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Abstract

Under mild conditions on a family of independent random variables (Xn) we prove
that almost sure convergence of a sequence of tetrahedral polynomial chaoses of
uniformly bounded degrees in the variables (Xn) implies the almost sure convergence
of their homogeneous parts. This generalizes a recent result due to Poly and Zheng
obtained under stronger integrability conditions. In particular for i.i.d. sequences we
provide a simple necessary and sufficient condition for this property to hold.

We also discuss similar phenomena for sums of multiple Wiener-Itô integrals with
respect to Poisson processes, answering a question by Poly and Zheng.
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1 Introduction

Investigation of real and vector valued multi-linear forms in independent random
variables is a classical topic in probability theory closely related to multiple Wiener-Itô
integration. Such random variables have been thoroughly studied, e.g., in the context
of harmonic analysis on the discrete cube, analysis of Boolean functions, geometric
theory of Banach spaces, random graphs, concentration of measure, Malliavin calculus
or more recently the Malliavin-Stein method. We refer the reader to the monographs
[11, 3, 14, 25, 7, 18, 16, 6, 19] for extensive exposition of various aspects of the theory.

Recently Poly and Zheng [22] have observed that for a large class of sequences X =

(Xn)n∈N of independent random variables the almost sure convergence of a sequence
of sums of tetrahedral (i.e., affine in each variable) multi-linear forms of bounded
degrees in the sequence X can be decomposed into the almost sure convergence of their
homogeneous parts. They also proved a counterpart of this result for sums of multiple
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Almost sure convergence of random variables with finite chaos decomposition

Wiener-Itô integrals with respect to a Gaussian process and posed certain questions
concerning similar phenomena for sequences of variables with less regularity than those
covered by their theorems, as well as for sums of multiple Wiener-Itô integrals with
respect to a Poisson process.

The goal of this article is to provide answers to the questions raised by Poly and Zheng
and to further study the almost sure convergence of sums of tetrahedral multi-linear
forms, also in the vector valued setting. In order to formulate our results in a precise
way and to put them in the right perspective let us start with the formulation of the main
theorems by Poly and Zheng.

1.1 Results by Poly and Zheng

Denote by `0(N)�d the set of all d-tensors (d-indexed matrices) of the form a =

(ai1,...,id)∞i1,...,id=0, symmetric in their arguments (i.e., ai1,...,id = aiσ(1),...,iσ(d) for any per-
mutation σ of the set [d] = {1, . . . , d}), with vanishing diagonals (i.e., such that ai1,...,id = 0

whenever ik = il for some k 6= l). For d = 0 we interpret a ∈ `(N)�d as a single real
number a∅ (corresponding to the empty multi-index).

Let X0, X1, X2, . . . be a family of independent random variables. Assume that EXi = 0,
EX2

i = 1 and for some δ > 0, supiE|Xi|2+δ <∞.
Assume now that (Zn)1≤n≤∞ is a sequence of random variables of the form1

Zn =

d∑
k=0

Zn,k,

where

Zn,k =

∞∑
i1,...,ik=0

a
(n,k)
i1,...,ik

Xi1 · · ·Xik

for some a(n,k) ∈ `0(N)�k such that
∑∞
i1,...,ik=1 |a

(n,k)
i1,...,ik

|2 < ∞. Here the infinite sums
defining Zn,k are understood as a.s. (or L2) limits of sums over i1, . . . , ik ∈ {0, . . . , n}
(their existence follows easily from the martingale convergence theorem). Note that Zn,0
are just constants (products over empty index set are interpreted as one).

One of the results proved by Poly and Zheng is

Theorem 1.1 (Theorem 1.3. in [22]). In the above setting, if Zn converges to Z∞ a.s. as
n→∞, then for all k ≤ d, Zn,k → Z∞,k a.s.

In other words the almost sure convergence of sums of tetrahedral multilinear
forms of uniformly bounded degrees in the variables Xi decomposes into almost sure
convergence of their homogeneous components.

While we postpone the rigorous formulation of our results to subsequent sections, let
us announce that we provide a weaker sufficient conditions for this property to hold (see
Theorem 2.8), which in particular allows to replace the finiteness of higher moments
in Theorem 1.1 by uniform square integrability (Corollary 2.9). We also completely
characterize i.i.d. sequences with the above property (Theorem 2.13) and extend this
phenomenon to the case of multi-linear forms with coefficients from a Banach space
(Proposition 2.4).

Another result from [22] is a counterpart of Theorem 1.1 for sums of Gaussian multiple
Wiener-Itô integrals. Since we are not going to use it (we state it only for comparison
with the Poissonian case which we will consider in Section 3) we refer, e.g., to the
monograph [7] for the necessary definitions. We remark that the original formulation
of the theorem involved rather isonormal Gaussian processes over a separable Hilbert

1Note that we include here n = ∞.

EJP 25 (2020), paper 144.
Page 2/28

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP538
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Almost sure convergence of random variables with finite chaos decomposition

space. To be able to draw analogy with the Poissonian setting, we state it in an equivalent
form in terms of Gaussian stochastic measures.

Theorem 1.2 (Theorem 1.1. in [22]). Let G be a Gaussian stochastic measure on a
measure space (X ,F , µ) and let In denote the corresponding n-fold Gaussian stochastic
integral on L2,s(Xn,F⊗n, µ⊗n) (the space of square integrable functions, symmetric in
their arguments). Let d ∈ N and consider a sequence (Fn)∞n=0 of random variables of the
form

Fn = EFn +

d∑
k=1

Ik(fn,k),

where fn,k ∈ L2,s(X k,F⊗k, µ⊗k) and d ∈ N. If the sequence Fn converges almost
surely to a random variable F , then EFn → EF and there exist functions f∞,k ∈
L2,s(X k,F⊗k, µ⊗k), such that for all k ≤ d, Ik(fn,k) converges almost surely as n→∞ to
Ik(f∞,k).

Poly and Zheng ask if an analogous result holds for Poisson multiple Wiener-Itô
integrals. While we show (see Example 3.1 below) that this is not the case (even for
d = 1), we will also prove that under an additional assumption that the converging
sequence is majorized by an integrable random variable, one can indeed deduce the
almost sure convergence of individual summands from the convergence of the sum
(Theorem 3.2).

Let us mention in passing that there are many common aspects of the analysis on
the Gauss and Poisson space, e.g., they both have the chaos representation property,
however the Poisson space lacks many regularity aspects of the Gauss space (e.g., hyper-
contractivity and related strong concentration properties). Searching for counterparts
of Gaussian results in the context of Malliavin calculus, concentration of measure or
hypercontractivity is an active area of research (see, e.g., the recent articles [12, 24, 17]).
Our result is another example showing that the behaviour of multiple Wiener-Itô inte-
grals with respect to the Poisson process resembles to some extent the Gaussian case,
however at the cost of introducing some additional assumptions.

2 Results for independent random variables

We will now present new results for independent random variables, deferring the
proofs to further sections. We will start by discussing certain general properties, then
we will state the main theorems concerning extensions of Theorem 1.1.

2.1 Preliminaries

In order to make the presentation more transparent we need to introduce some
additional terminology. Below X = (Xi)i∈N is a sequence of independent random
variables.

Definition 2.1. For a nonnegative integer d defineQd(X) – the homogeneous tetrahedral
chaos of degree d, as the space of all random variables Z, which are limits in probability
of a sequence of random variables of the form

∞∑
i1,...,id=0

ai1,...,idXi1 · · ·Xid ,

where a ∈ `0(N)�d is a d-tensor with only finitely many non-zero coefficients.

Remark 2.2. If the sequence X consists of i.i.d. Rademacher variables, then Qd(X)

coincides with the Walsh-Rademacher chaos of order d, however if the variables Xi are
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Almost sure convergence of random variables with finite chaos decomposition

i.i.d. standard Gaussian, Qd is distinct from the d-th Wiener-Itô chaos corresponding to
the Gaussian Hilbert space spanned by X (it is just a proper subspace). Since in this
section we discuss only sequences of independent random variables, we believe that this
should not lead to misunderstanding. Let us also remark that in general the spaces Qd
may have a non-trivial intersection (see however Proposition 2.5 below) and (even if all
variables Xi are square integrable) they need not span L2(X). Indeed, if the variables
are i.i.d. standard Gaussian, then, e.g., X2

0 − 1 is orthogonal to all the spaces Qd(X),
whereas it is an element of the second chaos understood in the Wiener-Itô sense (i.e., the
orthogonal complement of the subspace of L2(X) spanned by polynomials of degree one
in the subspace spanned by polynomials of degree two). If one works in the setting of
Gaussian stochastic measures, as in Theorem 1.2, and one assumes that µ is non-atomic,
then thanks to infinite-divisibility one can approximate in L2 any element of the d-th
Wiener-Itô chaos by a tetrahedral polynomial in Gaussian variables (we will use a similar
idea in the proofs of results for the Poisson space).

Note also that Q0(X) is just the space of almost surely constant random variables.

Definition 2.3. We will say thatX has the convergence decomposition property (abbrev.
CDP) if for every nonnegative integer d and every sequence (Zn)1≤n≤∞ of random
variables of the form

Zn =

d∑
k=0

Zn,k, (2.1)

where Zn,k ∈ Qk(X), such that Zn → Z∞ almost surely as n→∞, we have

Zn,k → Z∞,k a.s. (2.2)

for all k = 0, . . . , d.

The results by Poly and Zheng have been formulated for real valued chaos variables,
however it turns out that the CDP automatically extends to an analogous property for
polynomial chaoses with coefficients in an arbitrary separable Banach space (E, ‖ · ‖).
More precisely, if we define Qd(X, E) as the sets of limits in probability of homogeneous
tetrahedral polynomials of degree d in X, with coefficients from E, then the following
result holds.

Proposition 2.4. The sequenceX satisfies the CDP iff for every separable Banach space
(E, ‖·‖), every nonnegative integer d and every sequence (Zn)1≤n≤∞ of random variables
of the form

Zn =

d∑
k=0

Zn,k,

where Zn,k ∈ Qk(X, E), such that Zn → Z∞ almost surely as n→∞, we have

Zn,k → Z∞,k

almost surely for all k = 0, . . . , d.

