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Abstract

Let G = (V,E) be a connected, locally finite, transitive graph, and consider Bernoulli
bond percolation on G. In recent work, we conjectured that if G is nonamenable then
the matrix of critical connection probabilities Tpc(u, v) = Ppc(u↔ v) is bounded as
an operator Tpc : L2(V ) → L2(V ) and proved that this conjecture holds for several
classes of graphs, including all transitive, nonamenable, Gromov hyperbolic graphs.
In notation, the conjecture states that pc < p2→2, where for each q ∈ [1,∞] we define
pq→q to be the supremal value of p for which the operator norm ‖Tp‖q→q is finite. We
also noted in that work that the conjecture implies two older conjectures, namely that
percolation on transitive nonamenable graphs always has a nontrivial nonuniqueness
phase, and that critical percolation on the same class of graphs has mean-field critical
behaviour.

In this paper we further investigate the consequences of the L2 boundedness
conjecture. In particular, we prove that the following hold for all transitive graphs:
i) The two-point function decays exponentially in the distance for all p < p2→2; ii) If
pc < p2→2, then the critical exponent governing the extrinsic diameter of a critical
cluster is 1; iii) Below p2→2, percolation is “ballistic" in the sense that the intrinsic
(a.k.a. chemical) distance between two points is exponentially unlikely to be much
larger than their extrinsic distance; iv) If pc < p2→2, then ‖Tpc‖q→q � (q − 1)−1 and
pq→q − pc � q − 1 as q ↓ 1; v) If pc < p2→2, then various ‘multiple-arm’ events have
probabilities comparable to the upper bound given by the BK inequality. In particular,
the probability that the origin is a trifurcation point is of order (p− pc)

3 as p ↓ pc. All
of these results are new even in the Gromov hyperbolic case.

Finally, we apply these results together with duality arguments to compute the
critical exponents governing the geometry of intrinsic geodesics at the uniqueness
threshold of percolation in the hyperbolic plane.
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The L2 boundedness condition in nonamenable percolation

1 Introduction

Let G = (V,E) be a connected, locally finite graph and let p ∈ [0, 1]. In Bernoulli
bond percolation, we independently declare each edge of G to either be open or closed,
with probability p of being open, and let G[p] be the subgraph of G formed by deleting
every closed edge and retaining every open edge. The connected components of G[p] are
referred to as clusters. We are particularly interested in phase transitions, which occur
when qualitative features of G[p] change abruptly as p is varied through some critical
value. The two most interesting such phase transitions occur at the critical probability,
which is defined to be

pc = pc(G) = inf
{
p ∈ [0, 1] : G[p] has an infinite cluster a.s.

}
,

and the uniqueness threshold, which is defined to be

pu = pu(G) = inf
{
p ∈ [0, 1] : G[p] has a unique infinite cluster a.s.

}
.

Many of the most interesting questions in percolation theory concern the behaviour of
percolation at and near these critical values.

Historically, percolation was studied primarily on Euclidean lattices such as the
hypercubic lattice Zd. In this case, Aizenman, Kesten, and Newman [2] proved that there
is at most one infinite cluster and hence that pc = pu. An alternative proof of the same
fact was later found by Burton and Keane [10]. In their celebrated paper [8], Benjamini
and Schramm proposed a systematic study of percolation on general quasi-transitive
graphs, that is, graphs for which the action of the automorphism group on the vertex
set has at most finitely many orbits. (In other words, graphs for which ‘there are only
finitely many different types of vertices’.) They made the following conjecture.

Conjecture 1.1. Let G be a connected, locally finite, quasi-transitive graph. Then
pc(G) < pu(G) if and only if G is nonamenable.

Here, a graph G = (V,E) is said to be nonamenable if there exists a positive
constant c such that |∂EK| ≥ c

∑
v∈K deg(v) for every finite set of vertices K in G, where

∂EK denotes the set of edges with one endpoint in K and one in V \K. Both proofs
of uniqueness in Zd can be generalized to show that pc(G) = pu(G) for every amenable
quasi-transitive graph, so that only the ‘if’ direction of Theorem 1.1 is open. While
various special cases of Theorem 1.1 have now been verified [41, 25, 23, 45, 9, 33,
15, 36], it remains completely open in general. We refer the reader to [16, 11, 20] for
background on percolation, and to [17] and the introduction of [23] for a survey of
progress on Theorem 1.1 and related problems.

Theorem 1.1 is closely related to understanding critical exponents in percolation on
nonamenable graphs. It is strongly believed that critical percolation on nonamenable
transitive graphs has mean-field behaviour. Roughly speaking, this means that critical
percolation on a nonamenable transitive graph should behave similarly to critical branch-
ing random walk on the same graph. In particular, one expects that various critical
exponents exist and take the same value as on a 3-regular tree, so that for example we
expect that

Ep|Kv| � (pc − p)−1 p ↑ pc, (1.1)

Pp (|Kv| =∞) � p− pc p ↓ pc, and (1.2)

Ppc (|Kv| ≥ n) � n−1/2 n ↑ ∞, (1.3)

where v is a vertex, Kv is the cluster of v, and we write � to denote an equality that
holds up to positive multiplicative constants in the vicinity of the relevant limit point.
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The L2 boundedness condition in nonamenable percolation

A well-known signifier of mean-field behaviour is the triangle condition, which is said to
hold if

∇pc(v) :=
∑
u,w

Pp(v ↔ u)Pp(u↔ w)Pp(w ↔ v) <∞

for every vertex v of G. The triangle condition was introduced by Aizenman and Newman
[3], and has subsequently been shown to imply that various exponents exist and take their
mean-field values [3, 6, 40, 31, 32, 25]. In particular, if G is a connected, locally finite,
quasi-transitive graph that satisfies the triangle condition then the estimates (1.1), (1.2),
and (1.3) all hold for every vertex v of G. (The lower bounds of (1.1), (1.3), and (1.2)
hold on every quasi-transitive graph [1, 3].) See [16, Chapter 10] and [25, Section 7] for
an overview of the relevant literature. The following conjecture is widely believed.

Conjecture 1.2. Let G be a connected, locally finite, nonamenable, quasi-transitive
graph. Then ∇pc(v) <∞ for every v ∈ V .

As with Theorem 1.1, this conjecture is known to hold in a variety of special cases
[41, 25, 23, 45, 9, 33, 29] but remains completely open in general. (Some much weaker
unconditional results on the critical behaviour of percolation in the nonamenable setting
have recently been obtained in [22].) In the Euclidean context, the triangle condition
is believed to hold on Zd if and only if d > 6, and was proven to hold for large d in
the milestone work of Hara and Slade [18]. The record is now held by Fitzner and
van der Hofstad [14], who proved that it holds for all d ≥ 11. It is reasonable to
conjecture that the triangle condition holds on every transitive graph of at least seven
dimensional volume growth; the assumption of nonamenability should be much stronger
than necessary.

In our recent work [23], we made the following strong quantitative conjecture
which implies both Theorems 1.1 and 1.2. Let τp(u, v) be the probability that u and
v are connected in G[p], which is known as the two-point function. Given a non-
negative matrix M ∈ [0,∞]V

2

indexed by the vertices of G and p, q ∈ [1,∞], we define
‖M‖p→q := sup{‖Mf‖q/‖f‖p : f ∈ Lp(V ), f(v) ≥ 0 ∀v ∈ V }, i.e., the norm of M as an

operator from Lp(V ) to Lq(V ). Let Tp ∈ [0,∞]V
2

be the two-point matrix defined by
Tp(u, v) = τp(u, v), and define the critical values

pq→q = pq→q(G) = sup
{
p ∈ [0, 1] : ‖Tp‖q→q <∞

}
.

It is easily seen that ‖Tp‖1→1 = ‖Tp‖∞→∞ = supv∈V
∑
u∈V τp(v, u) = supv∈V Ep|Kv|, and

therefore by sharpness of the phase transition [1, 12] that pc(G) = p1→1(G) = p∞→∞(G)

for every quasi-transitive graph G.

Conjecture 1.3 (L2 boundedness). Let G be a connected, locally finite, nonamenable,
quasi-transitive graph. Then pc(G) < p2→2(G).

It is shown in [23] that Theorem 1.3 is implied by the weaker statement that
‖Tpc‖2→2 < ∞, and implies the stronger statement that pc(G) < pq→q(G) for ev-
ery q ∈ (1,∞); a quantitative version of this fact is given in Theorem 4.1. To see
that Theorem 1.3 implies Theorem 1.1, simply note that if p > pu then infu,v Tp(u, v) ≥
infu,v Pp(u → ∞)Pp(v → ∞) > 0 by the Harris-FKG inequality, so that ‖Tp‖2→2 = ∞
since V is infinite. To see that Theorem 1.3 implies Theorem 1.2, note that, by definition,
∇p(v) = T 3

p (v, v) ≤ ‖T 3
p ‖2→2 ≤ ‖Tp‖32→2 for each v ∈ V and p ∈ [0, 1].

As a heuristic justification of Theorem 1.3, we note that if G is a quasi-transitive graph
then the two-point function of the critical branching random walk on G (which coincides
with the simple random walk Greens function) is bounded as an operator on L2(V ) if
and only if G is nonamenable [47, Theorem 10.3]. Thus, Theorem 1.3 is predicted by
the general philosophy that, in the high-dimensional context, critical percolation should
behave similarly to critical branching random walk.
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Theorem 1.3 is known to hold in most of the special cases in which either Theorem 1.1
or Theorem 1.2 had been established. Indeed, the proofs that pc < pu holds under various
perturbative assumptions such as small spectral radius [41], large Cheeger constant
[45], or high girth [39] also implicitly yield the stronger claim that pc < p2→2 under
the same assumptions. In particular, it can be deduced from the work of Pak and
Smirnova-Nagnibeda [41] that every finitely generated nonamenable group has a Cayley
graph for which pc < p2→2, which lends very strong evidence that the conjecture is
true in general. As for non-perturbative results, it is now known that Theorem 1.3
holds under the additional assumption that G is either Gromov hyperbolic [23] or has a
quasi-transitive nonunimodular subgroup of automorphisms [25]. The latter condition
holds, for example, if G = Tk ×H is the Cartesian product of a regular tree of degree
k ≥ 3 with a quasi-transitive graph H. A notable exception is given by groups of cost
> 1, which are known to have pc < pu [15, 36] but are not known to have pc < p2→2 or to
satisfy the triangle condition at pc. (As a modest first step in this direction, one could try
to prove pc < p2→2 for infinitely-ended transitive graphs.)

