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Abstract

We study long time behavior of integrated trawl processes introduced by Barndorff-
Nielsen (2011). The trawl processes form a class of stationary infinitely divisible
processes, they are described by an infinitely divisible random measure (Lévy base)
and a family of shifts of a fixed set (trawl). We assume that the Lévy base is sym-
metric and homogeneous and that the trawl set is determined by the trawl function
that decays slowly. Depending on the geometry of the trawl set and on the Lévy
measure corresponding to the Lévy base we obtain various types of limits in law of
the normalized integrated trawl processes for large times. The limit processes are
always stable and self-similar with stationary increments. In some cases they have
independent increments – they are stable Lévy processes where the index of stability
depends on the parameters of the model. We show that stable limits with stability
index smaller than 2 may appear even in cases when the underlying Lévy base has all
its moments finite. In other cases, the limit process has dependent increments and it
may be considered as a new extension of fractional Brownian motion to the class of
stable processes.
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1 Introduction

Trawl processes form a class of stationary infinitely divisible processes. They first
appeared in the work of Wolpert and Taqqu [15] where the term “upstairs representation”
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was used. Then, they were independently introduced by Barndoff-Nielsen in [1] under
the name of trawl processes. These processes were studied further in [5], [3], [10]
and [14]. Trawl processes form a subclass of so-called ambit processes, which are
useful in modelling of various phenomena, for example turbulence in physics, tumor
growth in medicine, some aspects of financial mathematics, in particular related to
volatility/intermittency. The book [4] contains an exposition on trawl processes, general
ambit processes and their applications. Discrete time counterparts of trawl processes
were investigated in [9].

Trawl processes are defined in the following way: suppose that Λ is a homogenous
Lévy basis on R2, that is, an infinitely divisible independently scattered random measure
on R2, and let A be a Borel subset of R2 with finite Lebesgue measure. Let At denote A
shifted by the vector (0, t), At := A+ (t, 0). A trawl process is the process of the form

Xt = Λ(At), t ∈ R. (1.1)

The set A is called a trawl. Since Λ is homogeneous and infinitely divisible, the process
(Xt)t≥0 is stationary and infinitely divisible. To any Lévy basis there corresponds a
Lévy process L = (L(t))t≥0 (a process with stationary and independent increments). L
can be taken e.g. as L(t) := Λ([0, t] × [0, 1]). The process L is called Lévy seed. The
one-dimensional distributions of Xt are determined by the choice of the Lévy seed and
the dependence structure of a trawl process depends on the shape of the set A.

The processes of the form (1.1) are interesting mainly because they form a large class
of processes that allows to model independently of each other the marginal distributions
and the dependence structure.

Typically, the set A is determined by a trawl function g : [0,∞) → [0,∞) with∫∞
0
g(s)ds <∞. More precisely we define

A := {(x, y) : x ≤ 0, y ≤ g(−x)}

and then

At = A+ (t, 0) = {(x, y) : x ≤ t, 0 ≤ y ≤ g(t− x)}. (1.2)

In the present paper we will investigate the behaviour of the integrated trawl process.
More precisely, we study the convergence in law of the rescaled integrated trawl process

YT (t) =
1

FT

∫ Tt

0

Xsds, (1.3)

as T →∞, where FT is an appropriate norming, chosen so that there exists a non-trivial
limit in law.

It seems quite clear that if g vanishes sufficiently quickly, then the increments of
YT become asymptotically independent. A more interesting situation is when g decays
slowly, which will be the object of the current study. We will assume that the function g
in (1.2) is strictly decreasing, integrable and has a continuous derivative, that for large t
behaves as const× t−2−γ , for some 0 < γ < 1. Typically one can think of g of the form
C(1 + t)−1−γ . It is known (see [10]) that if g is regularly varying at infinity with index
−1− γ, with γ ∈ (0, 1), then the corresponding trawl process is long range dependent.

Depending on the interplay between the type of decay of g and the underlying Lévy
measure of the Lévy base Λ we show that the limit in law of (1.3) can be either a
continuous stable process with dependent increments or a stable Lévy process with
index of stability depending on the parameters of the model.
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1.1 Background

Let us briefly describe the history of this problem and related results. In [10]
Grahovac, Leonenko and Taqqu studied the behaviour of the integrated trawl process

Z(t) =

∫ t

0

Xsds, (1.4)

with assumption that the trawl function was regularly varying at infinity with the expo-
nent 1 + γ where 0 < γ < 1. It was also assumed that the underlying Lévy seed process
had exponential moments.

It was shown that if one defines

τ∗(q) := lim
t→∞

log
(
E|Z(t)|q

)
log t

, (1.5)

then there exists q∗ ≥ 0 such that for any q∗ ≤ q one has τ∗(q) = q − γ. This implies that
for q∗ ≤ p < q

τ∗(p)

p
<
τ∗(q)

q
.

This property is known as intermittency. In particular, intermittency implies that if the
process YT given by (1.3) converges in the sense of finite dimensional distributions as
T →∞ to some process (Zt)t≥0, then it is impossible to have convergence of all moments

lim
T→∞

E

∣∣∣YT (t)

FT

∣∣∣q = E|Z(t)|q

for all q > q∗ and t > 0. This follows form the fact that Z would have to be self-similar

with index H, i.e., (Z(ct))t≥0
d
= cH(Z(t))≥0 for all c > 0, and FT of the form FT = THL(T )

for some H > 0 and a function L which is slowly varying at +∞, hence τ(q)
q would have

to be constant. A natural question for us was to try to identify the limit process. Indeed,
as we shall see later, this corresponds to the situation of our Theorem 2.7, where the
limit process of (1.3) is a stable process, with the stability parameter depending on the
type of decay of the trawl function, even though Xt has all moments finite.

Another related paper is [9], where discrete time, integer valued trawl processes
have been considered. They are of the form

Xk =

∞∑
j=0

γk−j(aj) k ∈ Z,

where γk = (γk(u))u∈R are i.i.d. copies of some process γ = (γ(u))u∈R with γ(u) → 0

in probability as u → 0, and aj ∈ R, j ∈ N, limj→∞ aj = 0. (Xk) is the trawl process
corresponding to the seed process γ. In [9] the behaviour of the process of partial sums

Sn(t) =
1

Fn

dnte∑
k=1

(
X(k)− EX(k)

)
was investigated as n → ∞ with an appropriate norming Fn. The authors considered
the seed process with finite variance. Depending on the behaviour of the seed process
and the trawl function (aj) various limits are obtained, either Gaussian limits: fractional
Brownian motion and Brownian motion, or stable limits: α-stable Lévy process. In
particular, long memory trawl function aj ∼ j−α, α ∈ (1, 2) and the standard Poisson
seed process γ leads to α-stable Lévy process, even though with different norming the
covariances converge to those of a fractional Brownian motion.
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1.2 Description of the results

In this section we briefly describe our results. For precise statements of our theorems
in their general form see Section 2. We study the behaviour of the rescaled integrated
trawl process YT given by (1.3). Our basic assumption is that At is of the form (1.2)
with the trawl function g : [0,∞)→ [0,∞) which is integrable, strictly decreasing, has
a continuous first derivative such that for large t we have g′(t) ∼ −const × t−2−γ for
some 0 < γ < 1 (this corresponds to the assumption in [9] that aj ∼ j−1−γ and to the
assumptions made in [10]). In the latter paper the assumptions on g were slightly less
restrictive – g′ regularly varying at +∞, but no limit in law theorems were established.

