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Abstract

For i.i.d. d-dimensional observations X(1), X(2), . . . with independent Exponential(1)
coordinates, consider the boundary (relative to the closed positive orthant), or “fron-
tier”, Fn of the closed Pareto record-setting (RS) region

RSn := {0 ≤ x ∈ Rd : x 6≺ X(i) for all 1 ≤ i ≤ n}

at time n, where 0 ≤ x means that 0 ≤ xj for 1 ≤ j ≤ d and x ≺ y means that xj < yj
for 1 ≤ j ≤ d. With x+ :=

∑d
j=1 xj , let

F−
n := min{x+ : x ∈ Fn} and F+

n := max{x+ : x ∈ Fn},

and define the width of Fn as

Wn := F+
n − F−

n .

We describe typical and almost sure behavior of the processes F+, F−, and W . In
particular, we show that F+

n ∼ lnn ∼ F−
n almost surely and that Wn/ ln lnn converges

in probability to d− 1; and for d ≥ 2 we show that, almost surely, the set of limit points
of the sequence Wn/ ln lnn is the interval [d− 1, d].

We also obtain modifications of our results that are important in connection with
efficient simulation of Pareto records. Let Tm denote the time that the mth record is
set. We show that F+

Tm
∼ (d!m)1/d ∼ F−

Tm
almost surely and that WTm/ lnm converges

in probability to 1 − d−1; and for d ≥ 2 we show that, almost surely, the sequence
WTm/ lnm has lim inf equal to 1− d−1 and lim sup equal to 1.
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The Pareto record frontier

1 Introduction, background, and main results

The study of univariate records is very well developed ([1] being a classical reference),
but that of multivariate records less well so, in part because there are many ways one
can formulate the latter concept. See [6], and the references therein, and [1, Chap. 8]
for background.

This paper is mainly about the stochastic process (Fn), where Fn is the boundary,
or “frontier”, for Pareto records (otherwise known as nondominated records or weak
records; consult Definitions 1.1–1.2) in general dimension d when the observed sequence
of points X(1), X(2), . . . are assumed (as they are throughout the paper) to be i.i.d.
(independent and identically distributed) copies of a d-dimensional random vector X
with independent Exponential(1) coordinates Xj .

Theoretical investigation leading to the results in this paper were spurred by empirical
observations whose generation is discussed briefly in Section 5 (see especially Figure 3)
and in detail in [5] and began with the simple result of Theorem 1.4.

Notation: Throughout this paper we abbreviate the kth iterate of natural logarithm
ln by Lk and L1 by L, and we write x+ :=

∑d
j=1 xj for the sum of coordinates of the

d-dimensional vector x = (x1, . . . , xd).
Unless otherwise specifically noted, all the results of this paper hold for any dimension

d ≥ 1.

1.1 Pareto records and the record-setting region

We begin with some definitions. Write x ≺ y (respectively, x ≤ y) to mean that xj < yj
(resp., xj ≤ yj) for 1 ≤ j ≤ d. (We caution that, with this convention, ≤ is weaker than
�, the latter meaning “≺ or =”; indeed, (0, 0) ≤ (0, 1) but we have neither (0, 0) ≺ (0, 1)

nor (0, 0) = (0, 1). This distinction will matter little in this paper, since the probability
that any coordinate of an observation is repeated or vanishes is 0, but the distinction is
important in [5].) The notation x � y means y ≺ x, and x ≥ y means y ≤ x.

Definition 1.1. (a) We say that X(k) is a (Pareto) record (or that it sets a record at
time k) if X(k) 6≺ X(i) for all 1 ≤ i < k.

(b) If 1 ≤ k ≤ n, we say that X(k) is a current record (or remaining record, or
maximum) at time n if X(k) 6≺ X(i) for all 1 ≤ i ≤ n.

(c) If 1 ≤ k ≤ n, we say that X(k) is a broken record at time n if it is a record but
not a current record, that is, if X(k) 6≺ X(i) for all 1 ≤ i < k but X(k) ≺ X(`) for some
k < ` ≤ n; in that case, the observation corresponding to the smallest such ` is said to
break or kill the record X(k).

For n ≥ 1 (or n ≥ 0, with the obvious conventions) let Rn denote the number
of records X(k) with 1 ≤ k ≤ n, let rn denote the number of remaining records at
time n, and let βn := Rn − rn denote the number of broken records. Note that Rn
and βn are nondecreasing in n, but the same is not true for rn. For dimension d ≥ 2,
by standard consideration of concomitants [that is, by considering the d-dimensional
sequence X(1), . . . , X(n) sorted from largest to smallest value of (say) last coordinate]
we see that rn(d) (that is, rn for dimension d, with similar notation used here for Rn)
has, for each n, the same (univariate) distribution as Rn(d− 1); note, however, the same
equality in distribution does not hold for the stochastic processes r(d) and R(d− 1).

Definition 1.2. (a) The record-setting region at time n is the (random) closed set of
points

RSn := {x ∈ Rd : 0 ≤ x 6≺ X(i) for all 1 ≤ i ≤ n}.

(b) We call the (topological) boundary of RSn (relative to the closed positive orthant
determined by the origin) its frontier and denote it by Fn.
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The Pareto record frontier

Fn

x+ = F+
n

x+ = F−n

x1

x2

Figure 1: Record frontier Fn based on n observations resulting in 10 current records
(shown as solid points). The values F−n = min{x+ : x ∈ Fn} and F+

n = max{x+ : x ∈ Fn}
determine two hyperplanes x+ = F−n and x+ = F+

n . A new observation sets a record if
and only if it falls in the region to the upper right of Fn.

Remark 1.3. The terminology in Definition 1.2(a) is natural since the next observation
X(n+1) sets a record if and only if it falls in the record-setting region. Note that

RSn = {x ∈ Rd : 0 ≤ x 6≺ X(i) for all 1 ≤ i ≤ n

such that X(i) is a current record at time n},

and that the current records at time n all belong to RSn but lie on its frontier. Observe
also that Fn is a closed subset of RSn. Because this paper makes heavy use of the classical
probabilistic notion of boundary-crossing probabilities, to avoid confusion we have
chosen to use the term “frontier” for Fn, rather than “boundary”, in Definition 1.2(b).

1.2 The record-setting frontier

Our first result shows that deviations of the sum of coordinates for a generic current
record at time n from Ln are typically of constant order. Observe that the conditional
distribution of X(k)

+ given that X(k) is a current record at time n doesn’t depend on

k ∈ {1, . . . , n}; in particular, it’s the conditional distribution of X(n)
+ given that X(n) sets
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The Pareto record frontier

a record. Let Yn be a random variable with that distribution. Let G denote a random
variable with the standard Gumbel distribution (i.e., distribution function x 7→ e−e

−x
,

x ∈ R), and write
L−→ for convergence in law (i.e., in distribution)

Theorem 1.4. We have
Yn − Ln

L−→ G.

Proof. This is quite elementary. Let pn denote the probability that X(n) sets a record.
Fix n ≥ 2 for the moment. For x � 0 we have

P(X(n) ∈ dx |X(n) 6≺ X(i) for all 1 ≤ i ≤ n)

= p−1n P(X(n) ∈ dx, X(n) 6≺ X(i) for all 1 ≤ i ≤ n)

= p−1n P(X(n) ∈ dx, x 6≺ X(i) for all 1 ≤ i ≤ n− 1)

= p−1n P(X(n) ∈ dx)P(x 6≺ X(i) for all 1 ≤ i ≤ n− 1)

= p−1n e−x+ [1− P(x ≺ X(1))]n−1 dx = p−1n e−x+(1− e−x+)n−1 dx,

and so the conditional density depends on x only through x+. It follows that the density
fn(y) of Yn satisfies

fn(y) = p−1n
yd−1

(d− 1)!
e−y(1− e−y)n−1, y > 0.