In this paper, we further explore the consequences of Theorem 1.3. We find in
particular that Theorem 1.3 has various very strong consequences that are not known to
follow from Theorem 1.1 or Theorem 1.2 alone. Our results can briefly be summarized
as follows:

1. Theorem 2.2: If p < p2→2, then the two-point function τp(u, v) is exponentially small
in the graph distance d(u, v). Thus, if pc < p2→2 then this property holds for both
critical and slightly supercritical percolation.

2. Theorem 3.1: If pc < p2→2, then the critical exponent governing the extrinsic radius
of clusters is 1. That is, the probability that the cluster of the origin in G[pc] reaches
distance at least n in G is of order n−1. This is not known to follow from the triangle
condition even under the assumption of nonamenability.

3. Theorem 3.3: If p < p2→2, then the clusters of G[p] are ‘ballistic’ in the following
sense: For any two vertices u and v of G, conditioned on u and v being connected
in G[p], the intrinsic distance dint(u, v) between u and v in G[p] is exponentially
unlikely to be much longer than d(u, v). Moreover, for fixed u, the random variable
sup{dint(u, v)/d(u, v) : v ↔ u} has an exponential tail.

4. Theorem 4.1: If pc < p2→2, then we have the asymptotic estimates ‖Tpc‖q→q �
(q − 1)−1 and pq→q − pc � q − 1 as q ↓ 1. This can be used to deduce various strong
quantitative estimates on critical and slightly supercritical percolation.

5. Theorems 5.1 and 5.2: If pc < p2→2 then the probabilities of various ‘multiple arm’
events are of the same order as the upper bound given by the BK inequality. In
particular, we deduce that if G is transitive then the probability that the origin is a
trifurcation point is of order (p− pc)3 as p ↓ pc (Theorem 5.6).

Further applications of the L2 boundedness condition to slightly supercritical perco-
lation are investigated in [26, 27]. Finally, we apply some of the results above together
with duality arguments to study the critical behaviour of percolation at the uniqueness
threshold pu on nonamenable, quasi-transitive, simply connected planar maps (e.g. tes-
selations of the hyperbolic plane), which are always Gromov hyperbolic [13] and hence
have pc < p2→2 by the results of [23]. In particular, we prove the following.

6. If G is a nonamenable quasi-transitive simply connected planar map, then the
probability that two neighbouring vertices are connected in G[pu] but have intrinsic
distance at least n is of order n−1 (excluding pairs of vertices for which there are
local obstructions that make the probability trivially equal to zero).
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The L2 boundedness condition in nonamenable percolation

We have organized the paper textbook-style into several short sections, each of which
contains a complete treatment of one or more of the topics above. We will assume that
the reader is familiar with Fekete’s subadditive lemma, the Harris-FKG inequality, the
BK inequality, Reimer’s inequality, and Russo’s formula, referring them to [16, Chapter
2] otherwise.

2 Exponential decay of the two-point function

In this section we study the consequences of the pc < p2→2 condition for the decay
of the two-point function. Let G be a connected, locally finite graph. We say that G has
exponential connectivity decay at p if the quantity

ξp := − lim sup
n→∞

1

n
log sup

{
τp(u, v) : d(u, v) ≥ n

}
is positive. That is, ξp is maximal such that for every ε > 0 there exists Cp,ε <∞ such
that

τp(u, v) ≤ Cp,ε exp
[
−(ξp − ε) · d(u, v)

]
for all vertices u and v in G. Following [45], we define the exponential connectivity
decay threshold to be

pexp = pexp(G) = sup
{
p ∈ [0, 1] : G has exponential connectivity decay at p

}
.

It is clear that pexp ≤ pu when G is quasi-transitive, and it is known that this inequality is
strict in some examples, such as the free product Z2 ∗ (Z/2Z), and saturated in others,
such as trees. It is also classical that pc(G) ≤ pexp(G) for every quasi-transitive graph G,
see [16, Chapter 6].

The following conjecture is widely believed among experts but does not seem to have
appeared in print. See [45, Open Problems 3.1 and 3.2] for further related problems.

Conjecture 2.1. Let G be a connected, locally finite, quasi-transitive, nonamenable
graph. Then pc(G) < pexp(G).

Perturbative proofs of pc < pu typically also implicitly yield the stronger result
pc < pexp, and the previously mentioned papers [45, 8, 41, 39] all yield that pc < pexp for
the graphs they consider. The most notable non-perturbative result is due to Schonmann
[46], who proved that pexp = pu for transitive, one-ended, nonamenable, planar graphs.
Besides this, Schramm proved that for any transitive, unimodular, nonamenable graph,
the critical two-point function is exponentially small in the distance for some pairs of
vertices, namely, the endpoints of a random walk have this property with high probability.
See [29] for Schramm’s proof and [21, 24, 23] for related results.

Our first result verifies Theorem 2.1 under the assumption that pc < p2→2. In
particular, applying the results of [23, 25], we deduce that the conjecture holds under
the additional assumption that the graph in question is either Gromov hyperbolic or has
a quasi-transitive nonunimodular subgroup of automorphisms.

Theorem 2.2. Let G be a connected, locally finite graph. Then p2→2(G) ≤ pexp(G).

Let us mention again that Cayley graphs of groups of cost > 1 are known to have
pc < pu [15, 36] but are not known to have pc < p2→2 or pc < pexp.

Remark 2.3. The proof of Theorem 2.2 yields the quantitative bound

τp(u, v) ≤ 2‖Tp‖2→2 exp

[
− d(u, v)

e‖Tp‖2→2

]
(2.1)

for every u, v ∈ V and 0 < p < p2→2.
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The L2 boundedness condition in nonamenable percolation

The proof is an ‘Lq version’ of the usual proof that there is exponential connectivity
decay when the susceptibility is finite [16, Theorem 6.1]. Let G be a connected, locally
finite graph, let p ∈ [0, 1] and n ≥ 0, and consider the symmetric matrices Cp,n, Sp,n ∈
[0,∞]V

2

defined by

Cp,n(u, v) = τp(u, v)1(d(u, v) ≥ n) and Sp,n(u, v) = τp(u, v)1(d(u, v) = n).

(C is for ‘complement’ and S is for ‘sphere’.) Theorem 2.2 will be deduced from the
following proposition.

Proposition 2.4. Let G be a connected, locally finite graph. Then for every q ∈ [1,∞]

and 0 < p < pq→q(G) there exists ηp,q > 0 such that

lim
n→∞

1

n
log ‖Cp,n‖q→q = inf

n≥1

1

n
log ‖Cp,n‖q→q = −ηp,q.

Moreover, ηp,q satisfies ηp,q ≥ e−1‖Tp‖−1
q→q when 0 < p < pq→q(G).

We begin with the following simple consequence of the BK inequality. Given two
matrices M,N ∈ [−∞,∞]V

2

, we write M 4 N if M(u, v) ≤ N(u, v) for every u, v ∈ V .
Note that if M,N ∈ [0,∞]V

2

and M 4 N then ‖M‖q→q ≤ ‖N‖q→q for every q ∈ [1,∞].

Lemma 2.5. Let G be a connected, locally finite graph. Then

Cp,n+m 4 Cp,mSp,n (2.2)

for every p ∈ [0, 1] and n,m ≥ 0.

Proof of Theorem 2.5. Suppose that u, v ∈ V have d(u, v) ≥ n + m. On the event that
u is connected to v in G[p], there must exist w with d(u,w) = n such that the disjoint
occurrence {u ↔ w} ◦ {w ↔ v} occurs, and such a w must have d(w, v) ≥ m by the
triangle inequality. Indeed, simply take some simple path from u to v in G[p], and take w
to be the first vertex with d(u,w) = n that this path visits. Summing over the possible
choices of w and applying the BK inequality yields the claim.

Proof of Theorem 2.4. Since Sp,n 4 Cp,n for every n ≥ 0, Theorem 2.5 implies that
‖Cp,n‖q→q satisfies the submultiplicative inequality ‖Cp,n+m‖q→q ≤ ‖Cp,n‖q→q‖Cp,m‖q→q,
and applying Fekete’s Lemma we deduce that

ηp,q = − lim
n→∞

1

n
log ‖Cp,n‖q→q = − inf

n≥0

1

n
log ‖Cp,n‖q→q

is well-defined when 0 < p < pq→q. It remains to prove that ηp,q > 0 for 0 ≤ p < pq→q.
Let n,m ≥ 0 and let 0 < p < pq→q. Noting that Cp,` 4 Cp,r whenever ` ≥ r and

applying (2.2), we obtain that

Cp,n+m 4
1

m+ 1

m∑
r=0

Cp,n+r 4
1

m+ 1
Cp,n

m∑
r=0

Sp,r 4
1

m+ 1
Cp,nTp,

and hence that

‖Cp,n+m‖q→q ≤
‖Tp‖q→q
m+ 1

‖Cp,n‖q→q.

Applying this bound inductively and using that Cp,0 = Tp we deduce that

‖Cp,kn‖q→q ≤
[
‖Tp‖q→q
n+ 1

]k
‖Tp‖q→q
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for every k, n ≥ 0, and hence that

ηp,q ≥
1

n
log

n+ 1

‖Tp‖q→q

for every n ≥ 1. Taking n = de‖Tp‖q→qe− 1 completes the proof. Note that we also obtain
the explicit bound

‖Cp,r‖q→q ≤ ‖Tp‖q→q exp

[
−
⌊

r

e‖Tp‖q→q

⌋]
≤ 2‖Tp‖q→q exp

[
− r

e‖Tp‖q→q

]
. (2.3)

(We have bounded e1/e by 2 for aesthetic reasons.)

Proof of Theorem 2.2. Let u, v ∈ V be such that d(u, v) ≥ n, let q ∈ [1,∞], and let
0 < p < pq→q. Then we have by Hölder’s inequality that

τp(u, v) = 〈Cp,n1u,1v〉 ≤ ‖Cp,n1u‖q‖1v‖ q
q−1
≤ ‖Cp,n‖q→q.