An obvious necessary condition for the sequence X to satisfy the CDP is linear inde-
pendence of the spaces Qk(X), i.e., uniqueness of representations of random variables
Z as sums of variables from a finite number of spaces Qk(X) (if such uniqueness does
not hold then the sequence Zn = Z together with two distinct representations provides
a counterexample for the CDP). The following proposition asserts that this minimal
condition of uniqueness of the chaos decomposition is in fact also sufficient for the CDP.
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Proposition 2.5. A sequenceX satisfies the CDP if and only if for every d ∈ N and every
Y0, Y

′
0 ∈ Q0(X), . . . , Yd, Y

′
d ∈ Qd(X), if

Y0 + Y1 + . . .+ Yd = Y ′0 + Y ′1 + . . .+ Y ′d a.s.,

then for all k ≤ d, Yk = Y ′k a.s.

Remark 2.6. In fact, as follows from our main technical tool, Lemma 5.1 in Section 5,
if the CDP does not hold, then we can find finite sums Zn = bn +

∑kn
k=0 a

(n)
k Xk, where

bn, a
(n)
k ∈ R, such that Zn → 0 almost surely while bn → −1, Zn−bn → 1 a.s. In particular

the uniqueness of the decomposition is lost already for d = 1.

Let us conclude this section with a comment on the assumed structure of the limiting
random variable Z∞. In the formulation of Theorem 1.1 and Proposition 2.4 as well as in
Definition 2.3 it is assumed that Z∞ can be also represented as a finite sum of variables
from Qk(X). The next proposition states that if X satisfies the CDP, then it is in fact
enough to assume just the existence of the limit.

Proposition 2.7. Assume that the sequence X satisfies the CDP and let (E, ‖ · ‖) be
a separable Banach space. Consider a sequence of random variables (Zn)1≤n<∞ as
in (2.1), with Zn,k ∈ Qk(X, E). If the sequence Zn converges in probability to some
random variable Z∞, then there exist unique random variables Z∞,k, k = 0, . . . , d such

that Z∞ =
∑d
k=0 Z∞,k and Zk ∈ Qk(X, E).

2.2 Main results

We will now present the main results for sequences of independent random variables.
We will start with a mild sufficient condition for the CDP to hold. Before we formulate it
let us note that since the spaces Qk(X) do not change when one scales the variables Xn

by nonzero factors, there is no loss of generality in assuming that X is a tight sequence.

Theorem 2.8. Let X be a tight sequence of independent random variables. Assume that
for some δ > 0 and all n ∈ N,

sup
x∈R

P(Xn ∈ (x− δ, x+ δ)) ≤ 1− δ. (2.3)

Assume moreover that there exist C ≥ 0, t0 > 0 such that for any t ∈ (0, t0] and any
n ∈ N, ∣∣∣EXn1{|Xn|≤ 1

t }

∣∣∣ ≤ C(1

t
P
(
|Xn| >

1

t

)
+ tVar

(
Xn1{|Xn|≤ 1

t }

))
. (2.4)

Then the sequence X satisfies the CDP.

The condition (2.4) may seem quite technical, therefore let us now state a corollary
to the above theorem, which is a strengthening of Theorem 1.1.

Corollary 2.9. If the variables Xn are centered of variance one and the family {X2
n}n∈N

is uniformly integrable, then X satisfies the CDP.

Remark 2.10. The assumption (2.3) is an anti-concentration type condition, preventing
the random variables Xn from being too deterministic. It is not difficult to see that if
the variables become too strongly concentrated in points or small intervals away from
zero, then the CDP cannot hold, as illustrated by the following example, which answers
a question posed by Poly and Zheng [22].

Example 2.11. Assume that Xn is a centered two point variable of variance one (not
necessarily symmetric), i.e., for some pn ∈ (0, 1),

P
(
Xn =

1− pn√
pn(1− pn)

)
= pn, P

(
Xn =

−pn√
pn(1− pn)

)
= 1− pn.
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Assume that lim supn→∞ pn = 1 (the situation when lim infn→∞ pn = 0 is completely
analogous). In particular there exists an increasing sequence kn such that

∞∑
n=0

(1− pkn) <∞.

Set now Zn,0 = 1, Zn,1 = −
√
pkn (1−pkn )
1−pkn

Xkn , Zn = Zn,0 + Zn,1. By the Borel-Cantelli

lemma we obtain that with probability one, for sufficiently large n, Xkn =
1−pkn√

pkn (1−pkn )
and as a consequence Zn,1 = −1, Zn = 0. Setting Z∞,0 = Z∞,1 = 0 one can see that there
is no convergence of Zn,i to Z∞,i. One can also see that the decomposition of Z∞ into a
sum of variables from Q0(X) (constants) and Q1(X) is not unique, since −1 ∈ Q1(X) (cf.
Proposition 2.5 and Remark 2.6). Of course if one insists on representing Z∞ in the form
c+

∑∞
n=0 anXn, where c, an ∈ R then one must have c = 0, an ≡ 0.

On the other hand, if the numbers pn are separated from zero and one, then it follows
from Theorem 1.1 that the sequence X satisfies the CDP.

Remark 2.12 (A note added in revision). When the present article was under review
Pratelli and Rigo [23] provided an example of a sequence pn and a sequence of polyno-
mials Zn of degree two in the variables Xn such that Zn → 0 a.s. and in L2, while Zn,1
does not converge almost surely to zero.

If the variables Xn are i.i.d., one can show that the condition of Theorem 2.8 is in
fact necessary for the CDP to hold, i.e., we have the following theorem.

Theorem 2.13. Assume that the variables Xn, n ∈ N are i.i.d. Then the sequence X
satisfies the CDP if and only if there exists C ≥ 0 and t0 > 0 such that for all t ∈ (0, t0),∣∣∣EX01{|X0|≤ 1

t }

∣∣∣ ≤ C(1

t
P
(
|X0| >

1

t

)
+ tVar

(
X01{|X0|≤ 1

t }

))
. (2.5)

Remark 2.14. The proof of the above theorem is presented (along with the proofs of
other results concerning independent random variables) in Section 5, let us however
already now explain briefly the reasons behind the simplification of the conditions for
i.i.d. sequences and the fact that in this case one can provide a full characterization of
the CDP. Tightness (which as indicated before Theorem 2.8, is just a technical condition
one assumes without loss of generality to simplify the statements for the results) follows
immediately from the i.i.d. assumption. As for the condition (2.3), it is easy to see that
in the i.i.d. case it can fail only in the degenerate case, i.e., when X0 is deterministic.
This situation can be easily treated separately from the truly random case. Since the
condition (2.4) in the i.i.d. situation reduces to (2.5), sufficiency of the latter in the
non-degenerate case follows directly from Theorem 2.8. As for the necessity, if (2.5) fails,
then the i.i.d. assumption and the Law of Large Numbers allow for a construction of
an appropriate sequence of averages of the variables Xi, converging almost surely to a
non-zero constant, yielding a counterexample to the CDP.

Remark 2.15. Using the fact that limt↘0 t|EX01{|X0|≤ 1
t }
| = 0, it is easy to see that (2.5)

is satisfied for some C ≥ 0, t0 > 0 and all t ∈ (0, t0) if and only if for some C1 ≥ 0, t1 > 0

and all t ∈ (0, t1),∣∣∣EX01{|X0|≤ 1
t }

∣∣∣ ≤ C1

(1

t
P
(
|X0| >

1

t

)
+ tEX2

01{|X0|≤ 1
t }

)
. (2.6)

Furthermore, this is equivalent to the existence of C2 ≥ 0, such that∣∣∣EX01{|X0|≤ 1
t }

∣∣∣ ≤ C2

(1

t
P
(
|X0| >

1

t

)
+ tEX2

01{|X0|≤ 1
t }

)
(2.7)
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for all t > 0.
Indeed, if X0 is not equal identically to zero, then for t large enough (say t > t2) and

C3 large enough, |EX01{|X0|≤ 1
t }

∣∣∣ ≤ 1
t ≤ C3

1
tP(|X0| > 1

t ), while (2.7) for t ∈ [t1, t2] can be

easily obtained from (2.6) for t < t1 (with C2 depending only on C1, t1, t2).
Using the Fubini theorem and (2.7) one can easily prove that if Y is any random

variable independent of X0 and X0 satisfies (2.5), then so does X0Y (possibly with
different t0, C). This clearly follows from Theorem 2.13 but is perhaps somewhat hidden
at the level of inequality (2.5).

Example 2.16. It is clear from the law of large numbers that if X is an i.i.d. sequence
with X0 integrable but not centered, then X cannot satisfy the CDP. Let us present a
sequence violating the CDP with EX0 = 0. To this end consider X0 satisfying

P
(
X0 =

2n

n2

)
=

1

2n+1
for n = 1, 2, . . . ,

and

P
(
X0 = −π

2

6

)
=

1

2
.

Then EX0 = 0 and for t = n2/2n and n large, we obtain

EX01{|X0|≤ 1
t }

= EX01{|X0|> 1
t }

=

∞∑
k=n+1

1

2k2
≥ 1

2(n+ 1)
.

On the other hand
1

t
P
(
|X0| >

1

t

)
=

2n

n2
· 1

2n+1
=

1

2n2

and

tVar
(
X01{|X0|≤ 1

t }

)
≤ n2

2n
E|X0|21{|X0|≤2n/n2} =

n2

2n

(π4

72
+

n∑
k=1

2k−1

k4

)
≤ K

n2

for some numerical constant K.
This shows that the condition (2.5) is not satisfied and as a consequence X consisting

of i.i.d. copies of X0 does not satisfy the CDP.

Our last result concerning independent random variables is the following corollary on
reversing the triangle inequality in L0, which should be compared with Lemma A.2 from
the Appendix, dealing with Lp spaces for p ≥ 1. It turns out that in contrast to the Lp
case, reversing the triangle inequality at the level of tails requires additional regularity
of the distribution of the underlying random variables.

Corollary 2.17. Assume that the variables Xn, n ∈ N are i.i.d. and X0 satisfies (2.5).
Then for any d ∈ N there exists a constant Cd such that for any separable Banach space
(E, ‖ · ‖), any sequence of random variables Zi ∈ Qi(X, E), i = 0, . . . , d and any t > 0,

d∑
i=0

P(‖Zi‖ ≥ t) ≤ CdP(‖Z0 + Z1 + . . .+ Zd‖ ≥ t/Cd). (2.8)

Moreover, if (2.8) holds for E = R and d = 1, then X0 satisfies (2.5).

3 Multiple Poisson integrals

Let us now pass to the Poissonian setting and discuss a counterpart of Theorem 1.2.
Since a formal introduction of all the underlying notions is quite lengthy here we will
only present the counterexample and the formulation of our theorem, using standard
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notation from the theory of Poisson processes and Poisson multiple integrals (see, e.g.,
[13]), postponing the precise definitions to Section 6, which will be devoted solely to the
Poissonian case.