Using the well-known asymptotic equivalence pn ∼ n−1(Ln)d−1/(d − 1)! as n → ∞
[see (4.5) below], it is easy to check that, for each fixed z ∈ R, the density of Yn − Ln

at z converges to the standard Gumbel density e−ze−e
−z

as n→∞. The claimed result
thus follows from Scheffé’s theorem (e.g., [4, Thm. 16.12]), which shows that there is in
fact convergence in total variation.

This paper primarily concerns the stochastic process (Fn), and specifically its “width”
as defined next (see Figure 1).

Definition 1.5. Recall that Fn denotes the frontier of RSn, and let

F−n := min{x+ : x ∈ Fn} and F+
n := max{x+ : x ∈ Fn}. (1.1)

We define the width of Fn as
Wn := F+

n − F−n . (1.2)

Very roughly put, what we will see in this paper is that, unlike Yn of Theorem 1.4,
deviations of F+

n from Ln are exactly of order L2 n; on the other hand, we will see that
deviations of F−n from Ln are of smaller order than L2 n. It will follow that the width of
the frontier is exactly of order L2 n.

We next make some simple observations about the quantities appearing in Defini-
tion 1.5 that will prove fundamentally useful to our development.

Lemma 1.6 (characterization of F+
n ). We have

F+
n = max{X(k)

+ : 1 ≤ k ≤ n},

which is nondecreasing in n.

Proof. The current records at time n all belong to Fn, and broken records and non-
records all have coordinate-sums (strictly) smaller than some current record. Thus
F+
n ≥ max{X(k)

+ : 1 ≤ k ≤ n}. Conversely, if x ∈ Fn, then x � X(i) for some i; it follows

that F+
n ≤ max{X(k)

+ : 1 ≤ k ≤ n}.

EJP 25 (2020), paper 92.
Page 4/24

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP492
http://www.imstat.org/ejp/


The Pareto record frontier

Lemma 1.7 (two upper bounds on F−n ).
(a) Define

B+
n (j) := max{X(i)

j : 1 ≤ i ≤ n}.

Then
F−n ≤ min

1≤j≤d
B+
n (j).

(b) Let 1 ≤ m ≤ n. Define

Bm,n := mth-largest value among X(k)
+ with 1 ≤ k ≤ n.

Then, over the event {rn ≥ m} that there are at least m remaining records at time n, we
have

F−n ≤ Bm,n.

(c) The processes F−, min1≤j≤dB
+(j), and Bm,· (for any m) all have nondecreasing

sample paths.

Proof. (a) For j = 1, . . . , d, let ij ∈ {1, . . . , n} denote the almost surely unique index such
that

X
(ij)
j = max{X(i)

j : 1 ≤ i ≤ n}.

Let ej = (0, . . . , 0, 1, 0, . . . , 0) denote the jth coordinate vector. We claim that the points
Y (j) := X(ij)ej with j = 1, . . . , d all belong to Fn (in fact, to Fn ∩ RSn), and then the
inequality is immediate. To prove the claim, note that all of the points Y (j) belong to

RSn [because Y (j)
j = X

(ij)
j and hence Y (j) 6≺ X(ij)] but also to Fn [because Y (j) ≤ X(ij)].

(b) Over the event {rn ≥ m}, F−n is certainly at most the mth-largest sum of coordi-
nates of remaining records, which is in turn at most Bm,n.

(c) The asserted monotonicity is clear for the bounding processes. The asserted
monotonicity of F− follows easily from the observation that Fn+1 ⊆ RSn+1 ⊆ RSn.

It seems difficult to study the processes F+ and F− bivariately, so we draw all our
conclusions about the width process W by studying F+ and F− univariately (that is,
separately) and using W = F+ − F−. The behavior of F+ is well known from classical
extreme value theory and is reviewed in Section 2. Conclusions about F− will be drawn
from (i) the upper-bounding processes in Lemma 1.7(a)–(b) together with classical
extreme value theory for those bounding processes and (ii) a rather nontrivial lower
bound developed in Section 3.

1.3 Main results

We next present the main results of our paper. What the results show, in various
precise senses, is that F+

n and F−n both concentrate near Ln, with deviations that are
O(L2 n), from which it follows of course that Wn = O(L2 n). But for d ≥ 2 we show more,
namely, that L2 n is the exact scale for Wn, that is, that Wn = Θ(L2 n). We can even
narrow things down further: Wn/L2 n → d − 1 in probability for each d ≥ 1, with an
almost sure lim inf equal to d− 1 and an almost sure lim sup equal to d.

Here are our main results for arbitrary but fixed dimension d ≥ 1. We consider
both convergence in probability (typical behavior) and almost sure largest and smallest
deviations from Ln (top and bottom boundary-behavior, respectively) for large n.

Theorem 1.8 (Kiefer [7]). Consider the process F+ defined at (1.1).

(a) Typical behavior of F+:

F+
n − [Ln+ (d− 1) L2 n− L((d− 1)!)]

L−→ G.

EJP 25 (2020), paper 92.
Page 5/24

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP492
http://www.imstat.org/ejp/


The Pareto record frontier

(b) Top boundaries for F+:

P(F+
n ≥ Ln+ cL2 n i.o.) =

{
1 if c ≤ d;
0 if c > d.

(c) Bottom boundaries for F+:

P(F+
n ≤ Ln+ (d− 1) L2 n− L3 n− L((d− 1)!) + c i.o.) =

{
1 if c ≥ 0;

0 if c < 0.

Theorem 1.8 gives rise immediately to the following succinct corollary.

Corollary 1.9 (Kiefer [7]). Consider the process F+ defined at (1.1).

(a) Typical behavior of F+:

F+
n − Ln

L2 n

P−→ d− 1.

(b) Almost sure behavior for F+:

lim inf
F+
n − Ln

L2 n
= d− 1 < d = lim sup

F+
n − Ln

L2 n
a.s.

Remark 1.10. In fact, one can show rather simply from Corollary 1.9(b) and the fact
that F+ has nondecreasing sample paths that the set (call it Λ) of limit points of the
sequence (F+

n − Ln)/L2 n is almost surely the closed interval [d− 1, d]. Here is a sketch
of the proof. The set Λ is closed, so we need only show that Λ is dense in [d− 1, d], which
clearly follows if we can show that

lim sup
n→∞

[
F+
n − Ln

L2 n
−
F+
n+1 − L(n+ 1)

L2(n+ 1)

]
≤ 0 a.s., (1.3)

the roughly stated idea being that then (a.s.) the sequence (F+
n − Ln)/L2 n “can’t leap

downward over any interval i.o.” in its infinitely many downward moves from its lim sup

to its lim inf. To prove (1.3), we first bound F+
n+1 from below by F+

n , then express
the resulting difference with a common denominator, and finally use the consequence
F+
n ∼ Ln a.s. of Corollary 1.9(b) to find

F+
n − Ln

L2 n
−
F+
n+1 − L(n+ 1)

L2(n+ 1)

≤ (1 + o(1))(nLn)−1F+
n + (1 + o(1))n−1 L2 n

(1 + o(1))(L2 n)2
∼ n−1(L2 n)−1 = o(1) a.s.

as n→∞.