We consider a homogeneous Lévy base Λ such that for every A ∈ B(R2) (a Borel
subset of R2) with finite Lebesgue measure, Λ(A) is symmetric and does not have a
Gaussian component, that is

E exp(iθΛ(A)) = exp{−|A|ψ(θ)}, (1.6)

where |A| is the Lebesgue measure of A, ψ is the Lévy exponent

ψ(θ) =

∫
R

(
1− eiθy + iθu1{|y|<1}

)
ν(dy), (1.7)

and ν is a Lévy measure, i.e., a Borel measure on R satisfying∫
R

1 ∧ |y|2ν(dy) <∞, (1.8)

with ν({0}) = 0. We assume that ν is symmetric, hence (1.7) can be written as

ψ(θ) =

∫
R

(1− cos(θy))ν(dy), θ ∈ R. (1.9)

The assumption of symmetry simplifies some parts of the proofs, as well as assumptions
of the theorems formulated below, but we expect that it is not essential and it should be
possible to obtain analogous results in the non symmetric case, with the limit processes
being not symmetric, but skewed.

Depending on the behaviour of the Lévy measure ν, or equivalently, on the behaviour
of the Lévy exponent ψ, we obtain several types of limits for YT . All the limits are
of course self-similar with stationary increments. We observe a phase transition –
depending on the parameters of the model, the limit process may be an α-stable process
with dependent increments (α depends on ν) or a stable Lévy process with index of
stability which may be either 1 + γ or smaller, depending on ν.

For example, consider the case when Λ is the standard independently scattered
symmetric α-stable random measure with Lebesgue control measure (i.e., ν(dx) =
const
|x|1+α dx and ψ(x) = |x|α, 0 < α < 2).

• If α > 1 + γ then FT = T 1−γ/α and for any τ > 0 the process YT converges in law
in C[0, τ ] to an α-stable process with dependent increments, which is of the form
constant times the process

Y (t) =

∫ ∞
0

∫ ∞
0

(
r+ ∧ t− (r − u)+ ∧ t

)
u−

2+γ
α Mα(drdu), (1.10)

where Mα is a symmetric α-stable random measure on R2
+ with Lebesgue control

measure. The integral is understood in the sense of [13]. The process Y is self-
similar with self-similarity index H = 1− γ

α , it has stationary increments and it is
α-stable, hence it may be thought of as yet another extension of fractional Brownian
motion.
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• If 0 < α < 1 + γ, then with the norming FT = T 1/α we have

YT
f.d.d.⇒ Kξ(α), (1.11)

where ξ(α) is a symmetric α-stable Lévy process and K is some finite constant.

(
f.d.d.⇒ stands for convergence of finite dimensional distributions.)

• In the critical case α = 1 + γ we also have convergence (1.11) but the larger
norming FT = T

1
α log T . The appearance of the logarithm term is typical for the

critical cases in many models.

Another simple example covered by our techniques is the following:

• Suppose that ν is a finite measure such that∫
R

|x|κν(dx) <∞

for some κ > 1+γ. For example, Λ can be a difference of two homogeneous Poisson
random measures on R2. In this case the norming is FT = T

1
1+γ and the limit

process is an (1 + γ)-stable Lévy process. Note that the latter result corresponds
to the one obtained in [9] in the discrete time setting.

In the next section we formulate our results in their general form. Depending on the
interplay of the Lévy measure ν and the trawl function g, in the limit we obtain either
the process Y given by (1.10) or stable Lévy processes.

The paper is organised as follows: in Section 2 we recall some of the basic notions
and we state the results. Section 3 contains the proofs. There we start with the general
scheme, later applying it to prove our theorems.

Notation. By C,C1, C2, . . . we denote generic positive constants, whose value is not
important to us. These constants may be different in different formulas. To help the
reader we often write C1, C2, . . . to indicate that the constant changes from line to line.

f.d.d.⇒ denotes convergence of finite dimensional distributions.
C([0, τ ]) with τ > 0 stands for the space of continuous functions from [0, τ ] to R.

2 Results

We assume that ν is a symmetric Lévy measure on R. That is, ν is symmetric and
satisfies (1.8). We consider a homogeneous Lévy basis Λ on R2 corresponding to ν, that
is a family

(
Λ(A)

)
A∈E of real-valued random variables where E denotes the class of Borel

subsets of R2 with finite Lebesgue measure. Λ satisfies the following conditions:

1. Λ is an independently scattered random measure, i.e., for any A1, A2, . . . ∈ E
with Aj ∩ Ai = ∅ if i 6= j, Λ(A1),Λ(A2), . . . are independent and if additionally⋃∞
j=1Aj ∈ E , then

Λ
( ∞⋃
j=1

Aj
)

=

∞∑
j=1

Λ(Aj) a.s.

The series on the right converges almost surely.
2. For any A ∈ E

E exp
(
iθΛ(A)) = exp(−|A|ψ(θ)

)
, θ ∈ R, (2.1)

where |A| denotes the Lebesgue measure of A and ψ is the Lévy exponent corre-
sponding to ν:

ψ(θ) =

∫
R

(1− cos(θu))ν(du). (2.2)

ψ has this simple form because we have assumed the symmetry of ν. Also, in our
setting there is no drift or diffusion part.
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Integrals of deterministic functions with respect to general Lévy bases were defined
and studied in [12]. In our simple case, if a measurable function f : R2 → R satisfies∫

R2

∫
R

(
uf(x))2 ∧ 1

)
ν(du)dx <∞, (2.3)

then the integral I(f) =
∫
R2 f(x)Λ(dx) is well defined and

E exp(iθI(f)) = exp
(
−
∫
R2

∫
R

(
1− cos(θuf(x))

)
ν(du)dx

)
(2.4)

(see [RR] and [11] Appendix B.1.5).
In particular, if Λ is a symmetric α-stable random measure, denoted by Mα, that is

corresponding to, ψ(x) = |x|α, and ν(dx) = Cα
|x|α , then I(f) =

∫
R2 fdMα is the integral

considered in [13]. In this case I(f) is well defined if∫
R2

|f(x)|α dx <∞ (2.5)

and

E exp
(
iθ

∫
R2

fdMα

)
= exp

(
−
∫
R2

|f(x)|α dx
)
. (2.6)

We consider the trawl process described in the introduction. Suppose that g : [0,∞)→
[0,∞) is a continuous, integrable, strictly decreasing function. We define

A := {(x, y) : x ≤ 0, y ≤ g(−x)},
At = {(x, y) : x ≤ t, 0 ≤ y ≤ g(t− x)}

and set
Xt = Λ(At), t ≥ 0.

For T ≥ 1 we put

YT (t) =
1

FT

∫ Tt

0

Xsds, t ≥ 0, (2.7)

where FT is an appropriate norming, which will be specified later. Our basic assumption
on the trawl function g is the following.

Assumption (G). Assume that the trawl function g is continuous, integrable, strictly
decreasing, continuously differentiable on (0,∞) and its derivative satisfies

lim
x→∞

x2+γ |g′(x)| = Cg, (2.8)

for some γ ∈ (0, 1) and Cg > 0.

Example 2.1. The function g(x) = C
(1+x)1+γ satisfies Assumption (G). For this function

the proofs can be somewhat simplified since g satsifies additionally

sup
x>0

x2+γ |g′(x)| ≤ C1.

Now we are ready to state our main results.