Example 3.1. Consider a Poisson process η with uniform intensity on the interval [0, 1].
Let fn = n1[0, 1n ] and let Fn = I1(fn) =

∫ 1

0
fndη −

∫ 1

0
fndx be the compensated Poisson

stochastic integral of fn (in particular Fn is an element of the first Wiener-Poisson chaos,
see Section 6 for the definition). Then Fn converges almost surely to −1. Since −1 is
an element of the Poisson chaos of order 0, we see that the counterpart of Theorem 1.2
does not hold even for d = 1.

On the other hand we have the following result.

Theorem 3.2. Let η be a Poisson point process on a measurable space (X ,F) with a
σ-finite intensity measure λ. For n ≥ 1 let In be the corresponding n-fold (compensated)
stochastic integral on L2,s(Xn,F⊗n, λ⊗n) (the space of square integrable functions,
symmetric in their arguments). Consider d ∈ N and a sequence (Fn)1≤n<∞ of random
variables of the form

Fn = EFn +

d∑
k=1

Ik(fn,k),

where fn,k ∈ L2,s(X k,F⊗k, λ⊗k). If the sequence Fn converges almost surely to some
random variable F∞, and there exists an integrable random variable X such that for all
n, |Fn| ≤ X a.s., then EFn → EF∞ and there exist random variables F∞,k, k = 1, . . . , d

such that as n → ∞, Ik(fn,k) converges almost surely and in L1 to F∞,k. If moreover
(Fn)1≤n<∞ is bounded in L2, then there exist functions f∞,k ∈ L2,s(X k,F⊗k, λ⊗k), such
that for all 1 ≤ k ≤ d, F∞,k = Ik(fn,k).

Example 3.3. The assumption that (Fn)∞n=1 is bounded in L2 cannot be dropped, i.e., if
the other assumptions of the theorem are satisfied, but this one is not, it is possible that
the sequence Fn converges almost surely to a random variable which is not in L2. To see
this it is enough to consider d = 1, a function f∞ : X → [0,∞), which is integrable but
not square integrable and a sequence of functions fn ∈ L2(X , µ) ∩ L1(X , µ) converging
pointwise to f from below. Setting Fn = I1(fn) =

∫
X fndη −

∫
X fndλ one can easily see

that Fn converges almost surely to I1(f) /∈ L2(η), moreover |Fn| ≤
∫
f∞dη +

∫
f∞dλ ∈

L1(η), so |Fn| is indeed dominated by an integrable random variable.

Remark 3.4. (A note added in revision) In the initial submission we remarked that it
was not clear to us whether under the assumption of L2 boundedness or even under
a stronger assumption that Fn converge to F∞ in L2, one could drop the assumption
of majorization by an integrable random variable. When the article was under review
Pratelli and Rigo [23] provided a negative answer to this question. They constructed a
sequence of random variables of the form Fn = I1(fn,1) + I2(fn,2) such that Fn → 0 a.s.
and moreover for some δ > 0, Fn → 0 in L2+δ and E supn |Fn|δ <∞, while I1(fn,1) does
not converge almost surely to 0.

4 Further comments

4.1 Overview of the proof

The original proofs of Theorem 1.1 and Theorem 1.2 due to Poly and Zheng are
based on the notion of hypercontractivity, which over the years has proved very useful
in analysis of polynomials in random variables. Our approach is based on decoupling
inequalities, introduced by McConnell and Taqqu in the 1980s [15] and subsequently
developed by many authors, in particular by Kwapień [9] in the case of multilinear forms,
with the most general result dealing with U -statistics and U -processes obtained by de
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la Peña and Montgomery-Smith [4] (see Theorem A.1 in Appendix A). This technique
reduces the analysis of homogeneous tetrahedral polynomials in a single sequence
of independent random variables, to polynomials in multiple copies of this sequence,
which are linear in each of the copies (see [5], where general decoupling inequalities
for U -statistics have been used for polynomials in a similar way as in the proof of
Lemma 5.1 below). This often allows for conditioning and inductive arguments based on
the analysis of sequences of independent random variables, which are well understood.
The downside of the decoupling approach, when compared with hypercontractivity
methods is a typically much worse dependence of constants in the inequalities on the
degree of the polynomial. On the other hand decoupling inequalities are more general as
they work for all sequences of independent random variables and also in arbitrary Banach
spaces, while hypercontractivity depends heavily on the distribution of the underlying
sequence and on the Banach space considered. One can note that from a conditional
application of the results by Poly and Zheng it follows that all sequences of symmetric
random variables satisfy the CDP, while not all of them satisfy hypercontractive estimates
(see [10] for a characterization in terms of the distribution). This, and the fact that
the CDP is a qualitative and not quantitative statement, suggests that in this case
decoupling may work more efficiently than hypercontraction. On the other hand we
should mention that Corollary 2.9 may probably follow by hypercontractive estimates
that can be recovered from the proofs in [10]. Also, Theorem 3.2 can be proved by means
of the Mehler formula for the Poisson process, mimicking the approach Poly and Zheng
used in the Gaussian case. We present this alternate argument in Section 6. In terms of
notation it is in fact simpler than our main approach based on decoupling, which on the
other hand seems to be more easily generalizable to other settings (in particular to more
general random measures or U -statistics).

4.2 Organisation of the article

Section 5 is devoted to proofs of results for independent random variables. It is
split into Subsection 5.1, where we formulate the main technical lemma and use it
to prove Propositions 2.4, 2.5, 2.7, and Subsection 5.2, where we present proofs of
Theorem 2.8, Corollary 2.9, Theorem 2.13 and Corollary 2.17. Section 6 contains two
proofs of Theorem 3.2 on multiple Poisson integrals. In Appendix A we formulate the main
decoupling results that all our proofs are based on, in Appendix B an elementary proof of
Proposition 5.5 used in Section 5.2, and in Appendix C we formulate a technical lemma
concerning density of simple symmetric functions, used in the proof of Theorem 3.2.

5 Proofs of results for independent random variables

In this section we provide proofs of results concerning sequences of independent
random variables, formulated in Section 2. First we will state a technical lemma and
demonstrate abstract propositions, then prove the main theorems.

5.1 A technical lemma and proofs of results from Section 2.1

In what follows by
P→ we denote convergence in probability.

Lemma 5.1. Let X = (Xn)∞n=0 be a sequence of independent random variables, satisfy-
ing the following implication. For all sequences kn, n ∈ N, of nonnegative integers and
all sequences a(n) = (a

(n)
0 , . . . , a

(n)
kn

) ∈ Rkn+1, bn ∈ R, n ∈ N,

(
bn +

kn∑
k=0

a
(n)
k Xk

P,n→∞→ 0
)

=⇒
(
bn

n→∞→ 0
)
. (5.1)
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Then for every separable Banach space (E, ‖ · ‖), every nonnegative integer d and every
sequence (Zn)1≤n≤∞ of random variables of the form

Zn =

d∑
k=0

Zn,k,

where Zn,k ∈ Qk(X, E), such that Zn → Z∞ almost surely as n→∞, we have

Zn,k → Z∞,k a.s.

for all k = 0, . . . , d.

Before we present the proof of the above lemma, let us make a few comments and
describe its basic consequences. In particular we will prove Propositions 2.4, 2.5 and 2.7.

Remark 5.2. Since kn in the above lemma may be an arbitrary sequence of nonnegative
integers, it is easy to see that its assumption can be equivalently stated as

There does not exist a sequence Zn ∈ Q1(X) such that Zn
P,n→∞→ 1.

Let us also make the following remark, which will be used in the proof of Lemma 5.1.

Remark 5.3. Consider the implication (5.1) with convergence in probability replaced
by almost sure convergence. It is easy to see that this formally weaker property of the
sequence X is in fact equivalent to (5.1). Indeed, assume that such a weaker version
holds and consider any a(n), bn such that

bn +

kn∑
k=0

a
(n)
k Xk

P→ 0.

For every increasing sequence nm of nonnegative integers we can find a subsequence
nml such that

bnml +

knml∑
k=0

a
(n)
k Xk

a.s.,l→∞→ 0,

which implies that bnml → 0 as l→∞. Therefore, bn → 0 as n→∞, which proves (5.1).

The above remark and Lemma 5.1 immediately implies the following corollary.

Corollary 5.4. A sequence X of independent random variables satisfies the CDP if and
only if it satisfies the implication (5.1).

Having the above corollary we can easily prove Propositions 2.4 and 2.5.

Proof of Proposition 2.4. If X satisfies the CDP, then by Corollary 5.4 it satisfies the
implication (5.1). The assertion of the proposition follows thus by Lemma 5.1.

Proof of Proposition 2.5. The necessity of the uniqueness of the decomposition is obvious.
To show that it is also sufficient for the CDP, note that by Lemma 5.1 if this property does
not hold, then we can find a sequence of linear forms in the variables Xi converging in
probability to 1. Thus 1 ∈ Q1(X). Since obviously 1 ∈ Q0(X), this shows that there is no
uniqueness of the decomposition for d = 1.

Finally let us demonstrate Proposition 2.7.

Proof of Proposition 2.7. It is enough to prove the existence of the variables Z∞,k. Con-
sider thus any strictly increasing sequences ln,mn of integers. Since Zn converges in
probability, the difference Sn := Zln−Zmn converges in probability to zero. Thus from an

EJP 25 (2020), paper 144.
Page 10/28

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP538
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Almost sure convergence of random variables with finite chaos decomposition

arbitrary subsequence of Sn we can select a further subsequence along which the almost
sure convergence holds. Using the CDP, we obtain that along this subsequence also the
homogeneous parts of Sn tend almost surely to zero. Thus from every subsequence of
Sn,k := Zln,k − Zmn,k one can select a further subsequence converging almost surely to
zero, which implies that Sn,k converges to zero in probability. But, as the sequences
ln,mn were arbitrary, this implies that the Cauchy condition for convergence in proba-
bility is satisfied, and so by the completeness of L0(E), Zn,k converges in probability to

some random variable Z∞,k. Clearly we have then Z∞ =
∑d
k=0 Z∞,k.

We will now pass to the proof of Lemma 5.1.

Proof of Lemma 5.1. We will use the notation as in Definition 2.3. Clearly it is enough to
consider the case Z∞,k = 0 for all k ≤ d. Also, we can assume that Zn,k are multilinear
tetrahedral forms in a finite number of variables Xi, i.e.,

Zn,k =

∞∑
i1,...,ik=0

a
(n,k)
i1,...,ik

Xi1 · · ·Xik (5.2)

where a(n,k) ∈ `�n0 (N) and there exist mn,k <∞ such that a(n,k)i1,...,ik
= 0 if max(i1, . . . , ik) >

mn,k.