Remark 1.11. Our Theorem 1.8 formalizes and improves upon related computations
in Bai et al. [3, Secs. 1 and 3.2] who, for the limited purpose of proving a central limit
theorem reviewed in Theorem 4.1(a) below, “observe that nearly all maxima occur in a
thin strip sandwiched between [the] two parallel hyper-planes”

x+ = Ln− L3 n− L[4(d− 1)] and x+ = Ln+ 4(d− 1) L2 n.

Our results for F− show that the deviations of F−n from Ln are almost surely negligi-
ble on a scale of L2 n.

EJP 25 (2020), paper 92.
Page 6/24

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP492
http://www.imstat.org/ejp/
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Theorem 1.12. Consider the process F− defined at (1.1).

(a) Typical behavior of F−:

P(F−n ≤ Ln− 3 L3 n)→ 0

and
P(F−n ≥ Ln+ cn)→ 0 if cn →∞.

(b) Top outer boundaries for F−: If d ≥ 2, then

P(F−n ≥ Ln+ cL2 n i.o.) = 0 if c > 0.

(c1) A bottom outer boundary for F− on the scale of L3 n:

P(F−n ≤ Ln− 3 L3 n i.o.) = 0.

(c2) A bottom inner boundary for F− on the scale of L3 n:

P(F−n ≤ Ln− L3 n i.o.) = 1.

Theorem 1.12 gives rise immediately to the following succinct corollary.

Corollary 1.13. Consider the process F− defined at (1.1).

(a) Typical behavior of F−:
F−n − Ln

L2 n

P−→ 0.

(b) Almost sure behavior for F−: If d ≥ 2, then

lim
F−n − Ln

L2 n
= 0 a.s.

We come now to our main focus, the process W . The results in Theorem 1.14 follow
directly from Corollaries 1.9 and 1.13.

Theorem 1.14. Consider the process W defined at (1.2).

(a) Typical behavior of W :
Wn

L2 n

P−→ d− 1.

(b) Almost sure behavior for W : If d ≥ 2, then

lim inf
Wn

L2 n
= d− 1 < d = lim sup

Wn

L2 n
a.s.,

and, in particular,
Wn = Θ(L2 n) a.s.

Remark 1.15. (a) When d = 1, at each time n ≥ 1 there is exactly one current record,
F+
n = F−n is the value of that record, RSn is the closed interval [F+

n ,∞), and Wn = 0.
(b) Using Remark 1.10, Theorem 1.14(b) can be strengthened to the conclusion that

the set of limit points of the sequence Wn/L2 n is almost surely the closed interval
[d− 1, d].

(c) Theorem 1.14(b) has the following immediate corollary. If, for some positive
integer d0, processes W (d) corresponding to dimension d, d = d0, d0 + 1, . . . , are defined
on a common probability space (regardless of any dependence among the processes),
then

lim
d→∞

lim sup
n→∞

Wn(d)

(d− 1) L2 n
= 1 = lim

d→∞
lim inf
n→∞

Wn(d)

(d− 1) L2 n
a.s. (1.4)
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The Pareto record frontier

That is, roughly speaking, for time n large relative to large dimension d, the width Wn(d)

almost surely concentrates near (d− 1) L2 n.
(d) We could have used d in the denominators of (1.4), but we chose d− 1 because

of Theorem 1.14(a). A remark of a somewhat similar flavor as (b) for convergence in
probability is the following. If, for some integer d0 ≥ 2, processes W (d) corresponding
to dimension d, d = 2, . . . , d0, are defined on a common probability space (regardless of
any dependence among the processes), then

max
2≤d≤d0

∣∣∣∣ Wn(d)

(d− 1) L2 n
− 1

∣∣∣∣ P−→ 0.

We have not investigated whether this result might extend to dimension d0 growing
with n.

1.4 Outline of paper

The stochastic process F+ is studied in Section 2, where we prove Theorem 1.8.
We treat the process F− in Section 3, where we prove Theorem 1.12. In Section 4 we
assess asymptotic behavior of the record counts Rn, rn, and βn introduced following
Definition 1.1 as preparation for Section 5, where we produce versions of our main
results concerning the record-setting frontier process F when time is measured in the
number of records (rather than observations X(i)) generated.

2 The process F+

This section is devoted to the proof of Theorem 1.8 concerning the process F+ defined
at (1.1). In light of the characterization provided by Lemma 1.6, Theorem 1.8 follows
from results of [7]. Kiefer is concerned with behavior of the law of the iterated logarithm
type for the empirical distribution function and sample pn-quantiles for a sequence of
independent uniform(0, 1) random variables, with pn > 0 and pn ↓ 0, but notes that his
results “may easily be translated into results for general laws.” Since we are concerned
here with a sequence X(1)

+ , X
(2)
+ , . . . from the Gamma(d, 1) distribution and with (only)

the pn = 1/n upper quantile, for completeness and the reader’s convenience we distill
Kiefer’s proof(s) for our special case.

Proof of Theorem 1.8. (a) This is elementary. We have

P(F+
n − [Ln+ (d− 1) L2 n− L((d− 1)!)] ≤ x)

=
[
P
(
X

(1)
+ − [Ln+ (d− 1) L2 n− L((d− 1)!)] ≤ x

)]n
=
[
P
(
X

(1)
+ ≤ Ln+ (d− 1) L2 n− L((d− 1)!) + x

)]n
=

1−
d−1∑
j=0

e−λ
λj

j!

n

=

[
1− (1 + o(1))e−λ

λd−1

(d− 1)!

]n
=
[
1− (1 + o(1))n−1e−x

]n → e−e
−x

= P(G ≤ x),

where λ := Ln+ (d− 1) L2 n− L((d− 1)!) + x.
(b) Kiefer describes two proofs. The first proof observes, for any sequence bn →∞

which is ultimately monotone nondecreasing, that

{F+
n > bn i.o.} = {X(n)

+ > bn i.o.}

and applies the Borel–Cantelli lemmas to the sequence of independent events {X(n)
+ > bn}

with bn ≡ Ln+ cL2 n. The second proof exploits the nondecreasingness of the sample
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paths of the process F+
· = B1,· noted in Lemma 1.7 and proceeds as follows. If (bn)

is ultimately monotone nondecreasing and (nj) is any strictly increasing sequence of
positive integers, then

{F+
nj ,nj+1

≥ bnj+1
i.o.(j)} ⊆ {F+

n ≥ bn i.o.(n)} ⊆ {F+
nj+1

≥ bnj i.o.(j)},

where we note that the random variables

F+
nj ,nj+1

≡ max{X(k)
+ : nj < k ≤ nj+1} (2.1)

are independent. Now choose bn ≡ Ln+ cL2 n and nj ≡ 2j and apply the Borel–Cantelli
lemmas.

(c) For the case c < 0 of outer-class bottom boundaries, we start with the observation
that if (bn) is ultimately monotone nondecreasing and (nj) is any strictly increasing
sequence of positive integers, then

{F+
n ≤ bn i.o.(n)} ⊆ {F+

nj ≤ bnj+1 i.o.(j)}.

We then choose bn ≡ Ln+ (d− 1) L2 n−L3 n−L((d− 1)!) + c with c < 0 and nj ≡ be|c|j/2c
and apply the first Borel–Cantelli lemma.

