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Abstract

We derive the large deviation principle for radial Schramm-Loewner evolution (SLE)
on the unit disk with parameter κ → ∞. Restricting to the time interval [0, 1], the
good rate function is finite only on a certain family of Loewner chains driven by
absolutely continuous probability measures {φ2

t (ζ) dζ}t∈[0,1] on the unit circle and
equals

∫ 1

0

∫
S1 |φ′

t|2/2 dζ dt. Our proof relies on the large deviation principle for the
long-time average of the Brownian occupation measure by Donsker and Varadhan.

Keywords: Schramm-Loewner evolutions; large deviations; Brownian occupation measure;
Loewner-Kufarev equation.
MSC2020 subject classifications: 60J67; 60F10.
Submitted to EJP on February 19, 2020, final version accepted on July 26, 2020.
Supersedes arXiv:2002.02654.

1 Introduction

The Schramm-Loewner evolution is a one parameter family of random fractal curves
(denoted as SLEκ with parameter κ > 0). It was introduced by Oded Schramm [16] and
has been a central topic in the two dimensional random conformal geometry. A version
of such curves starting from a fixed boundary point to a fixed interior point on some
two-dimensional simply connected domain D are called radial SLEs. Let us recall briefly
the definition. The radial SLEκ on the unit disk D = {ζ ∈ C : |ζ| = 1} targeted at 0 is
the random curve associated to the radial Loewner chain, whose driving function t 7→ ζt
is given by a Brownian motion on the unit circle S1 = {ζ ∈ C : |ζ| = 1} with variance κ.
That is,

ζt := Bκt := eiWκt , (1.1)

where Wt is a standard linear Brownian motion. More precisely, we consider the Loewner
ODE for all z ∈ D

∂tgt(z) = −gt(z)
gt(z) + ζt
gt(z)− ζt

, (1.2)
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Large deviations of radial SLE∞

or equivalently, the Loewner PDE satisfied by ft := g−1
t

∂tft(z) = zf ′t(z)
z + ζt
z − ζt

, z ∈ D (1.3)

with the initial condition f0(z) = g0(z) = z. For a given t > 0, ft is a conformal map
from D onto a simply connected domain Dt ⊂ D (and s 7→ gs(z) is a well-defined solution
of (1.2) up to time t if and only if z ∈ Dt) such that ft(0) = 0 and f ′t(0) = e−t. The family
of conformal maps {ft}t≥0 is called the capacity parametrized radial Loewner chain
or normalized subordination chain driven by t 7→ ζt. SLEκ is the curve t 7→ γt which
is defined as γt := limr→1− ft(rζt), see [14]. In particular, the curve starts at γ0 = 1.
The radial SLEκ on an arbitrary simply connected domain D is defined via the unique
conformal map from D to D respecting the starting and target points. It is well-known
that SLEκ exhibits phase transitions as κ varies. Larger values of κ correspond in some
sense to “wilder” SLEκ curves; in the κ ≥ 8 regime the curve is space-filling.

In this work, we study the κ → ∞ asymptotic behavior of radial SLE. To simplify
notation we consider SLEκ run on the time interval [0, 1] throughout the paper, but our
results are easily generalized to arbitrarily bounded time intervals. Hence we denote by
{·} the family {·}t∈[0,1] to avoid repeating indices.

Our first result (Proposition 1.1) characterizes the limit as κ→∞ of the time-evolution
of the SLEκ hulls. We argue heuristically as follows. We view the time-dependent vector
field {−z(z+ ζt)/(z− ζt)} which generates the flow {gt} as {

∫
S1 −z(z+ ζ)/(z− ζ)δBκt (ζ)},

where δBκt is the Dirac mass at Bκt . During a short time interval where the flow is
well-defined for the point z, we have gt(z) ≈ gt+∆t(z) and hence

∆gt(z) ≈
∫ t+∆t

t

∫
S1

−gt(z)(gt(z) + ζ)/(gt(z)− ζ)δBκs (ζ)ds

=

∫
S1

−gt(z)(gt(z) + ζ)/(gt(z)− ζ)d(Lκt+∆t(ζ)− Lκt (ζ)),

where Lκt is the occupation measure (or local time) on S1 of Bκ up to time t. We show
that as κ→∞, the driving function oscillates so quickly that its local time in [t, t+ ∆t]

is almost uniform on S1, so in the limit we get a measure-driven Loewner chain with
driving measure uniform on S1. That is,

∂tgt(z) =
1

2π

∫
S1

−gt(z)
gt(z) + ζ

gt(z)− ζ
dζ,

where dζ denotes the Lebesgue measure. This implies ∂tgt(z) = gt(z), that is, gt(z) = etz

or equivalently ft(z) = e−tz. See Section 2 for more details on the measure-driven
Loewner chain. We show in Section 3.2:

Proposition 1.1. As κ → ∞, the Loewner chain {ft} driven by {ζt} (defined in (1.1))
converges to {z 7→ e−tz} almost surely, with respect to the uniform Carathéodory
topology.

