s,t)

defined as (γt, ηt, Qs,t) by replacing in (3.3) and (3.5) the pair (Xt, Vt) by the historical
process

X̂t := (Xs)s≤t ∈ Ŝ := ∪t≥0Dt(S) and the potential function V̂t(X̂t) := Vt(Xt) (3.10)

For instance, replacing (Xt, Vt) by (X̂t, V̂t) in (3.3) and (3.5) for any F on Dt(S) we have
the formula

η̂t(F ) ∝ E

(
F (X̂t) exp

[
−
∫ t

0

V̂s(X̂s)ds

])
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This shows that η̂t = Qt, with the measure Qt introduced in (1.1). We underline that Qt
differs from the law of the the historical process Ŷt := (Ys)s≤t of the nonlinear process
Yt discussed in the end of section 3.2.

To avoid unnecessary technical discussions we distinguish these models with the
following terminology.

Definition 3.2. The Feynman-Kac model associated with the historical process X̂t and
the potential function V̂t is called the path-space version of the Feynman-Kac model
associated with the process Xt and the potential function Vt. In the reverse angle the
Feynman-Kac model associated with the pair (Xt, Vt) is called the marginal model of the
Feynman-Kac model associated with the pair (X̂t, V̂t).

Let Lt be the generator of Xt defined on some common sub-algebra D(L) ⊂ B(S).
In this situation, the generators L̂t of the historical process X̂t can be defined on some
common domain D(L̂) ⊂ B(Ŝ) in two different ways:

The more conventional approach is to consider cylindrical functions

f(X̂t) := ϕ(Xs1 , . . . , Xsn , Xt) (3.11)

that only depend on a given finite collection of time horizons si ≤ si+1 < t, with 1 ≤ i < n,
and some bounded functions ϕ from Sn+1 into R. The regularity of the “test” function ϕ
depends on the process at hand. For jump-type processes, no additional regularity is
required. For diffusion-type processes the function is often required to be compactly
supported and twice differentiable.

Another elegant and more powerful approach is to use the functional Itô calculus
theory developed by B. Dupire in an unpublished article [48] dating from 2009, and
further developed in [21, 52]. This path-dependent stochastic calculus allows to consider
more general functions such as running integrals or running maximum of the process
Xt. It also allows to consider diffusion-type processes with a drift and a diffusion term
that depends on the history of the process.

These path space models and their applications in the context of genealogical tree
based particle models and historical processes were also presented in the early 2000s in
previous work of one of the authors with Miclo [37, 38, 39].

The path space Ŝ is equipped with a time-space metric dŜ so that (Ŝ, dŜ) is a complete
and separable metric space (cf. for instance proposition 1.1.13 and theorem 1.1.15
in [77]). The smoothness properties of continuous function f on S are defined in terms
of time and space functional derivatives. Thus, for diffusion-type historical processes X̂t,
the generator L̂t is defined on functions F ∈ D(L̂) which a differentiable w.r.t. the time
parameter and, as before twice differentiable with compactly supported derivatives (cf.
for instance theorem 1.3.1 in [77], as well as the pathwise change of variable formula
stated in theorem 5.3.6 in [6]). For instance, for the cylindrical functions discussed in
(3.11) we have

L̂t(f)(X̂t) = Lt (ϕ(Xs1 , . . . , Xsn , .)) (Xt)

as soon as the section y 7→ ϕ(x1, . . . , xn, y) belongs to D(L). In the same vein, for
path-integral functionals, we have

f(X̂t) := g(Xt) +

∫ t

0

h(Xs) ds =⇒ L̂t(f)(X̂t) = Lt(g)(Xt) + h(Xt)

as soon as g ∈ D(L) and h ∈ B(S). We also have the jump formula

∆f(X̂t) := f(X̂t)− f(X̂t−) = f(X̂t− ∨Xt)− f(X̂t−)

It is clearly not the scope of the article to describe in full details the functional Itô
calculus on path space. We rather refer the reader to the article [52] and the Ph.D thesis
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of Saporito [77]. The discrete time version of these historical processes calculus in the
context of path-space interacting particle systems can be found in [38], see also [24, 25]
and references therein.

In the further development of the article we shall use these ideas back and forth. We
already mention that the mean field particle interpretation of the Feynman-Kac measures
associated with an historical process X̂t coincides with the genealogical tree-based
particle evolution of the marginal model.

Let D(L̂) be the set of functions F on ŜN := ∪t≥0Dt(S)N s.t. for any x ∈ Dt(S)N we
have

Fx−i := F ◦ ϕx−i ∈ D(L̂)

The generator L̂t of the historical stochastic flow X̂s,t(x) is given for any F ∈ D(L̂) and
x ∈ Dt(S)N by the formula

L̂t(F )(x) =
∑
i∈[N ]

L̂t(Fx−i)(x
i)

We choose a generator L̂(2)
t on some domain D(L̂(2)) for a coupled stochastic flow X̂ (2)

s,t

of the following form

X̂ (2)
s,t (x, y) := (X̂s,t(x), X̂s,t(y)) with (x, y) ∈ Ds(S)(2N) :=

(
Ds(S)N ×Ds(S)N

)
.

For instance, we can define X̂ (2)
s,t (x, y) := (X̂s,t(x), X̂s,t(y)) firstly when xs = ys by

X̂s,t(x) = x ∨ X̃s,t(x) X̂s,t(y) = y ∨ X̃s,t(y) with X̃s,t(x) = X̃s,t(y)

When xs 6= ys, the processes X̂s,t(x) and X̂s,t(y) are chosen independent.

3.3.2 McKean measures

Definition 3.3. The McKean measure Mt is the distribution on Dt(S) of the historical
process Ŷt := (Ys)s≤t of the nonlinear process Yt discussed in (3.8).

Observe that the t-marginal of Mt coincides with ηt, that is we have

F (Ŷt) = f(Yt) =⇒
∫
F (y) Mt(dy) = E(F (Ŷt)) = E(f(Yt)) =

∫
f(z) ηt(dz)

The generator L̂t,ηt of Ŷt only depends on the marginal probability ηt on S and it is given

for any function F ∈ D(L̂) and any x = (xs)s≤t ∈ Dt(S) by the formula

L̂t,ηt(F )(x) = L̂t(F )(x) + V̂t(x)

∫
(F (x ∨ z)− F (x)) ηt(dz)

where L̂t stands for the generator of the historical process X̂t := (Xs)s≤t and V̂t is the
potential function on path space given in (3.10).

Following (3.10), the Feynman-Kac measures Qt = η̂t associated with the historical
process and the potential function (X̂t, V̂t) on path space Ŝ satisfy for any F ∈ D(L̂) the
evolution equation

∂tQt(F ) = Qt(Lt,Qt(F ))

with the generator Lt,Qt defined for any F ∈ D(L̂) and x ∈ Dt(S) by the formula

Lt,Qt(F )(x) = L̂t(F )(x) + V̂t(x)

∫
(F (y)− F (x)) Qt(dy) (3.12)
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Arguing as above, Qt = Law(Y t) can be interpreted as the law of a nonlinear Markov
process Y t ∈ Dt(S) associated with the collection of generators Lt,Qt . Here again,
besides the fact that Y t is a random path, we underline that Y t is not the historical path
of an auxiliary Markov process.

The historical process Ŷt is a jump type process taking values in the path space Ŝ :=

∪t≥0 Dt(S). Let (Tn)n≥0 be a collection of jump times occurring at a rate V̂t(Ŷt) := Vt(Yt)

that only depends on the terminal value of the historical process. We use the convention
T0 = 0 when n = 0. Also let (Ŷ nt )n≥0 be a collection of Dt(S)-valued independent random
variables with common law Qt. The terminal time variables Y nt := Ŷ nt (t) are independent
random variables with common law ηt.

Between the jump times Tn, the process Ŷt evolves as the historical process X̂t of the
reference process Xt. At each jump time Tn the predictable path ŶTn− jumps onto the
càdlàg path ŶTn given by the concatenate path

ŶTn := ŶTn− ∨ Y nTn
In the above display, Y nTn stands for a random sample from ηTn independent of ŶTn−.
Thus, for any Tn ≤ t < Tn+1 we have

Ŷt = X̂Tn,t(ŶTn) = ŶTn ∨ X̃Tn,t(Ŷ
n
Tn) and ŶTn = ŶTn−1

∨ X̃Tn−1,Tn(Ŷ n−1
Tn−1

)

We summarize the above discussion with the following proposition.

Proposition 3.4. For any time horizon t ≥ 0 we have

Ŷt =
∑
n≥0

(
X̃T0,T1

(Ŷ 0
T0

) ∨ X̃T1,T2
(Ŷ 1
T1

) ∨ . . . ∨ X̃Tn,t(Ŷ
n
Tn)
)

1Tn≤t<Tn+1

The McKean measure Mt is given for any measurable function F on Dt(S) by

Mt(F ) =
∑
n≥0

∫
[0,t]n

E


 ∏

0≤p<n

Zrp,rp+1

(
X̂rp,rp+1(Ŷ prp)

)
V̂rp+1

(
X̂rp,rp+1(Ŷ prp)

)
× Zrn,t

(
X̂rn,t(Ŷ

n
rn)
)

F
(
X̃r0,r1(Ŷ 0

r0) ∨ . . . ∨ X̃rn,t(Ŷ
n
rn)
)}

dr1 . . . drn

When the function F (X̂t) = f(Xt) only depends on the terminal time, we recover the
fact that

Mt(F ) = γt(f) e
∫ t
0
ηs(Vs) ds = E

(
f(Xt) e

−
∫ t
0

(Vs(Xs)−ηs(Vs))ds
)

= E(f(Yt)) = ηt(f) (3.13)

The detailed proof of the above assertion is provided in the appendix, on page 44.

3.4 Some regularity conditions

This section discusses in some details the two main regularity conditions used in the
further development of the article.

Firstly, observe that the semigroup Ps,t associated with the historical process Xt =

(X ′s)s≤t discussed in (3.9) never satisfies the regularity condition (H0) stated in (1.7).
Nevertheless it may happen that the semigroup P ′s,t associated with X ′t satisfies condition
(H0). In this situation, to avoid repetition or unnecessary long discussions we simply say
that (H ′0) is met.