For the case c ≥ 0 of inner-class bottom boundaries, we start with the observation
that if (bn) is ultimately monotone nondecreasing and (nj) is any strictly increasing
sequence of positive integers, then, recalling the definition (2.1),

{F+
nj ≤ bnj+1

a.a.(j)} ∩ {F+
nj ,nj+1

≤ bnj+1
i.o.(j)}

⊆ {F+
nj+1

≤ bnj+1
i.o.(j)} ⊆ {F+

n ≤ bn i.o.(n)}.

We then choose bn ≡ Ln+ (d− 1) L2 n−L3 n−L((d− 1)!) + c with c ≥ 0 and nj ≡ beαj L jc
with α > 1 and apply the first Borel–Cantelli lemma to the events {F+

nj > bnj+1
} and the

second Borel–Cantelli lemma to the independent events {F+
nj ,nj+1

≤ bnj+1}.

3 The process F−

3.1 Towards a stochastic lower bound on F−n

To prove Theorem 1.12 we need a stochastic lower bound on F−n to complement the
upper bound of Lemma 1.7. For this we use the definitions of the frontier Fn and the
closed record-setting region RSn to argue as follows. For x ∈ Rd, let

O+
x := {y ∈ Rd : y � x}

denote the open positive orthant determined by x. For any set S ⊆ Rd, let Nn(S) denote
the number of observations X(i) with 1 ≤ i ≤ n that fall in S. Then

{F−n ≤ b} = {x+ ≤ b for some x ∈ Fn} = {x+ ≤ b for some x ∈ RSn}

= {x+ ≤ b for some x ≥ 0 satisfying x 6≺ X(i) for all 1 ≤ i ≤ n}

=
⋃

x≥0: x+≤b

{Nn(O+
x ) = 0}

=
⋃

x≥0: x+=b

{Nn(O+
x ) = 0}. (3.1)

The difficulty with upper-bounding the probability of this event is of course that the last
union is uncountable. In the next subsection we produce a geometric lemma whose
application effectively bounds the uncountable union by a finite union.
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The Pareto record frontier

x1

x2

O+
v

v

x+ = 2m− (d− 1)

x+ = 2m− 2(d− 1)

Figure 2: Geometric lemma illustrated for d = 2. Given v with v+ = 2m − 2(d − 1),
the orthant O+

v determined by v must contain a point i with integer coordinates on the
hyperplane x+ = 2m− (d− 1).

3.2 A geometric lemma

Consider the (uncountable) union of positive orthants whose vertices lie on the
hyperplane x+ = 2m− 2(d− 1) in Rd, where m ≥ d− 1 is an integer. We can also form a
finite union of positive orthants whose vertices lie on the hyperplane x+ = 2m− (d− 1)

situated a bit further from the origin. Our key geometric lemma guarantees that the
uncountable union contains the finite union (see Figure 2).

Lemma 3.1. Given a positive integer m ≥ d− 1, and 0 ≤ x ∈ Rd with

x+ = 2m− 2(d− 1), (3.2)

there exists 0 ≤ i ∈ Zd with

i+ = 2m− (d− 1) (3.3)

such that

O+
i ⊆ O

+
x . (3.4)
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The Pareto record frontier

Proof. We need to prove the existence of 0 ≤ i ∈ Zd satisfying (3.3) and (3.4) (i.e., x ≤ i).
The frugal choice 0 ≤ i′ ∈ Zd defined by

i′j := dxje , j = 1, . . . , d,

satisfies (3.4) but not necessarily (3.3). However, using (3.2) we observe that i′+ is at
least the integer

x+ = 2m− 2(d− 1)

and strictly less than the integer 2m−2(d−1)+d = 2m−(d−2), i.e., is at most 2m−(d−1).
Thus we need only (arbitrarily) “sweeten” (i.e., add 1 to) precisely 2m− (d− 1)− i′+ ∈
Z ∩ [0, d− 1] of the entries i′j to obtain i with the desired properties.

3.3 A stochastic lower bound on F−n

Let 0 ≤ b < Ln. Returning to (3.1), we now see from Lemma 3.1 with t = Ln ≥ 0 and

m =

⌈
(d− 1) Ln

Ln− b

⌉
≥ d− 1,

together with homogeneity [O+
cy = cO+

y for 0 ≤ y ∈ Rd and 0 ≤ c ∈ R1], that

{F−n ≤ b} =
⋃

x≥0: x+=b

{Nn(O+
x ) = 0}

⊆
⋃

x≥0: x+=(1− d−1
m )t

{Nn(O+
x ) = 0}

⊆
⋃

0≤i∈Zd: i+=2m−(d−1)

{
Nn

(
O+

t
2m i

)
= 0
}
,

and so by finite subadditivity

P(F−n ≤ b) ≤
∑

0≤i∈Zd: i+=2m−(d−1)

P
(
Nn

(
O+

t
2m i

)
= 0
)
.

But

P
(
Nn

(
O+

t
2m i

)
= 0
)

= P
(
X /∈ O+

t
2m i

)n
=
[
1− P

(
X ∈ O+

t
2m i

)]n
=
[
1− exp

(
− t

2m i+
)]n

=
[
1− exp

{
−
(
1− d−1

2m

)
Ln
}]n

=
[
1− n−(1− d−1

2m )
]n

≤ exp
(
−n

d−1
2m

)
.

Since the cardinality of {0 ≤ i ∈ Zd : i+ = 2m− (d− 1)} equals(
2m

d− 1

)
≤ (2m)d−1

(d− 1)!

we conclude that

P(F−n ≤ b) ≤
(2m)d−1

(d− 1)!
exp
(
−n

d−1
2m

)
≤ (1 + o(1))

[2(d− 1)]d−1

(d− 1)!

(
1− b

Ln

)−(d−1)
exp
[
− exp

{
(1 + o(1)) 1

2 (Ln− b)
}]
,
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where the last inequality holds assuming that b = bn = (1 + o(1)) Ln as n→∞.
We summarize and simplify the bound we have derived in the next proposition, where

we assume further that Ln − bn → ∞. The bound is the key to the proof of the first
assertion in Theorem 1.12(a) and of Theorem 1.12(c1).

Proposition 3.2 (Stochastic lower bound on F−n ). Let 0 ≤ bn < Ln with bn = (1 −
o(1)) Ln and Ln− bn →∞. Then

P(F−n ≤ bn) ≤ (Ln)d−1 exp
[
− exp

{
(1 + o(1)) 1

2 (Ln− bn)
}]
.

3.4 Proof of Theorem 1.12

In this subsection we prove Theorem 1.12, part by part in the order (a), (c1), (c2), (b).

Proof of Theorem 1.12(a). The second assertion in Theorem 1.12(a) follows from the
case d = 1 of Theorem 1.8(a) since, according to Lemma 1.7(a), we have

F−n ≤ min
1≤j≤d

B+
n (j) ≤ B+

n (1), (3.5)

where we recall the definition

B+
n (j) := max{X(i)

j : 1 ≤ i ≤ n}.

The first assertion follows from part (c1), proved next.

Proof of Theorem 1.12(c1). As noted in Lemma 1.7, the process F− has nondecreasing
sample paths. From this it follows that if (bn) is (ultimately) monotone nondecreasing
and (nj) is any strictly increasing sequence of positive integers, then

{F−n ≤ bn i.o.(n)} ⊆ {F−nj ≤ bnj+1
i.o.(j)}.