2.1 Long range dependence regime

Theorem 2.2. Suppose that assumption (G) is satisfied and that there exists 1+γ < α < 2

and Cψ > 0 such that

lim
|x|→∞

ψ(x)

|x|α
= Cψ. (2.9)
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Moreover, assume that there exists κ > 1 + γ such that∫
|y|≥1

|y|κν(dy) <∞. (2.10)

Let YT be given by (2.7) with

FT = T
α−γ
α . (2.11)

Then, for any τ > 0, the processes YT converge in law in C([0, τ ]), as T → ∞, to the
process KY , where Y is defined by (1.10) and K = (CψCg)

1/α.

Remark 2.3. Whether or not condition (2.9) holds depends only on the behaviour of the
Lévy measure ν near 0 since for any ε > 0 the function

u 7→
∫
|x|>ε

(1− cos(ux))ν(dx)

is bounded. If near zero ν has a density h(x) such that

lim
x→0
|x|1+αh(x) = C (2.12)

for some finite positive C and α ∈ (0, 2), then (2.9) is satisfied.

Remark 2.4. For α = 2 (i.e. when Λ is a homogeneous Gaussian random measure) one
can prove a result similar to the one of Theorem 2.2. In this case the limit process turns
out to be fractional Brownian motion with Hurst coefficient 1− γ/2. Therefore, we may
think of our limit process Y as a yet another extension of fractional Brownian motion to
the realm of stable processes.

Remark 2.5. We have written a basic code to simulate the process Y . Figure 1 shows
pictures of sample paths obtained for various parameters α and γ. The interested reader
may look up the Python code on the GitHub repository.1

The process Y has dependent increments. Below we investigate the type of this
dependence in terms of the dependence exponent introduced in [7], which is related to
codifference of increments.

Recall that the dependence exponent of Y is defined by

κ̃ = inf
z1,z2∈R

inf
0≤w<v<p<t

sup{γ > 0 : DT (z1, z2;w, v, p, t) = o(T−γ) as T →∞}, (2.13)

where

DT (z1, z2;w, v, p, t) = | logEei(z1(Y (v)−Y (w))+z2(Y (T+t)−Y (T+p))

− logEeiz1(Y (v)−Y (w)) − logEeiz2(Y (T+t)−Y (T+p))|, (2.14)

see Definition 2.5 in [7]. Note that DT is the codifference of the corresponding incre-
ments. We have the following proposition.

Proposition 2.6. Assume that 1 < 1 + γ < α and let Y be given by (1.10). Then for any
z1, z2 ∈ R\{0}, 0 ≤ w < v < p < t we have

0 < lim
t→∞

T γ |DT (z1, z2;w, v, p, t)| <∞, (2.15)

hence the dependence exponent of Y is equal to γ.

The proof of this proposition is given at the end of the paper, in Section 3.7.

1https://github.com/lukasz-treszczotko/trawl_processes_limits.
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Figure 1: Simulated sample path trajectories of Y for various pairs of α and γ

2.2 Independent increments regime

Theorem 2.7. Assume (G) and either

(i)
ψ(u) ≤ C|u|κ ∧ |u|α, u ∈ R (2.16)

for some 2 ≥ κ > 1 + γ, 0 ≤ α < 1 + γ and finite constant C > 0, or

(ii) suppose that ψ is nondecreasing on [0,∞),∫
R

ψ(u)|u|−2−γdu <∞, (2.17)
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and
sup
u≥0

u2+γ |g′(u)| ≤ C (2.18)

for some finite constant C > 0.

Set
FT = T

1
1+γ . (2.19)

Then for YT given by (2.7) we have

YT
f.d.d.⇒ Kξ(1+γ), as T →∞,

where ξ(1+γ) denotes a symmetric (1 + γ)-stable Lévy process and K1+γ =

Cg
∫∞
0
ψ(u)u−2−γdu.

Remark 2.8. (a) Note that (2.16) implies (2.17). Condition (2.17) is slightly weaker, but
in order to prove convergence under this assumption, we need to assume something
more about the trawl function g.

(b) If ∫
{|x|<1}

|x|αν(dx) <∞ (2.20)

and (2.10) is satsified for 2 ≥ κ > 1 + γ > α ≥ 0, then using |1− cos(x)| ≤ 2 ∧ x2 ≤ 2|x|δ
for any 0 ≤ δ ≤ 2 we obtain

ψ(u) =

∫
{|x|<1}

(1− cos(ux))ν(dx) +

∫
{|x|≥1}

(1− cos(ux))ν(dx)

≤ 2|u|α
∫
{|x|<1}

|x|αν(dx) + 2ν({|x| ≥ 1}) ∧
(
|u|κ

∫
{|x|≥1}

|x|κν(dx)
)
,

hence (2.16) holds. In particular, if ν is a finite measure and satisfies (2.10), then (2.16)
holds. Similarly as in Remark 2.3, if near zero ν has density satisfying (2.12) and (2.10)
holds, then (2.16) is satisfied.

As a direct consequence of Theorem 2.7 we obtain the following result.

Example 2.9. If Λ = N (1) − N (2), where N (1) and N (2) are two independent Poisson
random measures on R2 with Lebesgue intensity measure, then the processes YT con-
verge in the sense of finite-dimensional distributions to a symmetric (1 + γ)-stable Lévy
process multiplied by a constant. In this case ν = λ(δ1 + δ−1) for some λ > 0 and
ψ(x) = 2λ(1 − cos(x)). This result is a symmetrized continuous time analogue of the
discrete time result of [9].

Theorem 2.10. Assume that (G) is satisfied and that there exist 0 < α < 1 + γ and a
finite constant Cα > 0 such that

lim
x→0

ψ(x)

|x|α
= Cα. (2.21)

Furthermore, assume that there exist C > 0 and 0 ≤ κ < 1 + γ such that

ψ(u) ≤ C(1 ∨ |u|κ), u ∈ R. (2.22)

Let YT be defined by (2.7) with
FT = T

1
α . (2.23)

Then
YT

f.d.d.⇒ Kξ(α), as T →∞,

where K = (Cαg(0))1/α and ξ(α) is a symmetric α-stable Lévy process.
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Let us now see how these general theorems work in the case of symmetric α-stable
random measures.

Example 2.11. Suppose that Λ is a homogeneous and symmetric α-stable random
measure onR2 with α ∈ (0, 2). We also assume that (G) is staisfied. This case corresponds
to

ψ(x) = |x|α, x ∈ R

and
ν(dx) =

cα
|x|α+1

, x ∈ R.

• If α > 1 + γ, then (2.10) holds for any 1 + γ < κ < α, hence, the assumptions of
Theorem 2.2 are satisfied, and with the norming FT = T 1−γ/α, for any τ > 0, the
process YT converges in law in C([0, τ ]) to the process KY , where K is some finite
constant and Y is given by (1.10).

• If α < 1 + γ, then the assumptions of Theorem 2.10 are satisfied and with the nor-
malization FT = T 1/α, the process YT converges in the sense of finite-dimensional
distributions to symmetric α-stable Lévy process multiplied by a constant.

In the next theorem we will discuss the critical case α = 1 + γ. As usual, the critical
case is somewhat more complicated, thus we only consider a particular form of g.

Theorem 2.12. Assume that Λ is a homogeneous symmetric α-stable random measure
on R2. Also, suppose that

g(x) =
1

(1 + x)1+γ
, x ≥ 0,

where 0 < γ < 1. Let YT be defined by (2.7) with

FT = T 1/α log(T ).

Then
YT

f.d.d.⇒ Kξ(α), as T →∞,

where K is a positive constant and ξ(α) is a symmetric α-stable Lévy process.