It follows that ξp ≥ ηp,q ≥ e−1‖Tp‖−1
q→q > 0 for every 0 < p < pq→q(G).

3 Cluster ballisticity and the extrinsic radius exponent

We now turn to our results concerning cluster ballisticity and the extrinsic radius
exponent. We begin by discussing the extrinsic radius exponent. Let G = (V,E) be a
connected, locally finite graph and let p ∈ [0, 1]. Let d denote the graph distance on G,
and let dint denote the graph distance on the subgraph G[p], where we set dint(u, v) =∞
if u and v are in different clusters. The extrinsic radius rad(Kv) of the cluster of v
in G[p] is defined to be sup{d(v, u) : u ∈ Kv}, while the intrinsic radius radint(Kv) is
defined to be sup{dint(v, u) : u ∈ Kv}.

As discussed in the introduction, mean-field theory predicts that critical percolation on
sufficiently high-dimensional quasi-transitive graphs (say, of at least seven-dimensional
volume growth) resembles the trace of a critical branching random walk on the graph.
Many of the specific predictions suggested by this heuristic are known to hold for
any quasi-transitive graph satisfying the triangle condition. For example, Barsky and
Aizenman [6] showed that in this case

Ppc
(
|Kv| ≥ n

)
� n−1/2,

and Kozma and Nachmias [31] showed that

Ppc
(
radint(Kv) ≥ n

)
� n−1. (3.1)

The matching lower bound

Ppc
(
radint(Kv) ≥ n

)
� n−1

holds on every quasi-transitive graph, see [26, Proposition 4.2]. These exponents are the
same as those governing a critical Galton-Watson tree of finite variance, which arises as
the genealogical tree of a critical branching random walk.

Determining the tail of the extrinsic radius is a more subtle matter, since it varies
from graph to graph even in the mean-field regime and therefore cannot be deduced
from the triangle condition alone: on a regular tree of degree at least three we have
that extrinsic and intrinsic distances coincide and hence that Ppc

(
rad(Kv) ≥ n

)
=

Ppc
(
radint(Kv) ≥ n

)
� n−1, while for high-dimensional Euclidean lattices it was proven

in the breakthrough work of Kozma and Nachmias [32] that Ppc
(
rad(Kv) ≥ n

)
� n−2.
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Intuitively, the difference between these two exponents is explained by the fact that
simple random walk is ballistic on the tree and diffusive on Zd. Since random walk is
ballistic on every quasi-transitive nonamenable graph, it is reasonable to conjecture that
Ppc

(
rad(Kv) ≥ n

)
� n−1 for every such graph. Our next result verifies this conjecture

under the assumption that pc < p2→2.

Theorem 3.1. Let G be a connected, locally finite, nonamenable, quasi-transitive graph,
and suppose that pc(G) < p2→2(G). Then for every v ∈ V we have that

Ppc(rad(Kv) ≥ n) � n−1 as n ↑ ∞. (3.2)

Note that the upper bound of (3.2) follows from the corresponding bound for the
intrinsic radius, so that it remains only to prove the lower bound. Theorem 3.1 was known
in the case that G has a quasi-transitive nonunimodular subgroup, using arguments
specific to that setting [25, Theorem 1.6]. We believe the theorem is new in essentially
all other cases, including for tessellations of the hyperbolic plane.

The key step in the proof of Theorem 3.1 is the following intrinsic variant on Theo-
rem 2.4, which can be used to derive various ballisticity results for percolation below
p2→2. For each p ∈ [0, 1] and n ≥ 0 we define the matrix C int

p,n ∈ [0,∞]V
2

by

C int
p,n(u, v) = Pp (u↔ v, dint(u, v) ≥ n) .

Proposition 3.2. Let G be a connected, locally finite graph, and let p < pq→q(G). Then

‖C int
p,n‖q→q ≤ 3‖Tp‖q→q exp

[
− n

e‖Tp‖q→q

]
for every n ≥ 0.

Before proving Theorem 3.2, let us see how it implies Theorem 3.1.

Proof of Theorem 3.1 given Theorem 3.2. Since pc < p2→2 implies that ∇pc < ∞, we
have that Ppc(radint(Kv) ≥ n) � n−1. Therefore, since the extrinsic radius is bounded by
the intrinsic radius, it suffices to prove the lower bound. For every n ≥ 1 and m ≥ n we
trivially have that

Ppc(rad(Kv) ≥ n) ≥ Ppc
(
radint(Kv) ≥ m

)
−Ppc

(
radint(Kv) ≥ m and rad(Kv) ≤ n

)
.

The second term on the right can be bounded by

Ppc

(
radint(Kv) ≥ m and rad(Kv) ≤ n

)
≤

∑
u∈B(v,n)

Ppc(u↔ v, dint(u, v) ≥ m)

= 〈C int
p,m1B(v,n),1v〉 ≤ ‖C int

p,m‖2→2‖1B(v,n)‖2‖1v‖2,

and applying Theorem 3.2 we deduce that

Ppc(radint(Kv) ≥ m and rad(Kv) ≤ n) ≤ 3‖Tpc‖2→2 exp

[
− m

e‖Tpc‖2→2

]
|B(v, n)|1/2

for every m ≥ n ≥ 1. Since |B(v, n)| grows at most exponentially in n, it follows that there
exist constants C and c such that if m ≥ Cn then Ppc(radint(Kv) ≥ m and rad(Kv) ≤
n) ≤ e−cn. Taking m = dCne, we deduce that there exists a positive constant C ′ such
that

Ppc(rad(Kv) ≥ n) ≥ Ppc(radint(Kv) ≥ Cn)− e−cn ≥ C ′n−1 − e−cn,

from which the claim follows immediately.
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The L2 boundedness condition in nonamenable percolation

Theorem 3.2 can also be used to derive various other results concerning the ballisticity
of percolation clusters. Examples of two such statements are given in the following
theorem, whose proof is very straightforward and is omitted.

Theorem 3.3. Let G be a connected, locally finite, quasi-transitive graph. Then for
every p < p2→2(G), there exist positive constants cp, Cp and λp such that

Pp

(
max
v∈Ku

dint(u, v)

d(u, v)
≥ λ

)
≤ Cpe−cpλ (3.3)

for every u ∈ V and t ≥ 1, and similarly

Pp
(
dint(u, v) ≥ n | u↔ v

)
≤ Cpe−cpn (3.4)

for every u, v ∈ V and n ≥ λpd(u, v).

Note that the special case of Theorem 3.3 in which p < pc can also be deduced from
the fact that the cluster volume in subcritical percolation has an exponential tail [3]
(although the argument given here will give better control on the rate of divergence of
the constants as p ↑ pc). See [5] for a related result concerning supercritical percolation
on Euclidean lattices.

In contrast to these results, in Section 6 we show that for percolation in the hyperbolic
plane, the quantity Ppu

(
dint(u, v) ≥ n | u↔ v

)
can have a power law tail at pu.

We now turn to the proof of Theorem 3.2. We write Bint(v, n) = {u ∈ V : dint(u, v) ≤ n}
and ∂Bint(v, n) = {u ∈ V : dint(u, v) = n} for the intrinsic ball and sphere of radius n
around v respectively, and for each p ∈ [0, 1] and m ≥ n ≥ 0 define the matrices

Bint
p,n(u, v) = Pp (v ∈ Bint(u, n)) ,

Sint
p,n(u, v) = Pp (v ∈ ∂Bint(u, n)) , and

Aint
p,n,m(u, v) = Pp (v ∈ Bint(u,m) \Bint(u, n− 1)) .

Lemma 3.4. Let G be a connected, locally finite graph. Then

Aint
p,n,n+m 4 Bint

p,mS
int
p,n (3.5)

for every p ∈ [0, 1] and m,n ≥ 0.

Since Bint
p,n+m = Bint

p,n−1 +Aint
p,n,n+m for every n,m ≥ 0, Theorem 3.4 implies that if G

is a connected, locally finite graph then the submultiplicative-type inequality

Bint
p,n+m 4 Bint

p,mS
int
p,n +Bint

p,n−1 4 Bint
p,mB

int
p,n (3.6)

holds for every p ∈ [0, 1] and m,n ≥ 0.

Remark 3.5. It may be instructive for the reader to reflect on why Reimer’s inequality
does not imply the submultiplicative inequality C int

p,n+m 4 C int
p,nC

int
p,m.

Proof. For each three vertices u, v, w, let Gn,m(u, v, w) be the event that w is connected
to u with n ≤ dint(u,w) ≤ n+m and that v is the nth vertex on some geodesic from u to
w in G[p]. The definitions ensure that

Aint
p,n,n+m(u,w) ≤

∑
v∈V

Pp [Gn,m(u, v, w)] .

We now claim that

Gn,m(u, v, w) ⊆ {v ∈ ∂Bint(u, n)} ◦ {w ∈ Bint(v,m)}.
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The L2 boundedness condition in nonamenable percolation

Indeed, on the event Gn,m(u, v, w), the subgraph of G induced by the intrinsic ball of
radius n around u together with all the closed edges incident to this ball is a witness for
{v ∈ ∂Bint(u, n)}, while any geodesic in G[p] from v to w is a witness for {w ∈ Bint(v,m)}
that is disjoint from the former witness. Thus, we can apply Reimer’s inequality to obtain
that

Aint
p,n,n+m(u,w) ≤

∑
v∈V

Pp [{v ∈ ∂Bint(u, n)} ◦ {w ∈ Bint(v,m)}] ≤
∑
v∈V

Bint
p,m(v, w)Sint

p,n(u, v),

which is equivalent to the claimed inequality (3.5).

We now prove Theorem 3.2. The proof is quite different to that of Theorem 2.4 since
submultiplicativity is not available, and relies instead on a certain averaging trick that
will be used again in the proof of Theorem 3.6.