To complete the proof, we choose bn ≡ Ln − 3 L3 n and nj ≡ 2j , bound P(F−nj ≤ bnj+1)

using Proposition 3.2, and apply the first Borel–Cantelli lemma.
Here are the details. Since Lnj = j L 2 and

bnj+1 = (j + 1) L 2− 3 L2[(j + 1) L 2] = j L 2− (1 + o(1))3 L2 j,

the hypotheses of Proposition 3.2 are met and

P(F−nj ≤ bnj+1) ≤ (j L 2)d−1 exp
[
− exp

{
(1 + o(1)) 3

2 L2 j
}]

= exp
[
−(L j)(1+o(1))(3/2)

]
,

which is summable.

Remark 3.3. We chose the constant 3 as the coefficient of −L3 n in parts (a) and (c1) of
Theorem 1.12 for convenience. As the proof shows, we could have used any constant
larger than 2.

Proof of Theorem 1.12(c2). This follows immediately from the case d = 1 of Theo-
rem 1.8(c) using the aforementioned bound (3.5).

There remains only the proof of Theorem 1.12(b). For that we need first the following
almost sure lower bound on rn, which is of interest in its own right.

Theorem 3.4. Assume d ≥ 2. Let rn denote the number of remaining records at time n.
Then

lim inf
rn

(Ln)/(dL2 n)
≥ 1 a.s.
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Proof. Fix ε > 0. From Corollary 1.9(b) with d = 1 it follows that almost surely

lim inf
B+
n (1)− Ln

L2 n
= 0

and hence B+
n (1) ≥ Ln − εL2 n a.a. Additionally, from the now-established Corol-

lary 1.9(b) and Theorem 1.12(c1), it follows that almost surely

lim sup
Wn

L2 n
≤ d

and hence Wn/L2 n ≤ (1 + ε)d a.a.
Label the remaining records in (a.s. strictly) increasing order of first coordinate as

Z(1), . . . , Z(rn), and define Z(0) := Y (2) as defined in the proof of Lemma 1.7(a). Note in
particular that the points Z(i) with 0 ≤ i ≤ rn all belong to Fn, that Z(0)

1 = Y
(2)
1 = 0, and

that Z(rn)
1 = B+

n (1). Therefore,

Ln− εL2 n ≤ B+
n (1) = Z

(rn)
1 − Z(0)

1 =

rn∑
i=1

(
Z

(i)
1 − Z

(i−1)
1

)
≤ rnWn ≤ (1 + ε) d rn L2 n

for all large n, almost surely. The desired result follows.

Proof of Theorem 1.12(b). In light of Theorem 3.4 and Lemma 1.7(b), it is sufficient that
for each fixed positive integer m we have

P
(
Bm,n ≥ Ln+

a

m
L2 n i.o.

)
= 0 (3.6)

if a > 1. But (3.6) is known from [7, Thm. 1, see esp. (3.1)].

4 Record counts

Knowledge about the record countsRn, rn, and βn discussed in Section 1 is interesting
in its own right, and knowledge about Rn will be needed in the next section.

4.1 Typical behavior

In this subsection we review a known central limit theorem (CLT) of Berry–Esseen
type for rn and use it to derive easily CLTs for Rn and βn. Here are the results. Com-
plicated but explicit forms are known for the constants γd,j appearing in the variance
expressions.

Theorem 4.1 (Bai et al. [3, 2]). Let Φ denote the standard normal distribution function.

(a) Let d ≥ 2. Then there exist constants γd,j with γd,0 ≥ 1/(d− 1)! > 0 such that the
number rn of remaining records at time n satisfies

E rn = (Ln)d−1
d−1∑
j=0

(−1)jΓ(j)(1)

j!(d− 1− j)!
(Ln)−j +O(n−1(Ln)d−1) ∼ (Ln)d−1

(d− 1)!
,

Var rn = (Ln)d−1
d−1∑
j=0

γd,j(Ln)−j +O(n−1(Ln)2d−2) ∼ γd,0(Ln)d−1,

and

sup
x

∣∣∣∣P(rn − E rn√
Var rn

< x

)
− Φ(x)

∣∣∣∣ = O((Ln)−(d−1)/4(L2 n)d).
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(b) Let d ≥ 1. Then the number Rn of records set through time n satisfies

ERn = (Ln)d
d∑
j=0

(−1)jΓ(j)(1)

j!(d− j)!
(Ln)−j +O(n−1(Ln)d) ∼ (Ln)d

d!
,

VarRn = (Ln)d
d∑
j=0

γd+1,j(Ln)−j +O(n−1(Ln)2d) ∼ γd+1,0(Ln)d,

and

sup
x

∣∣∣∣P(Rn − ERn√
VarRn

< x

)
− Φ(x)

∣∣∣∣ = O((Ln)−d/4(L2 n)d+1).

(c) Let d ≥ 1. Then the number βn = Rn − rn of broken records at time n satisfies

Eβn = (Ln)d

 1

d!
+

d∑
j=1

(−1)j [Γ(j)(1) + jΓ(j−1)(1)]

j!(d− j)!
(Ln)−j


+O(n−1(Ln)d) ∼ (Ln)d

d!
,

Varβn = γd+1,0(Ln)d[1 +O((Ln)−1/2)],

and the central limit theorem

βn − Eβn√
Varβn

converges in law to standard normal.

Proof. Part (a) is known from [3]: their eq. (8) for E rn, their Theorem 1 for Var rn, their
eq. (13)—and the main theorem of [2]—for the stated lower bound on γd,0, and their
Theorem 2 for the CLT.

Part (b) follows immediately from part (a) by use of concomitants. (Recall the
discussion concerning concomitants preceding Definition 1.2.)

For d = 1, part (c) follows from part (b) because rn = 1 for n ≥ 1. For d ≥ 2, part (c)
follows from parts (a) and (b); for Varβn we use the triangle inequality for L2-norm after
centering by means, and for the CLT we use the CLT of part (b) together with Slutsky’s
theorem.

We have not attempted to find further terms in the asymptotic expansion for Varβn
nor a Berry–Esseen theorem for βn.

4.2 Almost sure behavior

We next establish a sufficient condition for a top boundary for the absolute centered
process (|Rn − ERn|) to be of outer class, and derive from that condition strong-law
concentration for R about its mean function. We also establish analogous results for the
processes β and r.

Theorem 4.2. Let d ≥ 1.
(a) If ε > 0, then

P
(
|Rn − ERn| ≥ (Ln)

3d
4 +ε i.o.

)
= 0.

As a consequence,
Rn
ERn

a.s.−→ 1.

(b) If ε > 0, then

P
(
|βn − Eβn| ≥ (Ln)

3d
4 +ε i.o.

)
= 0.
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As a consequence,
βn
Eβn

a.s.−→ 1.

(c) If ε > 0, then

P
(
|rn − E rn| ≥ (Ln)

3d
4 +ε i.o.

)
= 0.

As a consequence, if d ≥ 5 then
rn
E rn

a.s.−→ 1.

Proof. (a) Since ERn ∼ (Ln)d/d! by Theorem 4.1(b), the second assertion is indeed an
immediate consequence of the first. To prove the first assertion, we establish

P
(
Rn ≥ ERn + (Ln)

3d
4 +ε i.o.

)
= 0 (4.1)

and

P
(
Rn ≤ ERn − (Ln)

3d
4 +ε i.o.