Thus, in the case of α-stable random measures we have a phase transition: for large
α (α > 1 + γ) the limit process has dependent increments, while for small α (α < 1 + γ)
the limit process has independent increments. In the critical case (α = 1 + γ) the
limit process also has independent increments but the norming differs by a logarithmic
factor. This type of phase transition and existence of two regimes – one in which the
limit process has independent increments and another one in which the increments are
dependent, along with the logarithmic factor in the norming in the critical case is a
typical behavior, also observed in other models. See for example [7] and [8] for a model
with behaviour of this type, related to occupation time processes of branching particle
systems.

3 Proofs

3.1 General scheme

In all the proofs we show convergence of finite-dimensional distributions by proving
convergence of the corresponding characteristic functions. In Theorem 2.2 we addition-
ally show tightness in C([0, τ ]) for all τ > 0. We start with some general calculations used
in all the cases.

First we write the process YT in a different form, given by the lemma below.
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Lemma 3.1. Let YT be given by (2.7). Then

YT (t) =
1

FT

∫
R2

((
x+ g−1(y)

)
+
∧ (Tt)− x+ ∧ (Tt)

)
1{0≤y≤g(0)}Λ(dx, dy) (3.1)

Proof. It is immediate to see that∫ t

0

1As(x, y)ds =

∫ t

0

1{x≤s≤g−1(y)+x}dx 1{0≤y≤g(0)}

=
((
g−1(y) + x

)
+
∧ t− x+ ∧ t

)
1{0≤y≤g(0)}. (3.2)

Hence (3.1) follows from the Fubini theorem for Lévy bases (see Theorem 3.1 in [2]).
Note that this theorem can be applied directly in the case

∫
R
|y| ∧ |y|2ν(dy) <∞. If we

do not assume
∫
{|y|>1} |y|ν(dy) <∞, then we can decompose

Λ = Λ1 + Λ2, (3.3)

where Λ1 and Λ2 are independent Lévy bases corresponding to Lévy measures ν1 and ν2,
respectively, where

ν1(B) = ν(B ∩ {x : |x| < 1}), (3.4)

ν2(B) = ν(B ∩ {x : |x| ≥ 1}) (3.5)

for B a Borel set in R. Then Λ1 satisfies the assumptions of Theorem 3.1 in [2] and Λ2

can be written as
Λ2 =

∑
i

ηiδ(xi,yi),

where (xi, yi) are points of a Poisson random measure on R2 with Lebesgue intensity
measure, multiplied by ν2(R2) and ηi are i.i.d. random variables with law ν2(·)/ν2(R2),
independent of the Poisson random measure. The trawl function is non-decreasing and
integrable, thus

sup
0≤s≤Tt

1As(x, y) ≤ 1A0∪[0,T t]×[0,g(0)](x, y).

Only a finite number of points (xi, yi) of the Poisson random measure belong to A0 ∪
[0, g(0)]× [0, T t], hence we can exchange the order of integration with respect to ds and
Λ2 as well and (3.1) follows.

Note that in some of the proofs it will be convenient to use the decomposition (3.3) of
Λ. Then

YT = YT,1 + YT,2, (3.6)

where YT,1 and YT,2, are independent processes of the form (2.7), corresponding to Λ1

and Λ2, respectively. We also denote the corresponding characteristic exponents by

ψ1(θ) =

∫
{|x|<1}

(1− cos(θx))ν(dx), θ ∈ R (3.7)

ψ2(θ) =

∫
{|x|≥1}

(1− cos(θx))ν(dx), θ ∈ R. (3.8)

As the next step we write the characteristic function of YT . We need some additional
notation. Denote

f(t, r, u) := r+ ∧ t− (r − u)+ ∧ t =

∫ t

0

1[r−u,r](s)ds t, r, u ≥ 0. (3.9)

We have the following lemma describing the characteristic function of finite-dimen-
sional distributions of YT .
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Lemma 3.2. Fix T > 0, a1, . . . , an ∈ R, 0 ≤ t1 ≤ . . . ≤ tk < +∞ and denote

hT (r, u) =

n∑
j=1

ajf(Ttj , r, u), r, u ≥ 0. (3.10)

Then, for YT defined by (2.7) we have

E exp

(
i

k∑
j=1

ajYT (tj)

)
= exp

(
−
∫
R2

+

ψ
( 1

FT
hT (r, u)

)
|g′(u)| drdu

)
, (3.11)

where ψ is the Lévy exponent (2.2).

Proof. By Lemma 3.1, (2.4) and (2.2) we have

E exp

(
i

k∑
j=1

ajYT (tj)

)

= exp

−
∫
R2

ψ

 1

FT

n∑
j=1

aj
[
(g−1(y) + x) ∧ (Ttj)− x+ ∧ (Ttj)

]
10<y<g(0)

 dxdy


Next we substitute u = g−1(y) and r = x+ g−1(y). We also observe that if r ≤ 0 we have
(r+ ∧ (tjT )− (r − u)+ ∧ (tjT )))1{u>0} = 0. Hence (3.11) follows.

The formula (3.11) will be our starting point of the proofs of convergence of finite
dimensional distributions in Theorems 2.2, 2.7 and 2.10. Let us denote by I(T ) the term
in the exponent on the right hand side of (3.11),

I(T ) =

∫
R2

+

ψ

(
1

FT
hT (r, u)

)
|g′(u)| du. (3.12)

By (3.11), to prove convergence of finite dimensional disributions it suffices to show that

lim
T→∞

e−I(T ) = E exp
(
i

n∑
j=1

aj Ỹ (tj)
)
,

where Ỹ is the corresponding limit process.
This will amount to proving convergence of I(T ).

3.2 Auxiliary estimates and identities

We will frequently use the following simple facts concerning f and hT .

Lemma 3.3. Let f be given by (3.9) and hT as in Lemma 3.1. Then

(i)

0 ≤ f(t, r, u) ≤ t ∧ u ∧ r r, u, t ≥ 0, (3.13)

f(t, r, u) = 0 for t ≥ 0 and r > t+ u, (3.14)

|hT (r, u)| ≤

 n∑
j=1

|aj |

 f(Ttn, r, u), r, u ≥ 0. (3.15)

(ii) If, additionally, we assume that κ > 1 + γ > 1 then there exists a constant C > 0

depending only on κ and γ, such that for all t ≥ 0 we have∫ ∞
0

∫ ∞
0

|f(t, r, u)|κu−2−γdudr = Ctκ−γ . (3.16)
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Proof. Part (i) is a direct consequence of (3.9) and (3.10).

To prove (ii) observe that by (3.13) and (3.14) for t = 1 we have∫ ∞
0

∫ ∞
0

∣∣f(1, r, u)
∣∣κu−2−γdrdu =

∫ ∞
0

∫ 1+u

0

∣∣f(1, r, u)
∣∣κu−2−γdrdu

≤
∫ 1

0

∫ 1+u

0

uκu−2−γdrdu

+

∫ ∞
1

∫ 1+u

0

u−2−γdrdu < +∞

since κ > 1 + γ. Now, using

f(t, r, u) = tf(1, r/t, u/t),

(3.16) follows by a simple substitution.

3.3 Proof of Theorem 2.2

First observe that by part (ii) of Lemma 3.3, (2.5) and (2.6) it follows that the process
Y given by (1.10) is well defined.

We will show convergence of finite-dimensional distributions and then establish
tightness on any interval [0, τ ], τ > 0, which suffices to obtain the desired convergence
(see Thm. 8.1 in [6]).