We also use the following weaker conditions:

(H1) ∃α <∞ ∃β > 0

s.t. ∀s ≤ t ∀f ∈ B(S) osc(Qs,t(f)) ≤ α e−β(t−s) osc(f) (3.14)

(H2) ∃q <∞ s.t. ∀s ≤ t ∀x, y ∈ S log (Qs,t(1)(x)/Qs,t(1)(y)) ≤ q (3.15)
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As before when the semigroup Q
′
s,t and Q′s,t of associated with a marginal Feynman-

Kac model satisfy condition (Hi), to avoid repetition or unnecessary long discussions we
simply say that (H ′i) is met. We mention that

(H0) =⇒ (H1) =⇒ (H2)

The proof of the l.h.s. implication can be found in [40] (see for instance remark 2.2 and
the contraction inequalities stated in proposition 2.3). In this context, the parameters
(α, β) do not depends on the measure µt,h discussed in (1.7). To check the second
implication observe that

log (Qs,t(1)(x)/Qs,t(1)(y)) =

∫ t

s

[φs,u(δy)(Vu)− φs,u(δx)(Vu)] du (3.16)

This implies that

(H1) =⇒ (H2) with q = αβ−1 osc(V ) with osc(V ) := sup
t≥0

osc(Vt)

Using (2.7) we also have

(H2) =⇒ ‖∂ηφs,t(f)‖ ≤ eq osc(f)
(
since osc(Qs,t(f)) ≤ osc(f)

)
(H1) =⇒ ‖∂ηφs,t(f)‖ ≤ r e−β(t−s) osc(f) with r = α eq and q = αβ−1 osc(V )(3.17)

We return to the historical process Xt = (X ′s)s≤t discussed in (3.9). In this case, for any
xs = (x′(u))u≤s ∈ Ds(S

′) we have

Qs,t(f)(xs) = Q′s,t(f
′)(x′s)

in the above display, f and f ′ stand for some bounded measurable functions on the path
space Dt(S

′) and on S′ such that

∀yt = (y′u)u≤t ∈ Dt(S
′) f(yt) = f ′(y′t)

This implies that

(H ′1) =⇒ (H2) is met with q = αβ−1 osc(V ) and ‖∂ηφs,t(f)‖ ≤ eq osc(f) (3.18)

In the reverse angle, the Feynman-Kac semigroups on path space Q̂s,t discussed in
(3.10) is defined for any s ≤ t, and any x ∈ Ds(S) and f ∈ B(Dt(S)) by the formula

Q̂s,t(f)(x) := E
(
f(X̂t) Zs,t

(
X̂t

)
| X̂s = x

)
(3.19)

with the exponential map Zs,t defined in (3.2). The above semigroup never satisfies the
regularity condition (H1) stated in (1.7). Nevertheless arguing as in (3.18) permuting
(Q′s,t, Qs,t) and (Qs,t, Q̂s,t) we have

(H1) =⇒ (Ĥ2) (3.20)

In the above display, (Ĥ2) stands for the condition defined as (H2) by replacing Qs,t by

Q̂s,t and the state S by the path space Ds(S).
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3.5 Forward and backward equations

Proposition 3.5. For any s ≤ t and η ∈ P(S) we have the Gelfand-Pettis forward and
backward differential equations

∂tφs,t(ηs) = Λt(φs,t(ηs)) and ∂sφs,t(η) = −Λs(η)∂ηφs,t (3.21)

In addition, for any mapping φ of the form (2.4) we also have

∂tφ (φs,t(η)) = Λt(η)∂φs,t(η)φ and ∂sφ (φs,t(η)) = −Λs(η)∂φs,t(η)φ (3.22)

Proof. The l.h.s. assertion in (3.21) is a direct consequence of (3.7).
The r.h.s. differential formula in (3.21) as (3.22) can be checked using brute force and

lengthy calculations from the backward evolution equations associated with Feynman-
Kac semigroups.

A more judicious and more direct approach is to apply a second oder perturbation
approach. For instance, applying the second order Taylor with remainder expansion
(2.9) to the mapping φs,t given in (3.7), for any s+ h ≤ t we find that

φs,t(η)

= φs+h,t (η + [φs,s+h(η)− η])

= φs+h,t(η) + [φs,s+h(η)− η]∂ηφs+h,t + 1
φs,s+h(η)Qη(1)

1
2 [φs,s+h(η)− η]⊗2∂2

ηφs+h,t

On the other hand we have

φs,s+h(η) = η + Λs(η) h+ O(h2) and φs,s+h(η)Qη(1) = 1 + O(h)

This yields
φs,t(η) = φs+h,t(η) + Λs(η)∂ηφs+h,t h+ O(h2)

from which we check the backward evolution formula

h−1 [φs+h,t (η)− φs,t(η)] −→h→0 ∂sφs,t(η) = −Λs(η)∂ηφs,t

For any mapping φ of the form (2.4), applying the third order Taylor with remainder
expansion (2.9) we also have

φ (φs+h,t(η))− φ (φs,t(η))

= (φs+h,t(η)− φs,t(η))∂φs,t(η)φ+
1

2
(φs+h,t(η)− φs,t(η))⊗2∂2

φs,t(η)φ

+
1

φs+h,t(η) Qφs,t(η)(1)

1

3
(φs+h,t(η)− φs,t(η))⊗3∂3

φs,t(η)φ

Arguing as above we check (3.22). This ends the proof of the proposition.

4 Interacting genetic type particle systems

4.1 Mean field particle processes

Definition 4.1. The N -mean field particle interpretation of the nonlinear process dis-
cussed in (3.8) is defined by the Markov process ξt =

(
ξit
)

1≤i≤N ∈ S
N with generator Gt

given for any F ∈ D(L) and any x = (xi)1≤i≤N ∈ SN by

Gt(F )(x) :=
∑
i∈[N ]

Lt,m(x)(Fx−i)(x
i) (4.1)

EJP 25 (2020), paper 157.
Page 25/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP546
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A duality formula and a particle Gibbs sampler

with the collection of generators Lt,µ indexed by probability measures µ on S defined in
(3.8).

Let F := (Ft)t≥0, with Ft = σ(ξs : s ≤ t) be the filtration generated by the mean
field particle model defined in (4.1). Also let D([0, T ], SN ) be the set of functions

F : (t, x) ∈ ([0, T ]× SN ) 7→ Ft(x) ∈ R

with a bounded derivative w.r.t. the first argument and s.t. Ft ∈ D(L), for any t ∈ [0, T ].
For any F ∈ D([0, T ], SN ), and any T ≥ 0, applying the Itô integration by part formula
(see for instance section 15.5 in [42]) we have

dFt(ξt) = [∂tFt + Gt(Ft)] (ξt) dt+ dMt(F ) (4.2)

In the above displayMt stands for a martingale random field on D([0, T ], SN ) with angle
bracket defined for any functions F,G ∈ D([0, T ], SN ) and any time horizon t ∈ [0, T ] by
the formula

∂t〈M(F ),M(G)〉t = ΓGt(Ft, Gt)(ξt) (4.3)

Choosing functions of the form

Ft(x) = m(x)(ft) and Gt(x) = m(x)(gt)

we obtain the formula

ΓGt(Ft, Gt)(ξt) = m(ξt)ΓLt,m(ξt)
(ft, gt) (4.4)

for some f, g ∈ D([0, T ], S), we also check that the occupation measure m(ξt) ∈ P(S)

satisfies the stochastic equation

dm(ξt)(ft) = [m(ξt)(∂tft) + Λt(m(ξt))(ft)] dt+
1√
N

dMt(f) (4.5)

with a martingale random field Mt on D([0, T ], S) with angle brackets by the formula

∂t〈M(f),M(g)〉t

= m(ξt)(ΓLt(ft, gt)) +

∫
m(ξt)(du) m(ξt)(dv) Vt(u) (ft(v)− ft(u))(gt(v)− gt(u))

With a slight abuse of notation we also write Mt the extension of the random field Mt to
F -predictable functions D([0, T ], S).

In the further development of the article we write (M c
t ,Mc

t) and (Md
t ,Md

t ) the
continuous and the discontinuous part of the martingales (Mt,Mt); as well as

Lt,η = Lct,η + Ldt,η with Lct,η := Lct

The angle bracket of Md
t is given for any functions F,G ∈ D([0, T ], SN ) and any time

horizon t ∈ [0, T ] by the formula

∂t〈Md(F ),Md(G)〉t

=
∑
i∈[N ]

∫ [
Ft,ξ−it

(v)− Ft(ξt)
] [
Gt,ξ−it

(v)−Gt(ξt)
] [

Vt(ξ
i
t) m(ξt)(dv) + λt(ξ

i
t) Jt(ξ

i
t, dv)

]
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4.2 Historical and genealogical tree evolutions

The generator Gt of the N -mean field particle process ξt =
(
ξit
)

1≤i≤N ∈ S
N discussed

in (4.1) can be rewritten for any F ∈ D(L) and x = (xi)1≤i≤N ∈ SN in terms of the
interacting jump operator

Gt(F )(x) =
∑
i∈[N ]

[
Lt(Fx−i)(x

i) + Vt(x
i)

∫
(Fx−i(y)− F (x)) m(x)(dy)

]
(4.6)

The process ξt is called the N -mean field particle interpretation of the Feynman-Kac
measures ηt defined in (3.3).

The process ξt = (ξit)i∈[N ] ∈ SN can be interpreted as a genetic type particle system
with mutation associated with the generator Lt and selection dictated by the potential
function Vt. Between the jumps the particles ξit evolve independently as independent
copies of a process with generator Lt. At rate Vt(ξit) the particle is killed and instantly a
particle randomly selected in the pool duplicates.

The historical process ξ̂t = (ξs)s≤t ∈ ŜN coincides with the N -mean field interpreta-

tion of the historical process Ŷt = (Ys)s≤t ∈ Ŝ of the nonlinear process Yt defined in (3.8),
with the path space Ŝ defined in (3.10).

The generator Ĝt of the process ξ̂t given for any function F ∈ D(L̂) and any x =

(xs)s≤t ∈ Dt(S)N by the operator

Ĝt(F )(x) =
∑
i∈[N ]

[
L̂t(Fx−i)(x

i) + V̂t(x
i)

∫
(Fx−i(x

i ∨ z)− F (x)) m(xt)(dz)

]
(4.7)

The genealogical tree evolution associated with the genetic type particle system
ξt ∈ SN coincides with the N -mean field interpretation Xt = (Xi

t)i∈[N ] ∈ Dt(S)N of the
Dt(S)-valued nonlinear process Y t defined in (3.12). The generator Gt of Xt is given for
any function F ∈ D(L̂) and x = (xs)s≤t ∈ Dt(S)N by the operator

Gt(F )(x) :=
∑
i∈[N ]

Lt,m(x)(Fx−i)(x
i)

=
∑
i∈[N ]

[
L̂t(Fx−i)(x

i) + V̂t(x
i)

∫
(Fx−i(y)− F (x)) m(x)(dy)

]
(4.8)

with the collection of generators Lt,µ indexed by probability measures µ on Dt(S) defined
in (3.12).

Observe that Gt can be deduced from the operator Gt by replacing in (4.1) the
generator and the potential function (Lt, Vt) and the state S by (L̂t, V̂t) and by the path
space Ŝ.

The process Xt is called the N -mean field particle interpretation of the Feynman-Kac
measures on path space η̂t = Qt defined in (3.12).

In contrast with Xt, the historical process ξ̂t keeps track of all past-ancestral lines
with no descendants. Thus ξ̂t can be interpreted as the complete ancestral tree associated
with the genetic type particle system discussed above.