)
= 0. (4.2)

To prove (4.1) we exploit the nondecreasingness of the sample paths of the process R.
If (bn) is ultimately monotone nondecreasing and (nj) is any strictly increasing sequence
of positive integers, then

{Rn ≥ bn i.o.(n)} ⊆ {Rnj+1 ≥ bnj i.o.(j)}. (4.3)

Now choose bn ≡ ERn + (Ln)
3d
4 +ε (which is clearly nondecreasing) and nj ≡ bej

2/dc.
Observe for large j that Lnj = j2/d +O(e−j

2/d

), and hence from Theorem 4.1(b) that

ERnj = (Lnj)
d

d∑
k=0

(−1)kΓ(k)(1)

k!(d− k)!
(Lnj)

−k + o(1)

= j2
d∑
k=0

(−1)kΓ(k)(1)

k!(d− k)!
j−2k/d + o(1) ∼ j2

d!
,

ERnj+1
= (j + 1)2

d∑
k=0

(−1)kΓ(k)(1)

k!(d− k)!
(j + 1)−2k/d + o(1)

= [1 +O(j−1)]j2
d∑
k=0

(−1)kΓ(k)(1)

k!(d− k)!
j−2k/d + o(1)

= ERnj +O(j−1ERnj ) + o(1) = ERnj +O(j).

Observe also that

bnj − ERnj = (Lnj)
3d
4 +ε ∼ j 3

2+
2
d ε;

As a consequence of these two observations,

bnj − ERnj+1
= (bnj − ERnj )− (ERnj+1

− ERnj ) ∼ j
3
2+

2
d ε > 0.

Further, from Theorem 4.1(b) we have

VarRnj+1 ∼ γd+1,0(Lnj+1)d = Θ(j2).

Hence, by Chebyshev’s inequality,

P(Rnj+1
≥ bnj ) ≤ (bnj − ERnj+1

)−2 VarRnj+1
= Θ(j−(1+

4
d ε)),
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which is summable. The first Borel–Cantelli lemma now implies that

P(Rnj+1 ≥ bnj i.o.(j)) = 0,

and then (4.3) yields the desired (4.1).
The proof of (4.2) is similar and again uses the nondecreasingness of the sample paths

of R. If (bn) is ultimately monotone nondecreasing and (nj) is any strictly increasing
sequence of positive integers, then

{Rn ≤ bn i.o.(n)} ⊆ {Rnj ≤ bnj+1
i.o.(j)}. (4.4)

Now choose bn ≡ ERn − (Ln)
3d
4 +ε and, again, nj ≡ bej

2/dc. The sequence (bn) is
ultimately monotone nondecreasing because it is known (e.g., [3]) that

ERn − ERn−1 = P(X(n) sets a record) = n−1E rn ∼ n−1
(Ln)d−1

(d− 1)!
, (4.5)

while also

(Ln)
3d
4 +ε − [L(n− 1)]

3d
4 +ε ∼ ( 3d

4 + ε)n−1(Ln)
3d
4 −1+ε = o(n−1(Ln)d−1),

provided ε < d/4 (which we may assume without loss of generality), whence

bn − bn−1 ∼ n−1
(Ln)d−1

(d− 1)!
> 0.

Proceeding as for (4.1), by Chebyshev’s inequality we have

P (Rnj ≤ bnj+1
) ≤ (ERnj − bnj+1

)−2 VarRnj = Θ(j−(1+
4
d ε)),

which is summable. The first Borel–Cantelli lemma now implies that

P(Rnj ≤ bnj+1
i.o.(j)) = 0,

and then (4.4) yields the desired (4.2).
(b) For d = 1, part (b) follows from part (a) because rn = 1 for n ≥ 1, so we assume

d ≥ 2. The sample paths of β, like those of R, are nondecreasing. Thus, in precisely
the same fashion that part (a) is proved using the mean and variance results from
Theorem 4.1(b), so one can prove part (b) using the mean and variance results from
Theorem 4.1(c). A key technical detail in establishing the analogue of (4.2) for the
process β is this analogue of (4.5) [which follows immediately from (4.5) by use of
concomitants]:

Eβn − Eβn−1 = (ERn − ERn−1)− (E rn − E rn−1)

= (1 + o(1))n−1
(Ln)d−1

(d− 1)!
− (1 + o(1))n−1

(Ln)d−2

(d− 2)!

∼ n−1 (Ln)d−1

(d− 1)!
.

(c) We obtain part(c) by subtraction from parts (a)–(b):

P
(
|rn − E rn| ≥ (Ln)

3d
4 +ε i.o.

)
= P

(
|(Rn − ERn)− (βn − Eβn)| ≥ (Ln)

3d
4 +ε i.o.

)
≤ P

(
|Rn − ERn| ≥ 1

2 (Ln)
3d
4 +ε i.o.

)
+ P

(
|βn − Eβn| ≥ 1

2 (Ln)
3d
4 +ε i.o.

)
≤ P

(
|Rn − ERn| ≥ (Ln)

3d
4 + ε

2 i.o.
)

+ P
(
|βn − Eβn| ≥ (Ln)

3d
4 + ε

2 i.o.
)

= 0.
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This gives the first assertion. Since E rn ∼ (Ln)d−1/(d − 1)! by Theorem 4.1(a), the
second assertion is indeed an immediate consequence of the first provided 3d/4 < d− 1,
i.e., d ≥ 5.

Remark 4.3. (a) In the proof of Theorem 4.2(a) we utilized Chebyshev’s inequality. Use
of normal tail probabilities would give a sharper result, except that the error estimate in
the Berry–Esseen theorem of Theorem 4.1(b) is insufficiently sharp for that.

(b) For d = 2, 3, 4 we conjecture on the basis of simulations discussed in Example 5.2
that the second conclusion

rn/E rn
a.s.−→ 1,

i.e.,
rn/(Ln)d−1

a.s.−→ 1/(d− 1)!, (4.6)

of Theorem 4.2(c) remains true. We do at least know from the first assertion in Theo-
rem 4.2(c) that for any ε > 0 we have

rn = O((Ln)
3d
4 +ε) a.s. (4.7)

In dimension d = 2 we can come close to (4.6), or at least to showing that rn = Θ(Ln) a.s.
Indeed, we can combine the representation of the distribution of rn as a Poisson-binomial
sum with a Chernoff bound and the first Borel–Cantelli lemma to show that rn = O(Ln)

a.s., and Theorem 3.4 gives rn = Ω((Ln)/(L2 n)) a.s.

5 Time change

It is natural to wonder about the appearance of the record-setting frontier (even
in dimension 2) when many observations, or (equivalently) many records, have been
generated. Figure 3 displays the record-setting frontier for one trial after 10,000
bivariate records had been generated, at which point results such as those in Section 1
suggest themselves. According to Theorem 4.1(b) [or Proposition 5.1(a2)], had this been
done naively, by generating observations X(i) and waiting for new records to be set, it
would have taken roughly 1061 observations to obtain 10,000 records. Instead, only the
records were generated, using the importance-sampling scheme described and analyzed
in [5].

The record-setting region process (RSn), and therefore also the frontier process (Fn)

we have studied in earlier sections, is adapted to the natural filtration for the process
C = (Cn)n≥0, where Cn = (C

(1)
n , . . . , C

(rn)
n ) is the rn-tuple of remaining records at time n

in order of creation. Let T0 = 0, and for m ≥ 1 let Tm denote the mth record-creation
epoch; note that C remains constant over each of the time-intervals [Tm−1, Tm), m ≥ 1.
Fill and Naiman [5] don’t simulate the i.i.d. observations process X(1), X(2), . . . (that is,
they don’t work in “observations-time”), but rather simulate the process C̃ = (C̃m)m≥0,

where C̃m := CTm [and hence the processes (R̃Sm := RSTm) and (F̃m := FTm)] (that is,
they work in “records-time”). The following goal thus naturally arises: Translate results
about C to results about C̃.