We shall mention that Loewner chains are also used in the study of the Hastings-
Levitov model of randomly aggregating particles and similar small-particle limits have
been studied, see [9] and references therein.

The heuristic argument above suggests that the large deviations of SLEκ boil down
to the large deviations of the Brownian occupation measure, which we now describe.

For any metric space X, let M1(X) denote the set of Borel probability measures
equipped with the Prokhorov topology (the topology of weak convergence). Let

N = {ρ ∈M1(S1 × [0, 1]) : ρ(S1 × I) = |I| for all intervals I ⊂ [0, 1]}. (1.4)
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Large deviations of radial SLE∞

The condition imposed here allows us to write ρ ∈ N as a disintegration {ρt} over
the time interval [0, 1] (with ρt ∈ M1(S1) for a.e. t); see (2.1). We identify ρ and the
time-indexed family {ρt}. The second result we show is:

Theorem 1.2. The process of measures {δBκt } ∈ N satisfies the large deviation principle

with good rate function E(ρ) :=
∫ 1

0
I(ρt) dt for ρ ∈ N , where I(µ) is defined for each

µ ∈M1(S1) as

I(µ) :=
1

2

∫
S1

|φ′(ζ)|2dζ (1.5)

if µ(dζ) = φ2(ζ) dζ and φ is absolutely continuous, and I(µ) :=∞ otherwise. That is, for
every closed set C and open set G of N ,

lim sup
κ→∞

1

κ
logP

[
{δBκt } ∈ C

]
≤ − inf

ρ∈C
E(ρ);

lim inf
κ→∞

1

κ
logP

[
{δBκt } ∈ G

]
≥ − inf

ρ∈G
E(ρ);

and the sub-level set {ρ ∈ N : E(ρ) ≤ c} is compact for all c > 0.

Our proof is based on a result by Donsker and Varadhan [6] on large deviations of the
Brownian occupation measure (see Sections 3.3–3.4). The κ→∞ large deviations of SLE

then follows immediately from the continuity of the Loewner transform (Theorem 2.2)
and the contraction principle [5, Theorem 4.2.1].

Corollary 1.3. The family of SLEκ satisfies the κ→∞ large deviation principle with the
good rate function

ISLE∞({Kt}) := E(ρ),

where {ρt} is the driving measure whose Loewner transform is {Kt}.

Let us conclude the introduction with two comments.

The study of large deviations of SLE, while of inherent interest, is also motivated by
problems from complex analysis and geometric function theory. In a forthcoming work
[17], Viklund and the third author investigate the duality between the rate functions
of SLE0+ (termed as the Loewner energy introduced in [18, 15]) and SLE∞ that is
reminiscent of the SLE duality [8, 20] which couples SLEκ to the outer boundary of
SLE16/κ for κ < 4. Note that E(ρ) attains its minimum if and only if {Dt} are concentric
disks, and {∂Dt} are circles which also have the minimal Loewner energy.

It is also natural to consider the large deviations of chordal SLE∞ (say, in H targeted
at ∞). However, in contrast with the radial case, the family indexed by κ of random
measures {δWκt

} on R× [0, 1] is not tight and the corresponding Loewner flow converges
to the identity map for any fixed time t. To obtain a non-trivial limit, one needs to
renormalize appropriately (see e.g., Beffara’s thesis [1, Sec.5.2] for a non-conformal
normalization) and consider generalized Stieltjes transformation of measures for the
large deviations. Therefore, for simplicity we choose to study the radial case and
suggest the large deviations of chordal SLE∞ as an interesting question. We will show a
simulation of large-κ chordal SLEs and discuss some other questions at the end of the
paper.

The paper is organized as follows: In Section 2, we explain the measure-driven radial
Loewner evolution. In Section 3 we prove the main results of our paper. In Section 4 we
present some comments, observations and questions.
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2 Measure-driven radial Loewner evolution

In this section we collect some known facts on the measure-driven Loewner evolution
(also known as Loewner-Kufarev evolution) that are essential to our proofs. Recall that

N = {ρ ∈M1(S1 × [0, 1]) : ρ(S1 × I) = |I| for all intervals I ⊂ [0, 1]}

endowed with the Prokhorov topology. From the disintegration theorem (see e.g. [2,
Theorem 33.3]), for each measure ρ ∈ N there exists a Borel measurable map t 7→ ρt
(sending [0, 1]→M1(S1)) such that for every measurable function ϕ : S1 × [0, 1]→ R we
have ∫

S1×[0,1]

ϕ(ζ, t) dρ =

∫ 1

0

∫
S1

ϕ(ζ, t) ρt(dζ) dt. (2.1)

We say {ρt} is a disintegration of ρ; it is unique in the sense that any two disintegrations
{ρt}, {ρ̃t} of ρ must satisfy ρt = ρ̃t for a.e. t. We always denote by {ρt} one such
disintegration of ρ ∈ N .

