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Abstract

It is shown that a certain functional of a branching process has representations in
terms of both a maximisation problem and a minimisation problem. A consequence of
these representations is that upper and lower bounds on the functional can be found
easily, yielding a non-asymptotic Trotter product formula. As an application, the speed
of the right-most particle of a branching Lévy process is calculated.
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1 Introduction

Consider a branching process {Xi
t : i ∈ It, t ≥ 0} constructed as follows. Initially,

there is one particle sitting at a point x0 in a Polish space X . The position of the particle
then evolves according to the law of a given right-continuous strong Markov process X
started from X0 = x0. At time T > 0, the initial particle is killed and replaced with N

particles, where both T and N are random. Each of these new particles then move and
branch as independent copies of the initial particle, except that each new particle now
starts from the final position XT of the initial particle. We assume that the conditional
law of the first branching time T given the Markov process X is

P(T > t|X) = e−
∫ t
0
λ(Xs)ds for all t ≥ 0,

for a given non-negative measurable function λ. We also assume that the conditional
distribution of the number of offspring N given X and T only depends on XT , the location
of the initial particle at the time of branching. Letting It be the collection of particles
alive at time t, a construction of such a branching process {Xi

t : i ∈ It, t ≥ 0} can be
found in the paper of Ikeda–Nagasawa–Watanabe [11]. In what follows, we will let Xt
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Optimisation for branching processes

denote the position at time t of the initial particle if it were allowed to continue living
after the branching event.

We will assume that the branching rate λ(x) and the mean number of new offspring
E(N |XT = x) per branching event are bounded functions of x ∈ X . This is a sufficient
condition that the branching process does not explode in finite time, in the sense that
the number of particles |It| is almost surely finite for all t ≥ 0. See, for instance, the book
of Athreya & Ney [1, Theorem III.2.1]

Our main result is the following:

Theorem 1.1. Let F be the filtrations generated by X. Let Z be the set of bounded
adapted processes, let Z◦ be the set of bounded anticipative processes, and letM the
set of non-negative martingales.

Given a measurable function f : X → [0, 1] and t ≥ 0, let

u = E

[∏
i∈It

f(Xi
t)

]

M = max
Z∈Z

E

[
e
∫ t
0
Zsdsf(Xt)−

∫ t

0

e
∫ s
0
Zrdrh(Xs, Zs + λ(Xs))ds

]
m = min

ζ∈M
E

[
ess supz∈Z◦

{
e
∫ t
0
zsdsf(Xt)−

∫ t

0

e
∫ s
0
zrdr

(
zs+[h(Xs, zs+λ(Xs))−zs]

ζt
ζs

)
ds

}]
where the function h is defined by

h(x, z) = max
0≤η≤1

{ηz − λ(x)E(ηN |XT = x)} for all (x, z) ∈ X ×R.

where we set ζt/ζs = 1 on the event {ζs = 0}. Then

u = M = m.

Remark 1.2. We are using the convention that all real processes have measurable
sample paths, so that the pathwise integrals appearing in the statement of Theorem 1.1
are well-defined.

Remark 1.3. The proof will show that it is possible to replace the function h appearing
in the statement of Theorem 1.1 with a function h̃ so long as h̃(x, z) ≥ h(x, z) for all (x, z)

and h̃(x, z) = h(x, z) when λ(x)P(N = 1|XT = x) ≤ z ≤ λ(x)E(N |XT = x). For instance,
we may take

h̃(x, z) = max
η≥0
{ηz − λ(x)E(ηN |XT = x)}

The full proof of this result appears in Section 2. To put the above optimisation-based
representations into context, we jump ahead a bit. The rough idea behind the equality
u = M appearing in Theorem 1.1 is that the value function of the stochastic optimal
control problem defining M should satisfy the Bellman equation of the problem. However,
we have chosen the data of the control problem in such a way that the associated Bellman
equation is, essentially, the S-equation (in the terminology of Ikeda–Nagasawa–Watanabe
[12, equation (4)]) of the branching process. Although we have not found this done
explicitly in other papers, we acknowledge that this may not be surprising in this respect.