Indeed, by the Borel-Cantelli lemma we can find Z̃n,k, 0 ≤ k ≤ d, n ≥ 0, being such

tetrahedral forms, such that with probability one for all k ≤ d, Z̃n,k −Zn,k → 0 as n→∞.

In particular
∑d
k=0 Z̃n,k

a.s.→ 0 and for all k, Zn,k
a.s.
→ 0 iff Z̃n,k

a.s.→ 0. For the purpose of the

proof we can thus assume that Z̃n,k = Zn,k.
We will now prove by induction on d ≥ 1 that for any sequence X, satisfying (5.1), if

Zn,k, k ≤ d, are as in (5.2) and Zn =
∑d
k=0 Zn,k

a.s.→ 0, then for all k ≤ d, Zn,k
a.s.→ 0.

The base of induction: d = 1 In this case we have Zn = Zn,0 + Zn,1, where Zn,0 ∈ E
is deterministic and Zn,1 =

∑kn
k=0 a

(n,1)
k Xk for some a

(n,1)
k ∈ E. By the Hahn-Banach

theorem there exist norm one linear functionals ϕn on E such that ϕn(Zn,0) = ‖Zn,0‖.
If Zn

a.s.→ 0, then ϕn(Zn) = ‖Zn,0‖ +
∑kn
k=0 ϕn(a

(n,1)
k )Xk

a.s.→ 0. By assumption (5.1) this

implies that ‖Zn,0‖ → 0, which clearly yields Zn,1
a.s.→ 0.

The induction step Let us assume that the induction hypothesis holds for all numbers
smaller than d. Note that by the convergence Zn

a.s.→ 0, we have for arbitrary ε > 0,

lim
n→∞

sup
m≥n

P( max
n≤l≤m

‖Zl‖ > ε) = 0. (5.3)

For l ∈ N define the functions h(l)i1,...,id : Rd → E by the formula

h
(l)
i1,...,id

(x1, . . . , xd) =

d∑
k=0

(d− k)!

d!

(N − d)!

(N − k)!

∑
1≤r1 6=...6=rk≤d

a
(l,k)
ir1 ,...,irk

xr1 · · ·xrk

and note that the random vector (Zn, . . . , Zm) can be written as∑
1≤i1 6=i2 6=...6=id≤N

(
h
(l)
i1,...,id

(Xi1 . . . , Xid)
)m
l=n

where N = maxn≤l≤m max0≤k≤dml,k (here and in what follows the notation i1 6= . . . 6= id
denotes the condition that the indices ij are pairwise distinct).
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Let now X(i) = (X
(i)
n )∞n=0, i ∈ [d] be i.i.d. copies of the sequence X and define Zdecl ,

the decoupled version of Zl as

Zdecl :=
∑

1≤i1 6=i2 6=...6=id≤N

h
(l)
i1,...,id

(X
(1)
i1

. . . , X
(d)
id

)

=

d∑
k=0

1(
d
k

) ∑
1≤r1<...<rk≤d

∞∑
i1,...,ik=1

a
(l,k)
i1,...,ik

X
(r1)
i1
· · ·X(rk)

ik
,

where the equality follows from the symmetry of the tensors a(l,k), and the fact that they
have vanishing diagonals and finite support.

We have h(l)iπ(1),...,iπ(d)
(xπ(1), . . . , xπ(d)) = h

(l)
i1,...,id

(xi1 , . . . , xid) for every permutation π

of the set [d], so by Theorem A.1 from the Appendix, applied to the space F = E{n,...,m}

equipped with the norm ‖(xn, . . . , xm)‖ = maxn≤l≤m ‖xi‖, we have for every ε > 0,

1

Cd
P( max

n≤l≤m
‖Zl‖ ≥ Cdε) ≤ P( max

n≤l≤m
‖Zdecl ‖ ≥ ε) ≤ CdP( max

n≤l≤m
‖Zl‖ ≥ ε/Cd)

Combining this with (5.3) we obtain that Z(dec)
n

a.s.→ 0 as n→∞.
Consider a sequence Y = (Yn)∞n=0 defined as

Ykd+r = X
(r+1)
k

for k ∈ N, r ∈ {0, . . . , d − 1}, and any sequences a(n) = (a
(n)
0 , . . . , a

(n)
kn

) ∈ Rkn+1, bn ∈ R,

n ∈ N, such that bn +
∑kn
k=0 a

(n)
k Yk → 0 almost surely. Using the Fubini theorem and

applying successively (5.1) to X(r) (r ∈ [d]) conditionally on X(l), l ∈ [d] \ {r}, we easily
obtain that bn → 0 as n → ∞. Taking into account Remark 5.3 we can infer that Y
satisfies the implication (5.1).

Now, for fixed r ∈ [d], applying this implication to (X
(r)
n )n∈N and Zdecn , conditionally

on {X(r)
i }n∈N,r∈[d]\{r} we obtain via the Fubini theorem, that

d−1∑
k=0

1(
d
k

) ∑
1≤r1<...<rk≤d

∀iri 6=r

∞∑
i1,...,ik=1

a
(n,k)
i1,...,ik

X
(r1)
i1
· · ·X(rk)

ik

a.s.→ 0.

The induction hypothesis applied to Y implies now that for each r ∈ [d] and each k ≤ d−1∑
1≤r1<...<rk≤d

∀iri 6=r

∞∑
i1,...,ik=1

a
(n,k)
i1,...,ik

X
(r1)
i1
· · ·X(rk)

ik

a.s.→ 0

(we use here that every tetrahedral homogeneous polynomial can be represented in the
form (5.2)).

Now we get

∑
1≤r1<...<rk≤d

∞∑
i1,...,ik=1

a
(n,k)
i1,...,ik

X
(r1)
i1
· · ·X(rk)

ik

=
1

d− k

d∑
r=1

∑
1≤r1<...<rk≤d

∀iri 6=r

∞∑
i1,...,ik=1

a
(n,k)
i1,...,ik

X
(r1)
i1
· · ·X(rk)

ik

a.s.→ 0,

for all k ≤ d− 1 and as a consequence

Zdecn,d :=

∞∑
i1,...,id=1

a
(n,d)
i1,...,id

X
(1)
i1
· · ·X(d)

id

a.s.
→ 0 .

EJP 25 (2020), paper 144.
Page 12/28

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP538
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Almost sure convergence of random variables with finite chaos decomposition

Applying now again the decoupling inequality, we conclude that for all ε > 0,

lim sup
n→∞

sup
m≥n

P( max
n≤l≤m

‖Zl,d‖ > ε) ≤ C lim
n→∞

sup
m≥n

P( max
n≤l≤m

‖Zdecl,d ‖ > ε/C) = 0,

i.e., Zn,d
a.s.→ 0. From this we obtain

∑d−1
k=0 Zn,k

a.s.
→ 0, which by another application of the

induction hypothesis implies that Zn,k
a.s.→ 0 also for all k < d, and ends the induction

step.

5.2 Proofs of results from Section 2.2

We will use the following proposition, characterizing convergence in probability to
a constant for row sums of a triangular array of independent random variables. Let
us remark that with some not difficult but technical calculations it can be obtained
from a much deeper result, namely [21, Chapter IV, Theorem 3], characterizing weak
convergence of such sums to an arbitrary infinitely divisible distribution. However, to
make the presentation more self contained and elementary, we provide a direct proof in
Appendix B.

Proposition 5.5. Let Xn,k, n ∈ N, k ∈ {0, . . . , kn} be a triangular array of random
variables such that for each n, Xn,0, . . . , Xn,kn are independent. Assume that for all
ε > 0,

max
0≤k≤kn

P(|Xn,k| ≥ ε)→ 0 (5.4)

as n → ∞. Let τ be an arbitrary positive number. Then
∑kn
k=0Xn,k converges in

probability to 1 if and only if

(i)

kn∑
k=0

EXn,k1{|Xn,k|≤τ} → 1 (5.5)

and

(ii)

kn∑
k=0

(
P(|Xn,k| > τ) + Var

(
Xn,k1{|Xn,k|≤τ}

))
→ 0 (5.6)

as n→∞.

We are now ready for the proof of Theorem 2.8.

Proof of Theorem 2.8. By Lemma 5.1 it is enough to verify that under the assumptions
of Theorem 2.8 the implication (5.1) holds. We will proceed by contradiction. Assume
thus that there are sequences a(n) = (a

(n)
0 , . . . , a

(n)
kn

) ∈ Rkn+1, bn ∈ R, n ∈ N, such that

bn +
∑kn
k=0 a

(n)
k Xk

P,n→∞→ 0 but bn does not converge to 0. By passing to a subsequence
we can further assume that bn’s are separated from zero. Dividing by bn and setting
tn,k = −an,k/bn we thus obtain a sequence tn = (tn,0, . . . , tn,kn) such that

kn∑
k=0

tn,kXk
P→ 1.

Let X′ = (X ′n)∞n=0 be an independent copy of X. We have

kn∑
k=0

tn,k(Xk −X ′k)
P→ 0.
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By assumption (2.3) and the Fubini Theorem we obtain for all k,

P(|Xk −X ′k| ≥ δ) ≥ δ.

On the other hand, by symmetry of Xk −X ′k, for any ε > 0,

P(|tn,k| · |Xk −X ′k| ≥ ε) ≤ 2P
(∣∣∣ kn∑

k=0

tn,k(Xk −X ′k)
∣∣∣ ≥ ε)→ 0,

which shows that tn,k converge with n to zero, uniformly in k ∈ N. Together with
tightness this implies that the triangular array given by Xn,k = tn,kXk satisfies (5.4). As
a consequence, by Proposition 5.5 we obtain

An :=
∑

1≤k≤kn
tn,k 6=0

tn,kEXk1{|Xk|≤ 1
|tn,k|

} → 1

and

Bn :=
∑

1≤k≤kn
tn,k 6=0

(
P
(
|Xk| >

1

|tn,k|

)
+ t2n,k Var

(
Xk1{|Xn,k|≤ 1

|tn,k|
}

))
→ 0,

which is however impossible, since by (2.4), for n large enough, we have |An| ≤ CBn.
This ends the proof of the theorem.

Let us now prove Corollary 2.9.