Step 1. Convergence of finite dimensional distributions

Fix any a1, . . . , an ∈ R and 0 ≤ t1 ≤ . . . ≤ tn and recall the notation (3.12) and (3.10).
Let us also denote

h(r, u) =

n∑
j=1

ajf(tj , r, u) =

n∑
j=1

aj (r+ ∧ tj − (r − u)+ ∧ tj) , r, u ≥ 0. (3.17)

Using (3.11), (3.12) and (2.6), to prove convergence of finite-dimensional distributions,
we only have to show that

lim
T→∞

I(T ) = Kα

∫
R2

+

|h(r, x)|α u−2−γdrdu, (3.18)

for some finite positive constant K.

By (3.12), (3.10), (3.17) and recalling the definition of FT (2.11) we have

I(T ) =

∫
R2

+

T 2ψ

(
T

FT
h(r, u)

)
|g′(Tu)| drdu (3.19)

=

∫
R2

+

(
T

FT

)−α
ψ

(
T

FT
h(r, u)

)
T 2+γ |g(Tu)| drdt. (3.20)

By (2.8) and (2.9) we see that the integrand converges pointwise to the integrand on the
right hand side of (3.18). Therefore, to prove (3.18) it remains to justify the passage to
the limit under the integral.

We will use the decomposition (3.6), which corresponds to ψ = ψ1 +ψ2, where ψ1 and
ψ2 are given by (3.7) and (3.8), respectively. We write

I(T ) = I1(T ) + I2(T ), (3.21)

where I1(T ) and I2(T ) are defined by (3.12) with ψ replaced by ψ1 and ψ2, respectively.
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We will show that

lim
T→∞

I1(T ) =Kα

∫
R2

+

|h(r, x)|α u−2−γdrdu, (3.22)

lim
T→∞

I2(T ) =0. (3.23)

This will imply

YT,1
f.d.d.⇒ KY and YT,2

f.d.d.⇒ 0. (3.24)

As the limit of YT,2 is deterministic, YT,2(t) converges to 0 in probability for any t > 0,
hence (3.24) implies the desired convergence of finite-dimensional distributions of YT .

Observe, that by the estimate 1− cos(θx) ≤ (θx)2, (3.7) and (2.9) we have

0 ≤ ψ1(x) ≤ C(|x|α ∧ |x|2) ≤ C |x|α . (3.25)

We may assume that κ in the assumptions of the Theorem satisfies 1 + γ < κ < α, since
if (2.10) holds for some κ, then it also holds for smaller κ. In particular, κ < 2. Then,
using (1− cos(xθ)) ≤ 2 |θx|κ (3.8) and (1.8) we have

ψ2(x) ≤ C (|x|κ ∧ 1) ≤ C |x|κ . (3.26)

Since ψ2 is bounded and α > 1 + γ > 0 we have

lim
|x|→∞

ψ1(x)

|x|α
= lim
|x|→∞

ψ(x)

|x|α
= Cψ, (3.27)

lim
|x|→∞

ψ2(x)

|x|α
=0. (3.28)

Moreover, by Assumption (G) there exists D > 0 such that

sup
u≥D
|g′(u)|u2+γ ≤ 2Cg, (3.29)

and we may therefore write

Ii(T ) = Ai(T ) +Bi(T ), i = 1, 2, (3.30)

where

Ai(T ) =

∫ D/T

0

∫ ∞
0

( T
FT

)−α
ψi

( T
FT

h(r, u)
)
T 2+γ |g′(Tu)|drdu i = 1, 2 (3.31)

Bi(T ) =

∫ ∞
0

∫ ∞
0

1(DT ,∞)(u)
( T
FT

)−α
ψi

( T
FT

h(r, u)
)
T 2+γ |g′(Tu)|drdu i = 1, 2. (3.32)

Let us consider A1(T ) first. By (3.25) we have

A1(T ) ≤ C
∫ D

T

0

∫ ∞
0

|h(r, u)|α T 2+γ |g′(Tu)| drdu.

Then for T > 1 by (3.17), (3.9) and Lemma 3.3 (i) we obtain

A1(T ) ≤C1

∫ D
T

0

∫ tn+
D
T

0

uαT 2+γ |g′(Tu)| du

=C1(tn +D)T 1+γ−α
∫ D

0

uα |g′(u)| du

≤C1(tn +D)Dαg(0)T 1+γ−α → 0.
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Similarly, using κ < α, ( T
FT

)−α ≤ ( T
FT

)−κ for T ≥ 1 and (3.26) we have

A2(T ) ≤ C
∫ D

T

0

∫ ∞
0

|h(r, u)|κ T 2+γ |g′(Tu)| drdu,

and the same argument as above shows that A2(T )→ 0.
Now let us proceed to B1(T ). By (3.27) and Assumption (G) the integrand in (3.32)

with i = 1 converges to CψCg |h(r, x)|α u−2−γ . Moreover, by (3.25) and (3.29), it is
bounded by

C2 |h(r, u)|α u−2−γ .

By (3.17), (3.9), part (ii) of Lemma 3.3 and the fact that α > 1 + γ the latter function
is integrable on R2

+, hence we can pass to the limit under the integral sign, and (3.22)
follows.

It remains to consider B2(T ). Using (3.26) and (3.29), 1 + γ < κ < α, and again
Lemma 3.3 (ii) for T ≥ 1 we have

B2(T ) ≤ C
(
T

FT

)κ−α ∫
R2

+

|h(r, u)|κ u−2−γdrdu ≤ C
(
T

FT

)κ−α
→ 0.

This finishes the proof of (3.23). We have proved (3.24).
Step 2. Tightness.
Now we continue to establish tightness in C([0, τ ]) for any τ > 0.
Let us consider the sequence (YT,2) first. We are going to use Theorem 12.3 in [6].

Without loss of generality we may assume that α > κ > 1 + γ and T ≥ 1. Since for each
T ≥ 1 the process YT,2 has stationary increments, one only has to show that there exist
C > 0, β ≥ 0, ε > 0 such that

P(|YT,2(t)| ≥ λ) ≤ C

λβ
t1+ε, T ≥ 1, t ≥ 0, λ > 0. (3.33)

We will use the following estimate, valid for any real valued random variable ξ

P(|ξ| > λ) ≤ λ
∫ 2/λ

−2/λ
(1− E exp(iθξ)) dθ, λ > 0. (3.34)

By (3.11), recalling (3.9) we have

E exp(iθYT,2(t)) = exp

(
−
∫ ∞
0

∫ ∞
0

T 2ψ2

(
θT

FT
f(t, r, u)

)
|g′(Tu)|drdu

)
. (3.35)

Hence, using (3.26), (2.11), the simple inequality 1− e−x ≤ x and the fact that for T ≥ 1

we have (T/FT )κ ≤ (T/FT )α = T γ it follows that

1− E exp(iθYT,2(t)) ≤ C
∫ ∞
0

∫ ∞
0

T 2
∣∣∣ θT
FT

f(t, r, u)
∣∣∣κ|g′(Tu)|drdu

= C|θ|κ
∫ ∞
0

∫ ∞
0

∣∣f(t, r, u)
∣∣κT 2+γ |g′(Tu)|drdu

= C|θ|κ
(
J1(T ) + J2(T )

)
, (3.36)

where

J1(T ) =

∫ 1

0

∫ ∞
0

∣∣f(t, r, u)
∣∣κT 2+γ |g′(Tu)|drdu

and

J2(T ) =

∫ ∞
1

∫ ∞
0

∣∣f(t, r, u)
∣∣κT 2+γ |g′(Tu)|drdu.
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Notice that for u ∈ (1,∞) and all T sufficiently large T 2+γ |g′(Tu)| ≤ C|u|−2−γ for some
finite positive constant C. Thus, by Lemma 3.3 (ii) we have

J2(T ) ≤ C1t
κ−γ (3.37)

for all T large and some finite constant C5. Now, let ε > 0 be such that κ > 1 + γ + ε.
By (3.9) and (3.13), and then using

∫∞
0

1[r−u,r](s)dr = u for s, r > 0, we see that

J1(T ) ≤
∫ 1

0

∫ ∞
0

(∫ t

0

1[r−u,r](s)ds
)
tεuκ−1−εT 2+γ |g′(Tu)|drdu

= tε
∫ 1

0

tuuκ−1−εT 2+γ |g′(Tu)|du

= t1+εT 1+γ+ε−κ
∫ T

0

uκ−ε|g′(u)|du

≤ t1+ε
∫ ∞
0

uκ−ε |g′(u)| du.