Rewritten in a slightly different form the jump generator in (4.7) is given by the
formula

V̂t(x
i)

∫
(Fx−i(x

i ∨ z)− F (x)) m(xt)(dz)

= V̂ −t (xi)
1

N − 1

∑
k∈[N ]−{i}

(
F (x ∨ xci,kt )− F (x)

)
with V̂ −t :=

(
1− 1

N

)
V̂t
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This shows that for any i ∈ [N ] and at rate V̂t(ξ̂
i
t ) the i-th particle ξit jumps onto a

randomly chosen particle ξkt , with k ∈ [N ]− {i}. Also observe that the jump rate of the
system ξ̂t is given by the stochastic intensity

λ̂t(ξ̂t) = N m(ξ̂t)(V̂
−
t ) = (N − 1) m(ξ̂t)(V̂t) (4.9)

A graphical description of the historical process ξ̂t with three jump times (T1, T2, T3) and
the jump coalescent maps (ck,j1 , cj2,j1 , ck,j2) is given below in figure 8.

ξ̂t =



• ◦•k

��

•k ◦•k

��

•k

• •
j1

•
j1

•
j1

•
j1

• •
j2

◦•
j2

OO

•
j2

•
j2

0 T1 T2 T3 t



Figure 8: Graphical description of the historical process ξ̂t

The plain lines (
j
−−−) represent the path associated with N independent copies Xj

u,v

of the stochastic semigroup Xu,v of the process Xt with generator Lt. The dotted vertical
arrows represent the jumps from the in-th coordinate onto the jn-th one.

The genealogical tree Xt associated with the historical process ξ̂t in figure 8 is given
below in figure 9.

• ◦k

��

•
k

◦

��

k

•
j1

• j1

• •

j1j1

k

• •
j2

◦
j2

OO

•j2
j2

0 T1 T2 T3 t

Figure 9: Description of the genealogical tree associated with the particle system ξt

In the above display the k-th ancestral line Xk
t is represented by the doubled lines

( ). A graphical description of the genealogical tree Xt associated with the particle
evolution presented in figure 9 is given below, in figure 10.

Xt =


• •

j1
•

j1
•

j2
•k

• •
j1

•
j1

•
j1

•
j1

• •
j1 j1

•
j2

•
j2

0 T1 T2 T3 t



Figure 10: Graphical description of the genealogical tree Xt

4.3 Particle models with a frozen ancestral line

Definition 4.2. Let I be an uniform random sample on [N ]. Given I, let χ̂t ∈ Dt(S)N

be the Markov process with initial condition χ̂0 = ξ0 and generator ĜI,t defined for any
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function F ∈ D(L̂) and x = (xs)s≤t ∈ Dt(S)N , by the formula

ĜI,t(F )(x) =
∑

i∈[N ]−{I}

[
L̂t(Fx−i)(x

i) + V̂t(x
i)

∫
(Fx−i(x

i ∨ z)− F (x)) m(xt)(dz)

]

+ L̂t(Fx−I )(xI) +
1

N

∑
i∈[N ]−{I}

V̂t(x
i) (F (xσi,I ∨ xci,It )− F (x))

(4.10)
with the concatenate operation ∨ defined in (2.14).

Observe that χ̂t := (χ̂t(s))s≤t ∈ Dt(S)N is not necessarily the historical path of an
auxiliary Markov process.

To better connect the above generator with the operator Ĝt defined in (4.7) observe
that

Ĝt(F )(x)− Ĝk,t(F )(x)

=
1

N
V̂t(x

k)
∑

i∈[N ]−{k}

(F (x ∨ xck,it )− F (x))− 1

N

∑
i∈[N ]−{k}

V̂t(x
i) (F (xσi,k ∨ xci,kt )− F (x))

This yields the following lemma.

Lemma 4.3. The generators Ĝt and Ĝk,t defined in (4.7) and (4.10) are connected for

any function F ∈ D(L̂) and x = (xs)s≤t ∈ Dt(S)N by the formula

Ĝt(F )(x)−m(x)(V̂t) F (x) = Ĝk,t(F )(x)− V̂t(xk) F (x) +
1

N

∑
i∈[N ]−{k}

εk,i(F )(x)

with the bounded integral operator εi,k defined by the anti-symmetric functions

εk,i(F )(x) := V̂t(x
k) F (x ∨ xck,it )− V̂t(xi) F (xσi,k ∨ xci,kt ) = −εk,i(F )(xσi,k)

Nevertheless, given I = k, the end-state process ζt defined by

ζt := χ̂
t(t) ∈ SN

is a Markov process. Given I = k, its generator Gk,t is given for any F ∈ D(L) and
x = (xi)1≤i≤N ∈ SN by the formula

Gk,t(F )(x) =
∑

i∈[N ]−{k}

[
Lt(Fx−i)(x

i) + Vt(x
i)

∫
(Fx−i(z)− F (x)) m(x)(dz)

]

+ Lt(Fx−k)(xk) +
1

N

∑
i∈[N ]−{k}

Vt(x
i) (Fx−i(x

k)− F (x))

(4.11)
Given I, the genealogical tree Yt associated with the process χ̂t is the ∈ Dt(S)N -valued
process starting at Y0 = ξ0 with generator GI,t given for any function F ∈ D(L̂) and
x = (xs)s≤t ∈ Dt(S)N by the formula

GI,t(F )(x) =
∑

i∈[N ]−{I}

[
L̂t(Fx−i)(x

i) + V̂t(x
i)

∫
(Fx−i(z)− F (x)) m(x)(dz)

]

+L̂t(Fx−I )(xI) +
1

N

∑
i∈[N ]−{I}

V̂t(x
i) (Fx−i(x

I)− F (x))

(4.12)
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As in (4.8), Gk,t can be deduced from the operator Gk,t by replacing in (4.11) the

generator and the potential function (Lt, Vt) and the state S by (L̂t, V̂t) and by the path
space Ŝ.

Observe that the historical process ζ̂It = (ζks )s≤t of the I-th particle in ζt := (ζit)i∈[N ]

evolves as the historical process X̂t and doesn’t depends on the remaining (N − 1)

interacting particles.

This yields the following proposition.

Proposition 4.4. The I-th ancestral line YIt of the genealogical tree Yt := (Yit)i∈[N ] ∈
Dt(S)N coincides with the historical process ζ̂It := (ζIs )s≤t of the I-th particle ζIt ; that is,
we have that

YIt = ζ̂It
law
= X̂t ∈ Dt(S) (4.13)

Observe that the jump rate of the system χ̂t is given by the stochastic intensity

λ̂I,t(χ̂t) = (N − 1) m(χ̂
−I
t )(V̂t) (4.14)

A synthetic description of the evolution of χ̂ given I = k and the jumps

x; xσj1,k ∨ xcj1,kt x; x ∨ xcj2,j1t and x; xσj2,k ∨ xcj2,kt

on three jump times (Tk,1, Tk,2, Tk,3) is given below in figure 11.
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Figure 11

In the above display the k-th ancestral line Ykt is represented by the doubled lines
( ).

A graphical description of the corresponding process χ̂t is given below in figure 12.

χ̂
t =



• •
j2
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��
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•
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Figure 12: Graphical description of the process χ̂t

The genealogical tree Yt associated with the historical process χ̂t in figure 12 is
given below in figure 13.
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Figure 13: Genealogical tree associated with the process χ̂t in figure 12

As in figure 8, the plain lines (
j
−−−) represent the path associated with N independent

copies Xj
u,v of the stochastic semigroup Xu,v of the process Xt with generator Lt. In this

notation, we have the formula

Ykt = ζ̂kt =
(
Xk

0,s(ξ
k
0 )
)
s≤t ∈ Dt(S) (4.15)

Observe that the generator GI,t of the genealogical tree Yt defined in (4.12) can be

rewritten for any F ∈ D(L̂) as follows

GI,t(F )(x)

= L̂t(Fx−I )(xI) +
∑

i∈[N ]−{I}

[
L̂xI ,t(Fx−i)(x

i) + V̂ −t (xi)

∫
(Fx−i(z)− F (x)) m(x−I)(dz)

]
(4.16)

In the above display, L̂z,t stands for the collection of operators indexed by z ∈ Dt(S) and

defined for any function f ∈ D(L̂) and any y ∈ Dt(S) by

L̂z,t(f)(y) := L̂t(f)(y) +
2

N
V̂t(y) (f(z)− f(y))

In the same vein, replacing (L̂t, V̂t) by (Lt, Vt) in (4.16), for any function F ∈ D(L) and
any x = (xi)1≤i≤N ∈ SN we obtain the formula

GI,t(F )(x)

= Lt(Fx−I )(xI) +
∑

i∈[N ]−{I}

[
LxI ,t(Fx−i)(x

i) + V −t (xi)

∫
(Fx−i(z)− F (x)) m(x−I)(dz)

]

the collection of operators Lz,t(f)(y) indexed by z ∈ S and defined for any function
f ∈ D(L) and any y ∈ S by

Lz,t(f)(y) := Lt(f)(y) +
2

N
Vt(y) (f(z)− f(y)) and V −t :=

(
1− 1

N

)
Vt

Definition 4.5. For any final time horizon T and given the ancestral line YIT = ζ̂ IT ∈
DT (S), we denote by Q−t = η̂−t and η−t the conditional Feynman-Kac measures defined as
in (3.12) and (3.3) by replacing (L̂t, V̂t) by (L̂−t , V̂

−
t ), and respectively (Lt, Vt) by (L−t , V

−
t ),

with the quenched generators

L̂−t := L̂ζ̂ It ,t
and L−t := Lζ It ,t (4.17)

Using (4.13) we readily check the following theorem.
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Theorem 4.6. For any time horizon T the I-ancestral line YIT ∈ DT (S) has the same
law as the historical process X̂t.

In addition, given the ancestral line YIT , the processes defined by

t ∈ [0, T ] 7→ Y−t =
(
Yit
)
i∈[N ]−{I} ∈ Dt(S)N−1 and ζ−t =

(
ζit
)
i∈[N ]−{I} ∈ S

N−1

coincides with the conditional (N−1)-mean field particle interpretation of the conditional
Feynman-Kac measures Q−t and η−t .

4.4 Coupled historical and genealogical trees

Definition 4.7. Let Ξ̂s,t be the transition semigroup of the flow
(
ξ̂s,t (x) ,Xs,t(y)

)
defined

for any F ∈ B
(
Dt(S)(2N)

)
and (x, y) ∈ Ds(S)(2N) by the formula

Ξ̂s,t(F )(x, y) := E
(
F
(
ξ̂s,t (x) ,Xs,t(y)

))
(4.18)

Observe that the processes ξ̂s,t (x) and Xs,t(x) have the same terminal states ξis,t
(
xis
)
.

Using (4.7) and (4.8) we check that the generator Ĥt of the coupled process (ξ̂t,Xt)

is defined by the formula

Ĥt(F )(x, y) = L̂(2)
t (F )(x, y) + Ĵ (2)

t (F )(x, y)− λ̂t(x) F (x, y) (4.19)

with the function λ̂t defined in (4.9) and the jump-intensity integral operator Ĵ (2)
t given

by

Ĵ (2)
t (F )(x, y) :=

∑
ι∈[N ]20

λ̂ιt(x) F (Ce,cι(x),Ccι(y)) with λ̂i,jt (x) :=
1

N
V̂t(x

i) (4.20)

In the above display, ci,j and Ca,b stands for the coalescent maps and operators defined
in (2.16) and (2.17).