Proof of Corollary 2.9. Let us first prove the condition (2.4). Let t0 be such that for
all n ∈ N, EX2

n1{|Xn|≤ 1
t0
} ≥ 1/2. Using the mean zero assumption, for t ≤ t0 we can

estimate

|EXn1{|Xn|≤ 1
t }
| = |EXn1{|Xn|> 1

t }
| ≤ tEX2

n = t

≤ 2tEX2
n1{|Xn|≤ 1

t }
= 2tVar

(
Xn1{|Xn|≤ 1

t }

)
+ 2t

(
EXn1{|Xn|> 1

t }

)2
.

Now, by the Schwarz inequality, the second term on the right-hand side above is bounded
by

2tEX2
nP
(
|Xn| >

1

t

)
≤ 2t20

1

t
P
(
|Xn| >

1

t

)
,

which shows that (2.4) holds with C = max(2, 2t20).
Tightness of the sequence X follows from uniform integrability, so to finish the proof

it remains to demonstrate the condition (2.3). This will follow by uniform integrability
and a Paley-Zygmund type argument.

By the de la Vallée Poussin theorem, there exists a convex, nondecreasing function
ϕ : [0,∞)→ [0,∞) such that ϕ(0) = 0, limx→∞ ϕ(x)/x =∞ andM := supn∈NEϕ(|Xn|2) <

∞. Consider any x ∈ [−2, 2]. By convexity

Eϕ
( (Xn − x)2

4

)
≤ 1

2
(Eϕ(|Xn|2) + ϕ(4)) ≤ 1

2
(M + ϕ(4))

Therefore, again by convexity, there exists K such that for all n ∈ N and x ∈ [−2, 2],

Eϕ
( (Xn − x)2

K

)
≤ 1

4
.

On the other hand E(Xn − x)2 = EX2
n + x2 ≥ 1. Denoting by ϕ∗ the Legendre

transform of ϕ, given by the formula ϕ∗(x) = supy≥0(xy − ϕ(y)), we can estimate

3

4
≤ E(Xn − x)21{|Xn−x|> 1

2}
≤ Eϕ

( (Xn − x)2

K

)
+ ϕ∗(K)P

(
|Xn − x| ≥

1

2

)
,
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which together with the definition of K yields

P
(
|Xn − x| ≥

1

2

)
≥ 1

2ϕ∗(K)

for all x ∈ [−2, 2]. For |x| > 2, by Chebyshev’s inequality we have P(|X − x| ≤ 1/2) ≤
P(|X| ≥ 3/2) ≤ 4

9 .
Combining the last two estimates we obtain (2.3) with δ = 2−1 min(1, 1/ϕ∗(K)), which

ends the proof of the corollary.

We will conclude this section by proving the characterizations of the CDP (Theo-
rem 2.13) and the corresponding reverse triangle inequality (Corollary 2.17) in the i.i.d.
case.

Proof of Theorem 2.13. One can easily check that the equivalence between the CDP and
condition (2.5) holds in the case of almost surely constant variable X0 (both conditions
are satisfied if and only if X0 vanishes almost surely), therefore from now on we will
assume that X0 is not deterministic. We will first prove that (2.5) implies the CDP. To this
end we will use Theorem 2.8. The condition (2.4) in the i.i.d. case clearly reduces to (2.5),
tightness of X is obvious, and the condition (2.3) follows easily from the assumption that
X0 is not deterministic. Indeed, for any pair of sequences xn ∈ R and δn → 0, such that
P(X0 ∈ (xn − δn, xn + δn)) ≥ 1− δn, the sequence xn must be bounded, and thus passing
to a convergent subsequence we would obtain that X0 is deterministic. Thus, as all the
assumptions of Theorem 2.8 hold, we can conclude that X satisfies the CDP.

Let us now prove the converse implication. Assume that (2.5) is not satisfied. Thus
there exists a sequence of positive numbers tn, such that tn → 0 and

tn

∣∣∣EX01{|X0|≤ 1
tn
}

∣∣∣ > n
(
P
(
|X0| >

1

tn

)
+ t2n Var

(
X01{|X0|≤ 1

tn
}

))
.

Set an = tn if EX01{|X0|≤ 1
tn
} > 0 and an = −tn otherwise. Define moreover

kn =
⌊(
tn

∣∣∣EX01{|X0|≤ 1
tn
}

∣∣∣)−1⌋− 1.

Note that by the Lebesgue dominated convergence theorem

tn

∣∣∣EX01{|X0|≤ 1
tn
}

∣∣∣→ 0 (5.7)

and so kn →∞.
Now consider the sequence Zn =

∑kn
k=0 anXk =

∑kn
k=0Xn,k, where Xn,k = anXk.

Since an → 0 and Xn have the same distribution, the condition (5.4) is satisfied. Using
the definition of kn and (5.7) we get

kn∑
k=0

EXn,k1{|Xn,k|≤1} = (kn + 1)tn

∣∣∣EX01{|X0|≤ 1
tn
}

∣∣∣→ 1

as n→∞, which yields (5.5) of Proposition 5.5.
Moreover,

kn∑
k=0

(
P(|Xn,k| > 1) + Var(Xn,k1{|Xn,k|≤1})

)
= (kn + 1)

(
P
(
|X0| >

1

tn

)
+ t2n Var

(
X01{|X0|≤ 1

tn
}

))
≤
P
(
|X0| > 1

tn

)
+ t2n Var

(
X01{|X0|≤ 1

tn
}

)
tn

∣∣∣EX01{|X0|≤ 1
tn
}

∣∣∣ <
1

n

and so (5.6) is also satisfied.
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Thus, by Proposition 5.5 we obtain that
∑kn
k=0 anXn → 1 in probability. Passing to a

subsequence we can upgrade this to the almost sure convergence, which implies that
the CDP cannot hold.

Proof of Corollary 2.17. To prove the first part of the corollary we will proceed by con-
tradiction, constructing a sequence of polynomials with coefficients in c0, which violate
the assertion of Proposition 2.4. Let us thus assume that (2.5) holds but (2.8) is violated.
Then there exist d, k ≤ d, a sequence of Banach spaces En, tn > 0 and Zn,i ∈ Qi(X, En)

(i ≤ d), such that

P(‖Zn,k‖ ≥ 2tn) > 4n2P
(
‖Zn,0 + . . .+ Zn,d‖ ≥

tn
2n2

)
,

(for simplicity we will denote all the norms appearing in the proof by ‖ · ‖). Scaling Zn,k
if necessary, we can assume that tn = 1. By approximation we obtain homogeneous
tetrahedral forms (in particular depending on a finite number of variables) Z ′n,i of degree
i (i ≤ d), such that

P(‖Z ′n,k‖ ≥ 3/2) > 4n2P
(
‖Z ′n,0 + . . .+ Z ′n,d‖ ≥

2

3n2

)
.

Passing to subspaces spanned by coefficients of Z ′n,i we may further assume that all
spaces En are finite dimensional, which by a standard embedding gives a sequence Nn
of positive integers, and tetrahedral forms Z ′′n,k with values in `Nn∞ such that

P(‖Z ′′n,k‖ ≥ 1) > n2P
(
‖Z ′′n,0 + . . .+ Z ′′n,d‖ ≥

1

n2

)
.

Let now mn = d1/P(‖Z ′′n,k‖ ≥ 1)e. Since Z ′′n,i depend only on finitely many variables
Xn, using the sequence X we can construct i.i.d. copies (Z ′′n,1(j), . . . , Z ′′n,d(j)), j =

1, . . . ,mn of the vectors (Z ′′n,1, . . . , Z
′′
n,d). Then Ẑn,i := (Z ′′n,i(j))

mn
j=1 may be considered a

tetrahedral homogeneous polynomial of degree i with coefficients in `Nnmn∞ embedded
in c0 in a natural way. Recall also the following elementary inequality for independent
random variables ξi:

1

2
min

(∑
j

P(ξj > t), 1
)
≤ P(max

j
ξj > t) ≤

∑
j

P(ξj > t).

Using this inequality together with independence over j = 1, . . . ,mn we obtain

P(‖Ẑn,k‖ ≥ 1) = P( max
j≤mn

‖Z ′′n,k(j)‖ ≥ 1) ≥ 1

2
min

(
mnP(‖Z ′′n,k‖ ≥ 1), 1

)
= 1/2 (5.8)

and

P
(
‖Ẑn,0 + . . .+ Ẑn,d‖ ≥

1

n2

)
= P

(
max
j≤mn

‖Z ′′n,0(j) + . . .+ Z ′′n,d(j)‖ ≥
1

n2

)
≤ mnP

(
‖Z ′′n,0 + . . .+ Z ′′n,d‖ ≥

1

n2

)
≤ mn

1

n2
P(‖Z ′′n,k‖ ≥ 1) ≤ 2

n2
.

Thus, by the Borel-Cantelli lemma, the sequence Ẑn = Ẑn,0 + . . . + Ẑn,d of c0 valued

tetrahedral polynomials converges almost surely to 0, while by (5.8), Ẑn,k does not.
By Proposition 2.4 this shows that X does not have the CDP, which by Theorem 2.13
contradicts (2.5) and finishes the proof of the first part of the corollary.

As for the second part, if (2.8) is satisfied for d = 1 and E = R, then clearly the
implication (5.1) holds and thus, by Lemma 5.1, X satisfies the CDP. By Theorem 2.13
this implies that (2.5) is satisfied.
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6 Proofs of results for Poisson stochastic integrals

In this section we will prove Theorem 3.2. The basic proof we will provide is again
based on decoupling inequalities. After completing the argument we will also present an
alternate proof based on Mehler’s formula for the Poisson process. We choose to focus
on the decoupling proof since it is a variation on the approach we used for independent
random variables and also it seems that its adaptation to more general situations (i.e.,
other random measures) is more straightforward than in the case of Mehler’s formula
argument.

Let us start by recalling the basic definitions of multiple Wiener-Itô integrals with
respect to the Poisson process. Clearly we are not able to provide here a complete
exposition, so we will just present the basic formulas and constructions necessary for
carrying out the proof, and refer the reader to the monograph [13] for details.

Consider a measurable space (X ,F) with a σ-finite intensity measure λ. In what
follows we regard point processes on (X ,F) as random elements of the space N(X ) of
N∪{∞}-valued measures on (X ,F), which can be written as countable sums of N-valued
measures. The measurable structure on N(X ) is given by the smallest σ-field for which
all maps µ 7→ µ(A) for A ∈ F , are measurable. A point process η is a Poisson process
with intensity measure λ if

(i) for every A ∈ F , the random variable η(A) has Poisson distribution with parameter
λ(A) (which we interpret as the Dirac mass at λ(A) if λ(A) ∈ {0,∞}),

(ii) for every positive integer m and all pairwise disjoint sets A1, . . . , Am ∈ F , the
random variables η(A1), . . . , η(Am) are jointly independent.