The keys to doing so are (i) monotonicity of the sample paths of various processes of
interest (such as F+ and F−) and (ii) the switching relation

{Tm ≤ n} = {Rn ≥ m}. (5.1)

The switching relation enables us to obtain information about the record-creation times
Tm from the records-counts Theorems 4.1(b) and 4.2(a). The following proposition is not
the most elaborate result which can be obtained in such fashion, but it will suffice for
our purposes.
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Figure 3: Record frontier (denoted F̃10,000) after 10,000 records generated using the
importance-sampling algorithm described in [5].

Proposition 5.1. Let Tm denote the mth epoch at which a record is set, and let γ denote
the Euler–Mascheroni constant.

(a) Typical behavior as m→∞:

(a1) If d = 1, then

LTm − (m− γ)

m1/2

L−→ standard normal.

(a2) If d = 2, then

LTm − [(2m)1/2 − γ](
π2

6 + 1
2

)1/2 L−→ standard normal.

(a3) If d ≥ 3, then

LTm − [(d!m)1/d − γ]
P−→ 0.

(b) Almost sure behavior as m→∞:

(b1) For every d ≥ 1 we have
LTm

(d!m)1/d
a.s.−→ 1.

(b2) If d ≥ 5, then
LTm − [(d!m)1/d − γ]

a.s.−→ 0.
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Proof. Fix d ≥ 1.

(a) Given ε > 0, by the switching relation (5.1) and Theorem 4.1(b) we have

P(LTm − [(d!m)1/d − γ] > ε) = P(Tm > exp[(d!m)1/d − γ + ε]) (5.2)

= P(Tm > n) = P(Rn < m) = Φ

(
m− ERn√

VarRn

)
+ o(1)

as m → ∞, where 0 ≤ εm = o(1) is chosen as small as possible to make n ≡ nm :=

exp[(d!m)1/d − γ + ε− εm] an integer. But Ln = (d!m)1/d − γ + ε− o(1), so

(Ln)d = d!m[1− (1 + o(1))(γ − ε)d(d!m)−1/d] and (Ln)−1 ∼ (d!m)−1/d,

and hence by Theorem 4.1(b)

ERn =
(Ln)d

d!
[1 + (1 + o(1))γd(Ln)−1]

= m[1− (1 + o(1))(γ − ε)d(d!m)−1/d][1 + (1 + o(1))γd(d!m)−1/d]

= m[1 + (1 + o(1))εd(d!m)−1/d] = m+ (1 + o(1))εd(d!)−1/dm(d−1)/d

and √
VarRn ∼

√
γd+1,0(Ln)d/2 ∼ (γd+1,0 d!m)1/2 = Θ(m1/2).

Thus (m− ERn)/
√

VarRn is negative and of magnitude Θ(m
d−1
d −

1
2 ).

(a3) If d ≥ 3, it follows that the probability (5.2) tends to 0, and similarly

P(LTm − [(d!m)1/d − γ] ≤ −ε)→ 0,

yielding the claimed convergence in probability.

(a2) If d = 2, then the same calculations show that for any real x we have

P(LTm − [(2m)1/2 − γ] > x) = Φ
(
−γ−1/23,0 x

)
+ o(1),

yielding the claimed CLT, since from [3], γ3,0 = π2

6 + 1
2 .

(a1) If d = 1, then the same calculations show that for any real x we have

P(LTm − [m− γ] > x) = Φ

(
−(1 + o(1))

x

(γ2,0m)1/2

)
+ o(1),

yielding the claimed CLT, since γ2,0 = 1.

(b1) This follows readily from the conclusion Rn/ERn
a.s.−→ 1 of Theorem 4.2(a) by

first recalling from Theorem 4.1(b) that ERn ∼ (Ln)d/d!; then setting n = Tm, noting
RTm = m; and finally taking −d−1 powers.

(b2) According to Theorem 4.2, if ε > 0 then as n→∞ we a.s. have

Rn = ρn +O((Ln)
3d
4 +ε),

where ρ is the mean function for R. In particular, setting n = Tm, as m→∞ we a.s. have

m = ρTm +O((LTm)
3d
4 +ε).

If d ≥ 5, then d− 1 > (3d)/4 and thus [from Theorem 4.1(b)] almost surely

m =
(LTm)d

d!
[1 + (1 + o(1))γd(LTm)−1],

which implies

(d!m)1/d = (LTm)[1 + (1 + o(1))γ(LTm)−1] = LTm + γ + o(1),

as desired.
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Example 5.2. Here is a first illustration of the usefulness of Proposition 5.1 in connection
with the simulations of records discussed at the outset of this section. Define r̃m := rTm .
From these simulations it is reasonable to conjecture that

r̃m
(d!m)(d−1)/d

a.s.−→ 1

(d− 1)!
as m→∞. (5.3)

But we now show that the records-time conjecture (5.3) is in fact equivalent to the obser-
vations-time conjecture (4.6)—and therefore both conjectures are [by Theorem 4.2(c)
and the expected value asymptotics in Theorem 4.1(a)] true at least for d ≥ 5.

Indeed, (5.3) follows immediately from (4.6) by substitution of Tm for n and use of
Proposition 5.1(b1). To sketch a proof of the converse, consider the ratio on the left
in (4.6) for Tm ≤ n < Tm+1. For the numerator of the ratio, note that rn = rTm . Use
Tm ≤ n < Tm+1 in the denominator to get upper and lower bounds on the ratio, and then
use Proposition 5.1(b1) to relate the upper and lower bounds on the ratio in (4.6) to the
ratio in (5.3).

We can now translate results of Section 1 from observations-time to records-time
(the main goal of this section being to translate Theorem 1.14 about frontier width in
this fashion), but [because of the limitation of Proposition 5.1(b2)] we only know how to
translate some of our almost sure results when d ≥ 5.

Theorem 5.3. Consider the process F̃+ defined by F̃+
m := F+

Tm
.

(a) Typical behavior of F̃+:

(a1) For any d ≥ 2 we have

F̃+
m − (d!m)1/d

Lm

P−→ 1− d−1.

(a2) If d ≥ 3 we have the following convergence in law to Gumbel:

F̃+
m − [(d!m)1/d + (1− d−1) Lm+ L d− d−1 L(d!)− γ]

L−→ G.

(b) Almost sure behavior for F̃+:

(b1) For any d ≥ 1 we have
F̃+
m ∼ (d!m)1/d a.s.

(b2) If d ≥ 5, then

lim inf
F̃+
m − (d!m)1/d

Lm
= 1− d−1 < 1 = lim sup

F̃+
m − (d!m)1/d

Lm
a.s.

Proof. (a2) Assume that d ≥ 3 and let

G̃m := F̃+
m − [(d!m)1/d + (1− d−1) Lm+ L d− d−1 L(d!)− γ].

Given x ∈ R and ε > 0, we will show that

P(G̃m ≤ x) ≥ P(G ≤ x− ε)− o(1), (5.4)

and a similar proof establishes P(G̃m ≤ x) ≤ P(G ≤ x + ε) + o(1). Letting m → ∞ and
then ε ↓ 0 completes the proof of (a2), and (a1) is a simple consequence.