Proof of Theorem 3.2. Applying (3.5) and using the trivial inequality Bint
p,m 4 Tp, we have

that

Aint
p,kn,(k+1)n 4 TpS

int
p,r

for every k, n ≥ 1 and r ≤ kn. Averaging this inequality over (k− 1)n ≤ r ≤ kn we obtain
that

Aint
p,kn,(k+1)n 4

1

n+ 1
TpA

int
p,(k−1)n,kn

for every k, n ≥ 1. Applying this bound inductively we deduce that

‖Aint
p,kn,(k+1)n‖q→q ≤

[
‖Tp‖q→q
n+ 1

]k
‖Tp‖q→q,

from which the claimed bound can be deduced by similar reasoning to that used in the
proof of Theorem 2.4. (We bound the resulting constant e1/e/(1− 1/e) by 3 for aesthetic
reasons.)

3.1 Mean-field lower bounds on norms of ball and sphere operators

In this subsection, we note that methods similar to those used to derive Theorems 2.4
and 3.2 can also be used to prove the following simple mean-field lower bounds. These
bounds complement those of [23, Corollary 2.5], which states that if G is a connected,
locally finite graph then

‖Tp‖q→q ≥
1− p

‖A‖q→q(pq→q − p)
(3.7)

for every 0 ≤ p < pq→q, where A is the adjacency matrix. Similarly to the way that that
corollary is used to prove the main results of [23], one could potentially use Theorem 3.6
to establish that pc < p2→2 by showing that, for example, ‖Sint

pc,n‖2→2 → 0 as n→∞.

Proposition 3.6. Let G be an infinite, connected, bounded degree graph. Then we have
that

‖Bpq→q,n‖q→q ≥ n+ 1 and ‖Spq→q,n‖q→q ≥ 1 (3.8)

for every n ≥ 0 and q ∈ [1,∞], and similarly that

‖Bint
pq→q,n‖q→q ≥ n+ 1 and ‖Sint

pq→q,n‖q→q ≥ 1 (3.9)

for every n ≥ 0 and q ∈ [1,∞].

The proof of Theorem 3.6 is inspired by the proof of [12, Theorem 1.1]. Note that the
sphere bounds do not obviously imply the ball bounds when q /∈ {1,∞}.
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The L2 boundedness condition in nonamenable percolation

Proof. We will prove (3.9), the proof of (3.8) being similar. Let Λ ⊂ E be finite. We write

{u Λ←→ v} for the event that u and v are connected by an open path using only edges of Λ,

and for each p ∈ [0, 1] define the matrix Tp,Λ(u, v) = Pp(u
Λ←→ v). Note that, since G has

bounded degrees and Bint
p,n is symmetric, we have by the Riesz-Thorin theorem that

‖Bint
p,n‖q→q ≤ ‖Bint

p,n‖1→1 ≤ sup
v∈V
|B(v, n)| <∞

for every n ≥ 0 and q ∈ [1,∞], and similarly that ‖Tp,Λ‖q→q ≤ ‖Tp,Λ‖1→1 < ∞ for every
Λ ⊂ E finite. Applying Reimer’s inequality as in the proof of Theorem 3.4, we obtain that

Tp,Λ(u, v) = Pp
(
u

Λ←→ v and dint(u, v) ≤ n− 1
)

+ Pp
(
u

Λ←→ v and dint(u, v) ≥ n
)

≤ Pp
(
u

Λ←→ v and dint(u, v) ≤ n− 1
)

+
∑
w∈V

Pp

(
{u Λ←→ w

}
◦
{
w ↔ v and dint(w, v) = n}

)
≤ Bint

p,n−1(u, v) +
∑
w∈V

Tp,Λ(u,w)Sint
p,n(w, v),

which is equivalent to the bound

Tp,Λ 4 Bint
p,n−1 + Tp,ΛS

int
p,n. (3.10)

Let K be a finite subset of N = {0, 1, . . .}. Summing (3.10) over K and then taking norms,
we obtain that

|K| · ‖Tp,Λ‖q→q ≤
∥∥∥∑
n∈K

Bint
p,n−1

∥∥∥
q→q

+ ‖Tp,Λ‖q→q
∥∥∥∑
n∈K

Sint
p,n

∥∥∥
q→q

(3.11)

Suppose that ‖
∑
n∈K S

int
p,n‖q→q < |K|. Since every term in (3.11) is finite, we may

rearrange to obtain that

‖Tp,Λ‖q→q ≤

∥∥∑
n∈K B

int
p,n−1

∥∥
q→q

|K| −
∥∥∑

n∈K S
int
p,n

∥∥
q→q

<∞,

and taking the limit as Λ exhausts E we obtain that ‖Tp‖q→q <∞ for every p ∈ [0, 1] such
that ‖

∑
n∈K S

int
p,n‖q→q < |K|. Since ‖Tpq→q

‖q→q =∞ for every q ∈ [1,∞], we deduce that∥∥∥∑
n∈K

Sint
pq→q,n

∥∥∥
q→q
≥ |K| for every q ∈ [1,∞] and K ⊆ N. (3.12)

The claimed inequalities (3.9) follow by taking K = {0, . . . , n} and K = {n} respectively.

4 Norm exponents

In [23, Proposition 2.3], we proved that if G is quasi-transitive and pc(G) < p2→2(G)

then pc(G) < pq→q(G) for every q ∈ (1,∞). Our next result establishes a sharp quantita-
tive1 version of this fact, which will yield very strong quantitative information about the
critical two-point function.

1While the proof of [23, Proposition 2.3] can also be made quantitative, the best bound that we were able to
prove via that approach was of the form ‖Tpc‖q→q ≤ qC for some possibly very large constant C depending
on ‖Tpc‖2→2.
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The L2 boundedness condition in nonamenable percolation

Theorem 4.1. Let G be a connected, locally finite, nonamenable, quasi-transitive graph,
and suppose that pc(G) < p2→2(G). Then

‖Tpc‖q→q �

{
q as q ↑ ∞
(q − 1)−1 as q ↓ 1

and pq→q − pc �

{
q−1 as q ↑ ∞
q − 1 as q ↓ 1.

The proof of Theorem 4.1 is given in the following two subsections. This theorem is
complemented by the lower bound

‖Tp‖q→q ≥
1− p

‖A‖q→q(pq→q − p)
for every 0 < p < pq→q (4.1)

which is proven in [23, Corollary 2.6] and holds on every infinite, connected, locally finite
graph, where A is the adjacency matrix of the graph.

An interesting corollary of Theorem 4.1 is as follows.

Corollary 4.2. Let G be a connected, locally finite, nonamenable, quasi-transitive graph,
and suppose that pc(G) < p2→2(G). Then there exists a constant C such that

Epc |Kv ∩W | ≤ C log |W |

for every v ∈ V and every W ⊆ V with |W | ≥ 2. In particular, there exists a constant C
such that Epc |Kv ∩B(v, n)| ≤ Cn for every n ≥ 1.

Theorem 3.6 shows that the bound Epc |Kv ∩B(v, n)| ≤ Cn is sharp up to the choice
of constant.

Proof of Theorem 4.2. By Hölder’s inequality, we have that

Epc |Kv ∩W | = 〈Tpc1W ,1v〉 ≤ ‖Tpc‖q→q‖1W ‖q‖1v‖ q
q−1

= ‖Tpc‖q→q|W |1/q.

The claim follows by taking q = log |W | and applying Theorem 4.1.

A further corollary of Theorem 4.1 concerns the asymptotic density of slightly super-
critical clusters. Let G = (V,E) be a connected, locally finite, quasi-transitive graph. For
each 0 < p ≤ 1, we define the annealed upper logarithmic density of clusters in G[p]

by

δlog(p) = lim sup
n→∞

sup
v∈V

logEp|Kv ∩B(v, n)|
log |B(v, n)|

,

where B(v, n) denotes the ball of radius n around v in G. Note that Markov’s inequality
implies

lim sup
n→∞

log |Kv ∩B(v, n)|
log |B(v, n)|

≤ δlog(p)

that for every v ∈ V almost surely.

Corollary 4.3. Let G be a connected, locally finite, nonamenable, quasi-transitive graph,
and suppose that pc(G) < p2→2(G). Then δlog(p) � p− pc as p ↓ pc.

Theorem 4.3 should be compared with Lalley’s result that in slightly supercritical
percolation on tessellations of the hyperbolic plane, the a.s. Hausdorff dimension of the
set of ideal-boundary accumulation points of an infinite percolation cluster tends to zero
as pc is approached from above [34]. (Indeed, it is possible to apply Theorem 4.1 to
derive a quantitative version of Lalley’s result showing that this dimension is Θ(ε) at
pc + ε.) The proof of Theorem 4.3 is given after the proof of Theorem 4.1.
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The L2 boundedness condition in nonamenable percolation

We now begin to work towards the proof of Theorem 4.1. We first lower bound the
rate that ‖Tpq→q

‖q′→q′ blows up as q′ ↑ q. The resulting estimate can be thought of as a
mean-field lower bound. Given a graph G, we define

γ = γ(G) = lim
n→∞

1

n
sup
v∈V

log |B(v, n)|.

The fact that this limit exists follows by Fekete’s lemma, since the sequence
supv∈V |B(v, n)| is submultiplicative. Moreover, if G has degrees bounded by M then we
have that γ(G) ≤ log(M − 1) <∞.

Proposition 4.4. Let G be a connected, bounded degree graph, let q ∈ (2,∞] and let
q′ ∈ (2, q). Then

‖Tpq→q‖q′→q′ ≥
qq′

e(q − q′)γ
,

with the convention that the right hand side is equal to q′/eγ when q =∞.

The proof of Theorem 4.4 will apply the following elementary lemma.

Lemma 4.5. Let G = (V,E) be a graph, and let M ∈ [0,∞]V
2

. Then

‖M‖q2→q2 ≤ ‖M‖q1→q1
[

sup
v∈V
|{u : M(v, u) 6= 0}|

](q2−q1)/q1q2

for every 1 ≤ q1 < q2 ≤ ∞, with the convention that (q2 − q1)/q1q2 = 1/q1 if q2 =∞.

The case q2 =∞ will use the following similarly elementary fact.

Lemma 4.6. Let G = (V,E) be a graph, and let M ∈ [0,∞]V
2

. Then

lim inf
q′↑q

‖M‖q′→q′ ≥ ‖M‖q→q

for every q ∈ (1,∞].