Let D be as in (3.29), then

J1(T ) ≤ t1+ε
(
Dκ−ε

∫ D

0

|g′(u)| du+ 2Cg

∫ ∞
D

uκ−2−γ−εdu

)
≤ Ct1+ε, (3.38)

since the first integral is bounded by g(0), and the second is finite thanks to the choice
of ε. Combining (3.38), (3.37), (3.36) with (3.34) yields (3.33) (here β = κ) for all t ≥ 0

and all T large enough. This finishes the proof of tightness of YT,2 in C([0, τ ])

The proof of tightness of YT,1 is similar. We have an analogue of (3.36) with α instead
of κ and the same argument works. In this case ε = α− 1− γ.

Combined with convergence of finite dimensional distributions this implies conver-
gence of YT in C([0, τ ]) for any τ > 0.

3.4 Proof of Theorem 2.7

We will show convergence of finite-dimensional distributions by proving the conver-
gence their characteristic functions.

According to the general scheme, we fix any a1, . . . , an ∈ R, 0 ≤ t1 . . . ≤ tn and we
start with formula (3.11). To prove the theorem it suffices to show that for I(T ) defined
by (3.12) and (3.10) we have

lim
T→∞

I(T ) = K1+γ

∫ ∞
0

|a(r)|1+γ dr, (3.39)

where

a(r) =

n∑
j=1

aj1[0,tj ](r). (3.40)

Recalling the definition of hT (see (3.10)) and substituting r′ = r
T , u′ = u

FT
and then

s′ = (s−r)
u

T
FT

we obtain

I(T ) =

∫ ∞
0

∫ ∞
0

TFTψ
( T
FT

∫ ∞
0

a(s)1
[r−uFTT ,r]

(s)ds
)
|g′(FTu)|drdu

=

∫ ∞
0

∫ ∞
0

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)|drdu, (3.41)

where in the last equality we also used T = F 1+γ
T .
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By Assumption (G) it is now clear that the integrand in (3.41) converges pointwise to
Cgψ(ua(r))u−2−γ . Also notice, that making the substitution u′ = ua(r) we have∫ ∞

0

∫ ∞
0

Cgψ(ua(r))u−2−γdudr = Cg

∫ ∞
0

ψ(u)u−2−γdu

∫ ∞
0

|a(r)|1+γ dr. (3.42)

The integral with respect to u on the right hand side of (3.42) is finite by (2.16) or (2.17),
hence (3.39) will follow provided we can justify passing to the limit under the integrals.

Now the proof forks into two parts depending on whether we assume (i) or (ii) in the
formulation of Theorem 2.7.

Consider first the case when (i) is satisfied. Using Assumption (G) choose D > 0 such
that (3.29) holds. Suppose that T is such that T > 1 and T > D. Observing that since the
support of a is [0, tn] and hence the integrand in (3.41) is equal to zero if r > tn + uFTT
we write

I(T ) = I1(T ) + I2(T ) + I3(T ), (3.43)

where

I1(T ) =

∫ D
FT

0

∫ tn+u
FT
T

0

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)|drdu,

I2(T ) =

∫ T
FT

D
FT

∫ tn+u
FT
T

0

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)|drdu,

I3(T ) =

∫ ∞
T
FT

∫ tn+u
FT
T

0

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)|drdu.

We will show that I2 has a non-trivial limit and I1 and I3 converge to 0. By (2.16) we have

I1(T ) ≤ C
∫ D/FT

0

∫ tn+
uFT
T

0

∣∣∣u ‖a‖∞ ∣∣∣κF 2+γ
T |g′(FTu)|drdu

≤ C1(tn +D)

∫ D/FT

0

uκF 2+γ
T |g′(FTu)|drdu

=C1(tn +D)F 1+γ−κ
T

∫ D

0

uκ |g′(u)| du

≤C1(tn +D)Dκg(0)F 1+γ−κ
T → 0, (3.44)

since we have assumed that κ > 1 + γ.
Now we consider I2(T ). The integrand converges pointwise to Cgψ(ua(r))u−2−γ .

Moreover, by assumption (2.16) and the fact that the support of a is [0, tn], for D/FT ≤
u ≤ T/FT we have

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)| ≤ C1[0,tn+1](r)(u

κ ∧ uα)u−2−γ . (3.45)

The latter function is integrable on R2
+. Hence, using also (3.42) we see that

lim
T→∞

I2(T ) = K1+γ

∫ ∞
0

|a(r)|1+γ dr. (3.46)

Now we proceed to I3(T ). Observe that since |a(s)| ≤ ‖a‖∞ 1[0,tn](s) we have∣∣∣∣u∫ 0

−1
a(r +

u

T
FT s)ds

∣∣∣∣ ≤ ∫
R

|a(s)| ds T
FT
≤ ‖a‖∞ tn

T

FT
. (3.47)
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Thus, using (2.16) we can estimate

I3(T ) ≤ C
∫ ∞
T/FT

(tn + u
FT
T

)

(
T

FT

)α
u−2−γdu

=

(
T

FT

)α−1−γ ∫ ∞
1

(tn + u)u−2−γdu→ 0 (3.48)

by asumption α < 1 + γ and the form of FT .
From (3.43), (3.44), (3.46) and (3.48) we obtain (3.39) in case (i) which completes

the proof of convergence of finite dimensional distributions in this case.
Now consider the case (ii) in the formulation of Theorem 2.7 is satisfied. We again

have (3.41) and (3.43). Now for I1 + I2 we can proceed in a similar way as for I2 in case
(i). The only difference is that instead of (3.45) for 0 ≤ u ≤ T

FT
, we use

ψ
(
u

∫ 0

−1
a(r +

u

T
FT s)ds

)
F 2+γ
T |g′(FTu)| ≤ C1[0,tn+1](r)ψ(‖a‖∞ u)u−2−γ ,

since we now assume that ψ is nondecreasing on R+. Similarly as above we obtain that
I1(T ) + I2(T ) converge, as T →∞, to the right hand side of (3.39)

For I3 we again use (3.47) and monotonicity of ψ on R+ obtaining

I3(T ) ≤ C
∫ ∞
T/FT

(tn + u
FT
T

)ψ

(
T

FT
‖a‖∞ tn

)
u−2−γdu

=

(
T

FT

)−1−γ
ψ(

T

FT
‖a‖∞ tn)

∫ ∞
1

(tn + u)u−2−γdu.