Definition 4.8. Let Ξ̂ Is,t be the conditional transition semigroup of the stochastic flow(
χ̂
s,t (x) ,Ys,t(y)

)
defined for any F ∈ B(Dt(S)(2N)) and (x, y) ∈ Dt(S)(2N) by the formula

Ξ̂ Is,t(F )(x, y) := E
(
F
(
χ̂
s,t (x) ,Ys,t(y)

)
| I
)

(4.21)

Using (4.10) and (4.12) we check that the generator ĤI,t of the conditional coupled

process (χ̂t,Yt) given I is defined for any F ∈ D(L̂(2)) and (x, y) ∈ Dt(S)(2N) by the
formula

ĤI,t(F )(x, y) = L̂(2)
t (F )(x, y) + Ĵ (2)

I,t (F )(x, y)− λ̂I,t(x) F (x, y) (4.22)

with the rate function λ̂k,t defined in (4.14) and the jump-intensity integral operator Ĵ (2)
k,t

given by

Ĵ (2)
I,t (F )(x, y) =

∑
i∈[N ]−{I}

∑
j∈[N ]−{i}

λ̂i,jI,t(x) F (Ce,ci,j (x),Cci,j (y))

+
∑

j∈[N ]−{I}

λ̂I,jI,t (x) F (CσI,j ,cj,I (x),Ccj,I (y))

with the stochastic intensity

λ̂i,jk,t := 1i6=k λ̂
i,j
t + 1i=k λ̂

j,k
t

In the above display, ci,j , σi,j and Ca,b stands for the coalescent maps and operators
defined in (2.16) and (2.17). Following word-for-word the proof of lemma 4.3, we check
the following lemma.

EJP 25 (2020), paper 157.
Page 32/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP546
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A duality formula and a particle Gibbs sampler

Lemma 4.9. The jump intensities (Ĵ (2)
t , Ĵ (2)

k,t ) and the generators (Ĥt, Ĥk,t) defined

in (4.19) and (4.22) are connected for any F ∈ D(L̂(2)) and (x, y) ∈ Dt(S)(2N) by the
formulae

Ĵ (2)
t (F )(x, y) = Ĵ (2)

k,t (F )(x, y) +
1

N

∑
i∈[N ]−{k}

ε′k,i(F )(x, y)

and
Ĥt(F )(x, y)−m(x)(V̂t) F (x, y)

= Ĥk,t(F )(x, y)− V̂t(xk) F (x, y) + 1
N

∑
i∈[N ]−{k} ε

′
k,i(F )(x, y)

with the bounded integral operator ε′i,k defined by the anti-symmetric functions

ε′k,i(F )(x, y) := V̂t(x
k) F (x ∨ xck,it , yck,i)− V̂t(xi) F (xσi,k ∨ xci,kt , yci,k)

= −εk,i(F )(xσi,k , yσi,k) (4.23)

Using (2.18) we check that

Ĵ (2)
I,t (F )(x, y) =

∑
i∈[N ]−{I}

∑
j∈[N ]−{i}

λ̂i,jI,t(x) F (Ce,ci,j (x),Cci,j (y))

+
∑

j∈[N ]−{I}

λ̂I,jI,t (x) F (Ce,cI,j
(
CσI,j (x)

)
,CcI,j

(
CσI,j (y)

)
Rewritten in a more compact form in terms of the collection of coalescent operators Cke,a
and Cka indexed by k ∈ [N ] and a ∈ C introduced in (2.19), we obtain for any F ∈ D(L̂(2))

and (x, y) ∈ Dt(S)(2N) the formula

Ĵ (2)
I,t (F )(x, y) =

∑
ι∈[N ]20

λ̂ιI,t(x) F (CIe,cι(x),CIcι(y)) (4.24)

4.5 Dyson-Phillips expansions

The main objective of this section is to express the stochastic flows (ξ̂s,t,Xs,t) in
terms of the stochastic evolution flows discussed in (2.20) and the jump intensity (4.20).

For any given s ≥ 0 and x ∈ Ds(S) we denote by T s,xn an increasing sequence of jump
times with stochastic intensity λ̂t(ξ̂s,t(x)). In the further development of this section,
[s, t]n stands for the Weyl chamber introduced in (2.2).

Observe that

Es,t
(
X̂s,t(x)

)
:= exp

(
−
∫ t

s

λ̂r

(
X̂s,r (x)

)
dr

)
= Zs,t

(
X̂s,t (x)

)N−1

(4.25)

with the exponential map Zs,t introduced in (3.1).

Definition 4.10. For any n ≥ 0 We denote by Û (n)
s,t and Û(n)

s,t the integral semigroups

defined for any F ∈ B(Dt(S)(2N)) and (x, y) ∈ Ds(S)(2N) by the formulae

Û (n)
s,t (F )(x, y) := E

(
Û

(n)
s,t (F )(x, y)

)
Û

(n)
s,t (F )(x, y) := F

(
X̂s,t (x) , X̂s,t(y)

)
Zs,t

(
X̂s,t (x)

)n
(4.26)

Using (4.25) we have

Û (N−1)
s,t (F )(x, y) = E

(
F
(
ξ̂s,t (x) ,Xs,t(y)

)
1T s,x1 >t

)
Û

(N−1)
s,t (F )(x, y) = E

(
F
(
ξ̂s,t (x) ,Xs,t(y)

)
1T s,x1 >t | X̂s,t

)
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In addition, the semigroups
(

Ξ̂s,t, Û (N−1)
s,t

)
are connected by the Gelfand-Pettis weak-

sense integration formulae

Ξ̂s,t = Û (N−1)
s,t +

∫ t

s

Û (N−1)
s,r Ĵ (2)

r Ξ̂r,t dr

with the jump intensity integral operator Ĵ (2)
r defined in (4.24). Iterating the above

implicit formula, we obtain the following proposition.

Proposition 4.11. For any s ≤ t and any F ∈ B(Dt(S)(2N)) and (x, y) ∈ Ds(S)(2N) we
have the Dyson-Phillips expansion

Ξ̂s,t(F )(x, y) =
∑
n≥0

E
(
F (ξ̂s,t(x),Xs,t(y)) 1T s,xn <t<T s,xn+1

)
(4.27)

with the iterated integrals

E
(
F (ξ̂s,t(x),Xs,t(y)) 1T s,xn <t<T s,xn+1

)
=

∫
[s,t]n

((
Û (N−1)
r0,r1 Ĵ

(2)
r1

)
. . .
(
Û (N−1)
rn−1,rnĴ

(2)
rn

)(
Û (N−1)
rn,t (F )

))
(x) dr

We end this section with a probabilistic interpretation of (4.27) in terms of the
collection of maps T̂ a

s,t and X̂ a
s,t, indexed by a ∈ C and s ≤ t defined in (2.21).

By (4.19) and (4.20), given the stochastic flows X̂s,t, the jump times T s,xn = rn and
the randomly selected coalescent maps an = cιn for some index ιn ∈ [N ]20 we have the
stochastic evolution semigroup formulae

ξ̂rn−1,rn = T̂ cιn
rn−1,rn and Xrn−1,rn = X̂ cιn

rn−1,rn

In addition, whenever rn ≤ t < rn+1 we have

ξ̂s,t = X̂rn,t ◦ T̂ ι,(n)
r,rn and Xs,t = X̂rn,t ◦ X̂ ι,(n)

r,rn (4.28)

with the convention r0 = s, and the compositions

T̂ ι,(n)
r,rn := T̂ cιn

rn−1,rn ◦ . . . ◦ T̂
cι1
r0,r1 and X̂ ι,(n)

r,rn := X̂ cιn
rn−1,rn ◦ . . . ◦ X̂

cι1
r0,r1 (4.29)

The conditional probability pn(X̂s,t, d(ι, r)) on
(

[N ]
(2n)
0 × [s, t]n

)
of the n first jump times

and the selected coalescent indices is given by the formula

ps,xn (X̂s,t, d(ι, r))

:= P
(

(T s,x1 , . . . , T s,xn ) ∈ d(r1, . . . , rn), (a1, . . . , an) = (cι1 , . . . , cιn), 1T s,xn+1>t
| X̂s,t

)
= Er0,r1

(
X̂r0,r1(x)

)
λ̂ι1r1

(
X̂r0,r1(x)

)
Er1,r2

(
X̂r1,r2

(
X̂ cι1
r0,r1(x)

))
λ̂ι2r2

(
X̂r1,r2

(
X̂ cι1
r0,r1(x)

))
× . . .× Ern−1,rn

(
X̂rn−1,rn

(
X̂ ι,(n−1)
r,rn−1

(x)
))

λ̂ιnrn

(
X̂rn−1,rn

(
X̂ ι,(n−1)
r,rn−1

(x)
))

×Ern,t
(
X̂rn,t

(
X̂ ι,(n)
r,rn (x)

))
dr

(4.30)
This construction yields a probabilistic interpretation of the weak-sense Dyson-Phillips

expansion stated in (4.27).
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Theorem 4.12. For any s ≤ t, any n ≥ 1 and any F ∈ B(Dt(S)(2N)) and (x, y) ∈ Ds(S)(2N)

we have the conditional almost sure Dyson-Phillips expansion formulae

E
(
F
(
ξ̂s,t(x),Xs,t(y)

)
1T s,xn <t<T s,xn+1

| X̂s,t
)

=

∫
[s,t]n

((
Û(N−1)
r0,r1 Ĵ

(2)
r1

)
. . .
(
Û(N−1)
rn−1,rnĴ

(2)
rn

)(
Û

(N−1)
rn,t (F )

))
(x) dr

=
∑

ι∈[N ]
(2n)
0

∫
[s,t]n

F
(
T̂ ι,nr,t (x), X̂ ι,nr,t (y)

)
ps,xn (X̂s,t, d(ι, r))

Corollary 4.13. For any s ≤ t, and any F ∈ B(Dt(S)(2N)), (x, y) ∈ Ds(S)(2N) and n ≥ 1

we have the almost sure formula

E
(
F (ξ̂s,t(x),Xs,t(y)) Zs,t (Xs,t (x)) 1T s,xn <t<T s,xn+1

| X̂s,t
)

=

∫
[s,t]n

((
Û(N)
r0,r1Ĵ

(2)
r1

)
. . .
(
Û(N)
rn−1,rnĴ

(2)
rn

)(
Û

(N)
rn,t(F )

))
(x) dr

with the semigroup Û(N)
s,t defined in (4.26), and the convention r0 = s.

Proof. By theorem 4.12 we have

E
(
F
(
ξ̂s,t(x),Xs,t(y)

)
Zs,t (Xs,t (x)) 1T s,xn <t<T s,xn+1

| X̂s,t
)

=
∑

ι∈[N ]
(2n)
0

∫
[s,t]n

F
(
T̂ ι,nr,t (x), X̂ ι,nr,t (y)

)
qs,xn (X̂s,t, d(ι, r))

with the measure

qs,xn (X̂s,t, d(ι, r)) = Zs,t
(
X̂ ι,nr,t (x)

)
ps,xn (X̂s,t, d(ι, r))

Also observe that

Zs,t
(
X̂ ι,nr,t (x)

)
= Zs,r1

(
X̂s,r1(x)

)
Zr1,r2

(
X̂r1,r2

(
X̂ cι1
r0,r1(x)

))
× . . .× Zrn−1,rn

(
X̂rn−1,rn

(
X̂ ι,(n−1)
r,rn−1

(x)
))
Zrn,t

(
X̂ ι,nr,t (x)

)
In addition, for any y ∈ Drn(S)N and n ≥ 1 we have

Ern−1,rn (y)×Zrn−1,rn (y) = Zrn−1,rn (y)
N

The end of the proof of the corollary is now easily completed.