In contrast, the dual minimisation problem defining m is not in the form of a standard
stochastic control problem, and so the usual dynamic programming arguments do not
apply. In particular, there is no conventional Bellman equation to this minimisation
problem. Our formulation of the dual problem is inspired by the pathwise stochastic
control approach of Rogers [14]. The general formulation is a bit cumbersome, involving
both a maximisation over anticipative processes and a minimisation over martingales.
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Optimisation for branching processes

However, in the special case of dyadic branching, when the number of offspring is the
constant N = 2, the pathwise maximisation problem can be solved explicitly, yielding the
following corollary:

Corollary 1.4. With the notation of Theorem 1.1, suppose N = 2 almost surely. Then

u = 1−max
ζ∈M

E

[
(1− f(Xt))ζte

∫ t
0
λ(Xs)ds

ζt + (1− f(Xt))
∫ t

0
ζsλ(Xs)e

∫ t
s
λ(Xr)drds

]

A proof of this fact will be given in section 2. We find it somewhat surprising (maybe
even mysterious) that the maximisation problem appearing in Corollary 1.4 is related to
a dyadic branching process.

A consequence of the connection between branching processes and the various
optimisation problems is that lower and upper bounds of certain functionals of the
branching process can be derived immediately, simply by evaluating the objective
functions of the optimisation problems at feasible controls. In particular, this technique
can be used in principle to derive asymptotic estimates on the behaviour of the branching
process.

As an illustrative application, we consider the branching process where X is a real-
valued Lévy process, and where the rate of branching λ is a positive constant and the
distribution of the number of offspring N is independent of the position of the particles.
Let K be the cumulant generating function of the underlying Lévy process, defined by

Ex[eθXt ] = eθx+tK(θ) for all t ≥ 0.

Suppose that K is finite in a neighbourhood of θ = 0. Recall that by the Lévy–Khintchine
formula we have

K(θ) = bθ +
1

2
σ2θ2 +

∫
R\{0}

[eθy − 1− θy1{|y|≤1}]ν(dy)

for some constants b, σ and measure ν, where we are supposing that
∫

(eθy∧y2)ν(dy) <∞
for all θ in some neighbourhood of θ = 0.

Theorem 1.5. Let µ = E(N)− 1 be the mean net number of new particles created at a
branching event and suppose µ > 0. Conditional on the event {It 6= ∅ for all t ≥ 0} that
the branching Lévy process never becomes extinct, we have

1

t
max
i∈It

Xi
t → inf

θ>0

K(θ) + λµ

θ
in probability

Remark 1.6. The condition µ > 0 is necessary and sufficient for supercriticality of the
branching process, that is P(It 6= ∅ for all t ≥ 0) > 0. See, for instance, the book of
Athreya & Ney [1, Theorem III.4.1].

Remark 1.7. Consider the case where the Lévy process X is a standard Brownian
motion, so that K(θ) = 1

2θ
2. Then Theorem 1.5 says that, conditional on the branching

process not becoming extinct, the speed of the right-most particle is

inf
θ>0

(
θ

2
+
λµ

θ

)
=
√

2λµ.

Remark 1.8. Versions of Theorem 1.5 are known, see for instance Biggins [3, Corol-
lary 2], but our precise formulation seems new and requires fewer assumptions. More
importantly, our proof will be rather different, using estimates derived from Theorem 1.1,
rather than renewal theory.
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Optimisation for branching processes

The remainder of the paper is structured as follows. Section 2 contains the proof
of Theorem 1.1. The key ingredient is a more general representation result given by
Theorem 2.1. Section 3 gives the main take-away implications of Theorem 2.1: easy
to apply bounds on the solution to certain reaction-diffusion-type equations. Section 4
contains the proof of Theorem 1.5 which finds the speed of the right-most particle of a
branching Lévy process.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We first prove a more general result. As
in the introduction, let X be a right-continuous strong Markov process valued in a
Polish space X . As in Theorem 1.1, we let Z, Z◦ andM be the set of bounded adapted
processes, bounded anticipative processes and non-negative martingales, respectively.

Theorem 2.1. Let φ : X × R → R be measurable and such that φ(x, ·) is concave and
differentiable with a derivative bounded uniformly in x ∈ X . Suppose the bounded
function v : R+ ×X → R satisfies the integral equation

v(t, x) = Ex

[
v(0, Xt) +

∫ t

0

φ(Xs, v(t− s,Xs))ds

]
for all (t, x). Then

v(t, x) = min
Z∈Z

Ex

[
e
∫ t
0
Zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
Zrdrψ(Xs, Zs)ds

]
where

ψ(x, z) = inf
η∈R
{ηz − φ(x, η)} for all (x, z) ∈ X ×R.

For fixed (t, x), a minimiser is given by the adapted control

Z∗s =
∂φ

∂v
(Xs, v(t− s,Xs)).

If v(t, x) ≥ 0 for all (t, x) and φ(x, 0) = 0 for all x, then

v(t, x) = max
ζ∈M

Ex

[
ess infz∈Z◦

{
e
∫ t
0
zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
zrdrψ(Xs, Zs)ds

}]
For fixed (t, x), a maximiser is given by the non-negative martingale

ζ∗s = v(t− s,Xs)e
∫ s
0
θ(Xr,v(t−r,Xr))dr

where θ(x, η) = φ(x, η)/η for all x ∈ X , η > 0. For the martingale ζ∗, the essential
infimum is attained for the control z∗ = Z∗.