The Loewner chain driven by a measure ρ ∈ N is defined similarly to (1.2). For z ∈ D,
consider the Loewner-Kufarev ODE

∂tgt(z) = −gt(z)
∫
S1

gt(z) + ζ

gt(z)− ζ
ρt(dζ)

with the initial condition g0(z) = z. Let Tz be the supremum of all t such that the solution
is well-defined up to time t with gt(z) ∈ D, and Dt := {z ∈ D : Tz > t} is a simply
connected open set containing 0. We define the hull Kt := D \Dt associated with the
Loewner chain. Note that when κ ≥ 8, the family {γ[0, t]} of radial SLEκ is exactly the
family of hulls {Kt} driven by the measure {δBκt }.

The function gt defined above is the unique conformal map of Dt onto D such that
gt(0) = 0 and g′t(0) > 0; moreover g′t(0) = et (i.e. Dt has conformal radius e−t seen from
0) since ∂t log g′t(0) = |ρt| = 1 (see e.g. [10, Thm. 4.13]).

If gt is the solution of a Loewner-Kufarev ODE then its inverse ft = g−1
t satisfies the

Loewner-Kufarev PDE :

∂tft(z) = zf ′t(z)

∫
S1

z + ζ

z − ζ
ρt(dζ),

and vice versa. Note that ft(0) = 0, f ′t(0) = e−t, and ft(D) = Dt ⊂ fs(D) for s ≤ t.
Such a time-indexed family {ft} is called a normalized chain of subordinations. We
write S for the set of normalized chains of subordinations {ft} on [0, 1]. An element of S
can be equivalently represented by either {ft} or the process of hulls {Kt}. The map
L : ρ 7→ {ft} (or interchangeably L : ρ 7→ {Kt}) is called the Loewner transform. In fact,
L is a bijection:

Theorem 2.1 (Bijectivity of the Loewner transform [13, Satz 4]). The family (ft)t∈[0,1] is
a normalized chain of subordination over [0, 1] if and only if

• t 7→ ft(z) is absolutely continuous in [0, 1] and for all r < 1, there is K(r) > 0 such
that |ft(z)− fs(z)| ≤ K(r)|t− s| for all z ∈ rD;

• and there is a (t-a.e. unique) function h(z, t) that is analytic in z, measurable in t
with h(0, t) = 1 and Reh(z, t) > 0, so that for t-a.e. we have

∂tft(z) = −zf ′t(z)h(z, t).

From the Herglotz representation of h(·, t), there exists a unique ρt ∈M1(S1) such
that

h(z, t) =

∫
S1

ζ + z

ζ − z
ρt(dζ), ∀z ∈ D.
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Therefore {ft} satisfies the Loewner PDE driven by the (a.e. uniquely determined)
measurable function t 7→ ρt.

We now equip S with a topology. View S as the set of normalized chains of subordina-
tions {ft} on [0, 1], and change notation by writing f(z, t) = ft(z). We endow S with the
topology of uniform convergence of f on compact subsets of D× [0, 1]. (Equivalently, if we
view S as the set of processes of hulls {Kt}, this is the topology of uniform Carathéodory
convergence.) The continuity of L has been, e.g., derived in [12, Proposition 6.1] (see
also [9]).

Theorem 2.2 (Continuity). The Loewner transform L : N → S is a homeomorphism.

3 Proofs of the main results

In this section, we study the random measure {δBκt } ∈ N . In Section 3.1 we approxi-
mate N by spaces of time-averaged measures. In Section 3.2 we verify that {δBκt } ∈ N
converges almost surely as κ → ∞ to the uniform measure on S1 × [0, 1]; this yields
Proposition 1.1. In Section 3.3, we review the large deviation principle for the circular
Brownian motion occupation measure, which is a special case of seminal work of Donsker
and Varadhan [6]. Finally, in Section 3.4 we prove Theorem 1.2, the large deviation
principle for {δBκt } ∈ N .

3.1 Time-discretized approximations of measures

We emphasize that the results of this section are wholly deterministic.

For n ≥ 0, let In := {0, 1, 2, · · · , 2n − 1} be an index set, and define Yn :=
(
M1(S1)

)In .
We note that Yn is endowed with the product topology. For each i ∈ In we define a
function P in : N →M1(S1) via

P in(ρ) := 2n
∫ (i+1)/2n

i/2n
ρt dt, (3.1)

where here {ρt} is a disintegration of ρ with respect to t, as in (2.1). We define also the
map Pn : N → Yn via Pn = (P in)i∈In . That is, Pn averages ρ along each 2−n-time interval,
and outputs the 2n-tuple of these 2n time-averages.