Proof. We may assume that ‖M‖q→q > 0, since the claim is trivial otherwise. Note that
for each f ∈ V R, the norm ‖f‖q is decreasing in q for every f ∈ V R, and is continuous
in q ∈ [1,∞] if f is finitely supported (i.e., zero at all but finitely many vertices). For
each a < ‖M‖q→q, there exists a finitely supported f ∈ V R such that ‖Mf‖q/‖f‖q ≥ a.
For such f we have limq′↑q ‖f‖q′ = ‖f‖q and lim infq′↑q ‖Mf‖q′ ≥ ‖Mf‖q. We deduce that
lim infq′↑q ‖M‖q′→q′ ≥ a, and the claim follows since a < ‖M‖q→q was arbitrary.

Proof of Theorem 4.5. We may assume that supv∈V |{u : M(v, u) 6= 0}| < ∞ and that
‖M‖q1→q1 < ∞, since the claim is trivial otherwise. First suppose that q2 6= ∞. Let
f ∈ Lq2(V ) be such that f(v) ≥ 0 for every v ∈ V . By Hölder’s inequality, we have that

‖Mf‖q2q2→q2 =
∑
v∈V

[∑
u∈V

M(v, u)f(u)

]q2

≤
∑
v∈V

[∑
u∈V

M(v, u)f(u)q2/q1

]q1 [∑
u∈V

M(v, u)

]q2−q1
.

Letting Iv ∈ L∞(V ) be the function Iv(u) = 1(M(v, u) 6= 0), we can then bound∑
u∈V

M(v, u) = 〈1v,MIv〉 ≤ ‖MIv‖q2 ≤ ‖M‖q2→q2 |{u : M(v, u) 6= 0}|1/q2 ,
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and putting these two bounds together we obtain that

‖Mf‖q2q2→q2 ≤ ‖M‖
q1
q1→q1‖f

q2/q1‖q1q1‖‖M‖
q2−q1
q2→q2

[
sup
v∈V
|{u : M(v, u) 6= 0}|

](q2−q1)/q2

.

Noting that ‖fq2/q1‖q1q1 = ‖f‖q2q2 , taking the supremum over f ∈ Lq2(V ), and dividing both
sides by ‖M‖q2−q1q2→q2 yields the desired inequality. The case q2 =∞ follows from the case
q2 <∞ by an application of Theorem 4.6.

We now turn to the proof of Theorem 4.4.

Proof of Theorem 4.4. Applying Theorem 4.5 with q1 = q′, q2 = q, and M = Spq→q,n, we
have that

‖Spq→q,n‖q′→q′ ≥ ‖Spq→q,n‖q→q
(

sup
v∈V

∣∣∂B(v, n)
∣∣)−(q−q′)/qq′

≥
(

sup
v∈V

∣∣∂B(v, n)
∣∣)−(q−q′)/qq′

for every n ≥ 0, where the second inequality follows from Theorem 3.6. It follows from
this inequality and Theorem 2.4 that

1

e‖Tpq→q
‖q′→q′

≤ ηpq→q,q′ ≤
(q − q′)γ
qq′

,

and the claim follows immediately.

We next give a related bound on the rate of change of pq→q as a function of q. Recall
that the ξp denotes the exponential decay rate of the two-point function, as defined
in Section 2.

Proposition 4.7. Let G be a connected, bounded degree graph, let q ∈ (2,∞] and
q′ ∈ [2, q), and suppose that ξpq→q

> 0. Then

log pq′→q′ ≤
[
1− (q − q′)γ

qq′ξpq→q

]
log pq→q

with the convention that the prefactor on the right hand side is equal to 1− γ/(q′ξpq→q
)

when q =∞.

Recall that it follows from Theorem 2.2 that ξpq→q
> 0 whenever pq→q < p2→2. We

therefore immediately deduce the following corollary.

Corollary 4.8. Let G be a connected, bounded degree graph. Then pq→q(G) is a contin-
uous function of q on [1,∞].

Proof of Theorem 4.7. By Theorem 2.4 and Theorem 3.6, we have for each q ∈ [1,∞]

and p ∈ [0, 1] that p ≥ pq→q if and only if

lim inf
n→∞

1

n
log ‖Sp,n‖q→q ≥ 0.

Recall from [16, Theorem 2.38] that if A is an increasing event, then logPp(A)/ log p is a
non-increasing function of p ∈ (0, 1). Thus, if 0 < p1 ≤ p2 < 1 then we have that

τp2(u, v) ≥ τp1(u, v)log p2/ log p1

≥ τp1(u, v) [sup{τp1(x, y) : x, y ∈ V, d(x, y) = d(u, v)}]log(p2/p1)/ log p1 . (4.2)

Thus, it follows by definition of ξp1 that

Sp2,n < exp

[
log(p1/p2)ξp1

log p1
n+ o(n)

]
Sp1,n as n→∞.
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and hence that

lim inf
n→∞

1

n
log ‖Sp2,n‖q→q ≥

log(p1/p2)ξp1
log p1

+ lim inf
n→∞

1

n
log ‖Sp1,n‖q→q. (4.3)

On the other hand, applying Theorem 4.5 as in the proof of Theorem 4.4 we obtain that
if 1 ≤ q′ ≤ q then

lim inf
n→∞

1

n
log ‖Sp2,n‖q′→q′ ≥ lim inf

n→∞

1

n
log ‖Sp2,n‖q→q −

(q − q′)γ
qq′

. (4.4)

Combining (4.3) and (4.4), we deduce that

lim inf
n→∞

1

n
log ‖Sp2,n‖q′→q′ ≥ lim inf

n→∞

1

n
log ‖Sp1,n‖q→q +

log(p1/p2)ξp1
log p1

− (q − q′)γ
qq′

for every 1 ≤ q′ ≤ q and 0 < p1 ≤ p2 < 1. Taking p1 = pq→q and p2 = p given by

log p =

[
1− (q − q′)γ

qq′ξpq→q

]
log pq→q

we deduce from (4.3) and (4.4) that lim infn→∞
1
n log ‖Sp,n‖q′→q′ ≥ 0, and hence that

pq′→q′ ≤ p as claimed.

It remains to prove a complementary upper bound on ‖Tpc‖q→q and lower bound on
pq→q.

Proposition 4.9. Let G be a connected, locally finite, quasi-transitive graph, and sup-
pose that pc < p2→2. Then there exist positive constants c and C such that

‖Tpc‖q→q ≤ Cq and pq→q − pc ≥
c

q

for every q ≥ 2.

Proof. The claimed lower bound on pq→q − pc follows immediately from the claimed
upper bound on ‖Tpc‖q→q together with (4.1). Since pc < p2→2, we have that ∇pc <∞,
and hence by the results of [31, 44] that there exists a constant C such that

‖Bint
pc,n‖1→1 = sup

v∈V
Epc |Bint(v, n)| ≤ C(n+ 1)

for every n ≥ 0. Since G is quasi-transitive we deduce that there exists a constant C ′

such that

n∑
m=0

‖Sint
pc,n‖1→1 =

n∑
m=0

sup
v∈V

Epc |∂Bint(v, n)|

≤ #{Orbits of Aut(G)} · sup
v∈V

n∑
m=0

Epc |∂Bint(v, n)| ≤ C ′(n+ 1). (4.5)

Let q ∈ (1, 2) and let θ = θ(q) ∈ (0, 1) be such that 1/q = (1− θ)/1 + θ/2. Then we have
by the Riesz-Thorin theorem that

‖Tpc‖q→q ≤
∑
n≥0

‖Sint
pc,n‖q→q ≤

∑
n≥0

‖Sint
pc,n‖

1−θ
1→1‖Sint

pc,n‖
θ
2→2.

Using Theorem 3.6 to bound ‖Sint
pc,n‖

1−θ
1→1 ≤ ‖Sint

pc,n‖1→1 and Theorem 3.2 to bound
‖Sint

pc,n‖
θ
2→2, we have that

‖Tpc‖q→q ≤ 3θ‖Tpc‖θ2→2

∑
n≥0

‖Sint
pc,n‖1→1 exp

[
− θn

e‖Tpc‖2→2

]
.
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Summation by parts yields that

N∑
n=0

‖Sint
pc,n‖1→1 exp

[
− θn

e‖Tpc‖2→2

]
= exp

[
− θN

e‖Tpc‖2→2

] N∑
n=0

‖Sint
pc,n‖1→1

+

[
1− exp

[
− θ

e‖Tpc‖2→2

]]N−1∑
n=0

exp

[
− θn

e‖Tpc‖2→2

] n∑
m=0

‖Sint
pc,n‖1→1

for each 0 ≤ N <∞. Applying (4.5) and sending N →∞ we obtain that

‖Tpc‖q→q ≤ 3θ‖Tpc‖θC ′
[
1− exp

[
− θ

e‖Tpc‖2→2

]] ∞∑
n=0

exp

[
− θn

e‖Tpc‖2→2

]
(n+ 1),

and hence by calculus that there exists a positive constant C ′′ such that

lim sup
q↓1

θ(q)‖Tpc‖q→q ≤ C ′′‖Tpc‖2→2.

Since θ(q) � q − 1 as q ↓ 1, this implies the claim.

Proof of Theorem 4.1. The upper bound on ‖Tpc‖q→q and lower bound on pq→q−pc follow
from Theorem 4.9, the lower bound on ‖Tpc‖q→q follows from Theorem 4.4, and the
upper bound on pq→q − pc follows from Theorem 2.2 and Theorem 4.7.

Proof of Theorem 4.3. We begin with the upper bound. For each p ∈ (0, p2→2) let q(p) =

sup{q ∈ [2,∞] : p < pq→q}. If p < p2→2 then for every q ∈ [2, q(p)) and v ∈ V we have by
Hölder’s inequality that

Ep|Kv ∩B(v, n)| = 〈Tp1B(v,n),1v〉 ≤ ‖Tp1B(v,n)‖q‖1v‖ q
q−1
≤ ‖Tp‖q→q|B(v, n)|1/q.