5 Perturbation analysis

5.1 Semigroup estimates

We consider a collection of generators Lεt and potential functions V δt of the form

Lεt = Lt + ε Lt and V δt = Vt + δ V t with ε, |δ| ∈ [0, 1]
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In the above display, V t stands for some uniformly bounded function and Lt a bounded
generator of an auxiliary jump type Markov process of the form

Lt(f)(x) = λ(x)

∫
(f(y)− f(x)) Kt(x, dy)

for some jump rate function function λ(x) and some Markov transitions Kt(x, dy) such
that

λ1 ≤ λ(x) ≤ λ2 and $1 κt(dy) ≤ Kt(x, dy) ≤ $2 κt(dy)

In the above display, λi, $i stands for some positive parameters and κt some probability
measures.

We let P εs,t be the transition semigroup of the process with generator Lεt. In this
notation, we have the following technical lemma.

Lemma 5.1. Assume that Ps,t satisfies (H0) for some parameters h and ρ(h) > 0 and
some probability measures µt,h. In this situation, for any ε ∈ [0, 1] and t ≥ 0 there exists
some probability measures µεt,h such that

ρε(h) µεt,h(dy) ≤ P εt,t+h(x, dy) ≤ ρε(h)−1 µεt,h(dy) (5.1)

with the parameters

ρε(h) := ρ(h)
(
e−ελ2h + (1− e−ελ2h)$2

)
min

(
(λ1/λ2)($1/$2), e−ε(λ2−λ1)h

)
≥ ρ(h) min

(
(λ1/λ2)($1/$2), e−(λ2−λ1)h

)
The proof of the above lemma is provided in the appendix on page 44.
We consider the Feynman-Kac semigroup Qδ,εs,t defined as Qs,t by replacing Vt by V δt

and Xt by a Markov process with generator Lεt.

Also let φ(δ,ε)
s,t be defined as φs,t by replacing Qs,t by Qδ,εs,t, and set

Lδ,εt = εLt − δ Vt and Lδ,εt,η = εLt − δ(Vt − η(Vt)) with Vt(f) := V t f

Theorem 5.2. For any |ε|, |δ| ∈ [0, 1] and any s ≤ t we have the perturbation semigroup
Gelfand-Pettis weak-sense integration formulae

Qδ,εs,t −Qs,t =

∫ t

s

Qδ,εs,u L
δ,ε
u Qu,t du =

∫ t

s

Qs,u L
δ,ε
u Qδ,εu,t du (5.2)

In addition, for any η ∈ P(S) we have

φδ,εs,t(η)− φs,t(η)

=

∫ t

s

φδ,εs,u(η) Lδ,ε
u,φδ,εs,u(η)

∂φδ,εs,u(η)φu,t du =

∫ t

s

φs,u(η) Lδ,εu,φs,u(η) ∂φs,u(η)φ
δ,ε
u,t du

Proof. We check (5.2) using the fact that

∂u(Qδ,εs,uQu,t) = Qδ,εs,u (Lεu − Lu − δ Vu) Qu,t = ε Qδ,εs,u Lu Qu,t − δ Qδ,εs,u Vu Qu,t

and
∂u(Qs,uQ

δ,ε
u,t) = −ε Qs,u Lu Qδ,εu,t + δ Qs,u Vu Qδ,εu,t

The perturbation analysis of the normalized semigroups φδ,εs,t is slightly more involved.

Let Λδ,εt be defined as Λt by replacing (Lt, Vt) by (Lεt, V
δ
t ). Notice that

h−1
[
φδ,εt,t+h(η)− η

]
= Λδ,εt (η) + O(h)
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For any given s ≤ t, we consider the interpolating maps u ∈ [s, t] 7→ ∆δ,ε
s,u,t defined by

∆δ,ε
s,u,t := φu,t ◦ φδ,εs,u

On the other hand, for any s ≤ u ≤ u+ h ≤ t we have the decomposition

∆δ,ε
s,u+h,t(η)−∆δ,ε

s,u,t(η)

= φu+h,t

(
φδ,εs,u+h(η)

)
− φu,t

(
φδ,εs,u+h(η)

)
+ φu,t

(
φδ,εs,u+h(η)

)
− φu,t

(
φδ,εs,u(η)

)
= −Λu(φδ,εs,u(η))

(
∂φδ,εs,u(η)φu,t

)
h

+φu,t

(
φδ,εs,u(η) +

[
φδ,εs,u+h(η)− φδ,εs,u(η)

])
− φu,t

(
φδ,εs,u(η)

)
+ O(h2)

This implies that

h−1
[
∆δ,ε
s,u+h,t(η)−∆δ,ε

s,u,t(η)
]

= −Λu(φδ,εs,u(η))∂φδ,εs,u(η)φu,t + h−1
[
φδ,εs,u+h(η)− φδ,εs,u(η)

]
∂φδ,εs,u(η)φu,t + O(h)

We conclude that

∂u∆δ,ε
s,u,t(η) =

[
Λδ,εu (φδ,εs,u(η))− Λu(φδ,εs,u(η))

]
∂φδ,εs,u(η)φu,t

On the other hand, we have[
Λδ,εt (η)− Λt(η)

]
(f) = ε η(Lt(f))− δ η(f (V t − η(V t)))

By symmetry arguments, this ends the proof of the theorem.

Corollary 5.3. For any s ≤ t and any η ∈ P(S) we have the estimates

(H1) =⇒ ‖φδ,εs,t(η)− φs,t(η)‖tv ≤ c (ε+ δ)

(H2) =⇒ ‖φδ,εs,t(η)− φs,t(η)‖tv ≤ c (ε+ δ) (t− s)

for some finite constant c whose value doesn’t depend on (s, t, η), nor on (ε, δ).

5.2 Particle stochastic flows

Given a random measure µ on some measurable state space (E, E) and some σ-field
F ⊂ E we write E(µ | F) the first conditional moment measure given by

E(µ | F) : f ∈ B(S) 7→ E(µ | F)(f) := E(µ(f) | F)

For any t ≥ 0, we let ∆m(ξt) be the random jump occupation measure

∆m(ξt) := m(ξt)−m(ξt−) = ∆Mt = Mt −Mt−

with the martingale random field Mt defined in (4.5). In this notation, we have

Nn−1 ∂tE
[
(∆m(ξt))

⊗n(f
(1)
t ⊗ . . .⊗ f (n)

t ) | Ft−
]

= m(ξt−)Γ
(n)

Ld
m(ξt−)

(f
(1)
t , . . . , f

(n)
t ) (5.3)

with the operators Γ
(n)

Ld
m(ξt−)

defined in (2.12). When n = 2 the above formula resumes to

∂tE [∆m(ξt)(ft) ∆m(ξt)(gt) | Ft−] =
1

N
m(ξt−)ΓLd

m(ξt−)
(ft, gt)

= ∂t〈Md
t (f),Md(g)〉t = ∂t〈Md

t (F ),Md(G)〉t
with the functions (F,G) defined in (4.4)
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Definition 5.4. For any t ≥ s and n ≥ 1, we consider the integral random operators

∆nφs,t(m(ξs)) := Nn−1 1

n!
(∆m(ξs))

⊗n ∂
n

m(ξs−)+∆m(ξs),m(ξs−)φs,t

and their first variational measure

Υn
m(ξs−)φs,t := ∂sE [∆nφs,t(m(ξs)) | Fs−]

Choosing n = 1 we have

∆φs,t(m(ξs)) := ∆1φs,t(m(ξs)) = φs,t(m(ξs))− φs,t(m(ξs−))

Arguing as in the proof of (3.17) and using (5.3), for any collection of functions f (n) ∈
Osc(S) we have the estimate

Nn−1 ∂sE
[
∆φs,t(m(ξs))

⊗n(f
(1)
t ⊗ . . .⊗ f (n)

t ) | Fs−
]
≤ enq ‖λ+ V ‖ (5.4)

Proposition 5.5. For any t ≥ s and n ≥ 1, we have

∆nφs,t(m(ξs)) =
Nn−1

n!
(∆m(ξs))

⊗n∂nm(ξs−)φs,t +
1

N
∆n+1φs,t(m(ξs)) (5.5)

In addition, for any f ∈ B(S) we have

Υn
m(ξs−)φs,t(f)

= (−1)n−1 m(ξs−)Γ
(n)

Ld
m(ξs−)

(
Q
m(ξs−1)
s,t (1), . . . , Q

m(ξs−1)
s,t (1), ∂m(ξs−)φs,t(f)

)
+

1

N
Υn+1
m(ξs−)φs,t(f)

(5.6)

Proof. We have

∆n+1φs,t(m(ξs)) = Nn

∆φs,t(m(ξs))−
∑

1≤k≤n

1

k!
(∆m(ξs))

⊗k∂km(ξs−)φs,t


= N ∆nφs,t(m(ξs))−

Nn

n!
(∆m(ξs))

⊗n∂nm(ξs−)φs,t ⇐⇒ (5.5)

This implies that

∂sE [∆nφs,t(m(ξs)) | Fs−] := Υn
m(ξs−)φs,t

=
Nn−1

n!
∂sE

[
(∆m(ξs))

⊗n∂nm(ξs−)φs,t | Fs−
]

+
1

N
∂sE

[
∆n+1φs,t(m(ξs)) | Fs−

]
This ends the proof of the proposition.

Lemma 5.6. For any n ≥ 1 and s ≤ t we have the almost sure uniform estimates

(H2) =⇒ ‖Υn
m(ξs−)φs,t‖tv ≤ 2n−1e(n+1)q ‖λ+ V ‖ (5.7)

The detailed proof of the above estimate is provided in the appendix, on page 45.
In the further development of this section, for any given time horizon t and any

f ∈ B(S) we let
s ∈ [0, t] 7→ Md

s(φ.,t(m(.))(f))
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be the martingale s ∈ [0, t] 7→ Md
s(F ) associated with the function

(s, x) ∈ [0, t]× SN 7→ F (s, x) = φs,t(m(x))(f)

We also denote by

s ∈ [0, t] 7→M c
s

(
∂m(ξ.)φ.,t(f)

)
, resp. M c

s

(
Q
m(ξ.).,t (1)

)
the martingale M c

s (f) associated with the F -predictable bounded function

(s, x) ∈ [0, t]× S 7→ fs(x) = ∂m(ξs−)φs,t(f)(x) , resp. fs(x) = Q
m(ξs−)
s,t (1)(x)

We are now in position to state and to prove the main result of this section.