The multiple Wiener-Itô integral In : L2,s(Xn,F⊗n, λ⊗n) → L2(Ω,P) is defined first
for integrable f with an explicit formula (6.1) below and then uniquely extended to the
space L2,s(Xn,F⊗n, λ⊗n), by a standard density argument, in such a way that In/

√
n!

is an isometric embedding. For f : Xn → R, integrable (not necessarily symmetric or
square integrable) one defines

In(f) =
∑
J⊂[n]

(−1)n−|J|
∫
X |Jc|

∫
X |J|

f(x1, . . . , xn)η(|J|)(dxJ)λn−|J|(dxJc) (6.1)

where xJ = (xi)i∈J , and η(m) is the m-th factorial measure on Xm, defined inductively
by η(1) = η,

η(m+1)(·)

=

∫
Xm

(∫
X
1{(x1,x2,...,xm+1)∈·}η(dxm+1)−

m∑
i=1

1{(x1,x2,...,xm,xi)∈·}

)
η(m)(d(x1, . . . , xm)).

If η is a proper point process, i.e., if η can be represented as a countable sum of Dirac’s
deltas η =

∑κ
i=1 δXi for some N ∪ {∞}-valued random variable κ and X -valued random

variables Xi, then

µ(m) =

κ∑
i1,...,im=1

1{i1 6=...6=im}δ(Xi1 ,...,Xik ).

In particular, if B1 . . . , Bn ⊂ X are pairwise disjoint with λ(Bi) < ∞, and B =

B1 × . . .×Bn, then In(1B) =
∏n
i=1(η(Bi)− λ(Bi)). One also proves that In(g) and Im(f)

are uncorrelated for n 6= m. The subspace of L2(Ω) consisting of all m-fold stochastic
integrals of square integrable symmetric functions in m variables is called the m-th
Wiener-Poisson chaos. The chaos representation property asserts that these spaces
form an orthogonal decomposition of the space of square integrable random variables
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measurable with respect to η, which we will denote by L2(η) (see (6.5) below for an
explicit formula).

Proof of Theorem 3.2. For the proof of Theorem 3.2 it will be convenient to assume that
the measure λ is non-atomic, i.e., that for every A ∈ F with λ(A) > 0, there exists B ∈ F
with B ⊂ A and 0 < λ(B) < λ(A). We can do it without loss of generality, since we can
replace X with X ′ = X × (0, 1), λ with λ′ = λ⊗ Leb (where Leb is the Lebesgue measure
on the interval). The new measure is non-atomic, moreover if η′ is a Poisson process on
X ′, then by the Mapping Theorem (see [13, Theorem 5.1]), the image of η′ under the
natural projection π : X ′ → X has the same distribution as η. We may thus replace fn,k
by fn,k ◦ πk, where πk is the corresponding natural projection from (X × (0, 1))k onto X k
and one can then check that the joint distribution of all the stochastic integrals involved
remains unchanged. It is thus indeed enough to prove Theorem 3.2 under the additional
assumption that λ is non-atomic. We remark that this construction can be carried out for
an arbitrary σ-finite measure λ, it does not require additional regularity properties. If η
is a proper point process, then probabilistically it can be interpreted as a marking of η
with a constant marking kernel given by the Lebesgue measure on the interval (see [13,
Chapter 5]).

Given a square λ⊗k-integrable symmetric function f : X k → R, by Lemma C.1, we
can approximate it in L2 by a function h of the form

h =

N∑
i1,...,ik=1

ai1,...,ik1Ai1×...×Aik , (6.2)

where the sets A1, . . . , AN are pairwise disjoint subsets of X with λ(Ai) < ∞, the
coefficients ai1,...,ik are symmetric and vanish if il = im for some l 6= m. Note also that if
we have a finite family of functions of this form (perhaps with different k’s and N ’s), we
can always find their representations with the same sets A1, . . . , AN (first one enlarges
the corresponding sequences of sets to have the same union, then one takes all possible
intersections).

In the setting of Theorem 3.2, we can thus find functions gn,k ∈ L2,s(X k,F⊗k, λk),
k = 1, . . . , n, such that as n→∞,

∞∑
n=0

d∑
k=1

‖In(fn,k)− In(gn,k)‖2 <∞. (6.3)

Define Zn = EFn +
∑d
k=1 Ik(gn,k). It follows from Chebyshev’s inequality and the Borel-

Cantelli lemma that for each k, In(fn,k)− In(gn,k) tends to zero almost surely as n→∞.
In particular Zn converges almost surely to F∞. Moreover,

E sup
n∈N
|Zn| ≤ E sup

n∈N
|Fn|+ E sup

n∈N
|Zn − Fn| ≤ EX +

∞∑
n=0

d∑
k=1

‖In(fn,k)− In(gn,k)‖2 <∞.

Therefore it is enough to prove the almost sure convergence of Zn,k := In(gn,k). To this
end we will closely follow the strategy used in the proof of Lemma 5.1.

Assume that gn,k is of the form

gn,k =

Nn∑
i1,...,ik=1

a
(n,k)
i1,...,ik

1An,i1×...×An,ik ,

where the sets An,i are pairwise disjoint and of finite measure λ and coefficients a(n,k)i1,...,ik

are symmetric and with vanishing diagonals (as explained before we can assume that
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the family of sets An,1, . . . , An,Nn does not depend on k). Note that

Zn,k = Ik(gn,k) =

Nn∑
i1,...,ik=1

a
(n,k)
i1,...,ik

k∏
j=1

(η(An,ij )− λ(An,ij ))

Let η1, . . . , ηd be independent copies of the Poisson process η and define the decoupled
version of Zn with the formula

Zdecn = EFn +

d∑
k=1

1(
d
k

) ∑
1≤r1<...<rk≤d

Nn∑
i1,...,ik=1

a
(n,k)
i1,...,ik

k∏
j=1

(ηrj (An,ij )− λ(An,ij )).

The almost sure convergence of Zn can be written as the following Cauchy type
condition

lim
n→∞

sup
m>n

P( sup
n≤l≤m

|Zn − Zl| ≥ ε) = 0

for all ε > 0, while the majorization by an integrable random variable as

lim
m→∞

E sup
0≤l≤m

|Zl| <∞.

Fix m and recall from the discussion following (6.2), that there exists M and pairwise
disjoint sets of finite measure λ, B1, . . . , BM together with symmetric coefficients b(l,k)i1,...,ik

,
vanishing on diagonals, such that for every l ≤ m,

gl,k =

M∑
i1,...,ik=1

b
(l,k)
i1,...,ik

1Bi1×...×Bik ,

so that

Zl,k =

M∑
i1,...,ik=1

b
(l,k)
i1,...,ik

k∏
j=1

(
η(Bij )− λ(Bij )

)
(to simplify the notation we suppress the dependence of M and the sets Bi on m).

Thus, setting Xi = η(Bi)− λ(Bi), we get for l ≤ m,

Zl =
∑

1≤i1 6=...6=id≤M

h
(l)
i1,...,id

(Xi1 , . . . , Xid),

where

h
(l)
i1,...,id

(x1, . . . , xd)=
(M − d)!

M !
EFn+

d∑
k=1

(d− k)!

d!

(M − d)!

(M − k)!

∑
1≤r1 6=... 6=rk≤d

b
(l,k)
ir1 ,...,irk

xr1 · · ·xrk .

Denote X(j)
i = ηj(Bi) − λ(Bi). Using the additivity of ηj and λ, one can check that for

l ≤ m,

Zdecl =
∑

1≤i1 6=... 6=id≤M

h
(l)
i1,...,id

(X
(1)
i1
, . . . , X

(d)
id

)

and hence applying the decoupling inequalities of Theorem A.1 to the spaces `∞({n, n+

1, . . . ,m}) and `∞({0, 1, . . . ,m}) and functions

Hi1,...,id(x1, . . . , xd) = (h
(l)
i1,...,id

(x1, . . . , xd)− h(n)i1,...,id
(x1, . . . , xd))

m
l=n

Gi1,...,id(x1, . . . , xd) = (h
(l)
i1,...,id

(x1, . . . , xd))
m
l=0
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respectively, we obtain

lim
n→∞

sup
m>n

P( sup
n≤l≤m

|Zdecn − Zdecl | ≥ ε) = 0

for all ε > 0, and
lim
m→∞

E sup
0≤l≤m

|Zdecl | <∞,

i.e., Zdecn converges almost surely and is dominated by an integrable random variable.
By the Fubini Theorem, if we fix s1 < . . . < sk ∈ [d], then with probability one Zdecn

converges almost surely with respect to {ηi : i ∈ [d] \ {s1, . . . , sk}} and is almost surely
dominated by some integrable random variable. Thus with probability one it converges
in L1(ηi : i ∈ [d] \ {s1, . . . , sk}), and in particular E(Zdecn |ηs1 , . . . , ηsk) converges almost
surely for every choice of s1, . . . , sk. But

E(Zdecn |ηs1 , . . . , ηsk)

= EFn +

k∑
l=1

1(
d
l

) ∑
1≤r1<...<rl≤d

r1,...,rl⊂{s1,...,sk}

Nn∑
i1,...,il=1

a
(n,l)
i1,...,il

l∏
j=1

(ηrj (An,ij )− λ(An,ij )). (6.4)

From this, by induction one easily proves that EFn is convergent and for any 1 ≤ k ≤ d,
the sequence

Zdecn,k =

Nn∑
i1,...,ik=1

a
(n,k)
i1,...,ik

k∏
j=1

(ηj(An,ij )− λ(An,ij ))

converges almost surely. Indeed, taking k = 0, we obtain convergence of EFn. Now
assuming that EFn converges and Zdecn,l for 1 ≤ l < k converge almost surely, by equidis-
tribution of ηi we obtain that for any l < k

∑
1≤r1<...<rl≤d
r1,...,rl⊂{1,...,k}

Nn∑
i1,...,il=1

a
(n,l)
i1,...,il

l∏
j=1

(ηrj (An,ij )− λ(An,ij ))

converges almost surely, which combined with the almost sure convergence of the
sequence E(Zdecn |η1, . . . , ηk) and (6.4) yields the almost sure convergence of Zdecn,k .