It follows that δlog(p) ≤ q(p)−1 for every 0 < p < p2→2, so that the claimed upper bound
may be deduced immediately from Theorem 4.1. For the lower bound, we apply (4.2) to
deduce that

Ep2 |Kv ∩ ∂B(v, n)| ≥ Ep1 |Kv ∩ ∂B(v, n)| exp

[
log(p2/p1)

log(1/p1)
ξp1n+ o(n)

]
as n ↑ ∞

for every v ∈ V and 0 < p1 ≤ p2 ≤ 1. Using this together with Theorem 3.6, we easily
deduce that if p1 ≥ pc then

δlog(p2) ≥ δlog(p1) +
ξp1 log(p2/p1)

γ log(1/p1)
,

and hence that

δlog(p) ≥ ξpc(p− pc)
γpc log(1/pc)

+ o(p− pc) as p ↓ pc.

Applying Theorem 2.2 gives that ξpc > 0, which completes the proof.

Question 4.10. Let G be a connected, locally finite, quasi-transitive graph such that
pc < p2→2. Must the matrix Tpc satisfy a weak-type (1, 1) estimate? If so, one would obtain
an alternative proof of Theorem 4.9 using the Marcinkiewicz interpolation theorem.
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5 Multiple arms

In this section, we prove that if pc < p2→2 then the probability of various ‘multiple
arm’ events are of the same order as the upper bound given by the estimates for the
corresponding ‘one arm’ events and the BK inequality. Besides their intrinsic interest,
these results will also be applied in our study of percolation in the hyperbolic plane at
the uniqueness threshold in Section 6. We write �` to denote an equality holding to
within multiplicative constants that may depend on the choice of ` but not on any of the
other parameters in question.

Theorem 5.1. Let G be a connected, locally finite, transitive graph with ∇pc <∞. For
each ` ≥ 2 there exists a finite constant K(`) such that

Ppc(Kv1 , . . . ,Kv` are disjoint and |Kvi | ≥ ni for every 1 ≤ i ≤ `) �`
∏̀
i=1

n
−1/2
i (5.1)

for every n1, . . . , n` ≥ 1 and every v1, v2, . . . , v` ∈ V such that d(vi, vj) ≥ K(`) for every
1 ≤ i < j ≤ `.
Theorem 5.2. Let G be a connected, locally finite, transitive graph with pc < p2→2. For
each ` ≥ 2 there exists a finite constant K(`) such that

Pp(v1, . . . , v` are all in distinct infinite clusters) �` (p− pc)` (5.2)

Ppc(Kv1 , . . . ,Kv` are disjoint and radint(Kvi) ≥ n for every 1 ≤ i ≤ `) �` n−` (5.3)

Ppc(Kv1 , . . . ,Kv` are disjoint and rad(Kvi) ≥ n for every 1 ≤ i ≤ `) �` n−` (5.4)

for every pc < p ≤ 1, every n ≥ 1, and every v1, v2, . . . , v` ∈ V such that d(vi, vj) ≥ K(`)

for every 1 ≤ i < j ≤ `.
The proof combines two techniques from the literature: the ‘inverse BK’ method used

in the proof of [32, Theorem 3], which establishes a similar result for extrinsic radii in
Euclidean lattices, and the ghost field technique, which was introduced to percolation by
Aizenman and Barsky [1] and, for our purposes, allows us to apply the inverse BK method
to study the volume of the clusters rather than the radii. Let G = (V,E) be a connected,
locally finite graph, and let G[p] be Bernoulli-p bond percolation on G. A ghost field of
intensity h on G is a random subset of V , independent of G[p], such that each vertex v of
G is included in G independently at random with inclusion probability 1− e−h. For each
v ∈ V , 0 < p < 1, and h > 0, we define the magnetization

Mp,h(v) = Pp,h(v ↔ G) = Ep

[
1− e−h|Kv|

]
. (5.5)

Note that if G is quasi-transitive then an easy FKG argument implies that there exist a
positive constant C such that

inf
v∈V

Mp,h(v) ≥ pC sup
v∈V

Mp,h(v) (5.6)

for every h > 0 and 0 < p < 1. It is proven in [6] (and follows from eq. (1.3)) that if G is
quasi-transitive and satisfies the triangle condition then

Mpc,h(v) �
√
h as h ↓ 0, (5.7)

and in fact the lower bound of (5.7) holds for every quasi-transitive graph [1]. (Some
aspects of the proof of [6] are specific to the case of Zd, see [25, Section 7] for an
overview of the changes needed to handle arbitrary quasi-transitive graphs.)
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We begin the proof of Theorems 5.1 and 5.2 with the following lemma, which
is inspired by and based closely on [32, Lemma 6.1]. Given 0 < p < 1 and h =

(h1, h2, . . . , h`) ∈ (0,∞)`, we write Pp,h for the joint law of G[p] and ` mutually indepen-
dent ghost fields G1, . . . ,G` of intensities h1, . . . , h`.

Lemma 5.3. Let G = (V,E) be a connected, graph with degrees bounded by M , let
` ≥ 2, and let v1, . . . , v` be vertices of G. Then

Pp,h ({v1 ↔ G1} ◦ · · · ◦ {v` ↔ G`})

≥
∏̀
i=1

[
inf
v∈V

Mp,hi
(v)

]
− 4M

p2

(
`− 1

2

)∏̀
i=1

[
sup
v∈V

Mp,hi
(v)

]
sup

1≤i<j≤`
T 2
p (vi, vj),

for every 0 < p < 1 and h ∈ (0,∞)`.

Proof of Theorem 5.3. By inducting on `, it suffices to prove that

Pp,h ({v1 ↔ G1} ◦ · · · ◦ {v` ↔ G`}) ≥ Pp,h ({v1 ↔ G1} ◦ · · · ◦ {v`−1 ↔ G`−1})Pp,h (v` ↔ G`)

−4M

p2
(`− 1)

∏̀
i=1

[
sup
v∈V

Mp,hi
(v)

]
sup

1≤i<j≤`
T 2
p (vi, vj), (5.8)

for every 0 < p < 1 and h ∈ (0,∞)`.
For this proof, we will change notation and denote our percolation configuration by ω

rather than G[p]. Let ω0, ω∞ be independent copies of Bernoulli-p bond percolation on G,
independent of the ghost fields G1, . . . ,G`, and let P⊗ denote the joint law of all these
random variables. Let e1, e2, . . . be an enumeration of the edge set of G, and for each
m ≥ 0 define

ωm(ei) =

{
ω∞(ei) if i ≤ m
ω0(ei) if i > m.

For each event A ⊆ {0, 1}E × ({0, 1}V )`, and each m ∈ {0, 1, . . .} ∪ {∞}, let Am be the
event that (ωm,G1, . . . ,G`) satisfies A .

Let A = {v1 ↔ G1} ◦ · · · ◦ {v`−1 ↔ G`−1} and B = {v` ↔ G`}, and observe that

Pp,h ({v1 ↔ G1} ◦ · · · ◦ {v` ↔ G`}) = P⊗ (A0 ◦B0)

and that

Pp,h ({v1 ↔ G1} ◦ · · · ◦ {v`−1 ↔ G`−1})Pp,h (v` ↔ G`) = P⊗ (A0 ◦B∞)

= lim
m→∞

P⊗ (A0 ◦Bm) .

Thus, to prove (5.8), it suffices to prove that

∞∑
m=1

[P⊗(A0 ◦Bm)− P⊗(A0 ◦Bm−1)] ≤ 4M

p2
(`− 1)

∏̀
i=1

[
sup
v∈V

Mp,hi
(v)

]
sup

1≤i<j≤`
T 2
p (vi, vj).

Observe that on the event A0 ◦ Bm \ A0 ◦ Bm−1 we must have that ω∞(em) = 1.
Moreover, the events

A0 ◦Bm \A0 ◦Bm−1 holds, ω0(em) = 0 and ω∞(em) = 1

and

A0 ◦Bm−1 \A0 ◦Bm holds, ω0(em) = 1 and ω∞(em) = 0
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have the same probability: Indeed, the proof of the BK inequality (see in particular the
presentation in [16, Section 2.3]) establishes that there is a measure-preserving bijection
between these sets. Thus, we have that

P⊗(A0 ◦Bm)− P⊗(A0 ◦Bm−1)

= P⊗(A0 ◦Bm \A0 ◦Bm−1)− P⊗(A0 ◦Bm−1 \A0 ◦Bm)

≤ P⊗(A0 ◦Bm \A0 ◦Bm−1, ω0(em) = ω∞(em) = 1).

We write Em for the event that A0◦Bm\A0◦Bm−1 occurs and that ω0(em) = ω∞(em) = 1.
Suppose that Em occurs. Since A0 ◦ Bm occurs there exists a collection of edge-

disjoint ω0-open paths γ1, . . . , γ`−1 such that γi connects vi to Gi for each 1 ≤ i ≤ `−1 and
an ωm-open path γ` connecting v` to G` such that γ` does not traverse any of the edges
in {em+1, em+2, . . .} that are traversed by one of the paths γ1, . . . , γ`−1. (Indeed, such
paths exist if and only if A0 ◦Bm holds.) On the other hand, since ω0(em) = ω∞(em) = 1

and A0 ◦Bm−1 does not hold, we must have that the edge em is traversed both by γ`
and γj for some 1 ≤ j ≤ ` − 1. Write Em,j ⊆ Em for the event that Em holds and that
the paths γ1, . . . , γ` can be chosen so that em is traversed by both γ` and γj , so that

Em =
⋃`−1
j=1 Em,j . On the event Em,j , the events {v` ↔ {e−m, e+

m} in ωm}, {vj ↔ {e−m, e+
m} in

ωm−1}, {G` ↔ {e−m, e+
m} in ωm}, and {Gj ↔ {e−m, e+

m} in ωm−1} all occur disjointly. (Here,
the notion of disjoint occurence refers to the big product space ({0, 1}E)2 × ({0, 1}V )`

on which (ω0, ω∞,G1, . . . ,G`) is defined.) Moreover, the events {vi ↔ Gi in ωm−1} for
i /∈ {j, `} also occur disjointly from each other and from these events. Thus, we may
apply the BK inequality to deduce that

P⊗(A0 ◦Bm)− P⊗(A0 ◦Bm−1) ≤
`−1∑
j=1

Pp(v` ↔ {e−m, e+
m})Pp(vj ↔ {e−m, e+

m})

·Pp,h`
(G ↔ {e−m, e+

m})Pp,hj (G ↔ {e−m, e+
m})

∏
i/∈{j,`}

Mp,hi(vi),

which is at most

4

`−1∑
j=1

Pp(v` ↔ {e−m, e+
m})Pp(vj ↔ {e−m, e+

m})
∏̀
i=1

[
sup
v∈V

Mp,hi(v)

]
.