Theorem 5.7. For any time horizon t ≥ 0 and any f ∈ B(S) the interpolating function

s ∈ [0, t] 7→ φs,t(m(ξs))(f) ∈ R

satisfies the stochastic differential equation

dφs,t(m(ξs))(f) =
1√
N

dM c
s

(
∂m(ξ.)φ.,t(f)

)
+ dMd

s (φ.,t(m(.))(f))

+
1

N
Υ2
m(ξs−)φs,t(f) ds− 1

N
m(ξs)ΓLcs

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)
ds

Proof. Observe that

dm(ξs) = Λs(m(ξs)) ds+
1√
N

dM c
s + ∆m(ξs)− E(∆m(ξs) | Fs−)︸ ︷︷ ︸

�ds

Using Itô formula and the backward formula (3.21) we have

d φs,t(m(ξs))(f)

= −Λs(m(ξs))
(
∂m(ξs)φs,t(f)

)
ds+ [φs,t(m(ξs−) + dm(ξs))− φs,t(m(ξs−))] (f)

=
1√
N

dM c
s

(
∂m(ξ.)φ.,t(f)

)
+ dMd

s(φ.,t(m(.))(f))

+
1

2N
(dM c

s ⊗ dM c
s ) ∂2

m(ξs)
φs,t(f)

+∂sE
[
∆φs,t(m(ξs))(f)−∆m(ξs)∂m(ξs−)φs,t(f) | Fs−

]
ds

This ends the proof of the theorem.

The above theorem can be interpreted as an Aleeksev-Gröbner formula for interpolat-
ing semigroups on the space of measures [44].

Next corollary is a direct consequence of the recursion (5.6).

Corollary 5.8. For any t ≥ 0 and any f ∈ B(S) we have the almost sure formula

φs,t(m(ξs))(f)− φ0,t(m(ξ0))(f)

=
1√
N

M c
s

(
∂m(ξ.)φ.,t(f)

)
+Md

s(φ.,t(m(.))(f))

− 1

N

∫ s

0

m(ξu)ΓLu,m(ξu)

(
Q
m(ξu)
u,t (1), ∂m(ξu)φu,t(f)

)
du+

1

N2

∫ s

0

Υ3
m(ξu−)φu,t(f) du

(5.8)
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Choosing s = t and taking the expectation in (5.8) we obtain the following result.

Corollary 5.9. For any t ≥ 0 and f ∈ D(S) we have the formula

E(m(ξt)(f))− E(φ0,t(m(ξ0))(f))

= − 1

N

∫ t

0

E
[
m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)]
ds

+
1

N2

∫ t

0

E
[
Υ3
m(ξs−)φs,t(f)

]
ds

5.3 Some non-asymptotic estimates

Theorem 5.10. For any time horizon t ≥ 0 and any function f ∈ Osc(S) we have

(H1) =⇒ |E(m(ξt)(f))− ηt(f)| ≤ c/N
(H2) =⇒ |E(m(ξt)(f))− ηt(f)| ≤ c t/N (5.9)

In addition, for any function F ∈ Osc(Dt(S)) we have

(H1) =⇒ |E(m(Xt)(F ))−Qt(F )| ≤ c t/N (5.10)

for some finite constant c whose value doesn’t depend on the parameters (t,N).

The assertion (5.10) is a direct consequence of (3.20) and (5.9). The proof of the
estimates (5.9) is mainly based on the decomposition presented in corollary 5.9. The
estimates rely on elementary but rather technical carré du champ inequalities, and
semigroup techniques. Thus, the detail of the proof is housed in the appendix, on
page 45.

The first estimate stated in the above corollary extends the bias estimate obtained
in [74] to time varying Feynman-Kac models. The central difference between homoge-
neous and time varying models lies on the fact that we cannot use h-process techniques.
The latter allows to interpret the Feynman-Kac semigroups in terms of more conventional
Markov semigroups.

We end this section with a some more or less direct consequences of the above
estimates in the analysis of the measures discussed in theorem 4.6.

By corollary 5.3, for any N > 1 we have

(H1) =⇒ ‖η−t − ηt‖tv ≤ c/N and (H2) =⇒ ‖η−t − ηt‖tv ≤ c t/N

with the Feynman-Kac measures η−t defined in (4.17).

Arguing as in the proof of (5.10) we also have the almost sure estimate

(H1) =⇒ ‖Q−t −Qt‖tv ≤ c t/N

with the Feynman-Kac measures Q−t defined in (4.17).

By (5.1), when (H0) is satisfied, the Feynman-Kac model defined in terms of the pair
(L−s , V

−
s ) given in (4.17) satisfies the stability property (H1). Thus, using theorem 5.10

we readily deduce the following estimates.

Corollary 5.11. Assume that (H1) is met. In this situation, for any f ∈ Osc(S) and
F ∈ Osc(Dt(S)) we have almost sure and uniform estimates given by

|E
(
m(ζ−t )(f) | ζ̂ It

)
− ηt(f)| ≤ c/N and |E

(
m(Y−t )(F ) | Y It

)
−Qt(F )| ≤ c t/N
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The above results give some information on the bias of the occupation measures. We
end this section with some propagation of chaos estimate. Using (5.8), for any functions
fi ∈ Osc(S) we have

E (m(ξt)(f1) m(ξt)(f2))− E (φ0,t(m(ξ0))(f1) φ0,t(m(ξ0))(f2))

= − 1

N

∑
(k,l)∈{(1,2),(2,1)}

∫ t

0

E
[
φs,t(m(ξs))(fk)m(ξu)ΓLu,m(ξu)

(
Q
m(ξu)
u,t (1), ∂m(ξu)φu,t(fl)

)]
du

+
1

N

∫ t

0

E
[
m(ξu)ΓLu,m(ξu)

(
∂m(ξu)φu,t(f1), ∂m(ξu)φu,t(f2)

) ]
+

∫ t

0

∂sE [∆φs,t(m(ξs))(f1) ∆φs,t(m(ξs))(f2)] ds

+
1

N2

∑
(k,l)∈{(1,2),(2,1)}

∫ t

0

E
[
φs,t(m(ξs))(fk) Υ3

m(ξs−)φs,t(fl)
]
ds

By (5.4) and using the same lines of arguments as in the proof of theorem 5.10 we check
the following estimates.

Corollary 5.12. For any time horizon t ≥ 0, any f, g ∈ Osc(S) and i 6= j we have

(H1) =⇒ |E
(
f(ξit) g(ξjt )

)
− ηt(f) ηt(g)| ≤ c/N

(H2) =⇒ |E
(
f(ξit) g(ξjt )

)
− ηt(f) ηt(g)| ≤ c t/N

In addition, when (H1) is met, for any F,G ∈ Osc(Dt(S)) we have

|E
(
F (Xi

t) G(Xj
t )
)
−Qt(F ) Qt(G)| ≤ c t/N

as well as the almost sure estimates

|E
(
F (Yit) G(Yjt ) | Y It

)
−Qt(F ) Qt(G)| ≤ c t/N

We can extend the above arguments to any finite block of particles.

6 A duality formula

6.1 Many-body Feynman-Kac semigroups

For any given s ≥ 0 and x ∈ Ds(S) we denote by T s,xk,n an increasing sequence of jump

times with intensity λ̂k,t(χ̂s,t(x)), on the time horizon t ∈ [s,∞[. We use the convention
T s,xk,0 = 0 for n = 0.

Definition 6.1. Let Π̂s,t be the many-body Feynman-Kac semigroup defined for any
F ∈ B(Dt(S)(2N)) and (x, y) ∈ Dt(S)(2N) by the formula

Π̂s,t(F )(x, y) := E
(
F
(
ξ̂s,t (x) ,Xs,t(y)

)
Zs,t (Xs,t (x))

)
(6.1)

We are now in position to state and prove the main result of this section.

Theorem 6.2. For any s ≤ t, and any F ∈ B(Dt(S)(2N)), any (x, y) ∈ Ds(S)(2N) and n ≥ 1

we have the almost sure formula

E
(
F (ξ̂s,t(x),Xs,t(y)) Zs,t (Xs,t (x)) 1T s,xn <t<T s,xn+1

)
= E

(
F (χ̂s,t(x),Ys,t(y)) Zs,t

(
YIs,t (x)

)
1T s,xI,n<t<T

s,x
I,n+1

| I
) (6.2)

EJP 25 (2020), paper 157.
Page 41/54

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP546
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A duality formula and a particle Gibbs sampler

with the exponential map Zs,t on Dt(S) defined in (3.2). In addition, we have the
conditional transition semigroup formula

Π̂s,t(F )(x, y) = E
(
F (χ̂s,t(x),Ys,t(y)) Zs,t

(
YIs,t(x)

)
| I
)

Proof. By lemma 4.9 we have(
Û (N)
s,t Ĵ

(2)
t (F )

)
(x, y)

=
(
Û (N)
s,t Ĵ

(2)
k,t (F )

)
(x, y) +

1

N

∑
i∈[N ]−{k}

E

(
ε′k,i(F )

(
X̂s,t (x) , X̂s,t(y)

)
Zs,t

(
X̂s,t (x)

)N)

with the bounded integral operators ε′i,k defined in (4.23). Replacing in the r.h.s. expec-

tation X̂s,t by X̂ σi,j
s,t and using the fact that

Zs,t
(
X̂ σi,k
s,t (x)

)
= Zs,t

(
X̂s,t (x)

)
we conclude that Û (N)

s,t Ĵ
(2)
k,t = Û (N)

s,t Ĵ
(2)
t .

This implies that for any n ≥ 1 and k ∈ [N ] we have

E
(
F (ξ̂s,t(x),Xs,t(y)) Zs,t

(
ξ̂s,t (x)

)
1T s,xn <t<T s,xn+1

)
=

∫
[s,t]n

((
Û (N)
r0,r1Ĵ

(2)
k,r1

)
. . .
(
Û (N)
rn−1,rnĴ

(2)
k,rn

)(
Û (N)
rn,t(F )

))
(x) dr

(6.3)

In the above display, Û (N)
s,t stands for the Feynman-Kac semigroup defined in (4.26) and

[s, t]n the Weyl chamber introduced in (2.2). The end of proof of (6.2) is rather technical
but it follows the same arguments as the ones used in the proof of theorem 4.12, thus it
is provided in the appendix, on page 49.

The second assertion is obtained by summing over the number of jumps in the interval
[s, t]. Alternatively, in terms of generators, using (4.23) and recalling that

V̂t(X
k
s,t (x)) = Vt(ξ

k
s,t (xs)) = V̂t(ξ̂

k
s,t (x))

we check that

∂tΠ̂s,t(F )(x, y)

= E
((
Ĥk,t(F )

(
ξ̂s,t (x) ,Xs,t(y)

)
− V̂t(ξ̂ ks,t (x)) F

(
ξ̂s,t (x) ,Xs,t(y)

))
Zs,t

(
ξ̂s,t (x)

))
for any k ∈ [N ]. This implies that

∂tΠ̂s,t(F ) = Π̂s,t

(
ĤVk,t(F )

)
with ĤVk,t(F )(x, y) := Ĥk,t(F ) (x, y)− V̂t(xk) F (x, y)

Consider the semigroup

Π̂
(I)
s,t (F )(x, y) := E

(
F (χ̂s,t(x),Ys,t(y)) Zs,t

(
YIs,t(x)

)
| I
)

Arguing as above and recalling that

V̂t(χ̂
k

s,t(x)) = Vt
(
ζks,t (xs)

)
= V̂t

(
Yks,t(x)

)
we check that ∂t Π̂

(I)
s,t (F ) = Π̂

(I)
s,t

(
ĤVI,t(F )

)
.