We consider Yn to be the space of time-discretized approximations of N , in the
following sense. Define a map Fn : Yn → N via

Fn ((µi)i∈In) :=
∑
i∈In

µi ⊗ Leb[i/2n,(i+1)/2n] .

Then one can view Fn(Pn(ρ)) as a “level-n approximation” of ρ (see Lemma 3.1).
We have provided a way of projecting an element of N to the space of level-n

approximations Yn. Now we write down a map Pn,n+1 : Yn+1 → Yn which takes in a finer
approximation and outputs a coarser approximation:

Pn,n+1

(
(µi)i∈In+1

)
:=

(
µ0 + µ1

2
, . . . ,

µ2n+1−2 + µ2n+1−1

2

)
.

That is, we average pairs of components of Yn+1. It is clear that

Pn = Pn,n+1 ◦ Pn+1. (3.2)

The convergence of Pn(ρj)
j→∞−−−→ Pn(ρ) in Yn is equivalent to the convergence

ρj(f)
j→∞−−−→ ρ(f) for the functions f which are piecewise constant in time for each time

interval (i/2n, (i+ 1)/2n). For each fixed n, this is a coarser topology than that of N . The
following lemma shows that the n→∞ topology agrees with that of N .
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Lemma 3.1. We have N = lim←−Yn. That is, as topological spaces, N is the projective
(inverse) limit of Yn as n→∞.

Proof. Let Y = lim←−Yn; this is the subset of
∏∞
j=0 Yj comprising elements (y0, y1, . . . )

such that Pn,n+1(yn+1) = yn for all n ≥ 0. The topology on Y is inherited from
∏∞
j=0 Yj .

Because of the coherence relation (3.2), we can define a map P : N → Y by P (ρ) :=

(Pj(ρ))j≥0. We now show that P is a homeomorphism.

Showing that P is continuous. Since the topology on Y is inherited from the product
topology on

∏∞
n=0 Yj , it suffices to show that the map P : N →

∏∞
n=0 Yn is continuous,

i.e. Pn : N → Yn is continuous for each n. But this is clear: if two measures in N are
close in the Prokhorov topology, then so is the time-average of these measures on a time
interval.

Showing that P is a bijection. Fix f ∈ C(S1 × [0, 1]). We claim that for any ε > 0,
there exists n0 = n0(f, ε) such that for all m,n ≥ n0 and y = (y0, y1, . . . ) ∈ Y we have

|(Fm(ym))(f)− (Fn(yn))(f)| < ε. (3.3)

To that end we note that f is uniformly continuous; we can choose δ > 0 so that
|f(ζ, t) − f(ζ, t′)| < ε whenever |t − t′| < δ. Choosing n0 such that 2−n0 < δ, we
obtain (3.3).

Now we show that P is a bijection. By (3.3), for each y = (y0, y1, . . . ) ∈ Y we can
define a bounded linear functional Ty : C(S1 × [0, 1])→ R via

Ty(f) = lim
n→∞

(Fn(yn))(f) for y = (y0, y1, . . . ).

Clearly Ty maps nonnegative functions to nonnegative reals, so the Riesz-Markov-
Kakutani representation theorem tells us there is a unique1 Borel measure ρ on S1× [0, 1]

such that ρ(f) = Ty(f) for all f ∈ C1(S1 × [0, 1]); it is easy to check that ρ ∈ N . Thus, for
each y ∈ Y the equation P (ρ) = y has a unique solution in N , so P is a bijection.

Concluding that P is a homeomorphism. We note that N is compact (since S1× [0, 1]

is compact) and Y is compact (since each Yn is compact and Hausdorff). Since P is a
continuous bijection of compact sets, it is a homeomorphism.

3.2 Almost sure limit of SLE driving measures

Consider a Brownian motion Bκt on the unit circle S1 = {ζ ∈ C : |ζ| = 1} started at 1

with variance κ as (1.1). Define the occupation measure of Bκt :

Lκt (A) =

∫ t

0

1{Bκs ∈ A} ds for Borel sets A ⊂ S1.

Let L
κ

t = t−1Lκt be the average occupation measure of Bκ at time t (its normalization
gives L

κ

t ∈M1(S1)). An easy consequence of the ergodic theorem is the following almost

sure t→∞ limit of L
1

t ; we include the proof for completeness.

Lemma 3.2. Almost surely, as t→∞ we have L
1

t → (2π)−1 LebS1 inM(S1).