It now suffices to notice that T−1−γψ(T ) converges to 0 as T →∞, since by the fact that
ψ is nondecreasing

1

1 + γ
ψ(T )T−1−γ =

∫ ∞
T

ψ(T )x−2−γdx ≤
∫ ∞
T

ψ(x)x−2−γdx.

The last integral converges to 0 by (2.17). This proves that I3(T ) converges to 0. The
proof in case (ii) is complete.

3.5 Proof of Theorem 2.10

We use the decomposition (3.6). Using the estimate 1−cos(θx) ≤ (θx)2, (3.7) and (1.8)
we have ψ1(x) ≤ Cx2. This together with the assumption (2.22) implies

ψ1(x) ≤ C |x|2 ∧ |x|κ .

The assumptions of Theorem 2.7, in which we take ᾱ = κ and κ̄ = 2, are satisfied for ψ1

and the process (FT /T
1+γ)YT,1 converges in the sense of finite dimensional distributions.

FT = T
1
α with α < 1 + γ hence the above implies that

YT,1
f.d.d.⇒ 0.

And therefore also YT,1(t) converges to 0 in probability for any t ≥ 0.
From now on we may therefore assume that ν({|x| ≤ 1}) = 0 and ψ = ψ2. In what

follows we omit the index 2. Observe that in this case ψ is bounded since ν is finite (cf.
(1.8)) and from assumption (2.21) it follows that

ψ(x) ≤ C(|x|α ∧ 1). (3.49)
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Take any a1, . . . , an ∈ R and 0 ≤ t1 ≤ . . . ≤ tn in R+. According to the general scheme
(cf. (3.11)) we need to show that for I(T ) given by (3.12) and a by (3.40) we have

lim
T→∞

I(T ) = Kα

∫ ∞
0

|a(r)|α dr. (3.50)

Using (3.12), (3.10), (3.9), (3.14) and substituting r′ = r−u
T we rewrite I(T ) as

I(T ) = I1(T ) + I2(T ), (3.51)

where

I1(T ) =

∫ ∞
0

∫ 0

−u/T
Tψ

(
1

FT

n∑
j=1

ajf(Ttj , T r + u, u)

)
|g′(u)|drdu, (3.52)

I2(T ) =

∫ ∞
0

∫ tn

0

Tψ

(
1

FT

n∑
j=1

ajf(Ttj , T r + u, u)

)
|g′(u)|drdu. (3.53)

Observe that, by (3.9), for u ≥ 0 and r ≥ 0 we have

lim
T→∞

f(Ttj , T r + u, u) = lim
T→∞

∫ Ttj

0

1[Tr,Tr+u](s)ds = u1[0,tj)(r), (3.54)

and

f(Ttj , T r + u, u) ≤ u. (3.55)

Using (3.52), (3.49) and (3.55) we have

I1(T ) ≤ C
∫ ∞
0

u

((
u
∑n
j=1 |aj |
FT

)α
∧ 1

)
|g′(u)| du −→ 0, (3.56)

since the function under the integral converges pointwise to 0 and is bounded by u |g′(u)|,
which is integrable by Assumption (G).

Now we proceed to I2(T ). By (3.53), (3.54), (2.21) and (2.23) we see that

lim
T→∞

Tψ

(
1

FT

n∑
j=1

ajf(Ttj , T r + u, u)

)
|g′(u)| = Cα |a(r)|α |g′(u)| a.e.

and by (3.49)

Tψ

(
1

FT

n∑
j=1

ajf(Ttj , T r + u, u)

)
|g′(u)| ≤ Cuα |g′(u)| .

The function on the right hand side is integrable on R+ × [0, tn]. Hence

lim
T→∞

I2(T ) =

∫ ∞
0

∫ tn

0

|a(r)|α |g′(u)| drdu = Cαg(0)

∫ ∞
0

|a(r)|α dr. (3.57)

From (3.51), (3.56) and (3.57) we obtain (3.50), thus finishing the proof of the theorem.

3.6 Proof of Theorem 2.12

Take any a1, . . . , an ∈ R and 0 ≤ t1 ≤ . . . ≤ tn ≥ 0. Recall the general formula
for the characteristic function of finite dimensional distributions of YT (3.11) and the
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notation (3.10), (3.9), (3.12) and (3.40). By Lemma 3.2, to prove the desired convergence
of finite dimensional distributions it suffices to show

lim
T→∞

I(T ) = Kα

∫ ∞
0

|a(r)|α dr. (3.58)

Since ψ(x) = |x|α, using (3.10), (3.9) and then substituting r′ = r
T and s′ = s

T we may
rewrite IT as

I(T ) =

∫ ∞
0

∫ ∞
0

F−αT

∣∣∣∣ n∑
j=1

aj

∫ ∞
0

1[r−u,r](s)1[0,T tj ](s)ds

∣∣∣∣α|g′(u)|drdu

=

∫ ∞
0

∫ ∞
0

TF−αT

∣∣∣∣T ∫ ∞
0

a(s)1[r− u
T ,r]

(s)ds

∣∣∣∣α|g′(u)|drdu.

Now we use the form of FT and of g, then make a change of variables s′ = (r−s)
u T , and

then, finally, substitute u′ = u/ log T , obtaining

I(T ) =
(1 + γ)

log T

∫ ∞
0

∫ ∞
0

uα
∣∣∣∣ ∫ 1

0

a(r − su/T )ds

∣∣∣∣α(1 + u)−2−γdrdu

= (1 + γ)

∫ ∞
0

∫ ∞
0

(u log T )α

(1 + u log T )1+α

∣∣∣∣ ∫ 1

0

a(r − su log T/T )ds

∣∣∣∣αdrdu. (3.59)

Now we write

I(T ) = (1 + γ)(I1(T ) + I2(T ) + I3(T )), (3.60)

where

I1(T ) =

∫ 1

0

∫ ∞
0

. . . drdu,

I2(T ) =

∫ T/ log T

1

∫ ∞
0

. . . drdu,

I3(T ) =

∫ ∞
T/ log T

∫ ∞
0

. . . drdu,

where . . . stands for the function under the integral in (3.59). Let us consider first I2(T ).
We make a change of variables u′ = log u

log T obtaining

I2(T )

=

∫ 1−log log T/ log T

0

∫ ∞
0

(
Tu log T

1 + Tu log T

)1+α∣∣∣∣ ∫ 1

0

a(r − sTu log T/T )ds

∣∣∣∣αdrdu. (3.61)

Notice that log log T/ log T goes to zero as T → ∞. Moreover, we have pointwise
convergence to |a(r)|α. We have |a(r)| ≤ C1[0,tn](r) for some finite constant C hence the
upper limit in the integral with respect to r can be replaced by tn + 1, since for r > tn + 1

the function under the integral with respect to drdu vanishes. We may use the dominated
convergence theorem obtaining

lim
T→∞

I2(T ) =

∫ ∞
0

|a(r)|αdr. (3.62)

EJP 25 (2020), paper 117.
Page 20/24

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP509
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for integrated trawl processes with symmetric Lévy bases

Let us consider I1(T ) next. We have

I1(T ) =

∫ 1

0

∫ tn+1

0

(u log T )α

(1 + u log T )1+α

∣∣∣∣ ∫ 1

0

a(r − su log T/T )ds

∣∣∣∣αdrdu
≤ ‖a‖∞ (1 + tn)

∫ 1

0

(u log T )α

(1 + u log T )1+α
du

= C

∫ log T

0

uα

(1 + u)α+1

1

log T
du

≤ C1

( 1

log T

∫ 1

0

uα

(1 + u)α+1
+

1

log T

∫ log T

1

1

u
du
)

≤ C2

( 1

log T
+

log log T

log T

)
→ 0. (3.63)

It remains to show that I3(T ) also converges to 0 as T →∞. Taking into account that
the support of a is [0, tn], after a change of variables we have

I3(T ) =
1

log T

∫ ∞
T

(∫ tn+u/T

0

uα

(1 + u)1+α

∣∣∣ ∫ ∞
0

a(r − su/T )1[0,1](s)ds
∣∣∣αdr)du

≤ 1

log T

∫ ∞
T

(∫ (tn+1)u/T

0

Tα

(1 + u)1+α

∣∣∣ u
T

∫ ∞
0

1[0,tn](r − su/T )ds
∣∣∣αdr)du

≤ C
(1 + tn)

log T

∫ ∞
T

u

T

Tα

uα+1
du

=
C1

log T

∫ ∞
T

Tα−1

uα
du

= C2
1

log T
→ 0. (3.64)

Combining (3.60)-(3.64) shows that (3.58) is satisfied. This finishes the proof of the
theorem.