This ends the proof of the theorem.
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Next corollary is a direct consequence of the above theorem and it extends the duality
formula presented in [34] to continuous time Feynman-Kac models.

Corollary 6.3. For any t ≥ 0 and F ∈ B(Dt(S)(2N)) we have the almost sure formula

Π̂t(F ) := E
(
F
(
ξ̂t,Xt

)
Zt (Xt)

)
= E

(
F (χ̂t,Yt) Zt

(
YIt
)
| I
)

with the function Zt defined as Zt by replacing Vt by the normalized potential V t defined
in (3.4). This yields for any F ∈ B(Dt(S)N+1) the duality formula

Πt(F ) := E
(
F
(
Xt,X

I
t

)
Zt (Xt)

)
= E

(
F (Yt,Y

I) Zt
(
YIt
))

(6.4)

6.2 Particle Gibbs samplers

For any given time horizon t ≥ 0, the probability measure introduced in (6.4) takes
the form

Πt(d(z1, z2)) ∈ P(E1 × E2) with E1 = Dt(S)N and E2 := Dt(S)

The first marginal of the measure Πt is given for any F ∈ B(Dt(S)N ) by the formula

πt(F ) := E
(
F (Xt) Zt (Xt)

)
On the other hand, by corollary 6.3, for any k ∈ [N ] and F ∈ B(Dt(S)) we have

E
(
F
(
Xk
t

)
Zt (Xt)

)
= E

(
F (Ykt ) Zt

(
Ykt
)
| I = k

)
= Qt(F )

In addition, for any k, l ∈ [N ] we have

Qt(F ) = E
(
F
(
Xk
t

)
Zt (Xt)

)
= E

(
F (Ykt ) Zt

(
Ylt
)
| I = l

)
Thus, under Π̂t all the ancestral lines in Yt are distributed according to Qt. In addition,
the second marginal of the measure Πt is given for any F ∈ B(Dt(S)) by the formula

Qt(F ) = E
(
F (YI) Zt

(
YIt
))

= E
(
F
(
XIt
)
Zt (Xt)

)
= E

(
m (Xt) (F ) Zt (Xt)

)
This yields the duality formula stated in (1.6) and in corollary 6.3.

The transition of the Gibbs-sampler with target measure Πt on E := (E1 × E2) is
defined by

St((z1, z2), d(z1, z2)) := Bt(z2, dz1) At(z1, dz2) (6.5)

This transition is summarized in the following synthetic diagram(
z1

z2

)
−→

(
z1 ∼ (Yt | YIt = z2)

z2

)
−→

(
z1

z2 ∼ m(z1)

)
By construction, we have the duality property

Πt(d(z1, z2)) St((z1, z2), d(z1, z2)) = Πt(d(z1, z2)) S−t ((z1, z2), d(z1, z2)) (6.6)

with the backward transition

S−t ((z1, z2), d(z1, z2)) = At(z1, dz2) Bt(z2, dz1)

Integrating (6.6) w.r.t. z1 we also have the reversibility property

Qt(dz2) Kt(z2, dz2) = Qt(dz2) Kt(z2, dz2)
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with the Markov transition Kt = Bt ◦ At from Dt(S) into itself defined for any F ∈
B(Dt(S)) and z ∈ Dt(S) by

Kt(F )(z) :=

∫
Kt(z, dz) F (z) = E

(
m(Yt)(F ) | YIt = z

)
We further assume that the Markov transitions of Xt satisfy condition (H0) and thus
(H1). In this situation, using corollary 5.11, for any time horizon t ≥ 0, any function
F ∈ Osc(Dt(S)) and and n ≥ 1 we check that

‖Kt(F )−Qt(F )‖ ≤ c (t ∨ 1)/N

for some finite constant c whose value doesn’t depend on the parameters (F, t,N). This
implies that

osc(Kt(F )) ≤ c (t ∨ 1)/N osc(F ) and βdob(Kt) ≤ c (t ∨ 1)/N

For any µ ∈ P(Dt(S)), we conclude that

‖µKnt −Qt‖tv ≤ (c (t ∨ 1)/N)n × ‖µ−Qt‖tv.

The last assertion is a direct consequence of the contraction inequalities (2.5).

Appendix

Proof of (3.13). Observe that

Mt(F )

= η0Q0,t(f) +
∑
n≥1

∫
0≤s1<...<sn≤t

 ∏
0≤p<n

ηspQsp,sp+1
(Vsp+1

)

 (ηsnQsn,t)(f) ds1 . . . dsn

Recalling that

ηsQs,t(f) =
γsQs,t(f)

γs(1)
=
γt(f)

γs(1)
=
γt(1)

γs(1)
× ηt(f)

we find that

Mt(F ) = γt(f) +
∑
n≥1

∫
0≤s1<...<sn≤t

 ∏
0≤p<n

ηsp+1
(Vsp+1

)×
γsp+1(1)

γsp(1)

 γt(f)

γsn(1)
ds1 . . . dsn

= γt(f)

1 +
∑
n≥1

∫
0≤s1<...<sn≤t

 ∏
0≤p<n

ηsp+1
(Vsp+1

)

 ds1 . . . dsn


This ends the proof of (3.13).

Proof of lemma 5.1. Let Xs,t(x), with t ≥ s, be the stochastic flow associated with the
generator Lt starting at Xs,s(x) = x at time t = s. In this notation, we have the
perturbation formula

P εs,t(f)(x)

= E
[
f(Xs,t(x)) e−ε

∫ t
s
λ(Xs,u(x))du

]
+

∫ t

s

E
[
ελ(Xs,u(x)) e−ε

∫ u
s
λ(Xs,v(x))dvKu(P εu,t(f))(Xs,u(x))

]
du
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For non negative functions f and any t ≥ 0 and h > 0 we have

P εt,t+h(f) ≤ e−ελ1hPt,t+h(f) + ελ2$2

∫ t+h

t

e−ελ1(u−t) κuP
ε
u,t+h(f) du

≤ eε(λ2−λ1)h

[
e−ελ2hPt,t+h(f) + ελ2$2

∫ t+h

t

e−ελ2(u−t) κuP
ε
u,t+h(f) du

]
In the same vein, we have

P εt,t+h(f) ≥ (λ1/λ2)($1/$2)

[
e−ελ2hPt,t+h(f) + ελ2$2

∫ t+h

t

e−ελ2(u−t) κuP
ε
u,t+h(f) du

]
This shows that

ρε(h) ≤
d(δxP

ε
t,t+h)

dµεt,h
(y) ≤ ρε(h)−1

with the probability measure

µεt,h ∝ e−ελ2hµt,h + ελ2$2

∫ t+h

t

e−ελ2(u−t) κuP
ε
u,t+h(f) du

This ends the proof of lemma 5.1.

Proof of lemma 5.6. For any functions fi ∈ Osc(S) and any l ≤ k we have∣∣∣∣∣∣E
 ∏

1≤l≤k

∆m(ξt)(fl) | Ft−

∣∣∣∣∣∣ ≤ 1

Nk

∑
i∈[N ]

(
Vt(ξ

i
t) + λt(ξ

i
t)
) ≤ 1

Nk−1
‖λ+ V ‖dt

=⇒

Nk |Υk+1
m(ξs−)φs,t(f)| = Nk

(k + 1)!

∣∣∣∂sE [(∆m(ξs))
⊗(k+1) ∂

(k+1)

m(ξs−)φs,t(f) | Fs−
]∣∣∣

= Nk

∣∣∣∣∣∂sE
[

1

m(ξs)Q
m(ξs−)
s,t (1)

(
∆m(ξ)

(
Q
m(ξs−)
s,t (1)

))k
∆m(ξ)∂m(ξs−)φs,t(f) | Fs−

]∣∣∣∣∣
≤ e(2+k)q ‖λ+ V ‖

This ends the proof of lemma 5.6.

Proof of theorem 5.10. We use (2.13) to check that

m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)
= (ηsQ

m(ξs)
s,t (1))2 m(ξs)ΓLs,m(ξs)

(
Qηss,t(1), ∂ηsφs,t(f)

)
+(ηsQ

m(ξs)
s,t (1))2 [φs,t(ηs)− φs,t(m(ξs))](f) m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

)
Using (2.7) we also have the estimate∣∣∣m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)∣∣∣ ≤ e3q osc(Qs,t(f)) m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

)
+e2q

√
m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

) √
m(ξs)ΓLs,m(ξs)

(∂ηsφs,t(f))

(6.7)
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On the other hand, we have

∂ηsφs,t(f) = Qηss,t [f − ηt(f)] and Qηss,t(f)(x) = E
(
f(Xt) e

−
∫ t
s
V u(Xu) du | Xs = x

)
=⇒ ∂sQ

ηs
s,t(f) = −Ls(Qηss,t(f)) + V s Q

ηs
s,t(f)

=⇒ ∂s(Q
ηs
s,t(f)Qηss,t(g))

= −Qηss,t(f) Ls(Q
ηs
s,t(g))−Qηss,t(g) Ls(Q

ηs
s,t(f)) + 2V s Q

ηs
s,t(f)Qηss,t(g)

We also have

Lt,µ(f) = Lt(f) + Vt [µ(f)− f ]⇐⇒ Lt(f)− Lt,µ(f) = Vt [f − µ(f)]

This yields the formula

ηΓLt,η (f, g)− ηΓLt(f, g) =

∫
η(dx) η(dy) Vt(y) [f(y)− f(x)][g(y)− g(x)]

= η(Vt(fg)) + η(Vt) η(fg)− η(fVt) η(g)− η(gVt) η(f)

For any given time horizon t and s ∈ [0, t] we have

dm(ξs)(Q
ηs
s,t(f)Qηss,t(g))− 1√

N
dMs(Q

η..,t(f)Qη..,t(g))

= m(ξs)
[
Ls,m(ξs)(Q

ηs
s,t(f)Qηss,t(g))−Qηss,t(f) Ls(Q

ηs
s,t(g))

−Qηss,t(g) Ls(Q
ηs
s,t(f)) + 2V s Q

ηs
s,t(f)Qηss,t(g)

]
ds

This yields

dm(ξs)(Q
ηs
s,t(f)Qηss,t(g))− 1√

N
dMs(Q

η..,t(f)Qη..,t(g))

= m(ξs)
[
Γs,Ls,m(ξs)

(Qηss,t(f), Qηss,t(g)) + Vs Q
ηs
s,t(f) (m(ξs)Q

ηs
s,t(g)−Qηss,t(g))

+Vt Q
ηs
s,t(g) (m(ξs)Q

ηs
s,t(f)−Qηss,t(f)) + 2V s Q

ηs
s,t(f)Qηss,t(g)

]
ds

from which we check that

m(ξt)(fg)−m(ξ0)(Qη00,t(f)Qη00,t(g))− 1√
N

Mt(Q
η..,t(f)Qη..,t(g))