Now, using the decoupling inequalities in the opposite direction than before (we skip
the definition of the corresponding functions h, which in this case is easier, since we deal
with homogeneous polynomials), we obtain that the sequence Zn,k converges almost
surely for each k ≤ d. By Lemma A.2 we obtain that

E sup
n∈N
|Zn,k| ≤ CE sup

n∈N
|Zn| <∞,

so we also have convergence in L1 (note that Lemma A.2 could be recovered from the
above decoupling arguments, in fact this is the way it was proved in [1], but we prefer to
rely on the abstract formulation, so as not to further complicate the above elementary
but notationally unpleasant arguments). We have thus established that the variables
Zn,k converge almost surely and in L1 to some random variables F∞,k and it follows
from (6.3) and the subsequent discussion, that the same convergence holds for Fn,k. In

particular we have F∞ = EF∞ +
∑d
k=1 F∞,k.

It remains to prove that if (Fn)∞n=0 is bounded in L2, then F∞,k can be expressed
as a k-fold stochastic integral of a square integrable symmetric function. Note that
by orthogonality, for each k ≤ d, (Fn,k)∞n=1 is bounded in L2. Thus one can select a

subsequence (Ik(fnl,k))∞l=1, which converges weakly in L2 to some random variable F̃∞,k.
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Since the k-th chaos is a closed linear subspace of L2, it follows that F̃∞,k = Ik(f∞,k) for
some f∞,k ∈ L2,s(X k,F⊗k, λ⊗k). Moreover by the convergence of Fn,k to F∞,k in L1, we

obtain that for every measurable set A, EF∞,k1A = limn→∞EFn,k1A = EF̃∞,k1A, which

shows that F∞,k = F̃∞,k almost surely and ends the proof of the theorem.

Remark 6.1. Let us note that variants of the above argument can be repeated to prove
the almost sure convergence in more general situations, e.g., for square integrable
random fields for which one defines multiple Wiener-Itô integrals by the L2 theory, for
tetrahedral polynomial chaos based on sequences of independent random variables (as
investigated in the previous section) or for U -statistics, as in all these settings we can
apply the general decoupling inequality in a similar manner.

An alternate proof of Theorem 3.2. We will focus on the proof of almost sure conver-
gence since the other parts of the theorem are its relatively straightforward conse-
quences (as can be seen from the first proof given above).

The argument we will present is based on Mehler’s formula for the Poisson process
and is a direct counterpart of the proof of Theorem 1.2 due to Poly and Zheng. It is
based on the notions related to the analysis of the Ornstein-Uhlenbeck semigroup on the
Poisson space and the corresponding Mehler’s formula. We refer the reader to [13, 20]
for a comprehensive description of the theory. Here we will just introduce the basic
elements, required for the argument.

For any measurable function f on the space N(X ), any µ ∈ N(X ) and any x ∈
X we define Dxf(µ) = D1

xf(µ) = f(µ + δx) − f(µ) and inductively Dx1,...,xkf(µ) =

D1
x1
Dk−1
x2,...,xk

f(µ). We also set D0f = f . For a random variable F = f(η) with f as above
we define Dk

x1,...,xk
F = Dx1,...,xkf(η). One shows that up to a set of P ⊗ λ⊗k measure

zero, this definition does not depend on the choice of the representative f .

We also define the symmetric functions Tkf : X k → R with the formula

Tkf(x1, . . . , xk) = EDx1,...,xkf(η).

For F = f(η) ∈ L2(η), the functions Tkf are square integrable with respect to λ⊗k and
we have the chaos representation (see [13, Theorem 18.10]), namely the equality

F =

∞∑
k=0

1

k!
Ik(Tkf), (6.5)

with the series converging in L2(η). Note that thanks to orthogonality of the Wiener-
Poisson chaoses and the isometry properties of In, the expansion F =

∑∞
k=0 Ik(gk) with

gk ∈ L2,s(X k,F⊗k, λ⊗k) is unique.

If η is proper, i.e., it can be almost surely represented as a sum of Dirac’s deltas,
η =

∑κ
k=1 δXn (where κ is an N ∪ {∞}-valued random variable), we also define the

t-thinning of η (t ∈ [0, 1]) as

ηt =

κ∑
n=1

1{Un≤t}δXn ,

where U1, U2, . . . are independent random variables distributed uniformly on [0, 1], inde-
pendent of η. By the Thinning Theorem [13, Corollary 5.9], ηt is a Poisson process with
intensity tλ.

Finally one defines a family of operators Pt, t ∈ [0, 1] on L2(η) with the formula

PtF = E(F (ηt + η′1−t)|η), (6.6)
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where η′1−t is a Poisson process with intensity (1 − t)λ, independent of the pair (η, ηt).
Note that by the Superposition Theorem [13, Theorem 3.3], ηt + η′1−t is again a Poisson
process with intensity λ. In particular EPtF = EF .

Mehler’s formula ([12], [13, Lemma 20.1]) asserts now that for any F ∈ L2(η) and
t ∈ [0, 1],

Dk
x1,...,xk

(PtF ) = tkPtDx1,...,xkF, λ
⊗k-a.e., P-a.s. (6.7)

As a consequence

EDn
x1,...,xk

(PtF ) = tkEDx1,...,xkF, λ
⊗k-a.e. (6.8)

In the setting of Theorem 3.2, we can assume without loss of generality that η is
proper (since we can always find a proper Poisson process with the same distribution as
η, cf. [13, Corollary 3.7]).

We can also assume that η and η′1−t are defined on a product probability space
Ω = Ωη × Ωη′ with measure Pη ⊗ Pη′ and that they depend respectively only on the first
and second coordinate. Since η̃ = ηt + η′1−t has the same distribution as η, if we define

F̃n = EFn +
∑d
k=1 Ĩk(fn,k), where Ĩk is the k-fold Wiener-Itô integral with respect to η̃,

then F̃n also converges almost surely and supn |F̃n| is integrable. Thus, by the Fubini
theorem, it follows that Pη-almost surely, the sequence F̃n converges almost surely with
respect to Pη′ and is uniformly integrable. In particular, using the definition (6.6) we

obtain that PtFn =
∫
F̃ndPη′ converges almost surely as t→∞.

On the other hand (6.8) and the chaos representation property (6.5) imply that

PtFn = EFn +

d∑
k=1

tkIk(fn,k).

Analogously as in the original argument by Poly and Zheng in the proof of Theorem 1.2,
using the fact that the right-hand side above converges almost surely for sufficiently
many t ∈ [0, 1], we obtain that Ik(fn,k) converges almost surely for each k ≤ d.

A Decoupling and related inequalities

In this section we gather basic facts concerning decoupling inequalities for U -
statistics that are used throughout the article.

Let us start with the by now classical decoupling inequality due to de la Peña and
Montgomery-Smith.

Theorem A.1 ([4, Theorem 1]). Let d be a positive integer and for n ≥ d let (Xi)
n
i=1 be

a sequence of independent random variables with values in a measurable space (S,S)

and let (X
(j)
i )ni=1 j = 1, . . . , d be d independent copies of this sequence. Let E be a

separable Banach space and for each (i1, . . . , id) ∈ [n]d with pairwise distinct coordinates
let hi1,...,id : Sd → E be a measurable function. There exists a numerical constant Cd,
depending only on d such that for all t > 0,

P
(∥∥∥ ∑

1≤i1 6=...6=id≤n

hi1,...,id(Xi1 , . . . , Xid)
∥∥∥ > t

)
≤ CdP

(∥∥∥ ∑
1≤i1 6=...6=id≤n

hi1,...,id(X
(1)
i1
, . . . , X

(d)
id

)
∥∥∥ > t/Cd

)
.

As a consequence for all p ≥ 1,∥∥∥ ∑
1≤i1 6=...6=id≤n

hi1,...,id(Xi1 , . . . , Xid)
∥∥∥
p
≤ C ′d

∥∥∥ ∑
1≤i1 6=... 6=id≤n

hi1,...,id(X
(1)
i1
, . . . , X

(d)
id

)
∥∥∥
p
,

where C ′d is another numerical constant depending only on d.

EJP 25 (2020), paper 144.
Page 22/28

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP538
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Almost sure convergence of random variables with finite chaos decomposition

If moreover the functions hi1,...,id are symmetric in the sense that, for all x1, . . . , xd ∈ S
and all permutations π : [d] → [d], hi1,...,id(x1, . . . , xd) = hiπ1 ,...,iπd (xπ1

, . . . , xπd), then for
all t > 0,

P
(∥∥∥ ∑

1≤i1 6=...6=id≤n

hi1,...,id(X
(1)
i1
, . . . , X

(d)
id

)
∥∥∥ > t

)
≤ C̃dP

(∥∥∥ ∑
1≤i1 6=...6=id≤n

hi1,...,id(Xi1 , . . . , Xid)
∥∥∥ > t/C̃d

)
,

where C̃d is a constant depending only on d. As a consequence for some numerical
constant C̃ ′d, depending only on d, and all p ≥ 1,∥∥∥ ∑

1≤i1 6=...6=id≤n

hi1,...,id(X
(1)
i1
, . . . , X

(d)
id

)
∥∥∥
p
≤ C̃ ′d

∥∥∥ ∑
1≤i1 6=... 6=id≤n

hi1,...,id(Xi1 , . . . , Xid)
∥∥∥
p
.

Another result used in our proofs is the following reverse triangle inequality for
tetrahedral chaoses, obtained for the first time by Kwapień [9] in the symmetric setting,
which easily gives the general case (see also [1], where an alternate proof in the general
case, based on Theorem A.1 is presented). We remark that this lemma can be also
obtained by methods used by Poly and Zheng in their proof of Theorem 1.1.

Lemma A.2. For j = 0, 1, . . . , d let (aji1,...,ij )1≤i1,...,ij≤n be a k-indexed symmetric array of

real numbers (or more generally elements of some normed space), such that aji1,...,ij = 0

if ik = il for some 1 ≤ k < l ≤ j (for j = 0 we have just a single number a0∅). Let
X1, . . . , Xn be independent mean zero random variables. Then there exists a constant
Cd ∈ (0,∞), depending only on d, such that for all p ≥ 1,

d∑
j=0

∥∥∥ n∑
i1,...,ij=1

aji1,...,ijXi1 · · ·Xij

∥∥∥
p
≤ Cd

∥∥∥ d∑
j=0

n∑
i1,...,ij=1

aji1,...,ijXi1 · · ·Xij

∥∥∥
p
.

B Proof of Proposition 5.5

We will now prove the characterization of the convergence in probability to one,
given in Proposition 5.5.

Proof. Assume first that conditions (i), (ii) are satisfied. By (ii) we get P(maxi≤kn |Xn,i| >
τ)→ 0 and as a consequence

∑kn
k=0Xk,n1{|Xn,k|>τ} converges in probability to zero. On

the other hand, by (i), (ii) and Chebyshev’s inequality,
∑kn
k=0Xn,k1{|Xn,k|≤τ} converges in

probability to one, which ends the proof of the first implication (note that we did not use
the asymptotic smallness condition (5.4)).