The claim now follows by noting that Pp(v ↔ {e−m, e+
m}) ≤ 1

pPp(v ↔ e−m) for every v ∈ V
and m ≥ 1 by the Harris-FKG inequality, and hence that

∞∑
m=1

Pp(v` ↔ {e−m, e+
m})Pp(vj ↔ {e−m, e+

m})

≤ 1

p2

∑
w∈V

deg(w)Tp(v`, w)Tp(w, vj) ≤
M

p2
T 2
p (v`, vj).

Remark 5.4. Theorem 5.3, and the proof of [32, Lemma 6.1] that inspired it, are
remarkable as a rare instance where it is the convergence of the bubble diagram rather
than the triangle diagram that is indicative of mean-field type behaviour for percolation.
In particular, if 0 denotes the origin in Zd, it seems one should expect that

Ppc
(
there exist two disjoint open paths from 0 to ∂[−n, n]d

)
� Ppc

(
0↔ ∂[−n, n]d

)2
not just for d > 6, but also for some d slightly smaller than 6, possibly including d = 5.
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Next, we compare the probability that the events all occur disjointly to the probability
that the events all hold with all clusters distinct.

Lemma 5.5. Let G = (V,E) be a connected, locally finite graph, let ` ≥ 2, and let
v1, . . . , v` be vertices of G. Then

Pp,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ n)

≥ Pp ({v1 ↔ G1} ◦ · · · ◦ {v` ↔ G`})− 2

(
`− 1

2

)∏̀
i=1

[
sup
v∈V

M `
p,hi

(v)

]
sup

1≤i<j≤`
T 3
p (vi, vj)

for every 0 < p < 1 and h ∈ (0,∞)`.

Proof of Theorem 5.5. Let A be the event that Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for
every 1 ≤ i ≤ n, and let B be the event {v1 ↔ G1} ◦ · · · ◦ {v` ↔ G`}. Clearly A ⊆ B.
Suppose that B \A occurs. Since B occurs, there must exist a collection of edge-disjoint
open paths γ1, . . . , γ` such that γi connects vi to a vertex of Gi. (Note that we may have
that vi ∈ Gi, in which case we may take γi to be a degenerate length zero path.) On the
other hand, since A does not occur, there must exist an open path γ connecting two
distinct vertices from the set {v1, . . . , v`}. Suppose that this path γ starts at the vertex
vj1 , and let γ′ be the segment of γ between the last time it visits a vertex visited by γj1
and the first subsequent time that it visits a vertex visited by one of the paths γi for
i 6= j1. Call these two vertices w1 and w2, and let j2 6= j1 be such that γj2 visits w2. (It
may be that w1 = w2, in which case γ′ has length zero.)

Observe that, with this choice of j1, j2, w1 and w2, we have that the events {vj1 → w1},
{vj2 ↔ w2}, {w1 ↔ w2}, {w1 ↔ Gj1}, and {w2 ↔ Gj2} all occur disjointly. Moreover, the
events {vi ↔ Gi} for i /∈ {j1, j2} also occur disjointly from each other and from these
events. Thus, applying the BK inequality and summing over the possible choices of
j1, j2, w1, and w2, we obtain that

Pp,h(B \A ) ≤∑
w1,w2∈V

∑̀
j1=1

∑
j2 6=j1

Tp(vj1 , w1)Tp(w1, w2)Tp(w2, vj2)Mp,hj1
(w1)Mp,hj2

(w2)
∏

i/∈{j1,j2}

Mp,hi
(vi)

≤ `(`− 1) sup
1≤i<j≤`

T 3
p (vi, vj)

∏̀
i=1

[
sup
v∈V

Mp,hi
(v)

]
,

concluding the proof.

We are now ready to prove Theorems 5.1 and 5.2.

Proof of Theorem 5.1. It suffices to prove the lower bound, since the upper bound is
an immediate consequence of (1.3) and the BK inequality. Fix ` ≥ 1, and let C1 be
the constant from (5.6). Let 0 < p < 1 and let h = (h1, . . . , h`) ∈ (0,∞)`. Let G[p] be
Bernoulli-p bond percolation, let G1, . . . ,G` be independent ghost fields of intensities
h1, . . . , h` > 0, and write Pp,h for the joint law of G[p] and G1, . . . ,G`. Since G is quasi-
transitive and ∇pc <∞, we have by the result of [30] that the open triangle condition
also holds, so that for every ε > 0 there exists r <∞ such that if u, v have distance at
least r in G then T 3

pc(u, v) ≤ ε. In particular, it follows that there exists K(`) such that if
u, v are vertices of G with distance at least K(`) then

T 2
pc(u, v) ≤ T 3

pc(u, v) ≤ p2+C1`
c

64M`2
,
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where M is the maximum degree of G. (Note that if pc < p2→2 we can take K(`) to be
O(`), and if G is transitive with pc < p2→2 we can take K(`) to be O(log `).) With this
choice of K(`), we deduce from Theorems 5.3 and 5.5 that if v1, . . . , v` are such that
d(vi, vj) ≥ K(`) for every 1 ≤ i < j ≤ `, then

Ppc,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ `) ≥ 1

2

∏̀
i=1

[
inf
v∈V

Mp,hi(v)

]
for every h1, . . . , h` > 0. Since G is quasi-transitive, we may apply the lower bound
of (5.7) to deduce that there exists a constant c1 such that

Ppc,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ `) ≥ c`1
∏̀
i=1

√
hi. (5.9)

On the other hand, the BK inequality implies that

Ppc,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ `) ≤
∏̀
i=1

sup
v∈V

Mpc,hi
(v),

and hence by (5.7) that, since ∇pc <∞, there exists a constant C2 such that

Ppc,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ `) ≤ C`2
∏̀
i=1

√
hi (5.10)

for every h1, . . . , h` > 0.
It remains to convert the magnetization estimates (5.9) and (5.10) into the claimed

estimate (5.1). Let δ` > 0 be a sufficiently small that

1− e−δ`
(1− e−1)

√
δ`
≤ c`1

2`C`2
,

where c1 and C2 are the constants from (5.9) and (5.10) respectively. Let n1, n2, . . . , n` ≥ 1

and let hi = δ`/ni for each 1 ≤ i ≤ `. Let D be the event that Kv1 , . . . ,Kv` are disjoint,
let A be the event that vi ↔ Gi for every i ≥ 1, and let B be the event that |Kvi | ≥ ni for
every i ≥ 1. Then we have that

Ppc,h(A ∩D) ≤ Ppc,h (B ∩D) +
∑̀
j=1

P(A ∩D ∩ {|Kvj | ≤ nj}).

For each 1 ≤ i, j ≤ ` let hi,j be defined by hi,j = hi if i 6= j and hj,j = 1/nj , and let
hj = (h1,j , . . . , h`,j). Then for each 1 ≤ j ≤ n we can write

Ppc,h(A ∩D ∩ {|Kvj | ≤ nj}) = Epc

[
1
(
D ∩ {|Kvj | ≤ nj}

) ∏̀
i=1

(
1− e−hi|Kvi

|
)]

= Epc

[
1
(
D ∩ {|Kvj | ≤ nj}

) 1− e−hj |Kvj
|

1− e−hj,j |Kvj
|

∏̀
i=1

(
1− e−hi,j |Kvi

|
)]

from which it follows that

Ppc,h(A ∩D ∩ {|Kvj | ≤ nj}) ≤
1− e−δ`
1− e−1

Epc

[
1 (D)

∏̀
i=1

(
1− e−hi,j |Kvi

|
)]

=
1− e−δ`
1− e−1

∑̀
j=1

Ppc,hj
(A ∩D).

EJP 25 (2020), paper 127.
Page 21/27

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP525
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The L2 boundedness condition in nonamenable percolation

Applying (5.10) we deduce that

P(A ∩D ∩ {|Kvj | ≤ nj}) ≤
1− e−δ`
1− e−1

C`2
∏̀
i=1

√
hi,j =

1− e−δ`
(1− e−1)

√
δ`
C`2
∏̀
i=1

√
hi

and hence by (5.9) that

Ppc,h(B ∩D) ≥ P(A ∩D)−
∑̀
j=1

P(A ∩D ∩ {|Kvj | ≤ nj})

≥
[
c`1 −

1− e−δ`
(1− e−1)

√
δ`
`C`2

] ∏̀
i=1

√
hi ≥

c`1
2

∏̀
i=1

√
hi.

It follows that

Ppc (Kv1 , . . . ,Kv` are disjoint and |Kvi | > ni for every 1 ≤ i ≤ `) ≥
c`δ

`/2
`

2

∏̀
i=1

n
−1/2
i

for every n1, . . . , n` ≥ 1 and v1, . . . , v` with d(vi, vj) ≥ K(`) for every 1 ≤ i < j ≤ `.

Proof of Theorem 5.2. It suffices to prove the lower bound, since the upper bound is
an immediate consequence of (1.2) and the BK inequality. Fix ` ≥ 1, and let C1 be the
constant from (5.6). Let 0 < p < 1 and let h > 0. Let G[p] be Bernoulli-p bond percolation,
let G1, . . . ,G` be independent ghost fields of intensity h > 0, and write Pp,h for the joint
law of G[p] and G1, . . . ,G`. Fix pc < p0 < p2→2. As in the proof of Theorem 5.1, there
exists K(`) such that if u, v are vertices of G with distance at least K(`) then we have
by Theorems 5.3 and 5.5 that

T 2
p (u, v) ≤ T 3

p (u, v) ≤ p2+C1`
c

64M`2
,

for every 0 ≤ p ≤ p0, where M is the maximum degree of G. Thus, if v1, . . . , v` satisfy
d(vi, vj) ≥ K(`) for every 1 ≤ i < j ≤ `, then

Pp,h (Kv1 , . . . ,Kv` are disjoint and vi ↔ Gi for every 1 ≤ i ≤ `) ≥ 1

2

[
inf
v∈V

Mp,h(v)

]`
for every 0 ≤ p < p0 and h > 0. Taking the limit as h ↓ 0, we obtain that

Pp(v1, . . . , v` are all in distinct infinite clusters) ≥ 1

2

[
inf
v∈V

Pp(|Kv| =∞)

]`
for every 0 ≤ p < p0 and v1, . . . , v` satisfying d(vi, vj) ≥ K(`) for every 1 ≤ i < j ≤ `.
Thus, we may deduce (5.2) from (1.2).