Remark 2.2. Formally, the differential form of the integral equation appearing Theo-
rem 2.1 is

∂v

∂t
= Lv + φ(x, v)

where L is the infinitesimal generator of the Markov process X. The hypothesis can be
reworded to say that v is a mild solution of the above differential equation.

We also note in passing that when X is a diffusion process in finite-dimensional
Euclidean space, so that L is a second order differential operator, the semi-linear partial
differential equation is of the reaction-diffusion type.

Under our assumption that φ(x, ·) is uniformly Lipschitz, one can show by a standard
Picard iteration argument that given a bounded initial condition v(0, ·) the integral
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equation has a unique solution v bounded on any bounded time intervals [0, t]. See for
instance the paper of Cabré & Roquejoffre [5, Section 2.3]. In Theorem 2.1, we take this
for granted and simply assume that the solution v exists.

Proof. Fix (t, x) and let

Ms = Vs +

∫ s

0

Φrdr

where Vs = v(t− s,Xs) and Φs = φ(Xs, Vs). Note that (Ms)0≤s≤t is a martingale.
The key observation is that

e
∫ t
0
Zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
ZrdrΨsds =Mt +

∫ t

0

(Mt −Ms)Zse
∫ s
0
Zrdrds

+

∫ t

0

(VsZs − Φs −Ψs)e
∫ s
0
Zrdrds

where Ψs = ψ(Xs, Zs). Note that the two path-wise Lebesgue integrals on the right-hand
side are well-defined, though the second one might take the value −∞. Indeed, the
integrand in the first integral is Lebesgue integrable almost surely, since by the assumed
boundedness of Z there is a constant c > 0 such that

Ex

(∫ t

0

|(Mt −Ms)Zse
∫ s
0
Zrdr|ds

)
≤ c Ex(|Mt|) <∞

and

Ex

(∫ t

0

(Mt −Ms)Zse
∫ s
0
Zrdrds

)
= 0

by Fubini’s theorem and the tower property of conditional expectation. The integrand in
the second integral is non-positive by the Fenchel–Young inequality:

φ(x, v) + ψ(x, z) ≤ vz.

with equality if

z =
∂φ

∂v
(x, v).

Hence

E

(
e
∫ t
0
Zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
ZrdrΨs

)
≥ E(Mt) = v(t, x)

with equality if Z = Z∗. Note Z∗ is bounded, and hence feasible, by the assumption of
uniform boundedness of ∂φ/∂v. This proves that v(t, x) is the value of the minimisation
problem.

Now consider the max-min problem. Fix a non-negative martingale ζ and note that
by Fubini’s theorem and iterating expectations we have

v(t, x) = E

(
e
∫ t
0
Z∗
s dsv(0, Xt)−

∫ t

0

e
∫ s
0
Z∗
r drψ(Xs, Z

∗
s )ds

)
= E

(
e
∫ t
0
Z∗
s dsv(0, Xt)−

∫ t

0

e
∫ s
0
Z∗
r drψ(Xs, Z

∗
s )
ζt
ζs
ds

)
≥ E

(
ess infz

{
e
∫ t
0
zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
zrdrψ(Xs, zs)

ζt
ζs
ds

})
.

Since ζ is arbitrary, computing the supremum of the right-hand side yields the lower
bound.
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It remains to show that there is no duality gap. We now assume φ(x, 0) = 0 for
all x. Under the uniform Lipschitz assumption, the function θ is bounded. Let Θs =

θ(Xs, v(t− s,Xs)) and
ζ∗s = Vse

∫ s
0

Θrdr

Note that by Fubini’s theorem

ζ∗s = Ms +

∫ s

0

(Ms −Mr)Θre
∫ r
0

Θqdqdr

so ζ∗ is a non-negative bounded martingale. Similar to the key observation above, we
have for any anticipative process z that

e
∫ t
0
zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
zrdrΨs

ζ∗t
ζ∗s
ds =ζ∗t +

∫ t

0

(Vszs −Ψs − Φs)e
∫ s
0
zrdr

ζ∗t
ζ∗s
ds

≥ ζ∗t

where here Ψs = ψ(Xs, zs). Note there is equality when zs = Z∗s for all s. This shows

E

[
min
z

{
e
∫ t
0
zsdsv(0, Xt)−

∫ t

0

e
∫ s
0
zrdrψ(Xs, zs)

ζ∗t
ζ∗s
ds

}]
= E[ζ∗t ]

= v(t, x)

To prove Theorem 1.1 we need one more ingredient, the so-called S-equation, due to
Skorokhod [15, equation (4)]. We provide a proof for completeness.