We now prove (5.4). By Proposition 5.1(a3) and nondecreasingness of the sample
paths of F+, we have

P(G̃m ≤ x) ≥ P
(
F+
n ≤ x+ (d!m)1/d + (1− d−1) Lm+ L d− d−1 L(d!)− γ

)
− o(1),
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where n ≡ nm = bexp[(d!m)1/d − γ + ε]c. Observe that

Ln = (d!m)1/d − γ + ε− o(1) and L2 n = d−1[Lm+ L(d!)] + o(1),

and so

Ln+ (d− 1) L2 n− L((d− 1)!)

= (d!m)1/d + (1− d−1) Lm+ L d− d−1 L(d!)− γ + ε− o(1).

Thus, making use of Theorem 1.8(a), we arrive at

P(G̃m ≤ x) ≥ P
(
F+
n − [Ln+ (d− 1) L2 n− L((d− 1)!] ≤ x− ε+ o(1)

)
− o(1)

= P(G ≤ x− ε)− o(1),

as desired.
(a1) We have already proved (a1) for d ≥ 3. A similar proof establishes (a1) if d = 2.
(b1) By Corollary 1.9(b) and Proposition 5.1(b1), the following asymptotic equiva-

lences hold a.s.:
F̃+
m = F+

Tm
∼ LTm ∼ (d!m)1/d.

(b2) One checks easily for b ≥ 0 that (b − Ln)/L2 n decreases for n ≥ 15, and so
(F+
n − Ln)/L2 n decreases over each of the time-intervals [Tm−1, Tm) with m large. (It is

sufficient to choose m ≥ 16.) It follows that

lim sup
n→∞

F+
n − Ln

L2 n
= lim sup

m→∞

F̃+
m − LTm
L2 Tm

(5.5)

and

lim inf
n→∞

F+
n − Ln

L2 n
= lim inf

m→∞

F+
Tm−1 − L(Tm − 1)

L2(Tm − 1)

= lim inf
m→∞

F̃+
m−1 − L(Tm − 1)

L2(Tm − 1)

= lim inf
m→∞

F̃+
m − LTm+1 + o(1)

L2 Tm+1 − o(1)
.

But, by Proposition 5.1(b2), almost surely

LTm+1 = [d!(m+ 1)]1/d − γ + o(1) = d!m1/d +O(1)

and hence
L2 Tm+1 = d−1 Lm+O(1),

whence

lim inf
n→∞

F+
n − Ln

L2 n
= lim inf

m→∞

F̃+
m − LTm+1 + o(1)

L2 Tm+1 − o(1)

= lim inf
m→∞

F̃+
m − d!m1/d +O(1)

d−1 Lm+O(1)

= d lim inf
m→∞

F̃+
m − d!m1/d

Lm
;

similarly, by (5.5),

lim sup
n→∞

F+
n − Ln

L2 n
= d lim sup

m→∞

F̃+
m − d!m1/d

Lm
.

The desired result now follows from Corollary 1.9(b).
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Remark 5.4. In the same manner as Remark 1.10, one can show that the set of limit
points of the sequence [F̃+

m − (d!m)1/d]/Lm is for d ≥ 5 almost surely the closed interval
[1− d−1, 1].

Theorem 5.5. Consider the process F̃− defined by F̃−m := F−Tm .

(a) Typical behavior of F̃−: If d ≥ 2, then

P(F̃−m ≤ (d!m)1/d − 3 L2m)→ 0

and
P(F̃−m ≥ (d!m)1/d + cm)→ 0 if cm →∞.

As a consequence,
F̃−m − (d!m)1/d

Lm

P−→ 0.

(b) Almost sure behavior for F̃−: If d ≥ 5, then

lim
F̃−m − (d!m)1/d

Lm
= 0 a.s.

Proof. (a) Recalling Remark 3.3 to provide some flexibility, part (a) follows from Theo-
rem 1.12(a) in much the same way that Theorem 5.3(a) followed from Theorem 1.8(a)
[and Corollary 1.9(a)]. In the interest of brevity, we omit the routine details.

(b) In the same way that Theorem 5.3(b) followed from Corollary 1.9(b), so part (b)
follows from Corollary 1.13(b).

We come finally to our main focus of this section, the process W̃ .

Theorem 5.6. Consider the process W̃ defined by W̃m := WTm .

(a) Typical behavior of W̃ : For every d ≥ 1 we have

W̃m

Lm

P−→ 1− d−1.

(b) Almost sure behavior for W̃ : If d ≥ 2, then

lim inf
W̃m

Lm
= 1− d−1 < 1 = lim sup

W̃m

Lm
a.s.

and, in particular,
W̃m = Θ(Lm) a.s.

Proof. Part (a), and part (b) for d ≥ 5, follow immediately by subtraction from the two
preceding theorems about F̃+ and F̃− [and by the triviality of part (a) for d = 1]. We
next present an argument that establishes part (b) for all d ≥ 2.

In the proofs of Theorems 5.3(b) and 5.5(b), the only use of the assumption d ≥ 5 is
in the application of Proposition 5.1(b2). From the computations prior to the application
together with application of Proposition 5.1(b1) for the denominators, we almost surely
have

lim sup
m→∞

F̃+
m − LTm

Lm
= 1, lim inf

m→∞

F̃+
m − LTm+1

Lm
= 1− d−1, (5.6)

lim sup
m→∞

F̃−m − LTm
Lm

= 0, lim inf
m→∞

F̃−m − LTm+1

Lm
= 0.
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From the two results here about F̃−, it follows quickly using the monotonicity of the
paths of F− that a.s.

lim
m→∞

F̃−m − LTm
Lm

= 0, lim
m→∞

F̃−m − LTm+1

Lm
= 0. (5.7)

Now subtract the equations in (5.7) from the corresponding equations in (5.6) to complete
the proof of part (b).

Remark 5.7. (a) Using Remark 5.4, for d ≥ 5 Theorem 5.6(b) can be strengthened to
the conclusion that the set of limit points of the sequence W̃m/Lm is almost surely the
closed interval [1− d−1, 1]. We have not investigated whether this result can be extended
to d = 2, 3, 4.

(b) Equation (5.7) has the independently interesting corollary that

LTm+1 − LTm = o(Lm) a.s. (5.8)

for d ≥ 2. For d = 1, it follows from the last sentence in [1, Sec. 2.5] that

LTm+1 − LTm = O((mL2m)1/2).

For d ≥ 5 we can prove the stronger [than (5.8)] result that

LTm+1 − LTm = O(m−(
1
4−

1
d−ε)) a.s. (5.9)

for any ε > 0. Indeed, define the function f ≡ fd by

f(t) :=

dd/4e−1∑
j=0

(−1)j−1Γ(j)(t)

j!(d− j)!
td−j .

Then, setting n = Tm in Theorem 4.2(b), with ρ defined as the mean function for R we
almost surely have

m = ρTm +O((LTm)
3d
4 +dε)

= ρTm +O(m
3
4+ε) by Proposition 5.1(b1)

= f(LTm) +O(m
3
4+ε) by Theorem 4.1(b).

Thus for some Im ∈ [Tm, Tm+1] we almost surely have

1 = f(LTm+1)− f(LTm) +O(m
3
4+ε)

= f ′(L Im)(LTm+1 − LTm) +O(m
3
4+ε)

by the mean value theorem

= (1 + o(1))
1

(d− 1)!
(L Im)d−1(LTm+1 − LTm) +O(m

3
4+ε)

= (1 + o(1))
1

(d− 1)!
(d!m)1−

1
d (LTm+1 − LTm) +O(m

3
4+ε)

by Proposition 5.1(b1),

yielding (5.9).
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