We now deduce the lower bounds of (5.3) and (5.4) from the lower bound of (5.2).
First, notice that

Ppc+ 1
n

(Kv1 , . . . ,Kv` are disjoint and radint(Kvi) ≥ n for every 1 ≤ i ≤ `)

≥ Ppc+ 1
n

(v1, . . . , v` are all in distinct infinite clusters) �` n−`

for every n ≥ 1 and every v1, . . . , v` satisfying d(vi, vj) ≥ K(`) for every 1 ≤ i < j ≤ `:
the first inequality is trivial and the second follows from (5.2). Now consider coupling
percolation at pc and pc+ 1

n in the standard monotone fashion. If the clusters of v1, . . . , v`
are all distinct with intrinsic radius at least n in percolation at pc+ 1

n , then the conditional
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probability that this continues to hold in percolation at pc is at least [pc/(pc + 1
n )]n`. To

see this, take a length-n intrinsic geodesic from vi in each (pc + 1
n )-cluster, and observe

that, for the property to no longer hold at pc, at least one edge in at least one of these
geodesics must change from open to closed when we move from pc + 1

n to pc. Thus, we
deduce that

Ppc(Kv1 , . . . ,Kv` are disjoint and radint(Kvi) ≥ n for every 1 ≤ i ≤ `)

≥
[

pc

pc + 1
n

]n`
Ppc+ 1

n
(Kv1 , . . . ,Kv` are disjoint and radint(Kvi) ≥ n for every 1 ≤ i ≤ `),

so that the lower bound of (5.3) follows from the lower bound of (5.2). Finally, the lower
bound of (5.4) can be deduced from the lower bound of (5.3) using Theorem 3.2 in a very
similar manner to the proof of Theorem 3.1.

Let G be a connected, locally finite graph and consider a Bernoulli bond percolation
G[p] on G. A vertex v of G is said to be a furcation point if Kv is infinite and deleting v
would split Kv into at least three distinct infinite clusters, and say that v is a trifurcation
point if deleting v would split Kv into exactly three distinct infinite clusters. These
points come up memorably in the Burton-Keane [10] proof of uniqueness of the infinite
cluster in amenable transitive graphs, where it is argued that if G[p] has infinitely
many infinite clusters, then it must have furcation points; see also [37, Section 7.3].
Using Theorem 5.2 allows one to make this proof quantitative, leading to the following
corollary. (Note that the upper bound follows trivially from (1.2) and the BK inequality.)

Corollary 5.6. Let G be a connected, locally finite, quasi-transitive graph, and suppose
that pc < p2→2. Then there exists a vertex v of G such that

Pp
(
v is a trifurcation point

)
� (p− pc)3 as p ↓ pc.

(Note that, under the triangle condition, being a furcation point but not a trifurcation
point has probability of order at most (p− pc)4 as p ↓ pc by (1.2) and the BK inequality.)

6 Applications to percolation in the hyperbolic plane

In this section we apply the results of the previous sections to study percolation on
quasi-transitive nonamenable simply connected planar maps with locally finite dual. In
particular, we apply duality arguments to compute various critical exponents governing
the geometry of clusters at the uniqueness threshold pu.

Let us now briefly recall the relevant terminology. A (locally finite) map is a connected,
locally finite graph G together with an equivalence class of proper embeddings of G
into orientable surfaces (without boundary), where we consider two embeddings to
be equivalent if there is an orientation preserving homeomorphism between the two
surfaces sending one embedding to the other. A map is said to be simply connected
if the surface it is embedded in is (in which case it is homeomorphic to the plane or
the sphere). Maps can also be defined combinatorially as graphs equipped with cyclic
orderings of the oriented edges emanating from each vertex. Every map M has a dual
M† whose vertices are the faces of M and whose faces correspond to the vertices of M ,
and there is a natural bijection between the edges of M and the edges of M† sending
each edge e of M to the unique edge e† of M† that crosses e. See [35] or [4, Section
2.1] for further background. Let us remark again that if M is a simply connected,
quasi-transitive, locally finite, nonamenable map then it is Gromov hyperbolic [13] and
hence has pc < p2→2 by the results of [23].

Let M be a map with locally finite dual M†. Observe that if ω is distributed as
Bernoulli-p bond percolation on M , then the configuration ω† ∈ {0, 1}E† defined by
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ω†(e†) = 1 − ω(e) is distributed as Bernoulli-(1 − p) percolation on M†. This duality
is extremely useful in the case that M is simply connected. In particular, Benjamini
and Schramm proved that if M is a nonamenable, quasi-transitive, locally finite, simply
connected map with locally finite dual, then

pu(M) = 1− pc(M†) and 0 < pc(M) < pu(M) < 1. (6.1)

See also the earlier work of Lalley [33].
We now apply this duality to deduce various results about percolation at pu on M by

converting them into results about critical percolation on M†. Given two vertices x and
y that are in the same cluster, we write ConRad(x, y) for the minimal r such that x and y
are connected by an open path in the union of extrinsic balls B(x, r) ∪B(y, r).

Theorem 6.1. Let M be a connected, locally finite, nonamenable, quasi-transitive,
simply connected planar map with locally finite dual. Then

sup
x∼y

Ppu
[
dint(x, y) ≥ n | x↔ y

]
� n−1 and

sup
x∼y

Ppu
[
ConRad(x, y) ≥ n | x↔ y

]
� n−2

where the suprema are taken over all neighbouring pairs of vertices in M .

The reader may find it interesting to compare these exponents to the correspond-
ing exponents for the free uniform spanning forest [28], which are 1/2 and 1 respec-
tively. Theorem 6.1 is complemented by subsequent work of the author with Hermon
[19], which establishes in particular that, under the hypotheses of Theorem 6.1, for every
p ∈ (0, pu) ∪ (pu, 1), there exists a constant cp > 0 such that

Pp
[
dint(x, y) ≥ n | x↔ y

]
≤ e−cpn (6.2)

for every n ≥ 1 and every pair of neighbouring vertices x and y. Finally, we remark
that Theorem 6.1 settles a problem raised by Gabor Pete [43, Exercise*** 12.68].

Note that the lower bounds of Theorem 6.1 cannot be strengthened to apply to every
edge, since the local geometry of the graph might make it impossible for the endpoints
of some edges to be in distinct large clusters. The proof shows that the lower bound
holds whenever the edge dual to that between x and y lies on a doubly infinite geodesic
in M†.

Proof of Theorem 6.1. Let ω be pu percolation on M . Then ω† is pc percolation on M†

and consequently has only finite clusters by the results of [7, 21] since M† is quasi-
transitive and nonamenable. Let e be an edge of M , let f and g be the two faces of M
on either side of e, and let K1 and K2 be the clusters of f and g in ω† \ {e†} respectively.
Observe that if x and y are connected in ω with dint(x, y) > 1 then we must have that
ω(e) = 0 and that K1 6= K2, since otherwise the path between f and g in ω† \ {e†} would
disconnect x from y. Moreover, we claim that there exist positive constants c, C such
that

cmin{|K1|, |K2|} ≤ dint(x, y) ≤ C min{|K1|, |K2|} (6.3)

and

cmin{diam(K1),diam(K2)} ≤ ConRad(x, y) ≤ C min{diam(K1),diam(K2)} (6.4)

on this event. Indeed, if η is any open path from x to y in ω \{e} then η∪{e} forms a cycle
that surrounds one of the two clusters K1 or K2. The lower bound of (6.3) follows by
nonamenability of M together with the fact that M and M† both have bounded degrees,
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these facts together implying that any simple cycle in M must have length comparable to
the number of faces it bounds. For the upper bound of (6.3), we note that the collection
of dual edges other than e in the boundary of Ki must contain a primal path from x to y
on the event that K1 and K2 are distinct. Thus, dint(x, y) is at most this number of dual
edges, which is at most a constant multiple of |Ki| since M† has bounded degrees. The
bounds of (6.4) follow by similar arguments.

The upper bounds of the theorem follow immediately from the estimates (6.3), (6.4),
the bounds (1.3) and of Theorem 3.1 (applied to M†) together with the BK inequality. On
the other hand, the lower bounds are very close to those of Theorems 5.1 and 5.2 and
can be deduced from those theorems via a finite energy argument. We will give only a
brief sketch of how this is done; an essentially identical argument is given in detail in the
proof of [22, Theorem 1.3]. By Theorems 5.1 and 5.2 applied to M†, there exist positive
constants c and k such that if f, g are faces of M with distance at least k (in M†) then

P(Kf ,Kg distinct and |Kf |, |Kg| ≥ n) ≥ c

n

and

P(Kf ,Kg distinct and diam(Kf ),diam(Kg) ≥ n) ≥ c

n2
.

Fix two such f and g. If we start with a configuration in which Kf and Kg are distinct
and then force the edges along the geodesic in M† between f and g to be open one
at a time, there must be some first time when the two clusters merge when the next
edge is added. At the time immediately before this one, the edge about to be added
has endpoints in distinct clusters, both of which are at least as large (both in terms of
volume and diameter) as Kf and Kg were in the original configuration. Since there are
a constant number of choices of what this edge could be, and since forcing a bounded
number of edges to be included in the percolation configuration increases probabilities
of events by at most a constant, the claim follows.

Remark 6.2. Outside of the planar case, the behaviour of percolation at pu is very poorly
understood. In particular, no good characterisation of whether or not there is uniqueness
at pu is known. It is known that quasi-transitive simply connected planar maps have
uniqueness at pu, but that graphs defined as infinite products [42] and Cayley graphs
of infinite Kazhdan groups [38] have nonuniqueness at pu. It is open whether uniform
lattices in Hd with d ≥ 3 have nonuniqueness at pu or not. Indeed, this is also open for
transitive graphs that are rough-isometric to H2 but are not planar. In [23, Section 6] it
is shown that there is always nonuniqueness at p2→2, and one possibility is that there is
uniqueness at pu if and only if pu > p2→2.
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