Theorem 2.3. Let {Xi
t : i ∈ It, t ≥ 0} be the branching process described in the

introduction. Fix a measurable f : X → [0, 1] and for all (t, x) ∈ R+ ×X , let

u(t, x) = Ex

[∏
i∈It

f(Xi
t)

]
.

Then

u(t, x) = Ex

[
f(Xt) +

∫ t

0

g(Xs, u(t− s,Xs))ds

]
where

g(x, η) = λ(x)
(
E[ηN |XT = x]− η

)
for all (x, η) ∈ X × [0, 1].

Proof. Letting
G(x, η) = E[ηN |XT = x] for all (x, η) ∈ X × [0, 1]

be the conditional probability generating function of the offspring distribution, we have

Ex

[
1{t≥T}

∏
i∈It

f(Xi
t)

]
= Ex

[
1{t≥T}u(t− T,XT )N

]
= Ex

[
1{t≥T}G(XT , u(t− T,XT ))

]
= Ex

[∫ t

0

e−
∫ s
0
λ(Xr)drλ(Xs)G(Xs, u(t− s,Xs))ds

]
.

Hence

u(t, x) = Ex

[
1{t<T}f(Xt) + 1{t≥T}

∏
i∈It

f(Xi
t)

]

= Ex

[
e−

∫ t
0
λ(Xs)dsf(Xt) +

∫ t

0

e−
∫ s
0
λ(Xr)drλ(Xs)G(Xs, u(t− s,Xs))ds

]
.
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Fixing (t, x), the process

Ms = e−
∫ s
0
λrdrUs +

∫ s

0

e−
∫ r
0
λvdvλrG(Xs, Us)dr

is a martingale, where λs = λ(Xs) and Us = u(t− s,Xs). Then by Fubini’s theorem we
have

f(Xt) +

∫ t

0

g(Xs, Us))ds = Mt +

∫ t

0

λse
∫ s
0
λrdr(Mt −Ms)ds.

By assumption, the function λ is bounded and hence the pathwise integral on the
right-hand side is integrable, with mean zero. Since Ex(Mt) = M0 = u(t, x) we are
done.

Remark 2.4. McKean [13] noted that that the solution of the FKPP equation

∂u

∂t
=

1

2

∂2u

∂x2
+ u2 − u,

named after Fisher [7] and Kolmogorov–Petrovskii–Piskunov [10], can be represented in
terms of a branching Brownian motion with unit λ = 1 branching rate and binary N = 2

offspring distribution. This observation is an important special case of Theorem 2.3. In
this context, it is often called the McKean representation of the solution of the FKPP
equation; see the lecture notes of Berestycki [2, Section 2.3] for instance.

Proof of Theorem 1.1. Let v(t, x) = 1 − u(t, x) where u(t, x) is defined in Theorem 2.3.
Hence, the function v satisfies the hypothesis of Theorem 2.1 with

φ(x, η) = −g(x, 1− η),

where the function g is defined in Theorem 2.3. Note that φ(x, 0) = −g(x, 1) = 0. The
optimisation representations for v yield the desired optimisation representations for u
after some manipulation.

Finally, we consider the case where the number of offspring is constant N = 2.

Proof of Corollary 1.4. We appeal to Remark 1.3 now, and replace the function h appear-
ing in Theorem 1.1 with the function

h(x, z) = max
η∈R
{ηz − λ(x)η2} =

z2

4λ(x)
.

This yields

m = 1−max
ζ
E

[
ess supz

{
e
∫ t
0
zsds(1− ft) + ζt

∫ t

0

e
∫ s
0
zrdr

(zs − λs)2

4λsζs
ds

}]
where we use the notation ft = f(Xt) and λs = λ(Xs).

Letting ws = 1
2 (zs − λs) we see∫ t

0

e
∫ s
0
λrdr

λsζs

(
wse

∫ s
0
wrdr

)2

ds ≥ (e
∫ t
0
wsds − 1)2∫ t

0
e−

∫ s
0
λrdrλsζsds

by the Cauchy–Schwarz inequality, with equality if wse
∫ s
0
wrdr = −e−

∫ s
0
λrdrλsζs. Also

letting Wt = e
∫ t
0
wsds we have by completing the square that
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(1− ft)e
∫ t
0
λsdsW 2

t +
λt(Wt − 1)2∫ t

0
e−

∫ s
0
λrdrλsζsds

≥ ζt(1− ft)e
∫ t
0
λsds

ζt + (1− ft)
∫ t

0
e
∫ t
s
λrdrλsζsds

with equality if Wt = ζt

ζt+(1−ft)
∫ t
0
e
∫ t
s λsλsζsds

.