Proof. It suffices to show that for any continuous function f : S1 → R we have almost
surely

lim
t→∞

1

t

∫ t

0

f(B1
s ) ds =

1

2π

∫
S1

f(ζ) dζ. (3.4)

1The representation theorem yields a unique regular Borel measure, but since S1 × [0, 1] is compact, all
Borel measures on S1 × [0, 1] are regular.
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Given this, by choosing a suitable countable collection of functions, we obtain the
lemma.

Let (Ω,P) be a Wiener space so that P is the law of B1
t . Consider the expanded

probability space given by (Ω× S1,P⊗ (2π)−1 LebS1), and let (ω, eiθ) correspond to the
random path eiθB1

t (ω). That is, after sampling an instance of Brownian motion B1
t (ω)

started at 1, we apply an independent uniform rotation to the circle so the Brownian
motion starts at eiθ instead. A consequence of Birkhoff’s ergodic theorem is that for a.e.
(ω, eiθ) ∈ Ω× S1, we have

lim
t→∞

1

t

∫ t

0

f(eiθB1
s (ω)) ds =

1

2π

∫
S1

f(ζ) dζ. (3.5)

Equivalently, for a.e. eiθ ∈ S1, we have (3.5) for a.e. ω. Taking a sequence of eiθ converg-
ing to 1 and using the uniform continuity of f , we obtain (3.4). This concludes the proof
of Lemma 3.2.

Now we justify the heuristic argument in the introduction, which said that as κ →
∞, the Brownian motion Bκt moves so quickly that the driving measure converges to
(2π)−1 LebS1 ⊗Leb[0,1].

Lemma 3.3. As κ→∞, {δBκt } converges almost surely to (2π)−1 LebS1 ⊗Leb[0,1] in N .

Proof. Lemma 3.1 states that N is the projective limit of the spaces Yn defined in
Section 3.1, with projection map from N to Yn given by (P in)i∈In . It thus suffices
to show that as κ → ∞, the random measure P in({δBκt }) converges almost surely to
P in((2π)−1 LebS1 ⊗Leb[0,1]) = (2π)−1 LebS1 in the Prokhorov topology, namely,

lim
κ→∞

2n
∫ (i+1)/2n

i/2n
δBκt dt =

1

2π
LebS1 .

This is true since Lemma 3.2 tells us that almost surely

lim
κ→∞

2n

i

∫ i/2n

0

δBκt dt = lim
κ→∞

2n

i+ 1

∫ (i+1)/2n

0

δBκt dt =
1

2π
LebS1 .

Hence Lemma 3.3 holds.

Proof of Proposition 1.1. It follows immediately from Theorem 2.2 and Lemma 3.3.

3.3 Large deviation principle of occupation measures

In this section, we discuss the large deviation principle of Brownian motion occupation
measures on S1 as κ→∞.

Recall that L
κ

t = t−1Lκt is the average occupation measure of Bκ at time t. By
Brownian scaling we have that (recall that the upper index is diffusivity and the lower

index is time) L
1

κt and L
κ

t equal in law, so it suffices to understand the large deviation

principle for L
1

t as t → ∞. This follows from a more general result of Donsker and
Varadhan; we state the result for Brownian motion on S1.

Theorem 3.4 ([6, Theorem 3]). Define Ĩ :M1(S1)→ R≥0 by

Ĩ(µ) := − inf
u>0, u∈C2(S1)

∫
S1

u′′

2u
(ζ)µ(dζ) = − inf

u>0, u∈C2(S1)

∫
S1

L(u)

u
(ζ)µ(dζ), (3.6)

where L(u) = u′′/2 is the infinitesimal generator of the Brownian motion on S1. The
average occupation measure L

κ

1 admits a large deviation principle as κ→∞, with rate
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function Ĩ. That is, for any closed set C ⊂M1(S1),

lim sup
κ→∞

1

κ
logP[L

κ

1 ∈ C] ≤ − inf
µ∈C

Ĩ(µ), (3.7)

and for any open set G ∈M1(S1),

lim inf
κ→∞

1

κ
logP[L

κ

1 ∈ G] ≥ − inf
µ∈G

Ĩ(µ). (3.8)

Moreover, Ĩ is good, lower-semicontinuous, and convex.

Note that the lower-semicontinuity (hence the goodness, sinceM1(S1) is compact)
and convexity follow directly from the expression of Ĩ. For the convenience of those
readers who may not be so familiar with the statement of Theorem 3.4, let us provide an
outline of the proof of the upper bound (3.7) in order to explain where this rate function
comes from.

Let Pζ denote the law of a Brownian motion B1 on S1 starting from ζ ∈ S1 and Qζ,t

the law of the average occupation measure L
1

t under Pζ . Fix a small number h > 0, and
let πh(ζ, dξ) be the law of Bh under Pζ . We consider the Markov chain Xn := Bnh, so
that πh is the transition kernel of X. We write E for the expectation with respect to P1.