3.7 Proof of Proposition 2.6

Let 0 ≤ w < v < p < t, T ≥ 0 and z1, z2 ∈ R. We will investigate the asymptotic
behaviour of (2.14) as T → ∞. To shorten the notation we will drop the arguments in
the parenthesis and write it as DT . Notice that (1.10) can be written as

Yt =

∫ ∞
0

∫ ∞
0

∫ ∞
0

1[0,t](s)1[r−u,r](s)dsu
− 2+γ

α Mα(dr, du). (3.65)

Since Y has stationary increments we can assume that w = 0. We can also assume that
T ≥ t+ p+ v. Then

DT =

∫ ∞
0

∫ ∞
0

∣∣∣∣∣z1
∫ ∞
0

1[0,v](s)1[r−u,r](s)ds

+z2

∫ ∞
0

1[p+T,t+T ](s)1[r−u,r](s)ds

∣∣∣∣∣
α

u−2−γdrdu

−
∫ ∞
0

∫ ∞
0

∣∣∣∣∣z1
∫ ∞
0

1[0,v](s)1[r−u,r](s)ds

∣∣∣∣∣
α

u−2−γdrdu

−
∫ ∞
0

∫ ∞
0

∣∣∣∣∣z2
∫ ∞
0

1[p+T,t+T ](s)1[r−u,r](s)ds

∣∣∣∣∣
α

u−2−γdrdu.

EJP 25 (2020), paper 117.
Page 21/24

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP509
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Limit theorems for integrated trawl processes with symmetric Lévy bases

Note that ∫ ∞
0

1[0,v](s)1[r−u,r](s)ds 6= 0 if and only if r < u+ v

and ∫ ∞
0

1[p+T,t+T ](s)1[r−u,r](s)ds 6= 0 if and only if p+ T < r < u+ t+ T.

Always u+ v < u+ T + t, hence

DT =

∫ ∞
p+T−v

du

∫ u+v

p+T

dr

(∣∣∣z1 ∫ ∞
0

1[0,v](s)1[r−u,r](s)ds

+z21[p+T,t+T ](s)1[r−u,r](s)ds
∣∣∣α

−
∣∣∣z1 ∫ ∞

0

1[0,v](s)1[r−u,r](s)ds
∣∣∣α

−
∣∣∣z2 ∫ ∞

0

1[p+T,t+T ](s)1[r−u,r](s)ds
∣∣∣α)u−2−γ

(if at least one of the integrals with respect to ds vanishes, then the difference above
also vanishes). Substitute u′ := u− T and r′ := r − T to get

DT =

∫ ∞
p−v

du

∫ u+v

p

dr

(∣∣∣z1 ∫ ∞
0

1[0,v](s)1[r−u,r+T ](s)ds (3.66)

+z21[p+T,t+T ](s)1[r−u,r+T ](s)ds
∣∣∣α (3.67)

−
∣∣∣z1 ∫ ∞

0

1[0,v](s)1[r−u,r+T ](s)ds
∣∣∣α (3.68)

−
∣∣∣z2 ∫ ∞

0

1[p+T,t+T ](s)1[r−u,r+T ](s)ds
∣∣∣α(u+ T )−2−γ

)
. (3.69)

On the set of integration we have r − u < v and thus r − u < p+ T . Therefore

DT =

∫ ∞
p−v

du

∫ u+v

p

dr

(∣∣∣z1 ∫ ∞
0

1[r−u,v](s)ds+ z2((r ∧ t)− p)
∣∣∣α

−
∣∣∣z1 ∫ ∞

0

1[r−u,v](s)ds
∣∣∣α − ∣∣∣z2((r ∧ t)− p)

∣∣∣α)(u+ T )−2−γ .

We split the above integral as follows:

DT =

t∫
p−v

du

u+v∫
p

dr . . .

︸ ︷︷ ︸
J1(T )

+

∞∫
t

du

t∫
p

dr . . .

︸ ︷︷ ︸
J2(T )

+

∞∫
t

du

u∫
t

dr . . .

︸ ︷︷ ︸
J3(T )

+

∞∫
t

du

u+v∫
u

dr . . .

︸ ︷︷ ︸
J4(T )

. (3.70)

Clearly
|J1(T )| ≤ C1T

−2−γ (3.71)

for some constant C1 independent of T . Next,

J2(T ) =

∫ ∞
t

du

∫ t

p

dr
(∣∣z1v + z2(r − p)

∣∣α − ∣∣z1v∣∣α − ∣∣z2(r − p)
∣∣α)︸ ︷︷ ︸

C2(α, p, t, v, z1, z2)

(u+ T )−2−γ

= C2(α, p, t, v, z1, z2)T 1−2−γ
∫ ∞
t/T

(u+ 1)−2−γdu,
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which means that

lim
T→∞

T 1+γJ2(T )→ C2(α, p, t, v, z1, z2)

∫ ∞
0

(u+ 1)−2−γdu. (3.72)

For J3 we have

J3(T ) =

∫ ∞
t

du

∫ u

t

dr

(
|z1v + z2(t− p)|α − |z1v|α − |z2(t− p)|α

)
︸ ︷︷ ︸

C3(α,p,t,v,z1,z2)

(u+ T )−2−γ

= C3(α, p, t, v, z1, z2)T−γ
∫ ∞
t/T

(u− t/T )(u+ 1)−2−γdu.

Hence

lim
T→∞

T γJ3(T ) = C3(α, p, t, v, z1, z2)

∫ ∞
0

u(u+ 1)−2−γdu. (3.73)

Note that C3(α, p, t, v, z1, z2) 6= 0 if z1 6= 0 and z2 6= 0. Finally

J4(T ) =

∫ ∞
t

du

∫ u+v

u

dr
(
|z1(v − r + u) + z2(t− p)|α − |z1(v − r + u)|α

−|z2(t− p)|α
)

(u+ T )−2−γ

=

∫ ∞
t

du

∫ v

0

dr
(
|z1r + z2(t− p)|α − |z1r|α − |z2(t− p)|α

)
︸ ︷︷ ︸

C4(α,p,t,v,z1,z2)

(u+ T )−2−γ

and similarly as in J3(T ) we have

lim
T→∞

T 1+γJ4(T ) = C4(α, p, t, v, z1, z2)

∫ ∞
0

(u+ 1)−2−γdu. (3.74)

From (3.70)-(3.74) we obtain (2.15), which finishes the proof of Proposition 2.6.
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