Assume now that
∑kn
k=0Xn,k converges in probability to one. Denote Xn = (Xn,k)knk=0

and let X′ = (X ′n,k)knk=0 be an independent copy of X. We have
∑kn
k=0(Xn,k −X ′n,k)→ 0

in probability. Since Xn,k − X ′n,k is symmetric we also have Sn :=
∑kn
k=0 εk|Xn,k −

X ′n,k| → 0 in probability, where εk, k ∈ N are i.i.d. Rademacher variables independent of
(Xn,k), (X ′nk). Consider the event

An = {max
k≤kn

|Xn,k| > τ} =

kn⋃
k=0

An,k,

where An,k = {∀0≤i<k|Xi,n| ≤ τ, |Xn,k| > τ}. Note that by independence and (5.4)
for large n, on An,k, P(|Xn,k − X ′n,k| ≥ τ/2|X) ≥ 1/2. Moreover, by symmetry of the
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Rademacher variables P(|Sn| ≥ |Xn,k −X ′n,k||X,X′) ≥ 1/2. Therefore we get

P(|Sn| ≥ τ/2) ≥
kn∑
k=0

P({|Sn| ≥ τ/2} ∩An,k) ≥ 1

4

kn∑
k=0

P(An,k) = P(An)/4.

As a consequence P(An)→ 0 as n→∞. A standard estimate

P(An) ≥ 1

2
min

( kn∑
k=0

P(|Xn,k| > τ), 1
)

shows that

kn∑
k=0

P(|Xn,k| > τ)→ 0 (B.1)

as n→∞.
Define now Zn,k = (Xn,k1{|Xn,k|≤τ} −X ′n,k1{|X′n,k|≤τ}) and S̃n =

∑kn
k=0 Zn,k. We have

S̃n → 0 in probability. Moreover, EZn,k = 0 and so by independence,

ES̃4
n =

kn∑
k=0

EZ4
n,k + 3E

∑
1≤i6=j≤kn

EZ2
n,iEZ

2
n,j ≤ 4τ2ES̃2

n + 3(ES̃2
n)2.

By the Paley-Zygmund inequality (see, e.g., [3, Corollary 3.3.2]),

P
(
|S̃n| ≥

1

2
(ES̃2

n)1/2
)
≥ 9

16

(ES̃2
n)2

ES̃4
n

≥ 9

16

(ES̃2
n)2

4τ2ES̃2
n + 3(ES̃2

n)2
.

This shows that ES̃2
n → 0 as n→∞ (since otherwise the right hand side above would be

separated from zero along a subsequence). But ES̃2
n = 2

∑kn
k=0 Var(Xn,k1{|Xn,k|≤τ}) which

together with (B.1) proves (ii). The convergence asserted in (i) is now an immediate
consequence of (ii) and the convergence

∑kn
k=0Xn,k1{|Xn,k|≤τ} → 1 in probability.

C Density of simple functions vanishing on the diagonal

We will now prove a lemma concerning approximation properties in the space of
square integrable symmetric functions on a d-fold product of a measurable space,
endowed with a σ-finite measure, which is used in the proof of Theorem 3.2. Variations
of this lemma appear in the literature, e.g., as a tool for defining multiple Wiener-Itô
integrals in the Gaussian case. A proof of one of the versions can be found, e.g., in [18]
(pages 8–9), see also [7, Proposition E.16]. Since we have not been able to find in the
literature a formulation which would correspond exactly to our needs, we state one here
together with a full proof.

Let us recall that a measure λ on a measurable space (X ,F) is called non-atomic if
for every A ∈ F with λ(A) > 0, there exists B ∈ F with B ⊂ A and 0 < λ(B) < λ(A). The
measure λ is called σ-finite if X can be represented as a countable union of sets of finite
λ measure.

Lemma C.1. Let λ be a σ-finite, non-atomic measure on a measurable space (X ,F) and
denote by L2,s(X d,F⊗d, λ⊗d) the space of square integrable functions on X d, symmetric
in their arguments (treated as a subspace of L2(X d,F⊗d, λ⊗d)). Let E be the space of all
functions of the form

g =

N∑
i1,...,id=1

ai1,...,id1Ai1×···×Aid , (C.1)

where
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(i) N ∈ N,

(ii) A1, . . . , AN ∈ F are pairwise disjoint and of finite λ measure,

(iii) the coefficients ai1,...,id are symmetric under permutations of indices and such that
ai1,...,id = 0 whenever there exist k 6= l such that ik = il.

Then E is dense in L2,s(X d,F⊗d, λ⊗d) with respect to the L2 norm.

Proof. Step 1. Since we will be working with fixed d, to simplify the notation, let us
abbreviate L2(X d,F⊗d, λ⊗d) to L2 and L2,s(X d,F⊗d, λ⊗d) to L2,s. Let Kn ⊂ X be an
increasing sequence of measurable sets with λ(Kn) <∞, such that

⋃∞
n=1Kn = X . Since

f1Kd
n
→ f in L2,s as n → ∞, without loss of generality we may and will assume that

λ(X ) <∞.
Step 2. Consider first a function of the form f = 1C where C ∈ F⊗d (not necessarily

symmetric). We will show that it can be arbitrarily well approximated in L2 by functions
of the form

g =

N∑
i1,...,id=1

bi1,...,id1A1,i1×···×Ad,id ,

where N ∈ N, bi1,...,id ∈ R, Aj,i ∈ F for 1 ≤ i ≤ N , 1 ≤ j ≤ d. Indeed, the class C of
all sets C with this property is a λ-system in Dynkin’s sense, i.e., it contains X and as
one can easily check it is closed under complements and countable unions of pairwise
disjoint sets. Since it trivially contains all product sets and the class of product sets is
closed under finite intersections (i.e., it is a π-system), it follows from the application of
the π-λ-theorem (see [8, Theorem 1.1]) that C = F⊗d.

Step 3. Now, any f ∈ L2 can be arbitrarily well approximated by functions of the form∑n
i=1 ai1Ci , where Ci ∈ F⊗d, ai ∈ R, and thus (by Step 2) also by functions of the form

g =

N∑
i1,...,id=1

bi1,...,id1A1,i1×···×Ad,id , (C.2)

where N ∈ N and Aj,i ∈ F for 1 ≤ j ≤ d, 1 ≤ i ≤ N and bi1,...,id ∈ R. Without loss of

generality we can assume that for all 1 ≤ j ≤ d,
⋃N
i=1Aj,i = X . Moreover by considering

all possible intersections of sets from the family {Aj,i : 1 ≤ j ≤ d, 1 ≤ i ≤ N} and their
complements we can represent any function g as in (C.2) as

g =

n∑
i1,...,id=1

ci1,...,id1Ai1×···×Aid (C.3)

where n ∈ N, ci1,...,id ∈ R, the sets A1, . . . , An ∈ F are pairwise disjoint and their union
is X .

Step 4. Recall now the well-known Darboux-type property of non-atomic measures:
for every A ∈ F and every α ∈ [0, λ(A)], there exists B ∈ F , B ⊂ A, such that λ(B) = α

(see, e.g., [2, Exercise 2.17]). It follows that for every g of the form (C.3), for every
positive integer m, there exist nm ∈ N, coefficients c(m)

i1,...,id
∈ R, i1, . . . , id ≤ nm, and

pairwise disjoint sets Am,i ∈ F , 1 ≤ i ≤ nm such that
⋃nm
i=1Am,i = X ,

max
1≤i≤nm

λ(Am,i) <
1

m
, (C.4)

g =

nm∑
i1,...,id=1

c
(m)
i1,...,id

1Am,i1×...×Am,id . (C.5)

and
max

i1,...,id≤nm
|c(m)
i1,...,id

| ≤M := max
i1,...,id

|ci1,...,id |.
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Let now

gm =

nm∑
i1,...,id=1

c̃
(m)
i1,...,id

1Am,i1×...×Am,id ,

where c̃
(m)
i1,...,id

= c
(m)
i1,...,id

if the indices i1, . . . , id are pairwise distinct and c̃
(m)
i1,...,id

= 0

otherwise. Let Im = {(i1, . . . , id) ∈ [nm]d : ∃1≤k<l≤d ik = il} and observe that

‖g − gm‖22 =
∑

(i1,...,id)∈Im

|c(m)
i1,...,id

|2λ(Ai1) · · ·λ(Aid)

≤M2

(
d

2

) nm∑
i=1

λ(Ai)
2
( nm∑
i=1

λ(Ai)
)d−2

≤M2

(
d

2

)
1

m
λ(X )d−1 → 0,

as m→∞.
Together with previous steps, this shows that every f ∈ L2 can be arbitrarily well

approximated by functions g of the form

g =

N∑
i1,...,id=1

ei1,...,id1Ai1×...×Aid (C.6)

where N ∈ N, A1, . . . , AN ∈ F are pairwise disjoint,
⋃
i≤N Ai = X and the coefficients

ei1,...,id ∈ R satisfy ei1,...,id = 0 whenever ik = il for some k 6= l.
Step 5. Assume now that f ∈ L2,s and for ε > 0 let g be a function of the form (C.6)

such that ‖f − g‖2 < ε.
Define g̃ as

g̃ =

N∑
i1,...,id=1

ai1,...,id1Ai1×···×Aid ,

with ai1,...,id = 1
d!

∑
σ∈Sd eiσ(1),...,iσ(d) , where Sd is the set of all permutations of [d]. Clearly,

g̃ ∈ E . Note that for every (x1, . . . , xd) ∈ X d and σ ∈ Sd,

g(xσ(1), . . . , xσ(d)) =

N∑
i1,...,id=1

eiσ(1),...,iσ(d)1Ai1×...×Aid (x1, . . . , xd).

Moreover, by symmetry of f , we have λ⊗d-almost everywhere,

f(x1, . . . , xd) =
1

d!

∑
σ∈Sd

f(xσ(1), . . . , xσ(d)).

Thus, by the triangle inequality and the fact that the measure λ⊗d is invariant under
permutation of coordinates, we obtain

‖f − g̃‖2 ≤
1

d!

∑
σ∈Sd

(∫
Xd

(f(xσ(1), . . . , xσ(d))− g(xσ(1), . . . , xσ(d)))
2λ(dx1) · · ·λ(dxd)

)1/2
= ‖f − g‖2 ≤ ε,

which ends the proof.
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