Finally, note that both equality conditions are satisfied for the martingale ζ∗s =

vse
∫ s
0
λr(1−vr)dr and the control w∗s = −λsvs, where vs = v(t− s,Xs) and

v(t, x) = 1− Ex

[∏
i∈It

f(Xi
t)

]
.

3 Bounding solutions

In this section, we explore a simple consequence of Theorem 2.1. We now assume
that the non-linearity φ appearing in the integral equation is such that there is a concave,
differentiable and Lipschitz function φ̂ : R → R such that φ(x, η) = φ̂(η) for all (x, η) ∈
X ×R. In order to avoid overburdening the notation, we will drop the ˆ and simply write
this function as φ.

We also introduce the following notation. We let Vt be the operator that sends the
bounded measurable function v0 : X → R to v(t, ·), where v : R+ ×X → R is the unique
bounded solution to the integral equation

v(t, x) = Ex

[
v0(Xt) +

∫ t

0

φ(v(t− s,Xs))ds

]
for all (t, x) ∈ R+ ×X ,

so that v(t, x) = Vt(v0)(x). We let Pt be the transition operator of the Markov process,
such that

Pt(f)(x) = Ex[f(Xt)] for all (t, x) ∈ R+ ×X ,

for all bounded measurable f .
Finally, we let

Rt(r0) = Vt(r01) for all (t, r0) ∈ R+ ×R

where 1(x) = 1 for all x ∈ X . That is to say, if r : R+ → R solves the ordinary differential
equation

ṙ = φ(r), r(0) = r0

then Rt(r0) = r(t). Now let Rt be the operator defined by

Rt(f)(x) = Rt(f(x)).

The main result of this section is the following non-asymptotic form of the Trotter
product formula:

Corollary 3.1. Fix all bounded measurable f and integers n ≥ 1 we have

(Pt/n ◦Rt/n)n(f)(x) ≤ Vt(f)(x) ≤ (Rt/n ◦Pt/n)n(f)(x)

for all (t, x) ∈ R+ ×X .

Remark 3.2. Our Corollary 3.1 is very much in the spirit of a result of Cliff, Goldstein &
Wacker [6, Theorem 18], though our method of proof is rather different to theirs.

Remark 3.3. Recall that a solution v to the integral equation can be interpreted as the
mild solution to the reaction diffusion-type equation

∂v

∂t
= Lv + φ(v)
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where L is the generator of the Markov process X. The ‘diffusion’ term corresponds to
the Markov (linear) semigroup (Pt)t≥0 generated by L, while the ‘reaction’ term corre-
sponds to the non-linear semigroup (Rt)t≥0 generated by the concave (state-independent)
function φ. Finally, (Vt)t≥0 is the non-linear ‘reaction-diffusion’ semigroup generated by
the sum L+ φ. An interesting reformulation of Corollary 3.1 is

(etL/netφ/n)n ≤ et(L+φ) ≤ (etφ/netL/n)n

Proof. The key ingredient of the proof is that by Theorem 2.1 we have

Rt(r0) = min
z

{
e
∫ t
0
zsdsr0 −

∫ t

0

e
∫ s
0
zrdrψ(zs)ds

}
where

ψ(z) = inf
η
{zη − φ(η)},

and the minimum is over deterministic bounded measurable functions z : [0, t]→ R.
We first consider the case n = 1. For the upper bound, note that by Theorem 2.1 we

have

Vt(f)(x) ≤ inf
z
Ex

[
e
∫ t
0
zsdsf(Xt)−

∫ t

0

e
∫ s
0
zrdrψ(zs)ds

]
= min

z

{
e
∫ t
0
zsdsEx[f(Xt)]−

∫ t

0

e
∫ s
0
zrdrψ(zs)ds

}
= Rt ◦Pt(f)(x).

Similarly, letting (Z∗s )0≤s≤t be the maximiser of the minimisation in Theorem 2.1, we
have

Vt(f)(x) = Ex

[
e
∫ t
0
Z∗
s dsf(Xt)−

∫ t

0

e
∫ s
0
Z∗
r drψ(Z∗s )ds

]
≥ Ex

[
min
z

{
e
∫ t
0
zsdsf(Xt)−

∫ t

0

e
∫ s
0
zrdrψ(zs)ds

}]
= Ex[Rt(f(Xt))]

= Pt ◦Rt(f)(x).