Now let u ∈ C2(S1) such that u > 0. From the Markov property, we inductively get

E

[
u(X0) · · ·u(Xn−1)

πhu(X0) · · ·πhu(Xn−1)
u(Xn)

]
= E[u(X0)] = u(1).

Since the Brownian motion is a Feller process with infinitesimal generator L, we have

log
u(ζ)

πhu(ζ)
= log

(
1− hLu(ζ)

u(ζ)
+ o(h)

)
= −hLu(ζ)

u(ζ)
+ o(h).

Therefore,

u(1) = E

[
exp

(
−

n∑
i=0

h
Lu(Xi)

u(Xi)
+ o(h)

)
πhu(Xn)

]

= E

[
exp

(
−
∫ t

0

Lu(Bs)

u(Bs)
ds

)
πhu(Bt) + o(1)

]
,

where n is chosen to be the integer part of t/h. Hence,

EQ1,t

[
exp

(
−t
∫
S1

Lu(ζ)

u(ζ)
L

1

t (dζ)

)]
≤ u(1)

infξ∈S1 πhu(ξ)
≤ u(1)

infξ∈S1 u(ξ)
≤M(u)

for some M(u) < ∞ depending only on the function u > 0. For any measurable set
C ⊂M1(S1), since

M(u) ≥ EQ1,t

[
exp

(
−t
∫
S1

Lu(ζ)

u(ζ)
L

1

t (dζ)

)]
≥ Q1,t(C) exp

(
−t sup

µ∈C

∫
S1

Lu

u
(ζ)µ(dζ)

)
for arbitrary u, we have

lim sup
t→∞

1

t
logQ1,t(C) ≤ inf

u>0,u∈C2
sup
µ∈C

∫
S1

Lu

u
(ζ)µ(dζ).
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When C is closed (hence compact), some topological considerations allow us to swap
the inf and sup in the above expression, and we obtain

inf
u>0,u∈C2

sup
µ∈C

∫
S1

Lu

u
(ζ)µ(dζ) ≤ sup

µ∈C
inf

u>0,u∈C2

∫
S1

Lu

u
(ζ)µ(dζ) = − inf

µ∈C
Ĩ(µ),

which is the upper bound (3.7). As it is often the case in the derivation of large deviation
principles, the lower bound turns out to be trickier, and uses approximation by discrete
time Markov chains and a change of measure argument. We refer to the original paper
[6] for more details.

The rate function Ĩ of Theorem 3.4 is somewhat unwieldy but can be simplified for
Brownian motion as noted in [6]. We provide here an alternative elementary proof.

Theorem 3.5 ([6, Theorem 5]). For µ ∈ M1(S1), the rate function Ĩ(µ) is finite if and
only if µ = φ2(ζ)dζ for some function φ ∈W 1,2. In this case, we have Ĩ(µ) = I(µ), where

I(µ) =
1

2

∫
S1

|φ′(ζ)|2 dζ.

Proof. First assume that µ = φ2dζ for some φ ∈W 1,2 and that I(µ) is finite, we will show
that Ĩ(µ) = I(µ). For this, take a sequence φn ∈ C2 with φn > 0 converging to φ almost
everywhere such that

∫
S1(φ′n)2 dζ →

∫
S1(φ′)2 dζ. For any u ∈ C2 and any ε > 0, we have

for sufficiently large n that∫
S1

u′′

2u
φ2 dζ + ε ≥

∫
S1

(vφn)′′

2(vφn)
φ2
n dζ =

∫
S1

φ′′nφn
2

dζ +

∫
S1

(φ2
nv
′)′

2v
dζ,

where v := u/φn ∈ C2. From integration by parts, this latter expression equals to

−1

2

∫
S1

|φ′n|2 dζ +
1

2

∫
S1

φ2
nv
′ 2

v2
dζ ≥ −1

2

∫
S1

|φ′n|2 dζ ≥ −I(µ)− ε

by taking n larger if necessary. Since ε is arbitrary, we obtain −
∫
S1

u′′

2uφ
2 dζ ≤ I(µ), and

thus Ĩ(µ) ≤ I(µ) by taking supremum over u. The opposite inequality can be shown by
taking u = φn (i.e. v = 1) and sending n→∞. Therefore Ĩ(µ) = I(µ) when I(µ) <∞.