=

∫ t

0

m(ξs)Γs,Ls,m(ξs)
(Qηss,t(f), Qηss,t(g)) ds

+

∫ t

0

m(ξs)
[
Vs Q

ηs
s,t(f) (m(ξs)Q

ηs
s,t(g)−Qηss,t(g))

+Vs Q
ηs
s,t(g) (m(ξs)Q

ηs
s,t(f)−Qηss,t(f)) + 2(Vs − ηs(Vs)) Qηss,t(f)Qηss,t(g)

]
ds
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After some simplifications we check that∫ t

0

m(ξs)Γs,Ls,m(ξs)
(Qηss,t(f), Qηss,t(g)) ds

= m(ξt)(fg)−m(ξ0)(Qη00,t(f)Qη00,t(g))− 1√
N

Mt(Q
η..,t(f)Qη..,t(g))

+

∫ t

0

[
2ηs(Vs) m(ξs)(Q

ηs
s,t(f)Qηss,t(g))

−m(ξs)(Vs Q
ηs
s,t(f)) m(ξs)Q

ηs
s,t(g)−m(ξs)(Vs Q

ηs
s,t(g)) m(ξs)Q

ηs
s,t(f)

]
ds

Choosing f = g = 1 and taking the expectations we find that∫ t

0

E
[
m(ξs)Γs,Ls,m(ξs)

(Qηss,t(1))
]
ds

= 1− η0(Qη00,t(1)2) + 2

∫ t

0

E
[
ηs(Vs) m(ξs)(Q

ηs
s,t(1)2)−m(ξs)(Vs Q

ηs
s,t(1)) m(ξs)Q

ηs
s,t(1)

]
ds

≤ 1 + 2e2q ‖V ‖ t

Choosing f = g = h− ηt(h), with h ∈ Osc(S) and taking the expectations we find that∫ t

0

E
[
m(ξs)Γs,Ls,m(ξs)

(∂ηsφs,t(h))
]
ds

= E
[
m(ξt)([h− ηt(h)]2)

]
− η0([∂η0φ0,t(h)]2)

+2

∫ t

0

E
[
ηs(Vs) m(ξs)([∂ηsφs,t(h)]2)−m(ξs)(Vs ∂ηsφs,t(h)) m(ξs)(∂ηsφs,t(h))

]
ds

≤ 1 + 4e2q ‖V ‖ t

For any f ∈ Osc(S) combining (6.7) with Cauchy-Schwartz inequality we find that
that ∫ t

0

|m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)
| ds ≤ 2e3q

[
1 + 4e2q ‖V ‖

]
t

Combining the above estimate with (5.7) and corollary 5.9 whenever (H2) is met we
conclude that

|E(m(ξt)(f))− E(φ0,t(m(ξ0))(f))| ≤ 2e3q

(
1 + 4e2q ‖V ‖+

1

N2
2eq ‖λ+ V ‖

)
t/N

We further assume that (H1) is satisfied. In this case, using (6.7) we also have

|m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)
| ≤ e3q α e−β(t−s) m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

)
+ e2q

√
m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

) √
m(ξs)ΓLs,m(ξs)

(∂ηsφs,t(f))

For any β̃ ∈ R we set

Q̃ηss,t(f)(x) := eβ̃(t−s) Qηss,t(f)(x)

= E
(
f(Xt) e

−
∫ t
s
Ṽu(Xu) du | Xs = x

)
with Ṽt(x) = V t(x)− β̃
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Arguing as above, we have

∂s(Q̃
ηs
s,t(f)Q̃ηss,t(g)) = −Q̃ηss,t(f) Ls(Q̃

ηs
s,t(g))− Q̃ηss,t(g) Ls(Q̃

ηs
s,t(f)) + 2 Ṽs Q̃

ηs
s,t(f) Q̃ηss,t(g)

and

dm(ξs)(Q̃
ηs
s,t(f)Q̃ηss,t(g))− 1√

N
dMs(Q̃

η..,t(f)Q̃η..,t(g))

= m(ξs)
[
Γs,Ls,m(ξs)

(Q̃ηss,t(f), Q̃ηss,t(g)) + Vs Q̃
ηs
s,t(f) (m(ξs)Q̃

ηs
s,t(g)− Q̃ηss,t(g))

+Vt Q̃
ηs
s,t(g) (m(ξs)Q̃

ηs
s,t(f)− Q̃ηss,t(f)) + 2Ṽs Q̃

ηs
s,t(f) Q̃ηss,t(g)

]
ds

This implies that∫ t

0

e2β̃(t−s) m(ξs)Γs,Ls,m(ξs)
(Qηss,t(f), Qηss,t(g)) ds

= m(ξt)(fg)− eβ̃t m(ξ0)(Qη00,t(f)Qη00,t(g))− 1√
N

Mt(Q̃
η..,t(f)Q̃η..,t(g))

+

∫ t

0

e2β̃(t−s)
[
2(ηs(Vs) + β̃) m(ξs)(Q

ηs
s,t(f)Qηss,t(g))−m(ξs)(Vs Q

ηs
s,t(f)) m(ξs)Q

ηs
s,t(g)

−m(ξs)(Vs Q
ηs
s,t(g)) m(ξs)Q

ηs
s,t(f)

]
ds

Choosing f = g = 1 and β̃ < 0 we have∫ t

0

e2β̃(t−s) E
[
m(ξs)Γs,Ls,m(ξs)

(Qηss,t(1))
]
ds

= 1− eβ̃t η0(Qη00,t(1)2)

+2

∫ t

0

e2β̃(t−s) E
[
(ηs(Vs) + β̃) m(ξs)(Q

ηs
s,t(1)2)−m(ξs)(Vs Q

ηs
s,t(1)) m(ξs)Q

ηs
s,t(1)

]
ds

≤ 1 + e2q
(

1 + 2|β̃|−1‖V ‖
)

= 1 + e2q
(
1 + 4β−1‖V ‖

)
when β̃ = −β/2

Choosing f = g = [h− ηt(h)], with h ∈ Osc(S) and 0 < β̃ < β we have∫ t

0

e2β̃(t−s) E
[
m(ξs)Γs,Ls,m(ξs)

(∂ηsφs,t(h)
]
ds

≤ E
[
m(ξt)([h− ηt(h)]2)

]
+2

∫ t

0

e2β̃(t−s)
[
(ηs(Vs) + β̃) m(ξs)

(
[∂ηsφs,t(h)]

2
)

−m(ξs)(Vs ∂ηsφs,t(h)) m(ξs)∂ηsφs,t(h)] ds

≤ 1 + 2r2(2‖V ‖+ β̃)

∫ t

0

e−2(β−β̃)(t−s) ds

≤ 1 + r2(2‖V ‖+ β̃) (β − β̃)−1 = 1 + r2(4‖V ‖β−1 + 1) when β̃ = β/2
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We end the proof of the theorem using the fact that

|m(ξs)ΓLs,m(ξs)

(
Q
m(ξs)
s,t (1), ∂m(ξs)φs,t(f)

)
|

≤ e3q(1 + α) e−β(t−s)/2m(ξs)ΓLs,m(ξs)

(
Qηss,t(1)

)
+ e2q eβ(t−s)/2m(ξs)ΓLs,m(ξs)

(∂ηsφs,t(f))

In the last assertion we have used the fact that the estimate
√
ab ≤ ca + b/c, for all

a, b, c > 0. This ends the proof of theorem 5.10.

Proof of (6.2). The proof follows the same lines of arguments as the ones used in the
proof of corollary 4.13.

By (4.22) and (4.24), given I = k, the historical flow X̂s,t, the jump times T s,xk,n = rn
as well as the randomly selected coalescent maps an = cιn for some ιn ∈ [N ]20, for any
rn ≤ t < rn+1 we have

χ̂
s,t = X̂rn,t ◦ T̂ ι,(k,n)

r,rn and Ys,t = X̂rn,t ◦ X̂ ι,(k,n)
r,rn (6.8)

with the semigroups (T̂ ι,(k,n)
r,rn , X̂ ι,(k,n)

r,rn ) defined as (T̂ ι,(n)
r,rn , X̂ ι,(n)

r,rn ) by replacing in (4.29)
the maps (T̂ a

s,t, X̂ a
s,t) by the maps (T̂ k,a

s,t , T̂
k,a
s,t ) introduced in (2.21). This yields the almost

sure formula∫
[s,t]n

((
Û(N)
r0,r1Ĵ

(2)
I,r1

)
. . .
(
Û(N)
rn−1,rnĴ

(2)
I,rn

)(
Û

(N)
rn,t(F )

))
(x) dr

=
∑

ι∈[N ]
(2n)
0

∫
[s,t]n

F
((
X̂rn,t ◦ T̂ ι,(I,n)

r,rn

)
(x),

(
X̂rn,t ◦ X̂ ι,(I,n)

r,rn

)
(y)
)

qs,xI,n(X̂s,t, d(ι, r))

with the random measures

qs,xI,n(X̂s,t, d(ι, r))

:= Zr0,r1
(
X̂r0,r1(x)

)N
λ̂i1,j1I,r1

(
X̂r0,r1(x)

)
× Zr1,r2

(
X̂r1,r2

(
X̂ I,cι1r0,r1 (x)

))N
λ̂i2,j2I,r2

(
X̂r1,r2

(
X̂ I,cι1r0,r1 (x)

))
× . . .× Zrn−1,rn

(
X̂rn−1,rn

(
X̂ ι,(I,n−1)
r,rn−1

(x)
))N

λ̂in,jnI,rn

(
X̂rn−1,rn

(
X̂ ι,(I,n−1)
r,rn−1

(x)
))

× Zrn,t
(
X̂rn,t

(
X̂ ι,(n)
I,(r,rn)(x)

))N
dr

On the other hand, using (4.14) we have

Zrn−1,rn

(
X̂rn−1,rn

(
X̂ ι,(I,n−1)
r,rn−1 (x)

))N
= Zrn−1,rn

(
X̂ ks,rn(x)

)
× Ekrn−1,rn

(
X̂rn−1,rn

(
X̂ ι,(I,n−1)
r,rn−1 (x)

))
with the stochastic exponential functional

Eks,t
(
X̂s,t(x)

)
:= exp

(
−
∫ t

s

λ̂k,r

(
X̂s,r (x)

)
dr

)
with λ̂I,t(x) = (N − 1) m(x−I)(V̂t)

The last assertion comes from the fact that

X̂ krn−1,rn

(
X̂ ι,(I,n−1)
r,rn−1

(x)
)

= X̂ ks,rn(x) by (2.22)
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We conclude that

qs,xI,n(X̂s,t, d(ι, r)) = Zs,t

(
X̂ ks,t(x)

)
× ps,xI,n(X̂s,t, d(ι, r))

with the conditional probability measures of the jump times and coalescent maps

ps,xI,n(X̂s,t, d(ι, r))

:= P
(

(T s,xI,1 , . . . , T
s,x
I,n) ∈ d(r1, . . . , rn), (a1, . . . , an) = (cι1 , . . . , cιn), 1T s,xI,n+1>t

| X̂s,t, I
)

We end the proof of (6.2) taking the expectations and using (6.3). �
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