Now, note that each of the operators Pt, Rt and Vt are increasing. In particular, we
have

Vs+t(f)(x) = Vs ◦Vt(f)(x)

≥ Vs ◦Pt ◦Rt(f)(x)

≥ Ps ◦Rs ◦Pt ◦Rt(f)(x).

The same argument works for the upper bound. Induction completes the proof.

Remark 3.4. Alternatively, in the case where φ(0) = 0, we could insert the martingale
ζs = 1 into the objective of the max-min problem in Theorem 2.1 to obtain the lower
bound.

Remark 3.5. From the proof of Theorem 1.1, we see that an interesting case is when
φ(η) = λ(1− η −G(1− η)) where λ > 0 is constant and G is the probability generating
function of a non-negative integer-valued random variable N . This corresponds to the
case of a branching process with a constant branching rate λ and the distribution of
the number of particles N produced at a branching event is independent of the event’s
location. In this case, we have the formula

Rt(r0) = 1− E[(1− r0)|It|]

where It is the set of particles alive at times t ≥ 0.
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4 An application to a branching Lévy process

In this section, we prove Theorem 1.5. Recall that here the branching process
{Xi

t : i ∈ It, t ≥ 0} is constructed from a real-valued Lévy process X starting from
X0 = x0. Recall also that the branching rate is a positive constant λ and the distribution
of the number of particles N produced at a branching event is independent of the
position of the particles. Recall also that the cumulant generating function K of X is
assumed finite in a neighbourhood of the origin. In what follows, we will let X̂ be the
Lévy process with the transition distribution of −X. Note that the function K plays the
role of the Laplace exponent of X̂:

Ex[e−θX̂t ] = eθx+tK(θ)

for all t ≥ 0, where here the subscript x denotes conditioning on the event {X̂0 = x}.
The key step of our proof of Theorem 1.5 is the following proposition:

Proposition 4.1. Let v : R+ ×R→ [0, 1] solve the integral equation

v(t, x) = Px(X̂t < 0) + Ex

∫ t

0

φ(v(t− s, X̂s))ds

where φ : [0, 1]→ R is concave and differentiable with φ(0) = 0 = φ(β) where 0 < β ≤ 1,
and φ′(0) = γ > 0. Set

q = inf
θ>0

K(θ) + γ

θ

Then we have

v(t, rt)→
{
β if r < q

0 if r > q

Before we prove Proposition 4.1, we show how it can be used to find the asymptotic
speed of the right-most particle:

Proof of Theorem 1.5. Let u(t, ·) be the distribution function of Mt = supi∈It X
i
t , with

Mt = −∞ when It is empty. Given the result we are trying to prove, we may assume that
the position of the initial particle is x0 = 0. Note that by the translational invariance of
the transition distribution of a Lévy process

u(t, x) = P0(Mt ≤ x)

= Px(min
i∈It

X̂i
t ≥ 0)

= Ex

[∏
i∈It

1{X̂it≥0}

]

According to Theorem 2.3 applied to the branching process {X̂i
t : i ∈ It, t ≥ 0} we have

u(t, x) = Px(X̂t ≥ 0) + Ex

∫ t

0

g(u(t− s, X̂s))ds

where
g(η) = λ(E[ηN ]− η) for 0 ≤ η ≤ 1.

Note that g is convex with g(1) = 0 and g(0) = P(N = 0) ≥ 0. By the assumption that
E[N ] > 1, we have g′(1) > 0 and hence there exists a smaller root 0 ≤ α < 1 such that
g(α) = 0.

Note that v = 1− u satisfies the conditions of Proposition 4.1 with β = 1− α. Now
recall that α = P(E) where E = {It = ∅ for some t > 0} is the event that population
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eventually becomes extinct. See the book of Athreya & Ney [1, Theorem III.4.1]. Hence,
we have shown

P (Mt ≤ rt)→
{
P(E) if r < q

1 if r > q

Noting that P
({
Mt ≤ rt

}
∩ E

)
→ P(E) since

P(E) ≥ P
({
Mt ≤ rt

}
∩ E

)
≥ P

({
Mt ≤ rt

}
∩ {It = ∅}

)
= P (It = ∅)
→ P(E)

the conclusion follows since

P
(
Mt ≤ rt

∣∣ Ec) =
1

P(Ec)
[P (Mt ≤ rt)− P ({Mt ≤ rt} ∩ E)]

→
{

0 if r < q

1 if r > q.

This shows that for any ε > 0 we have

P(| 1tMt − q| > ε | Ec)→ 0

as desired.