It remains to prove that if Ĩ(µ) < ∞ then I(µ) < ∞, so consider µ such that Ĩ(µ) is
finite. Let {ηε}ε>0 be a family of nonnegative smooth functions on S1 with

∫
S1 ηε dζ = 1

and converging weakly to the Dirac delta function at 1 as ε→ 0. Writing µξ for µ rotated
by ξ ∈ S1, we define µε =

∫
S1 ηε(ξ)µ

ξdξ as a weighted average of probability measures so

that µε converges weakly to µ. Observe that Ĩ is rotation invariant and convex. Therefore
by Jensen’s inequality,

Ĩ(µε) = Ĩ

(∫
S1

ηε(ξ)µ
ξ dξ

)
≤
∫
S1

ηε(ξ)Ĩ(µξ) dξ = Ĩ(µ).

Write φε :=
√
ηε ∗ µ, so that µε = φ2

ε(ζ)dζ. We will show that∫
S1

(φ′ε)
2 dζ ≤ 2Ĩ(µε). (3.9)

Given (3.9), we see that
∫
S1(φ′ε)

2 dζ is uniformly bounded above (by 2Ĩ(µ)); letting ε→ 0

implies µ is an absolutely continuous measure, and furthermore
√
µ(dζ)/dζ ∈ W 1,2 so

I(µ) <∞, concluding the proof of the theorem.
We turn to the proof of (3.9), which follows the argument of [7, Lemma 2.4]. In the

definition (3.6), take u = eλh where h is smooth and λ is a real number. This gives

λ2

∫
S1

h′ 2φ2
ε dζ + λ

∫
S1

h′′φ2
ε dζ = λ2

∫
S1

h′ 2φ2
ε dζ − 2λ

∫
S1

h′φ′εφε dζ ≥ −2Ĩ(µε)
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which holds for any real number λ. By choosing λ so that the quadratic function takes
the minimum, we have (∫

S1

h′φ′εφε dζ

)2

≤ 2Ĩ(µε)

∫
S1

h′ 2φ2
ε dζ. (3.10)

For n ∈ N, consider an auxiliary function νn on positive real numbers defined as

νn(x) :=

{
0 if 0 < x ≤ 1/2n

1/x if x ≥ 1/n

and extended on [1/2n, 1/n] so that 0 ≤ νn(x) ≤ 1/x and νn is smooth for all x. And
define Vn(x) =

∫ x
0
νn(y) dy. Plugging h = Vn(φε) to (3.10) gives(∫

S1

νn(φε)φ
′ 2
ε φε dζ

)2

≤ 2Ĩ(µε)

∫
S1

ν2
n(φε)φ

′ 2
ε φ

2
ε dζ ≤ 2Ĩ(µε)

∫
S1

νn(φε)φ
′ 2
ε φε dζ

where νn(φε) ≤ 1/φε was used and the common terms on both sides cancel out. As
n→∞, Fatou’s lemma implies (3.9) as desired.

3.4 Large deviations for {δBκt }
In this section, we prove Theorem 1.2. That is, we establish the large deviation

principle for the Brownian trajectory measure {δBκt }. We use the notation of Section 3.1.
The first step is the large deviation principle for Pn({δBκt }), which follows easily from

Theorem 3.4. Recall that Pn({δBκt }) is a 2n-tuple of elements ofM1(S1), the ith element
being the average of {δBκt } on the time interval [i/2n, (i+ 1)/2n].

Lemma 3.6. Fix n ≥ 1. The random variable Pn({δBκt }) ∈ Yn satisfies the large deviation
principle as κ→∞, with good rate function In : Yn → R defined by

In((µi)i∈In) :=
1

2n

∑
i∈In

I(µi), (3.11)

where I :M1(S1)→ R is the good rate function defined in (1.5).

Proof. Since the large deviation rate function I is rotation invariant, the same rate
function is applicable to the setting of the occupation measure of Brownian motion
started at any ζ ∈ S1. Furthermore, the Markov property of Brownian motion tells us
that conditioned on the value Bκj/2n , the process (Bκt )[j/2n,(j+1)/2n] is independent of
(Bκt )[0,j/2n]. These observations, together with Theorem 3.4, yield the lemma.

Since N = lim←−Yn, we can deduce the large deviation principle for {δBκt }.
Proposition 3.7. The random measure {δBκt } ∈ N has the large deviation principle with
good rate function

supn≥0 In(Pn(ρ)) for ρ ∈ N ,

where In : Yn → R is defined in (3.11).

Proof. This follows from the Dawson-Gärtner theorem [4] (or [5, Thm 4.6.1]), the fact that
N = lim←−Yn by Lemma 3.1, and the large deviation principle for Pn({δBκt }) (Lemma 3.6).

Finally, we can simplify the rate function supn≥0 In(Pn(ρ)).
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Lemma 3.8. Define E : N → R by E(ρ) :=
∫ 1

0
I(ρt) dt, where {ρt} is any disintegration of

ρ with respect to t (see (2.1)). Then, with In : Yn → R defined as in (3.11), we have

E(ρ) = supn≥0 In(Pn(ρ)).

Proof. By definition we have P in(ρ) = 1
2 (P 2i

n+1(ρ) + P 2i+1
n+1 (ρ)), so Jensen’s inequality

applied to the convex function I yields In(Pn(ρ)) ≤ In+1(Pn+1(ρ)), and hence

supn≥0 In(Pn(ρ)) = lim
n→∞

In(Pn(ρ)).

Next, we check that E(ρ) ≥ limn→∞ In(Pn(ρ)). This again follows from Jensen’s inequal-
ity:

In(ρ) =
1

2n

∑
i∈In

I

(
2n
∫ (i+1)/2n

i/2n
ρt dt

)
≤
∑
i∈In

∫ (i+1)/2n

i/2n
I (ρt) dt = E(ρ).

Thus, we are done once we prove the reverse inequality E(ρ) ≤ limn→∞ In(Pn(ρ)).
Consider the probability space given by [0, 1] endowed with its Borel σ-algebra F∞,

and let µ be theM1(S1)-valued random variable defined by sampling t ∼ Leb[0,1] then
setting µ := ρt. Let Fn be the σ-algebra generated by sets of the form [i/2n, (i+ 1)/2n]

for i ∈ In; note that F∞ = σ(∪nFn). Define µn := E
[
µ
∣∣Fn]. For any continuous function

f ∈ C(S1), the bounded real-valued Doob martingale µn(f) converges a.s. to µ(f).
Taking a suitable countable collection of f , we conclude that a.s. µn converges to µ in
the Prokhorov topology. By Fatou’s lemma and the lower-semicontinuity of I, we have

lim inf
n→∞

E[I(µn)] ≥ E[lim inf
n→∞

I(µn)] ≥ E[I(µ)]. (3.12)

We can write µn explicitly as µn = 2n
∫ (i+1)/2n

i/2n
ρt dt where i ∈ In is the index for which

t ∈ [i/2n, (i+ 1)/2n], so E[I(µn)] = In(Pn(ρ)). We also have E[I(µ)] =
∫ 1

0
I(ρt) dt = E(ρ).

Combining these with (3.12), we conclude that limn→∞ In(Pn(ρ)) ≥ E(ρ).

Proof of Theorem 1.2. Proposition 3.7 says that {δBκt } ∈ N has a large deviation princi-
ple with good rate function given by supn≥0 In(Pn(·)), and Lemma 3.8 shows that this
good rate function can alternatively be expressed as E .

4 Comments

Let us make further comments and list a few questions in addition to those in the
introduction.

1. As we have discussed in the introduction, one may wonder what the limit and large
deviations of chordal SLE∞ are. Figure 1 shows two chordal SLEκ curves on [−1, 1]2

from a boundary point −i to another boundary point i, for several large values of κ. We
see that the interfaces stretch out to the target point and are close to horizontal lines
after we map the square to H and the target point i to∞.

2. Corollary 1.3 shows that SLE∞ concentrates around the family of Loewner chains
driven by an absolutely continuous measure ρ with E(ρ) <∞. In [17] we geometrically
characterize the Loewner chains driven by such measures. Note that the answer to the
same question for the large deviation rate function of SLE0+, namely the family of Jordan
curves of finite Loewner energy, is well-understood. That family has been shown to be
exactly the family of Weil-Petersson quasicircles [19], which has far-reaching connections
to geometric function theory and Teichmüller theory.
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Figure 1: An instance of chordal SLE128 and SLE1000 on [−1, 1]2 from −i to i. The
simulation of these counterflow lines is done by imaginary geometry as described in
[11], and are approximated via linear interpolation of an 800 × 800 discrete Gaussian
free field with suitable boundary conditions. The color represents the time (capacity)
parametrization of the SLE curve.

3. The rate function (1.5) for the Brownian occupation measure coincides with the rate
function of the square of the Brownian bridge (or Gaussian free field) on S1. Is there a
profound reason or is this merely a coincidence? One could attempt to relate the large
deviations of the Brownian occupation measure to the large deviations of the occupation
measure of a Brownian loop soup on S1.

4. The fluctuations of the circular Brownian occupation measure Lκt were studied by
Bolthausen. We express this result in terms of the local time `t : S1 → [0,∞), defined via
L1
t = `t(ζ)dζ. Note that `t is a.s. a random continuous function.

Theorem 4.1 ([3]). Identify each ζ = eiθ ∈ S1 with θ ∈ [0, 2π). As t→∞, the stochastic
process

√
t( `t(θ)t −

1
2π )θ∈[0,2π) converges in distribution to (2bθ− 1

π

∫ 2π

0
bτ dτ)θ∈[0,2π), where

b is a Brownian bridge on the interval [0, 2π] with endpoints pinned at b0 = b2π = 0.

We wonder whether there are interesting consequences to the fluctuations of SLE∞.
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