The rest of this section contains the proof of Proposition 4.1. The case where X̂ is
degenerate, in the sense that X̂t = x+ bt for a constant b is immediate. Therefore, we
will assume without loss that X̂ is non-degenerate, so that K ′′(0) = Var(X̂1) > 0.

Of the two bounds, the upper bound is easier to obtain. Using the n = 1 case of
Theorem 3.1, we have

v(t, x) ≤ Rt(Px(Xt < 0)).

By the concavity of φ we have
φ(v) ≤ γv

and hence by Grönwall’s inequality

Rt(r0) ≤ r0e
γt.

Now by Markov’s inequality we have

Px(X̂t < 0) ≤ e−xθ+tK(θ)

for any θ > 0 and t ≥ 0. Putting this together, we have shown

v(t, rt) ≤ et(K(θ)+γ−rθ).

If r > 1
θ (Λ(θ) + γ) then the right-hand side vanishes as t→∞, as claimed.

For the lower bound, we will introduce some more notation. Let

Ft(y) = P0(X̂t ≤ y)

be the conditional distribution function of the random variable X̂t given X̂0 = 0. Note
that by spacial homogeneity of the Lévy process, we have

Px(X̂t ≤ y) = Ft(y − x).

Let F−1
t be the quantile function, defined as

F−1
t (p) = inf{x : Ft(x) ≥ p},

so that Ft(x) ≥ p⇔ x ≥ F−1
t (p).
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The key estimates are the following:

Lemma 4.2. For all 0 < b < β, n ≥ 1, t > 0 and x ∈ R we have

v(t, x) ≥ bFδ
(
−x− (n− 1)F−1

δ

(
Q−1
δ (b)

b

))
where δ = t/n.

Remark 4.3. It is interesting to note that Lemma 4.2 actually holds with no assumption
on law of the Lévy process. In particular, it holds for processes, such as stable processes,
for which the Laplace exponent K(θ) is infinite for all θ 6= 0.

Proof of Lemma 4.2. We fix δ and use induction on n. We first consider the n = 1 case.
Since the points 0 and β ≤ 1 are fixed points of φ, we have Rδ(0) = 0 and Rδ(1) ≥ β.

In particular, we have

v(δ, x) ≥ Pδ ◦Rδ1(−∞,0](x)

≥ βPx(X̂δ ≤ 0)

= βFδ(−x)

To do the inductive step, we will make use of the following observation: for any
0 < b < β and k ∈ R we have

Rδ[bFδ(k)] ≥ b1{Fδ(k)≥R−1
δ (b)/b}

since Rδ is increasing on [0, β]. Now suppose the claim is true for n = m, we have

v((m+ 1)δ, x) ≥ Pδ ◦Rδ

[
bFδ

(
− · −(m− 1)F−1

δ

(
R−1
δ (b)

b

))]
(x)

≥ b Px
[
Fδ

(
−X̂δ − (m− 1)F−1

δ

(
R−1
δ (b)

b

))
≥
R−1
δ (b)

b

]
= b Fδ

(
−x−mF−1

δ

(
R−1
δ (b)

b

))
.

Lemma 4.4. For all 0 < c < γ = φ′(0) and all 0 < b < β, where β is the larger root of φ,
there exists δ∗ > 0 such that R−1

δ (b) ≤ be−cδ for all δ ≥ δ∗.

Proof. Fix a q∗ ∈ (0, β), for instance q∗ = β/2 and let

H(q) =

∫ q

q∗

ds

φ(s)
.

Note that the differential equation defining R can be solved as

Rδ(r0) = H−1(H(r0) + δ)

for 0 < r0 < β, and hence
R−1
δ (r0) = H−1(H(r0)− δ).

In this notation, we must prove that

H(b)− δ ≤ H(be−cδ)

or equivalently
1

δ

∫ δ

0

bce−cxdx

φ(be−cx)
≤ 1

for δ large enough. To do this, note that the limit of the left-hand side as δ →∞ is c/γ < 1

by l’Hôpital’s rule.
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Lemma 4.5. For all r < q there exists a c < γ and a δ∗ > 0 such that F−1
δ (e−cδ) ≤ −rδ

for all δ ≥ δ∗.

Proof. Note that q > −E0(X̂1) with strict inequality since since K(θ) > −θE0(X̂1) by
Jensen’s inequality. Hence we need only consider r such that

−E0(X̂1) < r < q.

In particular, we may invoke Cramér’s large deviation principle to conclude that,

logFδ(−rδ) = −K̂(r)δ(1 + o(1))

as δ → ∞, where the large deviation rate function K̂ is the Legendre transform of K,
defined by

K̂(η) = sup
θ

[ηθ −K(θ)] .

Hence, it is enough to show that

K̂(r) < γ.

Now, since r > K ′(0) = −E0(X̂1), there exists an ε > 0 such that r > K ′(ε), since K ′

is continuous and increasing in a neighbourhood of θ = 0. By the convexity of K we have
the inequality

rθ −K(θ) ≤ rε−K(ε)

for θ < ε and hence

K̂(r) = sup
θ≥ε

[rθ −K(θ)]

≤ −ε(q − r) + sup
θ≥ε

[qθ −K(θ)] .

The conclusion follows since qθ −K(θ) ≤ γ for all θ > 0 by the definition of q.

Proof of Proposition 4.1. Fix 0 < b < β and r < q. Pick r̄ such that r < r̄ < q. By
Lemma 4.5 there exists a c and δ∗1 such that F−1

δ (e−cδ) ≤ −r̄δ for all δ ≥ δ∗1 . By
Lemma 4.4 there exists δ∗2 such that R−1

δ (b) ≤ be−cδ for all δ ≥ δ∗2 .

Let m = 1 + E0(X̂1). By the weak law of large numbers

Fδ(mδ) = P0(X̂δ/δ ≤ m)→ 1.

So given ε > 0, there exists δ∗3 such that Fδ(mδ) ≥ 1− ε for δ ≥ δ∗3 .

Let n ≥ r̄+m
r̄−r and t ≥ nmaxi{δ∗i }. Finally, let δ = t/n, so δ ≥ maxi{δ∗i } and hence

v(t, rt) = v(nδ, rnδ)

≥ bFδ(−rnδ − (n− 1)F−1
δ

(
R−1
δ (b)/b

)
)

≥ bFδ(−rnδ − (n− 1)F−1
δ (e−cδ))

≥ bFδ(−rnδ + (n− 1)r̄δ)

= bFδ([n(r̄ − r)− r̄]δ)
≥ bFδ(mδ)
≥ b(1− ε).

Since b < β and ε > 0 are arbitrary, the conclusion follows.
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Remark 4.6. It is possible to express the speed q of the travelling wave front in several
ways. The above proof shows that q can be rewritten as

q = sup{r : K̂(r) < γ},

where K̂ is the Legendre transform of Λ. This formulation for the speed of the right-most
particle appears in the paper of Biggins [3] or, more recently, in the paper of Groisman
& Jonckheere [8].

Following an idea in the paper of Hiriart-Urruty & Martínez-Legaz [9], an inverse
to the function K̂ can be calculated as follow. First, define a new function K◦ by the
formula

K◦(θ) =

{
+∞ if θ ≥ 0

−θK(−1/θ) if θ < 0.

Note that the function K◦ is convex, and indeed, it is related to the perspective function
of the Laplace exponent K. Define its Legendre transform in the usual fashion

K̂◦(η) = sup
θ

[ηθ −K◦(θ)] .

Then it can be shown that an inverse function to K̂ is the function −K̂◦. In particular,
the speed q can be rewritten as

q = −K̂◦(γ).

Simplifying the above formula recovers the formula in Proposition 4.1.

Remark 4.7. Consider the case of dyadic branching Brownian motion, where N = 2 and
K(θ) = 1

2θ
2. Letting m(t) be the median, defined by

P(max
i∈It

Xi
t ≤ m(t)) = 1/2

we have

−
√
tΦ−1

(
1

et + 1

)
≥ m(t) ≥ −

√
t√
n

Φ−1

(
1

2b

)
− (n− 1)

√
t√

n
Φ−1

(
1

et/n(1− b) + b

)
(4.1)

for all 1/2 < b < 1, n ≥ 1, where

Φ(z) =

∫ z

−∞

e−s
2/2

√
2π

ds

is the standard normal distribution function. Indeed, the upper bound follows from the
upper bound 1/2 ≤ v(t,m) = Rt[P(Xt ≤ −m)] and the calculation Rt(r0) = r0

r0+e−t(1−r0)

in the case when φ(v) = v(1− v). The lower bound is implied by Lemma 4.2.
Using Φ−1(ε) = −

√
2 log(1/ε)(1 + o(1)) as ε ↓ 0 yields

m(t) =
√

2t+ o(t).

On the other hand, a famous result of Bramson [4] says

m(t) =
√

2t− 3

2
√

2
log t+O(1).

Since Φ−1(ε) = −
√

2 log(1/ε)+O

(
log log(1/ε)√

log(1/ε)

)
the upper bound in equation (4.1) actually

recovers the correct order of magnitude of the second term of the expansion. It would
be interesting to see if, by optimising over the free parameters b and n, it is possible to
recover the log t term in the lower bound as well.
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